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During software debugging, a significant amount of effort is required for programmers to identify the root
cause of a manifested failure. In this article, we propose a cascade fault localization method to help speed up
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differentiate our approach from existing methods. First, our method systematically computes all potential
causes of a failure and augments each cause with a proper context for ease of comprehension by the user.
Second, our method organizes the potential causes in a tree structure to enable on-the-fly pruning based
on domain knowledge and feedback from the user. We have implemented our new method in a software
tool called CaFL, which builds upon the LLVM compiler and KLEE symbolic virtual machine. We have
conducted experiments on a large set of public benchmarks, including real applications from GNU Coreutils
and Busybox. Our results show that in most cases the user has to examine only a small fraction of the
execution trace before identifying the root cause of the failure.
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1. INTRODUCTION

Testing and debugging are considered the most expensive phase in the entire soft-
ware development cycle [Beizer 1990]. One of the main reasons for such high cost
is that fault localization, the process of tracing propagation of faults and identifying
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the location of erroneous program statements, is labor intensive and time consuming.
Although there exists a large body of work in the software engineering literature on
developing automated methods for fault localization, many of these existing methods
require a comprehensive test suite to provide sufficiently many passing and failing
executions [Groce and Visser 2003; Ball et al. 2003; Renieris and Reiss 2003; Groce
et al. 2006]. In this context, fault localization is conducted by comparing and contrast-
ing these passing and failing executions. While they are useful in certain applications,
such as version upgrade [Banerjee et al. 2010], such approaches do not match the
common software development practice, where programmers tend to focus on a single
faulty execution rather than accumulate a large number of executions for comparison.
In addition, although it is possible to generate more executions from a faulty execu-
tion for the purpose of comparison, ensuring that these additional passing and failing
executions are closely related to the same fault is a challenging task.

We believe that, in general, the process of identifying program statements responsi-
ble for a given failure cannot be fully automated. In other words, the user’s involvement
cannot be completely eliminated except for rare occasions, for instance, when a formal
specification of the intended program behavior or a golden model exists. The reason is
that there will always be more than one possible ways to make the failure manifested
in a faulty execution trace go away—some are valid fixes but some are merely making
the erroneous code unreachable under certain program inputs. For example, in the fol-
lowing code snippet x=0; y=0; if(x>0) {y=1;} assert(y!=0), there are two potential causes
of the assertion failure. One is y=0 and the other is if(x>=0), since we can avoid the fail-
ure either by changing y=0 to y=1, or by changing if(x>0) to if (x>=0). However, merely
analyzing the code snippet itself is not enough to determine which repair is desired
by the programmer. Without knowing the programmer’s design intent, in general, it is
not possible for a software tool to completely automate the debugging process.

Therefore, instead of proposing new heuristics to replace the user in the aforemen-
tioned decision making process, we focus on identifying all potential causes and orga-
nizing them in a way that facilitates comprehension and efficient pruning. Specifically,
given the program source code and a single execution that leads to an observable fail-
ure, our method traverses the error trace backwardly and systematically computes all
possible causes. Each cause is augmented with a proper context to help the user under-
stand why it may be responsible for the failure. Furthermore, all causes are organized
in a tree structure, where nodes represent the causes and edges represent their causal
relationships. Nodes in this cause tree are computed on demand in a cascade fashion.
If the user finds that a certain cause is suspicious and wants to investigate further, the
tree structure allows her/him to easily navigate to related causes at a upper level.

We have implemented our method in a software tool called CaFL, which stands for
Cascade Fault Localization. The tool builds upon the popular LLVM [Lattner 2002]
compiler platform and the KLEE [Cadar et al. 2008] symbolic virtual machine. We use
LLVM/KLEE as the front-end to handle real-world C/C++ applications and replay the
faulty executions. Our method first converts a faulty execution into a set of logic for-
mulas based on a weakest precondition computation, and then solves these formulas
using an off-the-shelf satisfiability modulo theory (SMT) solver. Based on the unsat-
isfiability proofs generated by the SMT solver, our method will be able to obtain the
potential causes, together with the causal relationships between these causes. We have
conducted experiments on a large set of public benchmarks, including programs from
the Siemens Suite, which have been widely used in previous software testing studies,
as well as real applications from GNU Coreutils and Busybox.

Our method differs from the recent works on using constraint solving in fault local-
ization, such as BugAssist [Jose and Majumdar 2011a, 2011b], error invariants [Ermis
et al. 2012; Christ et al. 2013], and inductive interpolant labelings [Murali et al. 2014].
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Although these existing methods share some elements of the underlying analysis meth-
ods with ours, such as the use of SAT/SMT solvers and unsatisfiability proofs, their
focus is different. In particular, these existing methods focus on heuristically identi-
fying the root cause of a given failure, that is, replacing the programmer with fully
automated algorithms during the decision making, whereas our method focuses on
computing all potential causes and highlighting their causal relationships, to help the
user decide which is the root cause.
To sum up, we have made the following contribution.

—We propose a new method for computing all potential causes of a manifested failure
and organizing these causes in a tree structure to facilitate efficient navigation and
pruning by the user.

—We implement our method in a practical software tool, which builds on the pop-
ular LLVM compiler and KLEE symbolic virtual machine, to handle real C/C++
applications.

