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Abstract

Recently, a technique called Layer-wise

Relevance Propagation (LRP) was shown

to deliver insightful explanations in the

form of input space relevances for un-

derstanding feed-forward neural network

classification decisions. In the present

work, we extend the usage of LRP to

recurrent neural networks. We propose

a specific propagation rule applicable to

multiplicative connections as they arise

in recurrent network architectures such

as LSTMs and GRUs. We apply our

technique to a word-based bi-directional

LSTM model on a five-class sentiment

prediction task, and evaluate the result-

ing LRP relevances both qualitatively and

quantitatively, obtaining better results than

a gradient-based related method which

was used in previous work.

1 Introduction

Semantic composition plays an important role in

sentiment analysis of phrases and sentences. This

includes detecting the scope and impact of nega-

tion in reversing a sentiment’s polarity, as well as

quantifying the influence of modifiers, such as de-

gree adverbs and intensifiers, in rescaling the sen-

timent’s intensity (Mohammad, 2017).

Recently, a trend emerged for tackling these

challenges via deep learning models such as con-

volutional and recurrent neural networks, as ob-

served e.g. on the SemEval-2016 Task for Senti-

ment Analysis in Twitter (Nakov et al., 2016).

As these models become increasingly predic-

tive, one also needs to make sure that they work

as intended, in particular, their decisions should

be made as transparent as possible.

Some forms of transparency are readily ob-

tained from the structure of the model, e.g. re-

cursive nets (Socher et al., 2013), where sentiment

can be probed at each node of a parsing tree.

Another type of analysis seeks to determine

what input features were important for reaching

the final top-layer prediction. Recent work in

this direction has focused on bringing measures of

feature importance to state-of-the-art models such

as deep convolutional neural networks for vision

(Simonyan et al., 2014; Zeiler and Fergus, 2014;

Bach et al., 2015; Ribeiro et al., 2016), or to gen-

eral deep neural networks for text (Denil et al.,

2014; Li et al., 2016a; Arras et al., 2016a; Li et al.,

2016b; Murdoch and Szlam, 2017).

Some of these techniques are based on the

model’s local gradient information while other

methods seek to redistribute the function’s value

on the input variables, typically by reverse prop-

agation in the neural network graph (Landecker

et al., 2013; Bach et al., 2015; Montavon et al.,

2017a). We refer the reader to (Montavon et al.,

2017b) for an overview on methods for under-

standing and interpreting deep neural network pre-

dictions.

Bach et al. (2015) proposed specific propaga-

tion rules for neural networks (LRP rules). These

rules were shown to produce better explanations

than e.g. gradient-based techniques (Samek et al.,

2017), and were also successfully transferred to

neural networks for text data (Arras et al., 2016b).

In this paper, we extend LRP with a rule that

handles multiplicative interactions in the LSTM

model, a particularly suitable model for modeling

long-range interactions in texts such as those oc-

curring in sentiment analysis.

We then apply the extended LRP method to a bi-

directional LSTM trained on a five-class sentiment

prediction task. It allows us to produce reliable

explanations of which words are responsible for
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attributing sentiment in individual texts, compared

to the explanations obtained by using a gradient-

based approach.

2 Methods

Given a trained neural network that models a

scalar-valued prediction function fc (also com-

monly referred to as a prediction score) for each

class c of a classification problem, and given an

input vector x, we are interested in computing for

each input dimension d of x a relevance score Rd

quantifying the relevance of xd w.r.t to a consid-

ered target class of interest c. In others words,

we want to analyze which features of x are impor-

tant for the classifier’s decision toward or against

a class c.

In order to estimate the relevance of a pool of

input space dimensions or variables (e.g. in NLP,

when using distributed word embeddings as input,

we would like to compute the relevance of a word,

and not just of its single vector dimensions), we

simply sum up the relevance scores Rd of its con-

stituting dimensions d.

In this described framework, there are two alter-

native methods to obtain the single input variable’s

relevance in the first place, which we detail in the

following subsections.

