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Explaining Prediction Models and Individual
Predictions with Feature Contributions

Erik Štrumbelj,Igor Kononenko

1 Introduction

Classification and regression prediction models are an important compo-
nent of decision support systems. Such models are often complex and non-
transparent to the user and require additional post-processing. The purpose
of such post-processing is to obtain a better understanding of the model and,
in practical applications, increase the end-user’s level of trust in the model.
The latter is especially important in risk-sensitive domains such as medicine,
where experts are reluctant in trusting prediction model’s predictions with-
out additional explanation.

Most explanation methods are model specific. Some models, such as de-
cision and regression trees, rules, and nearest neighbors-based methods, are
self-explanatory, provided that the number of nodes/rules/dimensions is not
too large. For large trees and/or sets of rules, additional post-processing
methods have been developed that help reduce the models size while min-
imizing the loss of informativeness [1, 2, 3, 4, 5, 6]. Linear regression and
other additive models can be additionally explained by plotting the marginal
effect of each input variable. Because of additivity, the actual prediction is
the sum of individual marginal effects, which also makes such a visualization
a tool for graphical computation of predictions - a nomogram. Additivity
has been exploited to provide an explanation for the Naive Bayes classi-
fier [7, 8, 9], linear SVM [10], logistic regression [11], Cox regression models
[12], and additive models in general [13]. Complex models, such as artificial
neural networks [14, 15, 16, 17, 18] and SVM (Support Vector Machines)
[19, 20, 10, 21, 22, 23, 24, 25] received most attention, because they are often
very successful but non-transparent.
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In this paper we focus on a general approach for explaining prediction
models. General in the sense that it can be applied to any type of prediction
models. Such approaches must essentially treat the model as a black box,
restricted to explaining the model only through changing the inputs and ob-
serving the changes in the output. While such approaches can not exploit
the specifics of the model, they have the advantage of being applicable to
any type of model and providing uniform explanations. This facilitates com-
parison of different types of models and, in practical applications, eliminates
the need to replace the explanation method when the underlying model is
changed or replaced.

The key component of general explanations are the contributions of indi-
vidual input features. The prediction for a particular instance is additionally
explained by assigning to each feature a number which denotes its share
in the prediction. For each feature, such contributions can be aggregated
to plot the feature’s average contribution against the feature’s value. Such a
plot provides an overview of the model and is similar to plotting the marginal
effect for an additive model.

To describe our problem setting and provide a better understanding of
the idea of feature contributions, we start with a simple illustrative example
- the linear regression model:

f(x) = f(x1, ..., xn) ≈ y = β0 + β1x1 + ...+ βnxn

If the input features are standardized, the coefficient βi can be interpreted
as the i−th feature’s global importance. However, the coefficient itself does
not provide much in terms of explaining the model. In terms of explaining
a prediction or the model, we are more interested in how a particular value
influences the prediction. We turn to the following expression

φi(x) = βixi − βiE[Xi], (1)

which is known as the situational importance of Xi = xi [26].
The situational importance is the difference between what a feature con-

tributes when its value is xi and what it is expected to contribute. If the
situational importance is positive, then the feature has a positive contribu-
tion (increases the prediction for this particular instance), if it is negative,
then the feature has a negative contribution (decreases the prediction), if it
is 0, it has no contribution.
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Figure 1: The marginal effects of the two input features for the model
f(x1, x2) = 2x1 − 3x2 + 4. Both input features’ functions are shown on
the same graph. Such plots can be used for semi-graphical computation of
the model’s prediction for an arbitrary instance x =< x1, x2 >. For each
input feature, we use the plotted function to map its value from the x-axis to
that value’s contribution on the y-axis. All that remains is to sum the two
contributions and the expectation E[f ] = 4.

To illustrate, observe the linear model f(x1, x2) = 2x1−3x2+4, with both
input features uniformly distributed on [−1, 1]. How much do the two input
features contribute for the prediction f(1

2
, 1
3
)? For this instance, the situa-

tional importance of the first and second feature are 1 and −1, respectively.
Therefore, both features contribute positively. We can plot the average sit-
uational importance ψ of each value (for this additive model, all situational
contributions of a particular value are the same; subsequently, so is the av-
erage situational contribution), to obtain an overview of how each feature
contributes across all of its values (see Figure 1). This plot not only shows
how different feature values contribute, it can also be used to semi-graphically
compute the prediction for any instance. As previously mentioned, such a
plot can be produced for any additive model, a fact that has been exploited
in developing several model specific explanation methods [11, 9, 10, 13, 12]

Computing the contributions for our illustrative example was simple, be-
cause the model is known and the features do not interact (the model is
additive). Therefore, the contribution of some xi is the same across all in-
stances, regardless of the values of other features. In our problem setting,
however, the model is unknown and no assumptions are made other than that
the model maps from some known input feature space to a known codomain.
These restrictions are necessary for the method to be general, but restrict
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us to changing the inputs and observing the outputs. Previous general ap-
proaches [27, 28] tackled the problem in the following way:

φi(x) = f(x1, ..., xn)− E[f(x1, ..., Xi, ..., xn)] (2)

Eq. (2) is basically the difference between a prediction for an instance
and the expected prediction for the same instance if the i−th feature had not
been known. In practice, expression Eq. (2) is not difficult to approximate
(or compute, if the feature’s domain is finite) - we have to perturb the values
of the i−th feature, while the values of other input features remain fixed,
and then average the prediction. Additionally, if f is an additive model, Eq.
(2) is equivalent to Eq. (1), so in the case of an additive model, we do not
lose any of the previously mentioned advantages associated with explaining
an additive model.