—We demonstrate the effectiveness of our method on a large set of public benchmarks,
including programs from the Siemens suite and real applications from GNU Coreutils
and Busybox.

The remainder of the article is organized as follows. First, we illustrate our method
using a motivating example in Section 2. Then, we present the detailed algorithm of
our cascade analysis in Section 3. This is followed by a description of several heuristic
optimizations in Section 4. We present our experimental results in Section 5. We discuss
the limitations of our approach in Section 6. We review related work in Section 7, and
finally give our conclusions in Section 8.

2. MOTIVATING EXAMPLES

In this section we use a running example given in Figure 1 to provide a high-level
description of our new method. In addition, we use several simpler examples to illus-
trate the key ideas in case readers are not familiar with concepts such as weakest
precondition computation. Figure 1 shows a program that takes as input the lengths
of three sides of a triangle in decreasing order. Depending on whether the triangle is
equilateral, isosceles, right, or scalene, the program uses different methods to compute
the area. Using automated code transformation, we insert a statement at Line 4 to ex-
plicitly assign symbolic arguments to the parameters. During the concrete execution,
the arguments t1, t2, t3 are replaced by their actual values passed to the function.

There is a defect at Line 9, where the condition (a*a == b¥b+c*c) is accidentally writ-
ten as (a*a !'= bxb+cxc). Under the test input vector ( t1=6,t2=5,t3=4), the execution pro-
duces the following trace (2—7,9—11, 13—14, 22). The bug is manifested as an assertion
failure at Line 22, where oracLE represents the exact correct value (about 9.92) for the
variable area. Ideally, a fault localization tool should be able to inform the programmer
that the defect at Line 9 causes the assertion failure at Line 22. However, in general,
a fully automated method cannot achieve such accuracy.

Our approach starts from the failed assertion at Line 22 and traverses the execution
trace in reverse order in order to construct a quantifier-free, first order logic formula.
The formula captures the weakest precondition of the assertion predicate (area==0RACLE),
which is the minimal requirement for the assertion to hold along this trace. We stop
this backward trace traversal as soon as the logic formula of the weakest precondition
becomes unsatisfiable, which is guaranteed to happen by the time we reach the starting
point of the trace. This is because the backward traversal assumes that (area==0RACLE)
holds at Line 22, but in reality, we have (area!=0racLE). We check for unsatisfiability by
using an off-the-shelf satisfiability modulo theory (SMT) solver [YIC].
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1 int area(int a, int b, int c) {
2 int class;
3 double s, area;
4 a=+tl, b=1t2, ¢ =t3; //automatically inserted symbols: tl, t2, t3
5 if (a>=b && b>=c) {
6 class = SCALENE;
7 if (a==b || b==c)
8 class = ISOSCELES;
9 if (a*xa != bxbtcxc) //the condition should be (a*a==bx*b+c*c)
10 class = RIGHT;
11 if (a==b && b==c)
12 class = EQUILATERAL;

switch(class) {
13 case RIGHT:
14 area = b*xc/2; break;
15 case EQUILATERAL:
16 area = axaxsqrt(3)/4; break;
17 default:
18 s = (atb+c)/2;
19 area = sqrt(sx*(s-a)x*(s-b)*(s-c));

}

}else {
20 class = ILLEGAL;
21 area = 0;
}

22 assert (area==0ORACLE); //the failure
23 return area;
24 }

Fig. 1. A program that computes the area of a triangle: there is a bug at Line 9 causing the assertion failure
at Line 22.

1 x = 0;

2 vy =1;
1 x =t; 3 if (y == 1)
2y = x+1; 4 x = x+1;
3 assert (y==1); 5 assert (x==0);

Fig. 2. Code snippet that illustrates weakest pre- Fig. 3. Code snippet that illustrates critical condi-
condition computation. tions.

In order to explain the procedure further we use a simpler code snippet shown in
Figure 2, where there is an assertion failure under input (t=1). Starting from the
assertion failure at Line 3 we create the initial formula (y==1). At Line 2 the weakest
precondition computation substitutes y with x+1, which produces new formula (x+1==1).
Finally the computation terminates at Line 1 because the replacement of x with tleads
to a unsatisfiable formula (t+1==1). In the running example, our backward traversal
stops at Line 4 and produces a more complicated unsatisfiable formula shown here.

(t2%t3/2==0RACLE) && (class==RIGHT) && (t1 != t2) && (tixtl != t2%t2+t3%t3)
&& (t2 '= t3) && (t1 !'= t2) && (t2 >= t3) && (t1 >= t2) && (t1 == 6)
&& (t2 == 5) && (t3 == 4)

Here, the values of t1, t2, and t3 are 6, 5, and 4, respectively. For the purpose of
localizing the cause of a failure, our observation is that not all of the constraints
in the unsatisfiable weakest precondition formula contribute to the unsatisfiabil-
ity. For example, removing (class==RIGHT) from the above formula would not make it
satisfiable, which means that the constraint is irrelevant to the proof of its unsat-
isfiability. If we keep removing such irrelevant constraints, in the end, we would
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be able to obtain an unsatisfiable (UNSAT) core, which consists of a subset of log-
ical constraints of the unsatisfiable formula. In this example, the UNSAT core is
(£2+t3/2==0RACLE) && (£t2==5) && (t3==4) .