2.1 Gradient-based Sensitivity Analysis (SA)

The relevances can be obtained by computing

squared partial derivatives:

Rd =
( ∂fc

∂xd

(x)
)2

.

For a neural network classifier, these derivatives

can be obtained by standard gradient backprop-

agation (Rumelhart et al., 1986), and are made

available by most neural network toolboxes. We

refer to the above definition of relevance as Sen-

sitivity Analysis (SA) (Dimopoulos et al., 1995;

Gevrey et al., 2003). A similar technique was

previously used in computer vision by (Simonyan

et al., 2014), and in NLP by (Li et al., 2016a).

Note that if we sum up the relevances of all in-

put space dimensions d, we obtain the quantity

‖∇x fc(x)‖2
2, thus SA can be interpreted as a de-

composition of the squared gradient norm.

2.2 Layer-wise Relevance Propagation (LRP)

Another technique to compute relevances was pro-

posed in (Bach et al., 2015) as the Layer-wise Rel-

evance Propagation (LRP) algorithm. It is based

on a layer-wise relevance conservation principle,

and, for a given input x, it redistributes the quan-

tity fc(x), starting from the output layer of the net-

work and backpropagating this quantity up to the

input layer. The LRP relevance propagation proce-

dure can be described layer-by-layer for each type

of layer occurring in a deep convolutional neu-

ral network (weighted linear connections follow-

ing non-linear activation, pooling, normalization),

and consists in defining rules for attributing rele-

vance to lower-layer neurons given the relevances

of upper-layer neurons. Hereby each intermediate

layer neuron gets attributed a relevance score, up

to the input layer neurons.

In the case of recurrent neural network architec-

tures such as LSTMs (Hochreiter and Schmidhu-

ber, 1997) and GRUs (Cho et al., 2014), there are

two types of neural connections involved: many-

to-one weighted linear connections, and two-to-

one multiplicative interactions. Hence, we restrict

our definition of the LRP procedure to these types

of connections. Note that, for simplification, we

refrain from explicitly introducing a notation for

non-linear activation functions; if such an activa-

tion is present at a neuron, we always take into

account the activated lower-layer neuron’s value

in the subsequent formulas.

In order to compute the input space relevances,

we start by setting the relevance of the output layer

neuron corresponding to the target class of interest

c to the value fc(x), and simply ignore the other

output layer neurons (or equivalently set their rele-

vance to zero). Then, we compute layer-by-layer a

relevance score for each intermediate lower-layer

neuron accordingly to one of the subsequent for-

mulas, depending on the type of connection in-

volved.

Weighted Connections. Let zj be an upper-layer

neuron, whose value in the forward pass is com-

puted as zj =
∑

i zi · wij + bj , where zi are the

lower-layer neurons, and wij , bj are the connec-

tion weights and biases.

Given the relevances Rj of the upper-layer neu-

rons zj , the goal is to compute the lower-layer

relevances Ri of the neurons zi. (In the partic-

ular case of the output layer, we have a single

upper-layer neuron zj , whose relevance is set to

its value, more precisely we set Rj = fc(x) to

start the LRP procedure.) The relevance redistri-

bution onto lower-layer neurons is performed in

two steps. First, by computing relevance messages

160



Ri←j going from upper-layer neurons zj to lower-

layer neurons zi. Then, by summing up incoming

messages for each lower-layer neuron zi to obtain

the relevance Ri. The messages Ri←j are com-

puted as a fraction of the relevance Rj accordingly

to the following rule:

Ri←j =
zi · wij +

ǫ·sign(zj) + δ·bj

N

zj + ǫ · sign(zj)
· Rj

where N is the total number of lower-layer neu-

rons to which zj is connected, ǫ is a small posi-

tive number which serves as a stabilizer (we use

ǫ = 0.001 in our experiments), and sign(zj) =
(1zj≥0 − 1zj<0) is defined as the sign of zj . The

relevance Ri is subsequently computed as Ri =
∑

j Ri←j . Moreover, δ is a multiplicative factor

that is either set to 1.0, in which case the total

relevance of all neurons in the same layer is con-

served, or else it is set to 0.0, which implies that a

part of the total relevance is “absorbed” by the bi-

ases and that the relevance propagation rule is ap-

proximately conservative. Per default we use the

last variant with δ = 0.0 when we refer to LRP,

and denote explicitly by LRPcons our results when

we use δ = 1.0 in our experiments.