However, when the model is not additive, as is often the case in practical
applications, the approach gives undesirable results. For example, observe
the model f(x1, x2) = x1 ∨ x2, where both features are uniformly distributed
on {0, 1}. When computing the contribution of the first feature for f(1, 1) =
1, we see that perturbing its value does not change the prediction - the first
features contribution is 0. The same holds for the second feature. Therefore,
both features get a 0 contribution, which is undesirable.

We learn from the previous example that perturbing one feature at a
time gives undesirable results and that all subsets of features have to be
perturbed to avoid such issues. In our previous work we proposed a general
method for explaining classification and, separately, regression models that
dealt with the aforementioned shortcomings of existing general explanation
methods [29, 30]. This paper builds on our previous work. We address the
general explanation of both classification and regression models and provide
a thorough empirical analysis of running times, illustrative examples, and the
results of a user study of the usefulness of the contribution-based instance
explanations. We also discuss two extensions that improve the algorithms
efficiency and show that in the case of additive models, the proposed method
is also equivalent to the explanation commonly used for additive models.

The remainder of the paper is organized as follows. In Section 2 we
provide the essential background. In Section 3 we describe the approximation
algorithms for computing a feature’s contribution for an instance and the
average contribution of a feature’s value. Section 4 is dedicated to empirical
results and visual inspection of instance and model visualizations. In Section

5



5 we describe a user study. With Section 6 we conclude the paper.

2 Computing a Feature’s Contribution

The following notation will be used throughout the paper. Let X = [0, 1]n

be our feature space, Y the target variable, and {yi;x1,j, x2,j, ..., xn,j}Mi=1 a
data set of M instances. The function f : X → ℜ represents the model that
is used to predict the value of the target variable for an instance x ∈ X .

First, let us observe how a feature’s value contributes for a simple linear
model. That is, let us assume for a moment that f takes the form

f(x) = β0 + β1x1 + ...+ βnxn.

The contribution of the i-th feature’s value for some instance x ∈ X is the
difference between the model’s prediction and the expected prediction if the
i-th feature’s value is not known:

φadditive
i (x) = β0 + ...+ βixi + ...+ βnxn − (β0 + ...+ βiE[x,i] + ...+ βnx,n)

= βi(xi − E[Xi]).

(3)

The contribution in Eq. (3) is sometimes also referred to as the situational
importance of xi [26]. Observe how such a contribution is independent of
the values of other features. This is due to the fact that the linear model
is additive (that is, the features do not interact). This property makes the
linear model and other additive models easy to interpret.

However, in practice we are often not dealing with an additive model, so
any subset of features might interact. Therefore, to avoid the shortcomings of
previous general methods, we have to observe the contribution of each subset
of feature values. For this purpose, Eq. (3) has to be generalized. First, we
define the model’s prediction conditional to only a subset of features’ values
being known:

fQ(x) = E[f |Xi = xi, ∀i ∈ Q], (4)

where Q ⊆ S = {1, 2, ..., n} represents a subset of features. Eq. (4) allows
us to define the contribution of a subset of feature values:
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∆Q(x) = fQ(x)− f{}(x). (5)

Eq. (5) can be interpreted as the change in prediction caused by observing
the values of a certain subset of features for some instance x ∈ X . The
number of ∆-terms grows exponentially with the number of features. To
provide a contribution similar to the one for the linear model, we have to
map these 2n terms into n contributions, one for each feature’s value. First,
we implicitly define interactions by saying that the contribution of a subset of
feature values is the sum of all interactions across all subsets of those feature
values:

∆Q(x) =
∑
W⊆Q

IW (x). (6)

Which uniquely defines the interactions:

IQ(x) = ∆Q(x)−
∑
W⊂Q

IW (x). (7)

Finally, each interaction is divided among the participating feature values,
which defines the contribution:

φi(x) =
∑

”⊆S\{i}

IW∪{i}(x)

|W |+ 1
. (8)

This leads to the following explicit definition:

φi(x) =
∑

Q⊆S\{i}

|Q|!(|S| − |Q| − 1)!

|S|!
(∆Q∪{i}(x)−∆Q(x)). (9)

Eq. (9) is the Shapley value [31]. As such, it has the following desirable
properties.

•
∑n

i=1 φi(x) = ∆S(x)

• ∀W ⊆ S \ {i} : ∆W = ∆W∪{i} ⇒ φi(x) = 0

• ∀W ⊆ S \ {i, j} : ∆W∪{i} = ∆W∪{j} ⇒ φi(x) = φj(x)
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That is, the contributions are implicitly normalized, which makes them
easier to interpret and compare. If a feature’s value does not have any impact
on the prediction, will be assigned a 0 contribution. And, if two features’
values have the a symmetrical impact across all subsets, they will be assigned
equal contributions.

2.1 Illustrative example

It follows from the equivalence with the Shapley value that the contributions
computed with the described method will not have the same problem as
previous general methods. We illustrate this and the method itself with the
following example. Let X = [0, 1]3 and

f(x) =

{
1 if(x1 > 0.5) ∨ (x2 > 0.5) ∨ (x3 > 0.5),

0 otherwise.