Although the constraints in the above UNSAT core somewhat explain the assertion
failure—since 5+4/2==9.92 is not true—they are not very helpful to the programmer
before we map these UNSAT core constraints back to the erroneous statements in
the program code. Toward this end, we consider the statements that are responsible
for the UNSAT core constraints as potential causes. For the UNSAT core constraint
(t2+t3/2==0RACLE), one of such statements is the assignment at Line 14, since t2+t3/21is ob-
tained by executing area=bxc/2. This mapping algorithm will be presented in Section 3.2.
Although existing methods such as BugAssist [Jose and Majumdar 2011a, 2011b] and
error invariants [Ermis et al. 2012; Christ et al. 2013; Murali et al. 2014] also compute
UNSAT cores and use variants of the weakest precondition computation, they focus on
identifying only one cause, for instance, by heuristically deciding the most likely root
cause, whereas our method focuses on systematically generating all possible causes.

After computing the first cause, the question now is whether the assignment
area=bxc/2 is a cause. We believe that in this example, the answer is yes because the
failure can be avoided by changing this assignment to area=sqrt(s*(s-a)*(s-b)*(s-c)),
where s is defined by s=(a+b+c)/2. Unfortunately, this is not the root cause—recall that
the real defect is in the conditional expression at Line 9. This shows the main challenge
in trying to design fully automated methods for fault localization—in general, there is
no way to completely automate this process without knowing the programmer’s intent.
For a mechanical approach that does not know sufficient domain knowledge or the
programmer’s intention, we argue that the best it can accomplish is to compute all the
potential causes and then let the programmer decide which is the root cause.

Our running example highlights the importance of computing more than one causes
since the first cause is often not the root cause. If we stop after computing the first
cause at Line 14, the programmer would not be able to obtain any information about
the root cause at Line 9.

In order to continue the analysis beyond the first cause we introduce the concept
of critical conditions, which initiate weakest precondition computations to search for
multiple potential causes. The need for critical conditions can be clarified by a simpler
example shown in Figure 3. The first critical condition is (x==0) that corresponds to the
assertion failure itself. The first weakest precondition computation produces the cause
that consists of Lines 1, 4, 5. However, if the user believe both Lines 1 and 4 are correct,
the condition at Line 3 becomes critical because its negation prevents the execution of
Line 4, which dissolves the previously computed UNSAT core. Therefore we can start
from the second critical condition (y!=1) and obtain the second cause (Lines 2 and 3).
Since there are no more critical conditions and the user vetoes the first cause, the
second cause must be the root cause. Indeed, the assertion failure can be avoided by
changing either Line 2 to (y=0) to or Line 3 to (y!=1).

Back to our running example, after identifying the first cause at Line 14, our method
continues by choosing the condition at Line 13 as a new starting point, since the condi-
tion controls whether Line 14 will be executed. A negation of the condition at Line 13,
(class!=RIGHT), would be able to avoid executing Line 14, which is necessary to trigger the
observed assertion failure. By performing the weakest precondition computation from
the negated condition at Line 13, we compute the second UNSAT core (RIGHT!=RIGHT).
The program statements responsible for this UNSAT core include Lines 13 and 10.
Similarly, the conditions at Lines 9, 5, and 11 are critical conditions. The one at Line 9
is a critical condition because it indirectly leads to the assertion failure by influencing
the outcome of the predicate at Line 13. The condition at Line 5 is a critical condition
because it affects the value of variable area at Line 22. The condition at Line 11 is
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Fig. 4. The cause tree for the program in Figure 1, where each node (cause) corresponds to a set of line
numbers in the code.

a critical condition because of its potential influence on the variable class at line 13.
Although Line 12 is not executed in the given trace, its impact can be estimated by a
simple static program analysis. Note that Line 7 is not a critical condition, because a
simple static analysis will be able to show that its influence on class will be blocked at
Line 10 and therefore cannot arrive at Line 13 in the failed trace. Starting from Line 9,
using the same approach, we can find the third UNSAT core (62 = 52 + 4?). After map-
ping the constraints back to the assignments in the code, we are able to report another
cause {9,4}.

The causes computed by our method are organized in a tree structure, an example of
which is shown in Figure 4. Each node in this tree represents a cause, labeled with a set
of line numbers of the source code that constitute the cause. These line numbers may
correspond to either critical condition or the supporting statements. The line numbers
of critical conditions are in bold—the failure would go away were their values negated.
The supporting statements, in contrast, help explain the unsatisfiability of the weakest
precondition predicates originated from these critical conditions. The edges in Figure 4
denote the causal relationships between these causes.

Since each cause in the tree forms a context that explains itself, it helps the pro-
grammer understand the cause and decide whether it is the real bug. For example, the
cause {9, 4} in Figure 4 essentially says that (62 = 52 +42) because of the initial values
of variables set at Line 4, which means that the condition at Line 9 should be modified.