Multiplicative Interactions. Another type of

connection is a two-way multiplicative interaction

between lower-layer neurons. Let zj be an upper-

layer neuron, whose value in the forward pass is

computed as the multiplication of the two lower-

layer neuron values zg and zs, i.e. zj = zg · zs.

In such multiplicative interactions, as they occur

e.g. in LSTMs and GRUs, there is always one

of the two lower-layer neurons that constitutes a

gate, and whose value ranges between [0, 1] as the

output of a sigmoid activation function (or in the

particular case of GRUs, can also be equal to one

minus a sigmoid activated value), we call it the

gate neuron zg, and refer to the remaining one as

the source neuron zs.

Given such a configuration, and denoting by Rj

the relevance of the upper-layer neuron zj , we pro-

pose to redistribute the relevance onto lower-layer

neurons in the following way: we set Rg = 0 and

Rs = Rj . The intuition behind this reallocation

rule, is that the gate neuron decides already in the

forward pass how much of the information con-

tained in the source neuron should be retained to

make the overall classification decision. Thereby

the value zg controls how much relevance will be

attributed to zj from upper-layer neurons. Thus,

even if our local propagation rule seems to ignore

the respective values of zg and zs to redistribute

the relevance, these are indeed taken into account

when computing the value Rj from the relevances

of the next upper-layer neurons to which zj is con-

nected via weighted connections.

3 Recurrent Model and Data

As a recurrent neural network model we em-

ploy a one hidden-layer bi-directional LSTM (bi-

LSTM), trained on five-class sentiment prediction

of phrases and sentences on the Stanford Sen-

timent Treebank movie reviews dataset (Socher

et al., 2013), as was used in previous work on

neural network interpretability (Li et al., 2016a)

and made available by the authors1. This model

takes as input a sequence of words x1, x2, ..., xT

(as well as this sequence in reversed order), where

each word is represented by a word embedding of

dimension 60, and has a hidden layer size of 60.

A thorough model description can be found in the

Appendix, and for details on the training we refer

to (Li et al., 2016a).

In our experiments, we use as input the 2210 to-

kenized sentences of the Stanford Sentiment Tree-

bank test set (Socher et al., 2013), preprocessing

them by lowercasing as was done in (Li et al.,

2016a). On five-class sentiment prediction of full

sentences (very negative, negative, neutral, posi-

tive, very positive) the model achieves 46.3% ac-

curacy, and for binary classification (positive vs.

negative, ignoring neutral sentences) the test ac-

curacy is 82.9%.

Using this trained bi-LSTM, we compare two

relevance decomposition methods: sensitivity

analysis (SA) and Layer-wise Relevance Propa-

gation (LRP). The former is similar to the “First-

Derivative Saliency” used in (Li et al., 2016a), be-

sides that in their work the authors do not aggre-

gate the relevance of single input variables to ob-

tain a word-level relevance value (i.e. they only

visualize relevance distributed over word embed-

ding dimensions); moreover they employ the abso-

lute value of partial derivatives (instead of squared

partial derivatives as we do) to compute the rele-

vance of single input variables.

In order to enable reproducibility and for en-

couraging further research, we make our imple-

1https://github.com/jiweil/

Visualizing-and-Understanding-Neural-

Models-in-NLP
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mentation of both relevance decomposition meth-

ods available2 (see also (Lapuschkin et al., 2016)).

4 Results

In this Section, we present qualitative as well as

quantitative results we obtained by performing SA

and LRP on test set sentences. As an outcome

of the relevance decomposition for a chosen tar-

get class, we first get for each word embedding xt

in an input sentence, a vector of relevance values.