We assume that all instances from X are equally probable. Let us com-
pute the contributions for the prediction f(0.9, 0.7, 0.3) = 1. This example is
similar to the disjunction example from the Introduction - existing methods
would assign all three features a zero contribution.

All conditional predictions, with the exception of E[f ] = 7
8
and E[f |x3 =

0.3] = 6
8
, equal 1, because it is enough that one of the input features satisfies

the condition. The ∆ terms are ∆{3} = −1
8
and ∆{1} = ∆{2} = ∆{1,2} =

∆{1,3} = ∆{2,3} = ∆{1,2,3} = +1
8
.

Interactions of input features (with themselves) are non-zero (I{1} =
I{2} = 1

8
and I{3} = −1

8
), because each feature contributes by itself (as op-

posed to, for example, xor, where relevant features would not contribute any-
thing by themselves. Interactions of pairs of features are I{1,3} = I{2,3} = 1

8

and I{1,2} = −1
8
. We encounter a negative interaction of two or more fea-

tures, because the first two features contribute less together than the sum
of their individual predictions. The interaction of all three is also negative
I{1,2,3} = ∆{1,2,3} −

∑
Q⊂{1,2,3} IQ = −1

8
.

All that remains is to divide the interactions among the participating fea-
tures and form the contributions (see Eq. (8)). The contribution of the third

input feature is φ3 = I{3} +
I{1,3}+I{2,3}

2
+

I{1,2,3}
3

= − 1
24
. Due to symmetry,

the contributions of the first two input features will be the same. Therefore,

we only compute the first: φ1 = I{1} +
I{1,2}+I{1,3}

2
+

I{1,2,3}
3

= 1
12

= φ2. The
contributions are non-zero and in accordance with our intuition the first two
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features have a positive contribution, while the third input feature has a
negative contribution.

3 Approximation Algorithm

The biggest issue with Eq. (9) is that it is infeasible for practical use. The
following approximation is used to reduce the computational complexity. We
start by writing a different but equivalent formulation of Eq. (9):

φi(x) =
1

n!

∑
O∈π(N)

(
∆Prei(O)∪{i} −∆Prei(O)

)
, i = 1, ..., n, (10)

where π(n) is the set of all ordered permutations of the feature indices
{1, 2, ..., n} and Prei(O) the set of all indices that precede i in permuta-
tion O ∈ π(n).

If the cost of computing the ∆-terms would be zero, Eq. (10) could be ap-
proximated using a simple sampling algorithm, where

(
∆Prei(O)∪{i} −∆Prei(O)

)
would be one sample (see, for example, [32]). However, the computational
complexity of computing the ∆-terms is exponential. As shown in [30], it is
sufficient to limit ourselves to such distributions of instances p that individ-
ual features are distributed independently. Now Eq. (5) can be simplified
into:

∆Q(x) = fQ(x)− f{}(x) =

=
∑

w∈X ;∀i:(wi=xi∨i/∈S)

p(w)f(w)−
∑

w∈X ;∀i:(xi=ai)

p(x⃗)f(w) =

=
∑
w∈X

p(w)(f(w[wi=xi,i∈S])− f(w),

(11)

where the notation w[wi=xi,i∈S] denotes instance w with the value of feature i
replaced with that feature’s value in instance x, for each i ∈ S. For example,
with w⃗ = ⟨2, 4, 6⟩ and x⃗ = ⟨3, 5, 7⟩, w⃗[wi=xi,i∈{1,3}] = ⟨3, 4, 7⟩.

The ∆-terms in Eq. (10) are replaced with Eq. (11) to obtain:

φi(x) =
1

n!

∑
O∈π(N)

∑
x⃗∈X

p(x⃗) · (f(x⃗[xj=aj ,j∈Prei(O)∪{i}])− f(x⃗[xj=aj ,j∈Prei(O)])),

(12)
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The following sampling procedure is used [29]. Let

VO,x⃗∈X = (f(x⃗[xj=aj ,j∈Prei(O)∪{i}])− f(x⃗[xj=aj ,j∈Prei(O)])),

all permutation / instance pairs, be the sampling population. When sampling
at random and with replacement, we draw sample VO,x⃗∈X with probability
p(z). Let us draw m such samples V1, V2, ..., Vm at random with replacement
and define:

φ̂i =
1

m

m∑
j=1

Vj, (13)

If follows that φ̂i is approximately normally distributed with mean φi and

variance
σ2
i

m
, where σ2

i is the population variance. That is, φ̂i is an unbiased
and consistent estimator of φi(x). The described approximation algorithm
is summarized in Algorithm 1.

Algorithm 1 Approximating the i-th features contribution for model f ,
instance x ∈ X and distribution p. Draw m samples.

φi(x)← 0
for 1 to m do

select, at random, permutation O ∈ π(n)
select, at random, z ∈ X
construct two instances:

b⃗1 ←
take values from x︷ ︸︸ ︷

preceding i-th in O i

take values from z︷ ︸︸ ︷
succeeding i-th in O

b⃗2 ←
take values from x︷ ︸︸ ︷
preceding i-th in O

take values from z︷ ︸︸ ︷
i succeeding i-tega v O

φi(x)← φi(x) + f (⃗b1)− f (⃗b2)

end for
φi(x)← φi(x)

m
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3.1 Quasi-Random and Adaptive Sampling

In this section, we discuss two extensions that can be used to increase the
efficiency of the described approximation algorithm. First, the approximation
algorithm described in the previous section can be considered a form of Monte
Carlo integration. Therefore, for faster convergence, quasi-random sampling
can be used instead of pseudo-random sampling [33, 34]. In our experiments,
we used the Sobol low-discrepancy quasi-random sequence [35].

