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Abstract

Measles epidemics in West Africa cause a significant proportion of vaccine-preventable childhood

mortality. Epidemics are strongly seasonal, but the drivers of these fluctuations are poorly

understood, which limits the predictability of outbreaks and the dynamic response to

immunization. We show that measles seasonality can be explained by spatiotemporal changes in

population density, which we measure by quantifying anthropogenic light from satellite imagery.

We find that measles transmission and population density are highly correlated for three cities in

Niger. With dynamic epidemic models, we demonstrate that measures of population density are

essential for predicting epidemic progression at the city level and improving intervention

strategies. In addition to epidemiological applications, the ability to measure fine-scale changes in

population density has implications for public health, crisis management, and economic

development.

Despite the interruption of endemic measles transmission in some parts of the industrialized

world, this vaccine-preventable disease remains a major cause of childhood mortality in

developing countries. Recurrent outbreaks of measles in low-income nations reflect the

challenges of achieving and maintaining high vaccination levels with limited public health

infrastructure. Major epidemics still occur, often with marked seasonal fluctuations in

measles incidence (1, 2), across a wide range of environmental conditions (3-5). Seasonal

fluctuations in measles transmission rates are generally hypothesized to be a result of

changes in population density (1), but it has long been challenging to assess these relations
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explicitly (6, 7). Deciphering the drivers of epidemic seasonality is an important prerequisite

to predicting the spread of infection and increasing the impact of immunization

measures (8, 9).

Population density is a major determinant of contact rates and transmission of directly

transmitted infections. Within a spatial unit, density is commonly presented as a static,

uniform quantity, although it may vary with time and across space. For human populations,

stable, long-term population density is commonly estimated, but short-term and seasonally

fluctuating densities are extremely challenging to measure and therefore difficult to

quantify (10). Observations of cyclic (seasonal and multiennial) variations in pathogen

incidence can provide an opportunity for evaluating the association between population

density and transmission rates.

Although the dynamic implications of complex seasonal patterns have been studied

thoroughly (11, 12), the (biological or demographic) mechanism underlying seasonal

fluctuations in incidence is often unknown (6, 7). Here, we focus on biological mechanisms

behind the seasonal cycles of measles in Niger. Directly transmitted, strongly immunizing

childhood infections, such as measles, are the best-studied examples of the link between

population density (e.g., aggregation in schools in industrialized countries) and seasonal

disease transmission (3).

Recent measles epidemics in Niger show considerably stronger seasonal dynamics than the

industrialized, prevaccination paradigm (2). Although the magnitude of outbreaks varies

greatly between years, the timing is exceptionally consistent; outbreaks occur only during

the annual dry season (2) (Fig. 1, A to C). Previous work has hypothesized that Niger's

seasonal cycles of measles are caused by fluctuations in population density and contact

rates, rather than schooling (2), consistent with the young median age of infection (∼2

years). The economy and work force of Niger are largely agricultural, and seasonal

relocation to low-density agricultural areas during the rainy season and to high-density

urban areas during the dry season is common (13, 14). Seasonal migration in this region, and

in Niger specifically, has been documented, but sample sizes are often small, and the

epidemiological implications of such movements are not fully understood (14).

Static estimates of the distribution of average population density can be obtained from

national censuses, household surveys, and satellite imagery. One form of satellite imagery

from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System

(OLS) detects nighttime light, which can be used to map settlements across large areas (15).

Hundreds of nighttime images are composited to identify stable patches of electrification

and domestic fires; bright areas on composites represent consistently detectable, relatively

dense settlements (15, 16). The serial images used to build such composites can reveal

information about temporal changes in populations (17). Detecting seasonal changes in urban

nighttime brightness allows us to quantify migration and to evaluate relative population

density as a determinant of fluctuations in measles transmission.

Using a time series of DMSP OLS images, we measured serial values of urban brightness as

a proxy for relative population density [details in supporting online material (SOM) part 1]

in three cities in Niger. We compared seasonal patterns of population density, as measured

by brightness, to seasonally varying measles transmission parameters, as estimated from 10

years of weekly reported measles cases (1). Last, we analyzed the spatiotemporal patterns of

nighttime lights and measles incidence within the largest city of Niger.

Our analysis focused on three cities in Niger (Fig. 1A): Niamey, Maradi, and Zinder.