In order to obtain a scalar word-level relevance,

we remind that we simply sum up the relevances

contained in that vector. Also note that, per def-

inition, the SA relevances are positive while LRP

relevances are signed.

4.1 Decomposing Sentiment onto Words

In order to illustrate the differences between SA

and LRP, we provide in Fig. 1 and 2 heatmaps

of exemplary test set sentences. These heatmaps

were obtained by mapping positive word-level rel-

evance values to red, and negative relevances to

blue. The exemplary sentences belong either to

the class “very negative” or to the class “very pos-

itive”, and the target class for relevance decom-

position is always the true class. On the left of

the Figures, we indicate the true sentence class,

as well as the bi-LSTM’s predicted class, whereby

the upper examples are correctly classified while

the bottom examples are falsely classified.

From the inspection of the heatmaps, we no-

tice that SA does not clearly distinguish between

words speaking for or against the target class. In-

deed it sometimes attributes a comparatively high

relevance to words expressing a positive apprecia-

tion like thrilling (example 5), master (example 6)

or must-see (example 11), while the target class is

“very negative”; or to the word difficult (example

19) expressing a negative judgment, while the tar-

get class is “very positive”. On the contrary, LRP

can discern more reliably between words address-

ing a negative sentiment, such as waste (1), horri-

ble (3), disaster (6), repetitive (9) (highlighted in

red), or difficult (19) (highlighted in blue), from

words indicating a positive opinion, like funny (2),

suspenseful (2), romantic (5), thrilling (5) (high-

lighted in blue), or worthy (19), entertaining (20)

(highlighted in red).

2https://github.com/ArrasL/LRP_for_

LSTM

Furthermore, LRP explains well the two sen-

tences that are mistakenly classified as “very pos-

itive” and “positive” (examples 11 and 17), by ac-

centuating the negative relevance (blue colored) of

terms speaking against the target class, i.e. the

class “very negative”, such as must-see list, re-

member and future, whereas such understanding is

not provided by the SA heatmaps. The same holds

for the misclassified “very positive” sentence (ex-

ample 21), where the word fails gets attributed a

deep negatively signed relevance (blue colored).

A similar limitation of gradient-based relevance

visualization for explaining predictions of recur-

rent models was also observed in previous work

(Li et al., 2016a).

Moreover, an interesting property we observe

with LRP, is that the sentiment of negation is mod-

ulated by the sentiment of the subsequent words in

the sentence. Hence, e.g. in the heatmaps for the

target class “very negative”, when negators like n’t

or not are followed by words indicating a nega-

tive sentiment like waste (1) or horrible (3), they

are marked by a negatively signed relevance (blue

colored), while when the subsequent words ex-

press a positive impression like worth (12), sur-

prises (14), funny (16) or good (18), they get a

positively signed relevance (red colored).

Thereby, the heatmap visualizations provide

some insights on how the sentiment of single

words is composed by the bi-LSTM model, and

indicate that the sentiment attributed to words is

not static, but depends on their context in the sen-

tence. Nevertheless, we would like to point out

that the explanations delivered by relevance de-

composition highly depend on the quality of the

underlying classifier, and can only be “as good”

as the neural network itself, hence a more care-

fully tuned model might deliver even better expla-

nations.

4.2 Representative Words for a Sentiment

Another qualitative analysis we conduct is dataset-

wide, and consists in building a list of the most

resp. the least relevant words for a class. To this

end, we first perform SA and LRP on all test set

sentences for one specific target class, as an exam-

ple we take the class “very positive”. Secondly,

we order all words appearing in the test sentences

in decreasing resp. in increasing order of their rel-

evance value, and retrieve in Table 1 the ten most

and least relevant words we obtain. From the SA
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true predicted N° Notation: -- very negative, - negative, 0 neutral, + positive, ++ very positive

--

--

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

do n't waste your money . 

neither funny nor suspenseful nor particularly well-drawn . 

it 's not horrible , just horribly mediocre . 