And second, to compute the explanation for an instance x, we need to
compute the contribution for each of the n features for that instance. In
practice, we want to do this in a controlled amount of time to minimize
the overall approximation error. The approximation error of the estimator
φi(x) depends on the population variance which may not be the same for
all features. Given that in practice, we are limited to a certain number of
samples m, it makes sense to adapt mi the number of samples drawn for a
feature to that feature’s variance σ2

i . We discuss two cases - minimizing the
squared

∑n
i=1(φ̂i−φi)

2 and the absolute approximation error
∑n

i=1 |φ̂i−φi|.
Recall that the estimate φ̂i is approximately normally distributed φ̂i ≈

N(φi,
σ2
i

mi
). It follows that φ̂i−φi ≈ N(0,

σ2
i

mi
). The distribution of the absolute

error for the i-th feature Zi = |φ̂i−φi| is half-normal, with E[Zi] =
√

σ2
i

mi

√
2
π
.

The expectation for the sum of absolute errors is

E

[
n∑

i=1

Zi

]
=
∑
i=1

n

√
σ2
i

mi

√
2

π
=

√
2

π

n∑
i=1

σi√
mi

.

Similarly, for the sum of squared errors, we take Zi ≈ (φ̂i − φi)
2. The

expectation E[Z2
i ] = Cov[Zi, Zi]+2E[Zi] =

σ2
i

mi
. The expectation for the sum

of absolute errors is

E

[
n∑

i=1

Zi

]
=

n∑
i=1

σ2
i

mi

.

In practice, the variances σi are not known beforehand, so it is necessary
to take samples for each input feature to estimate the variance. The minimum
number of samples is a tradeoff between the risk of wasting samples on a less
relevant input feature and the risk of missing an important feature.

After the minimum amounts of samples have been taken, the goal is to
distribute mmax, the total number of samples we can compute, among indi-
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vidual features in such a way that we minimize the expected error. Regardless
of which error we use, a greedy approach is optimal. That is, if the current
amount of samples taken for each feature are m1, ...,mn then we should take

the sample for the feature that maximizes
√

σ2
i

mi
−
√

σ2
i

mi+1
(or

σ2
i

mi
− σ2

i

mi+1
). This

is a direct consequence of the fact that functions g(z) = σi√
z
and g(z) =

σ2
i

z

are both strictly decreasing on z ∈ ℜ+. Therefore, the currently best choice
is also better than all possible future choices, regardless of the order in which
future samples are taken.

Algorithm 2 Approximating all features’ contributions for model f , instance
x ∈ X and distribution p. Draw mmin samples for each feature, draw a total
of mmax >= n ·mmin samples.

for i = 1 to n do
mi ← 0, φi(x)← 0

end for
while

∑n
i=1mi < mmax do

if ∀i : mi ≥ mmin then

pick a j ∈ {1..n} which maximizes (

√
σ2
j

mj
−
√

σ2
j

mj+1
)†

else
pick a j, such that mj < mmin

end if
φi(x)← φi(x)+ result of Algorithm 1 for j-th feature and m = 1
Update σ2

i using an incremental algorithm.
end while
for i = 1 to n do
φi(⃗a)← φi(a⃗)

mi

end for

† if minimizing the quared error, maximize (
σ2
j

mj
− σ2

j

mj+1
) instead

The adaptive sampling version of the algorithm is summarized in Algo-
rithm 2. Note that we used Knuth’s incremental algorithm for computing
the variance [36, 37].
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3.2 Average Contribution of a Feature’s Value

The plots mentioned in the introduction are a common and efficient way
of presenting an overview of additive models. Such plots show, for each
feature, the function that maps its values to situational contributions of those
values. Recall that for additive models, where the features do not interact,
the situational contribution of the i-th features j-th value is the same for all
instances. However, if the model is not additive and the features interact,
then the situational contribution of a features value depends on the values
of other features.

Therefore, to produce a similar plot with the proposed method, we aver-
age the value’s contributions across all instances with that value:

ψi,j =
∑

x∈X ,xi=Xi,j

p(x)φi(x) =
∑
x∈X

p(x)φi(x[xi=Xi,j ]) =

=
∑
x∈X

p(x)

 1

n!

∑
O∈π(N)

∑
z∈X

p(z)(f(z[zj=xj ,j∈Prei(O);zi=Xi,j ])− f(z[zj=xj ,j∈Prei(O)]))

 =

=
1

n!

∑
O∈π(N)

(∑
x∈X

p(x)
∑
z∈X

p(z[zj=xj ,j∈Prei(O);zi=Xi,j ])− f(z[zj=xj ,j∈Prei(O)]))

)
=

=
1

n!

∑
O∈π(N)

∑
z∈X

p(z) (f(z′)− f(z))

=
∑
z∈X

p(z) (f(z′)− f(z)) ,

(14)

where x⃗′ (z⃗′) is a vector, which equals x⃗ (z⃗), with the exception of the i-th
component, which is set to Xi,j.