Although our tree representation in Figure 4 can help the programmer navigate
through the causes, in practice, debugging remains a long and difficult process. When
the number of causes is large, applying our method is the most beneficial since in
addition to providing a relevant context for each cause, our method also highlights the
sometimes complex causal relationships between these causes. Our tree representation
also makes on-the-fly pruning of redundant causes possible. For example, as soon as
the programmer decides that a potential cause is not responsible for the manifested
failure, we can remove all the causes leading to this benign cause, thereby removing a
large number of irrelevant nodes and edges from the cause tree.

3. CASCADE ANALYSIS

Figure 5 depicts the architectural design of our tool CaFL, which uses the KLEE [Cadar
et al. 2008] symbolic virtual machine in LLVM [Lattner 2002] as a front-end to obtain
and replay the faulty execution trace, which may come from a failing test run. The
key step in applying CaFL is to perform the cascade analysis, which produces the
augmented cause tree. Starting from the root node of the tree, which directly explains
the manifested failure, more causes that transitively explain the failure are added to
the tree level by level. The algorithm terminates as soon as either the user discovers the
root cause or the complete cause tree is constructed.

In the remainder of this section, we first present our algorithm for computing a
cause. Then, we present our algorithm for computing additional causes based on the
previously computed cause. Finally, we present the top-level procedure of our cascade
analysis method.
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Execution Trace

| Obtain critical Weakest precondition|!
] conditions computation

Fig. 5. The overview of our new CaFL (Cascade Fault Localization) framework.

3.1. Weakest Precondition Computation

Our method for computing a cause that explains the manifested failure is based on
an enhanced version of the weakest precondition computation, defined originally by
Dijkstra [1976]. Let 71" « (sel, o s;-, ..., sy be an execution trace consisting of n
instruction instances. Each sj- is the i-th executed instance of the corresponding in-
struction s; in the program. In our implementation, the program is represented in the
LLVM bytecode format, constructed from the C/C++ source code using the Clang/LLVM
compiler. Each instance may have one of the following types:!

—assignment v := e, where v is a variable and e is an expression;
—branch assume(c), where c is a predicate that comes, for example, from one of the two
branches of an if-else statement.

We assume that the last instance s? in the trace 71" is a failed assertion. In soft-

ware testing, assertions are often included in the program code by the programmer,
or inserted automatically as part of the test oracle. Standard programming errors
such as null-pointer-dereference, array-bound-violation, and division-by-zero can also
be modeled using assertions. For ease of presentation, we omit the subscripts when the

context is clear and unify the trace with its input as 7%” < (s, s1,..., s, ..., s"). Here,
s% represents a conjunctive set of assumptions under which the input variables equal
to their initial values. We use 7'/ to represent the trace segment (s’,...,s’), where
0<i,j<n.

Our analysis is based on computing the weakest precondition of the failed assertion
condition. We have extended the original definition of weakest precondition in order to
handle pointer-based memory accesses. Informally, the weakest precondition of predi-
cate ¢ over an instruction instance s, denoted WP(s, ¢), is the weakest condition that
needs to hold before s such that ¢ is guaranteed to hold after executing s. For handling
pointer dereferences, we add an auxiliary variable &m; for each memory address that
has been referenced by a pointer. For example, executing int* p=malloc(2*sizeof (int))
would lead to (p = &my) A (p+ 1 = &my), where my, my are two integers and &my, &my
are their memory addresses. Since the weakest precondition is computed along a con-
crete execution trace that is obtained from a forward execution of the program. There-
fore, all pointers already have fixed values. In other words, the alias information is
already available to us by the time we perform the backward weakest precondition
computation. For example, when the pointer pp points to m;, the assignment *pp:=x

1We ignore memory allocation and deallocation to simplify the presentation.
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can be represented by assume (pp==&m;) ,m; :=x. Similarly, the statement if (+pp==3) can be
represented by assume(pp=&m;) ,assume (m;==3).

Definition 3.1 gives the formal definition of weakest precondition. Since pointer
related operations have been represented by combinations of assume and assignment
statements, the definition is straightforward.

Definition 3.1 (Weakest Precondition). The weakest precondition of predicate ¢ over
trace 7%/ <« (s;,...,sj_1,s;), denoted WP(x"/, ¢), is defined by applying the following
rules:

—Rulel. For a sequence of instructions 7%/, we have WP(x%/, ¢) = WP(x*/~1, WP
(sj. 9)).

—Rule2. When s is an assignment v:=e, we have have WP(s, ¢) = ¢(e/v).

—Rule3. When s is an assume(c), we have WP(s, ¢) = ¢ Ac.

Table I illustrates how these rules are applied to a small example. Column 1 shows
the sequence of original statements in the C program (0, 1,2, 3,4, 5, 6, 8) executed
under the test input (x = 2,y = 3). Column 2 shows the execution trace represented
by a sequence of assume/assignment statements. The trace ends at Line 8, where the
assertion fails since the value of *pp (aliased to my) is 4 instead of 3. That is, we have
assume (m; # 3), which contradicts to assert (xpp==3). To compute the weakest precondition
(WP) of the condition (i = 3), we traverse the execution trace backwardly. Column 3
shows the the impact of each instruction on the WP computation, where U denotes
the expression substitution and A denotes the addition of a new conjunct. Column 4
shows the result obtained after processing each instruction, starting from the assert
statement at Line 8.