... too slow , too boring , and occasionally annoying . 

it 's neither as romantic nor as thrilling as it should be . 

the master of disaster - it 's a piece of dreck disguised as comedy . 

so stupid , so ill-conceived , so badly drawn , it created whole new levels of ugly .

a film so tedious that it is impossible to care whether that boast is true or not . 

choppy editing and too many repetitive scenes spoil what could have been an important
documentary about stand-up comedy . 

this idea has lost its originality ... and neither star appears very excited at 
rehashing what was basically a one-joke picture . 

++

-

-

-

-

-

+

-

11.

12.

13.

14.

15.

16.

17.

18.

ecks this one off your must-see list . 

this is n't a `` friday '' worth waiting for . 

there is not an ounce of honesty in the entire production . 

do n't expect any surprises in this checklist of teamwork cliches ... 

he has not learnt that storytelling is what the movies are about .  

but here 's the real damn : it is n't funny , either .  

these are names to remember , in order to avoid them in the future . 

the cartoon that is n't really good enough to be on afternoon tv is now a movie that 
is n't really good enough to be in theaters . 

++
++

19.

20.

a worthy entry into a very difficult genre .

it 's a good film -- not a classic , but odd , entertaining and authentic .

-- 21. it never fails to engage us .

Figure 1: SA heatmaps of exemplary test sentences, using as target class the true sentence class. All

relevances are positive and mapped to red, the color intensity is normalized to the maximum relevance

per sentence. The true sentence class, and the classifier’s predicted class, are indicated on the left.

true predicted N° Notation: -- very negative, - negative, 0 neutral, + positive, ++ very positive

--

--

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

do n't waste your money . 

neither funny nor suspenseful nor particularly well-drawn . 

it 's not horrible , just horribly mediocre . 

... too slow , too boring , and occasionally annoying . 

it 's neither as romantic nor as thrilling as it should be . 

the master of disaster - it 's a piece of dreck disguised as comedy . 

so stupid , so ill-conceived , so badly drawn , it created whole new levels of ugly .

a film so tedious that it is impossible to care whether that boast is true or not . 

choppy editing and too many repetitive scenes spoil what could have been an important
documentary about stand-up comedy . 

this idea has lost its originality ... and neither star appears very excited at 
rehashing what was basically a one-joke picture . 

++

-

-

-

-

-

+

-

11.

12.

13.

14.

15.

16.

17.

18.

ecks this one off your must-see list . 

this is n't a `` friday '' worth waiting for . 

there is not an ounce of honesty in the entire production . 

do n't expect any surprises in this checklist of teamwork cliches ... 

he has not learnt that storytelling is what the movies are about .  

but here 's the real damn : it is n't funny , either .  

these are names to remember , in order to avoid them in the future . 

the cartoon that is n't really good enough to be on afternoon tv is now a movie that 
is n't really good enough to be in theaters . 

++
++

19.

20.

a worthy entry into a very difficult genre .

it 's a good film -- not a classic , but odd , entertaining and authentic .

-- 21. it never fails to engage us .

Figure 2: LRP heatmaps of exemplary test sentences, using as target class the true sentence class. Pos-

itive relevance is mapped to red, negative to blue, and the color intensity is normalized to the maximum

absolute relevance per sentence. The true sentence class, and the classifier’s predicted class, are indicated

on the left.
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SA LRP

most relevant least relevant most relevant least relevant

broken-down into funnier wrong

wall what charm n’t

execution that polished forgettable

lackadaisical a gorgeous shame

milestone do excellent little

unreality of screen predictable

soldier all honest overblown

mournfully ca wall trying

insight in confidence lacking

disorienting ’s perfectly nonsense

Table 1: Ten most resp. least relevant words iden-

tified by SA and LRP over all 2210 test sentences,

using as relevance target class the class “very pos-

itive”.

word lists, we observe that the highest SA rele-

vances mainly point to words with a strong se-

mantic meaning, but not necessarily expressing a

positive sentiment, see e.g. broken-down, lack-

adaisical and mournfully, while the lowest SA rel-

evances correspond to stop words. On the con-

trary, the extremal LRP relevances are more re-

liable: the highest relevances indicate words ex-

pressing a positive sentiment, while the lowest rel-

evances are attributed to words defining a negative

sentiment, hence both extremal relevances are re-

lated in a meaningful way to the target class of

interest, i.e. the class “very positive”.