Let ψi(x), i = 1..n be the average contribution functions. If f is additive
then it holds for each input feature i and its value x that ψi(x) = fi(x)−E[fi]:

ψi(x) =
∑
z⃗∈X

p(z⃗)(f(z⃗zi=x)− f(z⃗)) =

=
∑
z⃗∈X

p(z⃗)(fi(x)− fi(zi)) =

13



=
∑
z⃗∈X

p(z⃗)fi(x)−
∑
z⃗∈X

p(z⃗)fi(zi) =

= fi(x)− E[fi].
That is, in the case of an additive model, the average contribution of a
feature’s value equals the situational contribution of that value.

4 Experimental Results

The experiments are divided into two parts. First, we analyze the running
times across several different types of models and data sets. And second,
we illustrate the method’s practical usefulness by visually inspecting several
instance and model explanations.

The list of artificial data sets that we used in our experiments is shown in
Table 1. These data sets were constructed for the purpose of experimental
verification of how general explanation methods perform on data with con-
cepts such as disjunction, xor, conditionally independent features redundant,
and random features. For most data sets only a brief description is given and
further details can be found in [27, 29, 30]. For those artificial data sets that
are visualized in the second part of this section a more detailed description
will be given.

We also included in the experiments several well-known regression and
classification data sets: autoMpg, bodyfat, concrete, elevators, fishcatch,
fruitfly, housing, machinecpu, pollution, stock, wine, and wisconsin (regres-
sion), anneal, breastCancerLJ, hepatitis, iris, monks1, monks2, monks3,
mushroom, nursery, soybean, and zoo (classification). The data sets are
available in .arff format from the Weka website (http://www.cs.waikato.
ac.nz/ml/weka/). Most can also be found at the UCI Machine Learning
repository [38].

We included ten different variations of learning algorithms for classifi-
cation and seven different variations for regression (see Table 2). All used
learning algorithms were from the Weka [39] machine learning software. Un-
less otherwise noted, default settings were used.

4.1 Running Times Analysis

With the first experiment we illustrate the benefits of using adaptive sampling
and/or quasi-random sampling. We included all regression data set/regression

14



Table 1: Number of instances (#I), total number of input features (#F), and
brief description of artificial data sets.

Name #I #F Description

C
la
ss
ifi
ca
ti
on

cChess 2000 4 Color of 4x4 chessboard point.
cCondInd 2000 8 Conditionally independent features.
cCross 2000 6 Even or odd quadrant in coordinate system.
cDisjunctB 2000 5 Disjunction with binary input features.
cDisjunctN 2000 5 Disjunction with numeric features.
cGroup 2000 4 Clusters.
cRandom 2000 4 Random input features.
cRedundant 2000 5 Disjunction with redundant features.
cSphere 2000 5 Point lies in the interior of a sphere.
cXor 2000 6 Xor.

R
eg
re
ss
io
n

rDisjunctB 2000 5 Disjunction with binary input features.
rDisjunctN 2000 5 Disjunction with numeric features.
rLinear 2000 5 Linear problem.
rLinNoisy 2000 5 Linear problem with noise.
rLocLinear 2000 5 Locally linear problem.
rNonLinPoly 2000 5 Third degree polynomial.
rNonLinTrig 2000 5 Trigonometric function.
rRandom 2000 4 Random input features.
rRedundant 2000 5 Disjunction with redundant features.
rXor 2000 6 Xor.
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Table 2: A list of learning algorithms that were included in the experiments.
IBk and MultilayerPerceptron were used for both regression and classifica-
tion.
Name Description
AdaBoostM1 Boosting with Naive Bayes or decision tree as base learner.
Bagging Bagging with either decision tree or regression tree as base learner.
IBk k-Nearest Neighbors with either k = 1 or k = 11.)
J48 Decision tree.
LinearRegression Linear regression.
Logistic Logistic regression.
M5P Regression tree.
MultilayerPerceptron Multi-layer artificial neural network with on hidden level.
NaiveBayes Naive Bayes classifier.
SVO Support Vector Machine with second degree polynomial kernel.
SVMreg Regression SVM.

learner and classification data set/classifier pairs in this experiment. For each
such pair, we trained the model and computed the mean squared approxima-
tion error across all instances. We computed the error at different amounts
of samples per features and for all four combination of the basic approxima-
tion algorithm and for enhancements (both, just quasi-random, just adaptive,
neither). The results, shown in Figure 2, suggest that both enhancements im-
prove the efficiency of the algorithm. That is, on average, fewer samples are
needed to achieve the same approximation error. The improvement achieved
with quasi-random sampling is small, compared to the improvement achieved
by adaptive sampling. Best results are achieved when both enhancement are
used.

To better understand how many features is still a reasonable number to
generate an explanation for, we generated additional data sets. The data
set linear50 contains 1000 instances with 50 standardized numerical input
features. The class value is a linear combination of features. Odd features
are irrelevant while the integer coefficients for other features were chosen
at random from -5 to 5. The datgen40 data set contains 1000 instances
described with 40 nominal features (30 of which are unrelated to the class
value) and each feature has 10 values. This is a classification data set with 10
classes (see A for a detailed description). Note that this data set was created
using Melli’s data set generator [40].