3.2. Identifying a Cause in the Faulty Execution

Not all the instruction instances in a faulty trace may be responsible for the manifested
failure. Our first goal is to identify the minimal set of instructions that directly causes
the failure. Let s” be the last instruction instance in trace 7% and the failed assertion
predicate is s™.p. The assertion fails because the desired value of s”.p is false. In other
words, if the assertion predicate were (—s™.p) as opposed to (s™.p), the failure would
have been avoided. Therefore, we want to know why the execution trace prefix 7171
is not compatible with ¢, = (—s".p). _

The weakest precondition of predicate ¢, with respect to the trace 7" 1 is of the
form WP(x'" 1, ¢,) = ¢/, A (pj, A --- A pj,). Here, ¢, is transformed from the predicate
¢, through variable substitutions, and each additional predicate p; is derived from a
condition in an assume statement, denoted s’ : assume(c;), wherei <1 <n — 1.

By the definition of ¢, and WP(), there always exists an index 0 <i < n — 1 such
that WP(z"1, ¢,) becomes unsatisfiable. The reason is that the assumption of ¢,
contradicts the fact that under the given test input, the assertion has failed during
this execution. Therefore, during the backward WP computation, we check for the
satisfiability of the WP at each step.

Let WP,,5.:(¢,) be the first unsatisfiable formula obtained during the backward weak-
est precondition computation. According to the satisfiability (SAT) theory, for each un-
satisfiable formula, there exists an UNSAT core [Zhang and Malik 2003; Lynce and ao
Marques-Silva 2004], which is defined as a subset of constraints of the formula that by
themselves are also unsatisfiable. A minimal UNSAT core, denoted WP, ,(¢,), is one
such that removing any constraint from it would make the remaining formula satisfi-
able. Modern SAT and SMT solvers, such as Yices [YIC], can be leveraged to compute
the minimal UNSAT core [Liffiton and Sakallah 2008].
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Although WP,," .(¢,) is a useful concept for fault localization, by itself, the UNSAT
core does not provide enough information to help the programmer locate the faulty
program statement in the source code. Let p; be a conjunctive constraint in WP}, ,(¢).
In order to present a meaningful cause to the programmer, we map p; back to the
program statements that contribute to the formula of p;. Assume that p; is the orig-
inal predicate that is transformed into p; eventually. We consider all the assignment
statements that participate in the transformation of p; into p; are part of the cause.
Intuitively, it is the execution of these assignments that eventually gives rise to p;, and
hence the unsatisfiable formula.

Definition 3.2 (Transforming Instance). A transforming instance (TI) of the predi-
cate p; is an assignment v := e, a memory read v := [p], or a memory write [p] :=e
from the given execution trace, such that v and [p] appear in the transitive support of
p1 or appear in the branching condition where p; comes from.

For example, the assignment s : x = y 4+ 1 is a transforming instance of the predicate
p (x> 0), since WP(s, p;) produces p; : (y + 1 > 0). The definition is transitive in
that both ¢ = ¢(e/v) and ¢” = ¢'(eg/ve) are transformed from ¢. Note that only an
assignment can transform a predicate. An assume statement, in contrast, can only
add a new predicate to the existing WP formula, but cannot transform the existing
predicates. Let T1, denote the set of transforming instances for the predicate p along

the given trace. A cause for the failed execution 7", whose corresponding assertion
failure is ¢ = —s".p, is defined as follows:

causey = U TI,.
peW PR, (9)

Algorithm 1 presents the pseudocode that computes a cause for a failed execution 7 %*.

The input consists of the trace prefix 7%#~1 and the failed assertion in s*. As discussed
earlier, ¢ = (—s*.p) represents an alternative outcome of the execution that ensures
unsatisfiability of the WP at some step. (Later, in Section 3.3, we show that s* may
also be some instance other than the final assertion.) The resulting formula obtained
during the weakest precondition computation is represented as a set of conjuncts. At
each iteration of the backward computation, we check the satisfiability (Line 15) after
the formula WP, = WP(z*"1 ¢) is updated, either by adding new conjuncts via a
branching statement (Line 13) or by substitution made by an assignment (represented
by procedure update at Lines 5, or 9). If WP, becomes unsatisfiable at any moment, we

compute the UNSAT core WP™" (¢) using an SMT solver. The last for loop computes

the cause of the failed asserti(l)tﬁjl by adding to cause, all the transforming instances of

the predicates in the UNSAT core WP,2 .(¢).

For our running example in Table I, the WP formula becomes unsatisfiable at Step 8,
and its minimal UNSAT core is 2 + 2 = 3. Let s; be the instruction instance at Line .
According to Algorithm 1, the cause of this failing trace is {ss, s4, S3, So, So}. Note that
se can be identified as one transforming statement of the condition at sg, thus it is
included in the computed cause.

3.3. Producing More Causes

Algorithm 1 computes a cause of the failed execution 7%”. In principle, there are
two ways to avoid the manifested failure. One is to revise one or more transforming
instances in some 71, of the cause, which would invalidate the UNSAT core. Such
direct fix makes sense only if T1, is the root cause. The other way to avoid the failure is
to make one or more transforming instances unreachable. This, however, means that
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ALGORITHM 1: computeCause(7%* 1, s*) — Computing the Cause for Failure in s*.