4.3 Validation of Word Relevance

In order to quantitatively validate the word-level

relevances obtained with SA and LRP, we perform

two word deleting experiments. For these experi-

ments we consider only test set sentences with a

length greater or equal to 10 words (this amounts

to retain 1849 test sentences), and we delete from

each sentence up to 5 words accordingly to their

SA resp. LRP relevance value (for deleting a word

we simply set its word embedding to zero in the

input sentence representation), and re-predict via

the bi-LSTM the sentiment of the sentence with

“missing” words, to track the impact of these dele-

tions on the classifier’s decision. The idea behind

this experiment is that the relevance decomposi-

tion method that most pertinently reveals words

that are important to the classifier’s decision, will

impact the most this decision when deleting words

accordingly to their relevance value. Prior to the

deletions, we first compute the SA resp. LRP

word-level relevances on the original sentences

(with no word deleted), using the true sentence

sentiment as target class for the relevance decom-

position. Then, we conduct two types of dele-

tions. On initially correctly classified sentences

we delete words in decreasing order of their rel-

evance value, and on initially falsely classified

sentences we delete words in increasing order of

their relevance. We additionally perform a random

word deletion as an uninformative variant for com-

parison. Our results in terms of tracking the clas-

sification accuracy over the number of word dele-

tions per sentence are reported in Fig. 3. These

results show that, in both considered cases, delet-

ing words in decreasing or increasing order of their

LRP relevance has the most pertinent effect, sug-

gesting that this relevance decomposition method

is the most appropriate for detecting words speak-

ing for or against a classifier’s decision. While the

LRP variant with relevance conservation LRPcons

performs almost as good as standard LRP, the lat-

ter yields slightly superior results and thus should

be preferred. Finally, when deleting words in

increasing order of their relevance value starting

with initially falsely classified sentences (Fig. 3

right), we observe that SA performs even worse

than random deletion. This indicates that the low-

est SA relevances point essentially to words that

have no influence on the classifier’s decision at all,

rather that signalizing words that are “inhibiting”

it’s decision and speaking against the true class,

as LRP is indeed able to identify. Similar conclu-

sions were drawn when comparing SA and LRP

on a convolutional network for document classifi-

cation (Arras et al., 2016a).

4.4 Relevance Distribution over Sentence

Length

To get an idea of which words over the sentence

length get attributed the most relevance, we com-

pute a word relevance statistic by performing SA

and LRP on all test sentences having a length

greater or equal to 19 words (this amounts to

50.0% of the test set). Then, we divide each sen-

tence length into 10 equal intervals, and sum up

the word relevances in each interval (when a word

is not entirely in an interval, the relevance portion

falling into that interval is considered). For LRP,

we use the absolute value of the word-level rel-

evance values (to avoid that negative relevances

cancel out positive relevances). Finally, to get a

distribution, we normalize the results to sum up

to one. We compute this statistic by considering
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Figure 3: Impact of word deleting on initially cor-

rectly (left) and falsely (right) classified test sen-

tences, using either SA or LRP as relevance de-

composition method (LRPcons is a variant of LRP

with relevance conservation). The relevance tar-

get class is the true sentence class, and words are

deleted in decreasing (left) and increasing (right)

order of their relevance. Random deletion is aver-

aged over 10 runs (std < 0.016). A steep decline

(left) and incline (right) indicate informative word

relevance.