We ran the following experiment for each of the two data sets separately
and all appropriate learning algorithms. Starting with the first input feature
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Figure 2: Relative approximation against number of samples per feature for
four variants of the approximation algorithm. Errors are relative to the error
at (5000 × number of input features) samples with both enhancements.

and then incrementally adding features, we measured the time required to
compute all contributions for a single instance. Note that the number of
samples taken mmax was such that the probability of having a relative ap-
proximation error of more than 1% was 5% (relative to the absolute value
of the contribution). Adaptive sampling was used, but not quasi-random
sampling.

The results shown in Figure 3 suggest that contributions can be computed
in real-time for a few dozen features, regardless of the choice of model. For
some models, this number can be extended to over a hundred features. The
differences between models are in part a consequence of different variances
but mostly due to the differences in the time complexity of computing a single
prediction, which is the key component of the approximation algorithms time
complexity. The nearest neighbors model stands out, because the prediction
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Figure 3: Running times for computing the contributions for one instance.
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involves the computation of all the distances, without optimization, such as
the use of kd-trees. Note that the experiments were run on an off-the-shelf
computer with a 2.4GHz CPU and 2GB of RAM.

4.2 Instance Visualization

To visualize the results (feature contributions) of the proposed explanation
method, we use two types of visualizations: instance visualizations and model
visualizations. The latter are discussed later, while the former is, as the
name suggests, a visualization of the features’ contributions φ for a particular
instance. Figure 4 shows a pair of such visualizations for the same instance
from the Monks1 data set but for two different types of models. At the top
of an instance visualization we can find basic information: the name of the
data set, the model who’s prediction the contributions are for, the point-
of-view class (classification only), the model’s prediction for this instance,
and the actual (correct) class value. On the left hand side, the names of
the features are listed and on right hand side, the values of the features for
this instance. The boxes contain the features’ contributions for this instance
. These contributions are also plotted as bars to simplify comparison and
identification of features with the largest contribution.

An instance visualization reveals how individual features contribute to the
model’s prediction for that instance. For example, for the Monks1 data set,
the class value is 1 if (attr1 = attr3 ∨ attr 5 = 1) and 0 otherwise. The pair of
instance visualizations for the same instance from Monks1 but two different
models trained on this data set provide us with additional information about
how the features influence the models’ prediction (see Figure 4). Although
the models are of a different type, the general method facilitates comparison
and reveals an important difference between the two models.

The second pair of instance visualizations is for two different types of
models trained on the cRedundant data set (see Figure 5. This data set has
5 numerical input features. The class value equals 1 if A1 > 0.5, A2 > 0.7 or
A3 < 0.4. Otherwise it is 0. Note that the remaining two features A4 and
A5 are copies of A1 and A2, respectively, which introduces some redundancy.
For this instance, the values of the first three input features are 0.96, 0.72,
and 0.67. The first two features satisfy the condition, while the third does
not. Given that both models are successful predictors for this data set,
they have learnt these concepts and, appropriately, the first two features are
assigned a positive contribution, while the third contributes against the class
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Feature Contribution Value

Data: monks1

Model: MultilayerPerceptron

Classification, POV class = 1

Prediction = 1.00

Actual class = 1

(a)

Data: monks1

Model: NaiveBayes

Classification, POV class = 1

Prediction = 0.99

Actual class = 1

Feature Contribution Value

(b)

Figure 4: The Naivni Bayes model, due to its assumptions of conditional
independence of input features, can not model the importance of the equiv-
alence between attr1 and attr2 (both have a zero contribution). Despite this
limitation, it correctly predicts the class value, because for this instance,
attr5 = 1 is sufficient (this feature has a substantial positive contribution).
The artificial neural network correctly models both concepts.

value being 1. Note that the artificial neural network takes into account
redundant features as well, while bagging with decision trees only takes into
account one of each of the input features redundant copies. Although both
models are equally good predictors, the explanations are different, because
the explanations reveal what the models have learnt.

Feature Contribution Value

Data: cRedundant

Model: MultilayerPerceptron

Classification, POV class = 1

Prediction = 1.0

Actual class = 1

(a)

Data: cRedundant

Model: Bagging

Classification, POV class = 1

Prediction = 1.0

Actual class = 1

Feature Contribution Value

(b)

Figure 5: Two instance visualizations for the same instance from the cRe-
dundant data set and two different models.

The final pair of instance visualizations focus on real-world examples (see
Figure 6).
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(a)

Feature Contribution Value

Data: mushroom

Model: AdaBoostM1J48

Classification, POV class = p

Prediction = 0.0

Actual class = e

(b)

Figure 6: The boosting with decision trees model predicts that this mush-
room from the mushroom data set is not poisonous. The contributions reveal
that (odor = n [none]) contributes strongly against the mushroom being poi-
sonous. (spore print color = n [brown]) also speaks against poisonous, while
narrow gill size weakly contributes towards the mushroom being poisonous.

4.3 Model Visualization

The other type of visualization is the model visualization (see, for example,
7(a). The model visualization is in fact the visualization of average contri-
butions of values for each feature (see 3.2). For each feature, the average
contributions are plotted against that features value (black line). The im-
portance of each feature (the standard deviation of its contributions) is also
included in the form of a gray line. Similar to instance visualizations, the
name of the data set and model are shown at the top of the visualization.