Data: the failed assertion condition ¢ = (—s%.p);
Result: the causey;
WP, 3 add(¢),
i=k—-1;
fori > 0do
if s’ is v := e then

‘ update(WPy, st v, e);
end
if ' is assume(c) then

| WPy.add(c A N\ pecrgeoip—(pn €@/ P);
end
if WPy is unsatisfiable then

P (¢) < getUnsatCore(WPy);
break;

end

i—=

© X a e oA W N

[ S S
A ® N = O

end
for every p € WP .(¢) do
| causes.add(TIp);
end
return causey;
Procedure update(WP, s, oldV ar, new Expr);
for each conjunct ¢ in WP do
if ¢ uses oldVar then
¢ = c[newExpr/oldV arl;
TI..add(s);
end
end

-
=

DN ONNN NN R e e e
S O R BN RSO ®» O

TI, is not the root cause, and therefore we need to focus on instances outside 774. In
the latter case, we need to extend our algorithm to compute the instances outside 71,.

Now, we present a cascade analysis to compute more causes based on a previously
computed cause. Given the current transforming instances in T1, we first locate the
branching instances that control the execution of the instances in 71. The conditions
in these branching instances are called critical conditions.

Definition 3.3. The condition in a branching instance s/ is called a critical condition
of some TI of a cause if it has potential impact on an instance s’ € TI in one of the
following ways:

—direct influence s/ ~~ s': the condition in s/ determines whether s will be executed;
and

—indirect influence s’ & s': the condition in s/ determines whether an unexecuted
statement s? will be executed, where s? redefines a variable read by s'.

In other words, the set CCr; of critical conditions of 77 is defined as CCr; =
UsleT s/ | (87 ~ s) v (s/ & s)). Our use of indirect influence in the above defini-
tion is similar to the potential dependency used in relevance slicing [Gyimé6thy et al.
1999]. By considering the indirect influence in addition to the direct influence, we can
detect execution omission errors [Zhang et al. 2007], which are caused by not executing
certain necessary program statements in the code.

Consider the example in Figure 6, which has an assertion failure along the execution
(1,2, 3,6,7) because the value of d becomes 4, not 5, at Line 7. Using the algorithm
presented in Section 3.2, we compute the first cause with TT; = {1, 6, 7}. Let us assume
that T1, is not the root cause. In other words, we should not make the failure go away
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1 int a=2, b=1, c=1, d=0;

2 if (a>0) {

3 if (b<0)

4 if (c!=2)

5 c=2; //end if\@L4

6 d=c+3; //end if\@L3
} //end 1if\@L2

7 assert (d==5);

Fig. 6. An example for computing the critical conditions.

ALGORITHM 2: ComputeCC(TI) — Computing the Critical Conditions from 77.

Data: the current set 77 of transforming instances;
Result: critical conditions CCr; for TT;
1 for each transforming instance s € TI do

2 let s/ be the closest enclosing branch of s’ that is not post-dominated by s’;
3 CCrr.add(s));

4 for each var read by s' do

5 let s be the last instruction instance in the trace that assigns var before s';
6 for every branching instruction s* between s and s do

7 if indInf(s*, var) == true then

8 | CCrr.add(s®),

9 end

10 end

11 end

12 end

13 return CCry;

by changing c=1 to c=2 at Line 1, d=c+3 to d=c+4 at Line 6, or d==5 to d==4 at Line 7. In
such case, we check if the behavior of Line 6 can be changed indirectly.

Based on the definition of critical conditions, we know that Line 2 is a critical con-
dition since it controls whether Line 6 will be executed. Similarly, Line 3 is a critical
condition since if the condition at Line 3 is true, the omitted statement at Line 5 would
have been executed and ¢ would have been redefined. Since we only consider such
direct and indirect influence on the executed instruction instances, Line 4 would not be
considered as a critical condition.

By negating the two critical conditions and passing them each as an input to Algo-
rithm 1 as the second parameter, we can identify the reasons why a<=0 (denoted cc1)
and b>=0 (denoted cc2) did not hold at Lines 2 and 3, respectively. In this way, we have
computed, from the cause at Level 0, the two new causes T1..; = {1, 2} and T1..; = {1, 3}
at Level 1.

Our new method differs from the well-known dynamic slicing techniques [Agrawal
and Horgan 1990]. In particular, dynamic slicing would have reported Lines 1-2 and
6—7 in Figure 6, but not Line 3, as the potential instances causing the failure, which
can lead to certain causes being left out. For example, the actual bug can be fixed if the
programmer changes (b<0) to (b>0) at Line 3.

Algorithm 2 shows the pseudocode for computing the critical conditions. It follows
Definition 3.3 with the following modification. For each transforming instance st e TI,
we choose only the immediate preceding instance s/ that is not post-dominated by s’
(Lines 2-3), because other critical conditions will be computed during the subsequent
iterations of our cascade analysis. Therefore, no root causes will be missed due to
this modification. Indeed, making this computation incremental is advantageous in
that it makes efficient pruning possible: if the user decides, at any moment, that the
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ALGORITHM 3: topAlg(7°") — The Top-Level Procedure of Our Cascade Analysis.