Weekly measles incidence from 1995 to 2004 for these cities showed strong seasonal

fluctuations (2). For each city, brightness values were extracted as unitless, digital numbers
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from 155 cloud-free, low lunar illumination images taken during 2000–2004 between 7 p.m.

and 10 p.m. (fig. S1B).

The qualitative patterns of seasonal changes in brightness for all three cities were similar.

Brightness fell below each city's mean during the rainy season and rose above its mean

during the dry season (Fig. 1E and SOM part 1). Relative measles transmission rates [for

biweekly time steps, estimated in (1)] and brightness were strongly positively correlated for

all three cities (Fig. 1, D to F; table S1; and fig. S1; Pearson correlation = 0.88, 0.88, and

0.78 for Niamey, Maradi, and Zinder, respectively, P < 0.01 for all cities). In addition, the

magnitude of the fluctuations in brightness and the transmission rates were similar; Maradi

and Zinder had relatively low variance in brightness (0.07 and 0.07, respectively) and

relatively low variance in transmission rate (0.14 and 0.12, respectively), whereas Niamey

had higher variance in both brightness (0.22) and transmission rate (0.23).

The high spatial resolution of the images (∼1 km) also allowed us to analyze spatial patterns

of relative brightness within cities (see also SOM part 1). Within Niamey, measles cases

were reported at the commune level during an outbreak in 2003–2004. These data provided

an opportunity to test whether local fluctuations in population density correlated with

measles incidence. Values for mean and range of brightness varied by commune (Fig. 2, A

and B, and table S2). Measles incidence appeared and peaked earliest in commune 1,

followed closely by commune 2, and considerably later in commune 3 (Fig. 2C). The

observed pattern of brightness tracked the progression of measles through the communes

(Fig. 2, B and C). Together, communes 1 and 2 experienced more than 90% of the reported

cases in the city, which matched the relative magnitude of brightness by commune.

On day 161 of the epidemic, the Ministry of Health (MoH), the World Health Organization

(WHO), and Médecins Sans Frontières began a 2-week outbreak response vaccination

(ORV) within Niamey. The intervention began after the peak of the measles epidemic in

communes 1 and 2 but before the peak in commune 3 (Fig. 2C). The brightness curves for

each commune suggest that, at the onset of the vaccination campaign, population density

was declining in communes 1 and 2 and increasing in commune 3 (Fig. 2B). Lags in

reporting and stochasticity can complicate real-time predictions of epidemics. With this new

information on changes in population density, we suggest that citywide interventions, both

reactive and preventative, would increase coverage and impact if conducted during times of

rising population density in the largest communes.

To assess the predictive power of brightness values for population density fluctuations

within a city, we adapted a standard SEIR (susceptible-exposed-infectious-recovered) model

to fit reported daily measles cases (18) using commune-level brightness in Niamey as a proxy

for migration (details in SOM part 2). Seasonal variations in transmission rates are generally

incorporated via a phenomenological, time-varying transmission parameter (βt). This

approach is implicitly based on static measures of population density (i.e., the number of

hosts and the area occupied are assumed constant). For directly transmitted infections, βt is a

function of the dependence of contact rates on population density, and the probability that a

contact between a susceptible (S) and an infected individual (I) will result in

transmission (19). Each of these components can vary with time, but it is rarely explicit

which contributes to time-varying transmission rates, βt. By contrast, the SEIR model

presented here includes a dynamic relative population size, where migration is modeled as a

linear function (with slope Θ, see SOM part 2) of the derivative of brightness, independently

for each commune. We fit two additional models for each commune: one with no migration

and one with constant migration. Both were fit using the same methodology as the nighttime

lights–informed model; the former was restricted to Θ = 0, and for the latter, we fit a

constant migration term that was independent of brightness.
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Parameter values for β, migration rate (either Θ or nighttime lights–independent), and the

initial susceptible population size (S0) were fit simultaneously using a Bayesian particle

filter (details in SOM part 2). For all three communes, the model with fluctuations in

population size indexed by measurements of nighttime lights brightness fit the magnitude

and actual timing of the observed measles epidemic best (Fig. 2D). This was particularly

apparent in communes 1 and 2, where the bulk of the measles cases occurred. Nighttime

lights–informed model predictions of measles incidence also captured the observed relative

timing of the epidemic (SOM part 2), predicting that both the start and peak of the epidemic

would progress in sequence from commune 1 to commune 2 to commune 3. The other two

models failed to consistently capture this pattern.