The model visualization provides us with an overview of how features
contribute to the model’s predictions. For example, observe Figure 7(a) - the
model visualization of the decision tree that was trained on the cDisjunctN
data set and is good at predicting the class values. The cDisjunct data set
is similar to the cRedundant data set, however, the fourth and fifth feature
are not copies of the first and second feature. Instead, they are unrelated to
the class value. First, the model visualization allows us to quickly identify
the most important features. In our example, the first three features have
an equally high importance (gray line), while the remaining two features are
(correctly) identified as irrelevant or of very little importance. And second,
the plots provide additional information about how each feature contributes
to the model. For example, the first feature (A1) has a negative contribution
(speaks against class value 1) if its value is less than 0.5, but contributes
positively, if its value is greater than 0.5. Also note that, as shown in Secion
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3.2, if the model is additive, the the plot can also be use to graphically
compute the prediction for an arbitrary instance form the data set.

(a) (b)

Figure 7: Model visualizations for two different models and the cDisjunctN
data set. Both models learn the concepts behind the data and the plotted
average contribution functions reveal where the individual features’ contri-
bution changes from negative to positive.

Due to the methods generality, model visualizations of different models
or types of models can easily be compared. For example, Figure 7(b) is a
model visualization for an artificial neural network trained on the cDisjunct
data set. While the performance of both models is similar with respect to
prediction quality, the models are slightly different. The average contribution
functions are smooth for the artificial neural network, but characteristically
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discontinuous for the decision tree. The artificial neural network also slightly
overfit the data as the fourth and fifth feature do slightly influence the models
predictions.

The next model visualization is for the already discussed Monks1 data
set. By assuming conditional independence, the Naive Bayes model does not
capture the importance of the equivalence of attr1 and attr2 and the model
visualization reveals that only the fifth feature influences the model (sse
Figure 8(a)). Furthermore, the value (attr5 = 1) has a positive contribution,
while all other values have a negative contribution.

The final model visualization (see Figure ?? gives us additional infor-
mation about how the features influence the decision tree trained on the
mushroom data set. Because the decision tree is a good model of the data,
the contributions also help us understand the concepts behind the mushroom
data. By far the most important input feature is mushroom odor (almond,
anise or no odor at all, speak against the mushroom being poisonous, other
values speak for), spore print color has a very small influence - green spore
print color speaks for the mushroom being poisonous.

5 A User Study

The usefulness of explanation methods (that is, an increase in understanding
or level of trust) for end-users is usually evaluated through illustrative exam-
ples or by applying the method to a real-world problem. In the latter case,
the resulting explanations are usually evaluated by experts from the field of
the real-world problem. Therefore, in most cases, such an evaluation is very
subjective. Only a few studies approach the evaluation in a more objective
way. Huysmans et. al. [41] compared the usefulness of decision tables, binary
decision trees, and decision rules in a study that included 51 post-graduate
students. Provided with these different representations of knowledge, the
students had to perform various understanding and prediction tasks. The
authors measured prediction accuracy, speed of response, and the level of
trust, and concluded that decision tables were most useful. Similar studies
focused only on decision trees [42] and decision trees and decision rules [43].

Similar to [41] we decided to measure the effect of the explanation through
the users’ performance at prediction tasks. We performed a user study that
involved 122 computer science students. The students were given a set of
instances with correct class values from which to learn about the concepts
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Table 3:
T1 T2

instance A1 A2 A3 C A1 A2 A3 C
learn1 11.76 70 12 52 A 450 21 27
φ 0 0 -60 - -31 +11 0 -
learn2 11.56 55 16 82 A 250 21 2
φ 0 0 -30 - -25 -20 0 -
learn3 11.86 32 22 127 B 280 22 12
φ 0 0 +15 - -7 -28 0 -
learn4 12.12 80 12 60 B 600 20 70
φ 0 0 -52 - +3 +20 0 -
learn5 12.31 74 28 172 B 800 22 75
φ 0 0 +60 - +4 +24 0 -
learn6 11.65 44 21 120 C 250 21 56
φ 0 0 +8 - +31 -22 0 -
learn7 11.34 72 25 150 C 200 19 40
φ 0 0 +38 - +28 -35 0 -
test1 11.91 59 21 120 A 600 21 30
test2 11.87 28 29 180 B 100 23 94
test3 12.00 54 27 165 C 400 20 2
test4 11.73 33 17 90 C 800 20 100

behind the data (learning instances) and were then asked to make predictions
for a set of instances without the correct class value. We hypothesized that
the explanation in the form of feature contributions was made available for
the learning instances it would give the users a better understanding of the
concepts behind the data and the users would subsequently make better
predictions.

For these purposes we constructed two sets of learning and testing in-
stances instances, T1 and T2 (see Table 3). Each set consists of 7 learning
instances and 4 test instances without class values. Both sets of instances
have a real-world background. For T1, the input features and class value are
cricket length, humidity, temperature, and number of chirps per minute, re-
spectively. The latter is a linear function of temperature, while the remaining
two input features are not relevant. For T2, the input features and class value
are insecticide type, insecticide amount (in ml), temperature, and percentage
of insects killed. The latter depends on insecticide type (C is stronger than
B is stronger than A) and amount, while temperature is irrelevant.

The real-world examples were selected to make the problem less abstract
and easier to relate to. Of course, the relationships between the input features
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and class value were not revealed to the participants.

5.1 Experiment 1

In the first experiment each participant solved 2 tests and had 8 minutes
available for each test. One half of the participants received T1 without
explanations and the T1 with contributions while the other half received T2
without and then T2 with explanation. each participant received two tests.
Note that all 56 participants were first-year students, which are assumed to
have no substantial experience with knowledge discovery.