Data: 797,

Result: causes;

See < {(s", 0)};

while S.. #  do
remove (s*, ) from S,;
TI = computeCause(r %1, sk); // Algorithm 1
causes.add(T1,1);
CC = computeCC(TD); /I Algorithm 2
See = Sec U{(e,i + Dle € CCY

end

[T = N

current critical condition is not responsible for the manifested failure, then we can
avoid exploring all its corresponding causes at the higher levels.

In Algorithm 2, Lines 4—11 deal with the indirect influence. Let s be the last statement
before s* that assigns a variable var used by s, then during the backward analysis, s
and s’ represent the upper and lower bounds of indirect influence, respectively. For
each var used by s’, the loop at Line 6 identifies every branch instance s* between s
and s'—which can indirectly influence var, represented by indInf(s*, var)—as a critical
condition. An example for such instruction instance is the one at Line 3 in Figure 6.

3.4. The Top-Level Algorithm

Algorithm 3 presents the top-level procedure of our cascade analysis, which takes a
failed execution 7%” as input and returns an augmented cause tree as output. The
critical condition set S, initially contains (s”, 0), which represents the failed assertion
at Level 0. Within each iteration, a critical condition at Level i, where i > 0, is removed
from S.. and the weakest precondition computation is performed to obtain an UNSAT
core.

The UNSAT core is then mapped to a set of transforming instances in 71. Each
TI is then considered as a possible cause at Level i, from which we can compute a
set of critical conditions CC at Level i + 1. By appending CC to S.., the cascade
analysis continues until all critical conditions are transitively added, or (not shown
in the pseudocode) the programmer discovers the root cause and therefore decides to
terminate the process early.

During the cascade analysis, any newly discovered critical condition can initiate a
new cause detection computation by serving as the second parameter to Algorithm 1.
Such analysis would produce multiple causes. All these causes are possible bugs in
the sense that a change to any of them may help avoid the final failure. To help the
programmer navigating through these possible causes, we organize them level by level
in a tree, an example of which is shown in Figure 4.

4. OPTIMIZATIONS

The cause tree constructed by the algorithm in Section 3 can be large, especially for
non-trivial programs with complex control and data dependency. Similar to the stan-
dard debugging practice, here, a programmer may have to browse many causes before
identifying the root cause. This is a main reason why fault localization is challenging.
In this section, we present several optimization techniques to speed up the construction
of the cause tree, as well as reduce its size via on-the-fly pruning. Furthermore, these
optimizations try to minimize the amount of code that a programmer has to scrutinize
before identifying the root cause.
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4.1. Slicing the Faulty Execution Trace

The length of the faulty execution trace has a direct impact on the efficiency of our
algorithm. Therefore, we follow the principle of dynamic slicing [Agrawal and Horgan
1990] and use an approach similar to the data-flow equation method [Weiser 1984]
to remove the irrelevant instances from the given execution trace before applying our
cascade analysis.

The slicing criterion is defined as C = (s", V), where s” denotes the manifested failure
and V is the set of program variables observed at s". Let def(s) and ref{(s) be the sets
of variables that are defined and used at instance s, respectively. We use an auxiliary
set R to record the set of variables at instance s' that can affect C either directly

or indirectly. The set R, is computed along the given trace 7%" in a reverse order as

follows:
. V, ifi =n,
Ry = i+1 i i+1 i i .
{vive Ry Avé¢def(s)) U {v | (R Ndef(s') #0 Averef(s')}, otherwise.

When i # n, the set Ré is a union of two subsets. The first subset consists of all the
variables in R"CJrl except for those redefined at s'. The second subset contains all the
variables that are referenced at s’ if s redefines some variable in Réfl — this condition
is represented as R, Ndef(s') # 0.

Next, we define the condition TF, which states that the instance s’ in the given trace

should be added to the slice if it is data or control dependent on s’, or there exists
indirect influence between them. T'F is computed as follows:

TF = def(s) N RS # 0 || ctrdep(st, s)|| Iv € RS AindInf(st, v).

In the above equation, s’ represents the most recent instance added to the slice and
ctrdep(s, s’) is true when s’ is control dependent on s. Note that indInf(s, v), which has
been defined in Section 3.3, is used in our indirect influence analysis.

Finally, given R, and TF, we compute S;,, which represents the resulting program

statements after slicing the given trace 7*". Here, S, is defined as follows:

g SEH Ust, if TF = true
c= - )
Sgl, otherwise.

4.2. Designated Correct Functions

In practice, certain type of software code are normally regarded by the developers as
bug-free. An example is the set of functions in the standard C library, such as stremp.
In CaFL, we leverage this type of domain-specific information to prune the cause tree.
Toward this end, we define the analysis scope in CaFL as the set of all functions that
are neither the standard library functions nor the ones designated by the programmer
as being correct.

When a critical condition cc is identified to be outside the analysis scope, CaFL does
not compute the causes derived from cc. Instead, CaFL maps cc to the nearest caller
site (cs) of a function inside the analysis scope. Subsequently, the caller site cs is used
as the new starting point for computing critical conditions, because an incorrect value
generated in a faulty function may be passed to a correct function through a function
invocation chain. Moreover, if the user knows that a correct function has no side-effect,
CaFL can use the concrete return value of that function call without any symbolic
computation inside the function. This optimization not only simplifies the resulting
cause tree, but also speeds up the corresponding weakest precondition computation.
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Fig. 7. Mapping a critical condition to a call site within the analysis scope (by skipping the designated
correct functions).