either the total word relevance obtained via the

bi-LSTM model, or by considering only the part

of the relevance that comes from one of the two

unidirectional model constituents, i.e. the rele-

vance contributed by the LSTM which takes as in-

put the sentence words in their original order (we

call it left encoder), or the one contributed by the

LSTM which takes as input the sentence words in

reversed order (we call it right encoder). The re-

sulting distributions, for different relevance target

classes, are reported in Fig. 4. Interestingly, the

relevance distributions are not symmetric w.r.t. to

the sentence middle, and the major part of the rel-

evance is attributed to the second half of the sen-

tences, except for the target class “neutral”, where

the most relevance is attributed to the last com-

putational time steps of the left or the right en-

coder, resulting in an almost symmetric distribu-

tion of the total relevance for that class. This can

maybe be explained by the fact that, at least for

longer movie reviews, strong judgments on the

movie’s quality tend to appear at the end of the

sentences, while the beginning of the sentences

serves as an introduction to the review’s topic, de-

scribing e.g. the movie’s subject or genre. Another

particularity of the relevance distribution we no-

tice, is that the relevances of the left encoder tend

to be more smooth than those of the right encoder,

which is a surprising result, as one might expect

that both unidirectional model constituents behave

similarly, and that there is no mechanism in the

model to make a distinction between the text read

in original and in reversed order.

5 Conclusion

In this work we have introduced a simple yet

effective strategy for extending the LRP proce-

dure to recurrent architectures, such as LSTMs,

by proposing a rule to backpropagate the rele-

vance through multiplicative interactions. We ap-

plied the extended LRP version to a bi-directional

LSTM model for the sentiment prediction of sen-

tences, demonstrating that the resulting word rel-

evances trustworthy reveal words supporting the

classifier’s decision for or against a specific class,

and perform better than those obtained by a

gradient-based decomposition.

Our technique helps understanding and verify-

ing the correct behavior of recurrent classifiers,

and can detect important patterns in text datasets.

Compared to other non-gradient based explana-

tion methods, which rely e.g. on random sampling

or on iterative representation occlusion, our tech-

nique is deterministic, and can be computed in one

pass through the network. Moreover, our method

is self-contained, in that it does not require to train

an external classifier to deliver the explanations,

these are obtained directly via the original classi-

fier.

Future work would include applying the pro-

posed technique to other recurrent architectures

such as character-level models or GRUs, as well as

to extractive summarization. Besides, our method

is not restricted to the NLP domain, and might also

be useful to other applications relying on recurrent

architectures.
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Figure 4: Word relevance distribution over the sentence length (divided into 10 intervals), per relevance

target class (indicated on the top), obtained by performing SA and LRP on all test sentences having a

length greater or equal to 19 words (1104 sentences). For LRP, the absolute value of the word-level

relevances is used to compute these statistics. The first row corresponds to the total relevance, the second
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Appendix

Long-Short Term Memory Network (LSTM)

We define in the following the LSTM recurrence

equations (Hochreiter and Schmidhuber, 1997;

Gers et al., 2000) of the model we used in our ex-

periments:

it = sigm

(

Wi ht−1 + Ui xt + bi

)

ft = sigm

(

Wf ht−1 + Uf xt + bf

)

ot = sigm

(

Wo ht−1 + Uo xt + bo

)

gt = tanh

(

Wg ht−1 + Ug xt + bg

)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

Here above the activation functions sigm and

tanh are applied element-wise, and ⊙ is an

element-wise multiplication.

As an input, the LSTM gets fed with a sequence

of vectors x = (x1, x2, ..., xT ) representing the

word embeddings of the input sentence’s words.

The matrices W ’s, U ’s, and vectors b’s are con-

nection weights and biases, and the initial states

h0 and c0 are set to zero.

The last hidden state hT is eventually attached

to a fully-connected linear layer yielding a predic-

tion score vector f(x), with one entry fc(x) per

class, which is used for sentiment prediction.

Bi-directional LSTM The bi-directional LSTM

(Schuster and Paliwal, 1997) we use in the present

work, is a concatenation of two separate LSTM

models as described above, each of them taking a

different sequence of word embeddings as input.

One LSTM takes as input the words in their

original order, as they appear in the input sentence.

The second LSTM takes as input the same words

but in reversed order.

Each of these LSTMs yields a final hidden state

vector, say h→T and h←T . The concatenation of
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these two vectors is eventually fed to a fully-

connected linear layer, retrieving one prediction

score fc(x) per class.
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