For each test instance separately, we ranked the mean squared errors of
the participants predictions. We prefer ranks to actual mean squared errors
to avoid the effect of outliers and facilitate comparison across all four test
instances. For the group of 28 participants that received test T1, the average
ranks were 36 (without contributions) and 20 (with contributions). For T2,
the average ranks were 29.5 (without contributions) and 26.5 (with contribu-
tions). We used a Wilcoxon paired test to test the statistical significance and
obtained the P-values 2.2×10−16 and 2.3×10−4 for T1 and T2, respectively.
Therefore, for both tests, the contributions improved the user’s predictions.

5.2 Experiment 2

Two groups of students participated in the second experiment: 52 first year
students (group A) and 14 fourth year students with experience in data min-
ing and knowledge discovery (group B). One half of each group received T1
without contributions and T2 with contributions, while the other half solved
T2 without and T1 with contributions. Therefore, the task was assumed to
be more difficult than in experiment 1. Instead of solving the same problem
without and then with contributions, each participant solved one problem
without contributions and then the other problem with contributions. Again,
participants had 8 minutes for each set. Note that all of the participants were
different from those in experiment 1.

Results were analyzed for each group separately and in the same way as
in experiment 1. However, for experiment 1 the samples were not paired.

The results are shown in Table 4. Similar to experiment 1, we conclude
that the contributions improved the user’s predictions.
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Table 4: Rezultati preverjanja kvalitete napovedi.

With Without P-value
EXP2, A, T1 30.75 21.25 6.4× 10−6

EXP2, A, T2 28.25 23.75 1.5× 10−2

EXP2, B, T1 7.75 6.62 4.9× 10−2

EXP2, B, T2 8.30 5.70 1.2× 10−2

Table 5:

With Without P-value
EXP1, T1 2.58 2.89 2.5× 10−4

EXP1, T2 2.73 2.78 2.4× 10−1

EXP2, A, T1 2.68 2.98 7.5× 10−3

EXP2, A, T2 2.62 2.64 4.6× 10−1

EXP2, B, T1 2.96 2.96 6.1× 10−1

EXP2, B, T2 2.71 2.87 2.1× 10−1

5.3 Effects on the Users’ Level of Trust

In parallel we also measured, for each prediction, the user’s level of trust
in the correctness of own predictions. The users selected from a four-level
scale from 1 (very unsure) to 4 (very sure). Results of the experiment can
be found in Table 5. Similar to the quality of predictions, the level of trust
also increases when the contributions are available. However, most of the
differences lack statistical significance.

6 Conclusion

We described a general method for computing the contributions of input fea-
tures for a prediction. The method is simple to implement and can be applied
to any regression or classification model. The contributions of a particular
value can be averaged across all instances to an average contribution of that
value that is the basis of a model visualization. For additive models, such
a visualization is equivalent to existing additive model-specific methods and
general explanation methods and thus generalizes these approaches. Results
across several types of models and data sets show that the method is an
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efficient and useful tool for visualizing models, comparing them, and identi-
fying potential errors. The method can compute the explanation in real-time
for several dozen input features. This is sufficient for practical use, because
similar to all explanation methods, the comprehensibility of the explanation
(from a user’s point-of-view) decreases with an increasing number of input
features.

We also performed a study in which the participants learned from in-
stances with easy-to-understand input features and class values, but unknown
relationships. The results show that users made better predictions for new
instances if feature contributions were included in the instances reserved for
learning. This holds for both the case where the user solved the problem
from the same data set without and then with explanations and the case
where the user solved a problem with explanations, without having seen and
solved the same problem without explanations. While the users’ confidence
in the correctness of own predictions was at least as high if not higher when
the feature contributions were available, the differences were not statistically
significant. Therefore, we can not conclude that the explanations increase
the users’ confidence.
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A Description of datgen40 data set

(A15 = j ∧A31 = f ∧A33 = f) ∨ (A33 = a)⇒ C1

(A12 = j ∧A21 = f ∧A33 = f) ∨ (A33 = i)⇒ C2

(A12 = d ∧A21 = f ∧A33 = j) ∨ (A01 = c ∧A23 = h ∧A01 = g) ∨ (A33 = c ∧A01 = g)⇒ C3

(A12 = j ∧A23 = i ∧A33 = b)⇒ C4

(A12 = j ∧A01 = b ∧A33 = d)⇒ C5

(A03 = g ∧A21 = j ∧A33 = j)⇒ C6

(A04 = h ∧A23 = a ∧A33 = b) ∨ (A33 = f ∧A31 = b)⇒ C7

(A04 = e ∧A23 = a ∧A33 = e) ∨ (A04 = h ∧A31 = i ∧A33 = e) ∨ (A12 = h ∧A33 = i)⇒ C8

(A15 = c ∧A23 = f ∧A33 = g)⇒ C9

(A12 = c ∧A33 = i) ∨ (A23 = a ∧A33 = g) ∨ (A21 = i ∧A23 = h ∧A33 = j)⇒ C10
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Data: monks1               Model: AdaBoostM1NaiveBayes

(a)

Data: mushroom                 Model: J48

(b)

Figure 8: Model visualizations for the Naive Bayes model trained on Monks1
(right-hand side) and a decision tree on the mushroom data set (left-hand
side).
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