Our results demonstrate that spatiotemporal fluctuations in brightness can explain the

seasonality of measles outbreaks in urban areas of Niger, as well as the relative magnitude

of seasonality. Within Niamey, explicit SEIR models show that the estimated fluctuations in

population density, based on nighttime light brightness, explain the initial trajectory and

overall magnitude of the epidemic within each commune. Migration has important

epidemiological impacts (20, 21), and we are now able to remotely detect the timing, location,

and relative magnitude of these movements, as demonstrated here for three cities in Niger.

Previously developed measurements of population density provide high-resolution static

estimates (22, 23) or insight into long-term trends of changing populations (e.g., censuses).

Mobile phone–usage records thoroughly describe short-term, individual movements of

frequent mobile phone users (24) but do not necessarily approximate population density,

especially in regions lacking resources. Although this level of detail would complement and

strengthen population-level measures, its recent introduction, surge in subscribers, and

proprietary and sensitive nature limit the current usability of mobile phone data as a primary

resource for measuring changes in population density. In contrast, open-source nighttime

light imagery detects decades of relatively high-resolution spatial and temporal changes in

population density for assessing the fundamental scaling of disease transmission and

density. Measurements of nighttime lights are most informative in areas of changing

population density that produce detectable levels of anthropogenic light but are not so

developed that brightness values are consistently saturated. These characteristics are

consistent with some of the most disease-burdened regions of the world.

As with any method, there are limitations to the use of nighttime satellite imagery; the exact

association between brightness and population density varies between locations and is

affected by environmental (15) and economic factors (25-27). Additionally, images must be

selected carefully to avoid contamination from solar and lunar illumination and cloud cover

(SOM part 1).

Measuring the drivers of seasonal variability in transmission rates, particularly in areas with

sparse disease surveillance and strong epidemic nonlinearities (2), is critical for improving

the design of epidemiological control measures. It is now possible to improve outbreak

response strategies based on fluctuations in population density and disease transmission, as

we have shown for a recent measles outbreak in Niamey. This would be particularly useful

in areas with repetitive seasonal fluctuations in density where targeted campaigns could

maximize the number of individuals present during vaccinations. It is also possible that this

method could be adapted for near–real-time analyses, as images are uploaded from the

satellite within ∼48 hours (although the usability of individual images is sensitive to

environmental conditions).

The advantages of understanding changes in population density are broadly applicable. This

information can aid in estimating population changes caused by large-scale human
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movements—i.e., displacement due to conflict (17) or recurring movements such as the Hajj.

Measurements of fluctuations in population density provide important information to guide

decisions on disease control strategies, international aid and humanitarian responses, and

assessments of economic development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
(A) Map of Africa, Niger in gray. (B) Three cities of Niger included in this study. (C)

Average weekly annual rainfall for Niger (dark gray) and national weekly average of annual

measles cases, 1995–2004 (light gray). Shading gives 95% confidence intervals. (D)

Relative transmission rates (number of infections per product of susceptible and infectious

individuals per 2 weeks) for Niamey, Maradi, Zinder by calendar day 1 to 365 (x axis) (1).

Gray area indicates rainy season. (E) Relative brightness (cubic smoothing spline, df = 3) by

calendar day 1 to 365 (x axis) for each city. Gray area indicates rainy season; dashed line

indicates mean of brightness for each city (table S1). (F) Brightness against relative

transmission rate for each city. Box indicates interquartile range, whiskers extend 1.5 times

the interquartile range. Width of boxes correlates to number of observations.
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Fig. 2.
(A) Pixels of Niamey designating communes by color, consistent for panels (A) to (C).

Black polygons outline communes. (B) (Plot) Brightness (cubic smoothing spline, df = 3)

for each commune from calendar day 200 (x axis). Red arrow indicates start of epidemic in

commune 1. (Panels above and vertical lines) Colors indicate relative brightness of each

pixel in Niamey at the peak of the epidemic in commune 1 (left), the onset of ORV (center),

and the peak of rainy season (right). Mean of each pixel is set to zero. Black polygons

outline communes. (C) Weekly reported measles cases by commune from calendar day 200.

Dashed line represents timing of ORV. (Inset) Maximum brightness value of each commune

against total measles cases. (D) Points show reported measles cases, shading gives central

95% of predicted measles incidence from 25000 model simulations from nighttime lights–

informed model (red), no migration model (blue), and constant migration model (gray).

Dashed line indicates timing of ORV. The x axis spans the duration of the epidemic: day 307

of 2003 to day 153 of 2004; the y axis is the number of cases on a natural log scale.
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