Figure 7 depicts a faulty execution trace marked with three call sites {cs1, cs2, cs3},
the function call entry points {ei, es, e3}, and the return points {rq, s, r3}. When the
critical condition cc within a designated correct function /2 is identified, CaFL maps cc
to the call site cs3 if the function f1 is within the analysis scope. If f1 is also designated
as correct, then CaFL maps cs3 further up in the call stack, to the call site ¢s1 within
the analysis scope.

4.3. Improving the SMT Solving

Constraint solving can become a bottleneck in our cascade analysis as it relies on
calling an off-the-shelf SMT solver to check the satisfiability of a weakest precondition
formula, and compute the UNSAT core in case of unsatisfiability. In general, formulas
with fewer constraints are easier to solve. Therefore, inside CaFL, we try to prune
away redundant constraints from the WP formula before passing it to the SMT solver.

We say that the constraint c; intersects with the constraint c; if they share at least
one variable. We say that ¢; and c; transitively intersect with each other if there exists
a chain of constraints (c;,c;41,...,¢j_1,¢;) such that any two adjacent constraints
intersect with each other. For example, since c1 : (x > y) intersects with c2 : (y < z+2),
and c2 : (y < z + 2) intersects with ¢3 : (z < 0), we say that c¢1 transitively intersects
with ¢3.

Our experience with real-world applications shows that only a small fraction of
the constraints obtained during our weakest precondition computation transitively
intersect with each other. Let C,, be the subset of constraints in the WP formula obtained
from the assertion failure. A constraint is regarded as redundant and therefore can be
pruned away if it does not transitively intersect with any constraint in C,. Besides
speeding up the SMT solving, our optimization also minimizes the number of calls
to the SMT solver. Specifically, we skip the satisfiability check of the WP formula
whenever a constraint ¢; added or updated in the WP formula does not transitively
intersect with the currently evaluated predicate cc. For instance, at step 5 of the WP
computation illustrated in Table I, CaFL will not check the satisfiability of the updated
weakest precondition when variable x is updated to x + 2, since it does not transitively
intersect the assertion instance.

This optimization differs from the dynamic slicing techniques described in
Section 4.1. Slicing will remove all the statements on which the failed assertion does
not depend. However, it will not remove statements that do not transitively intersect
with the currently checked condition. Consider the code snippet in Figure 6 as an
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1: a=7, b=5, c=0;

2: if (b !'= 0) // error: b==0
3: a = 8;

4: while(a>0) {

5: if (a>b)

6: ct++;

else

7 break;

8: a--—;

9: }
10: assert (c==2);

Fig. 8. Code snippet with the faulty execution trace (1,2, 3,4,5,6,8,4,5,6,8, ..., 4,5,7,10).

Table II. The Causes Originated from the Loop Iterations of
the Example Program in Figure 8

Critical Conditions Cause Statements
s {s2.s3,s) {5.3.1}
s (52,57, 3,51} (5.8,3.1)
533 {ss® 53t s1.s8.s1) | {5.8,3,1})

example. When our backward analysis arrives at Line 3, the weakest precondition be-
comes (c + 3 == 5) A (b > 0). Line 3 cannot be removed by slicing, but with our new
solver-related optimization, the constraint (b > 0) does not need to be fed to the SMT
solver when checking for the satisfiability of critical condition (¢ + 3 == 5), because
they do not intersect with each other. In fact, CaFL will not invoke the SMT solver at
Line 3, because the satisfiability of (¢ + 3 == 5) has been checked previously, and the
current update of the WP formula does not affect its satisfiability.

4.4. Handling Loops and Recursions

The execution of loops or recursive calls may result in a lengthy trace, which in
turn can lead to a large number of causes. These causes may contain the trans-
forming instances that map to the same lines in the source code. Consider the code
snippet given in Figure 8, whose faulty execution trace is (s{,s2,s3, s, s2, s, si,s5,
s2. se0sal, 512, 533, s34, 51, 515,537, 538, 519). After we compute the first cause, which is
{s1. 8, 55°, sa*. s15}, the following three instances are identified as critical conditions:
s2,s?, and s33.

Table II shows the causes related to these three critical conditions and the line
numbers of the transforming instances in each cause. Although the last two causes
have different transforming instances, they map to the same lines in the source code.
This scenario often occurs in practice in the presence of loops or recursive calls. For
example, if the initial value of @ were 100 as opposed to 7, there would be 100 causes
that map to the same lines {5,8,3,1}.

For such cases, CaFL provides an option for the user to skip analyzing the continuous
iterations. Specifically, for every branch instance s in the given execution trace, CaFL
checks whether s, initiates a loop, and marks the first three iterations. Although the
weakest precondition computation is performed in all loop iterations, only the marked
iterations will be used to propagate the critical conditions. Our experiments shows that
this heuristic is effective in practice, and furthermore, it does not lead to any root cause

being missed in our benchmark programs.
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Table Ill. Experimental Results on Applying CaFl to the Buggy TCAS Programs from the Siemens Suite

TC# TC# TC#

Name |E#| All|Det| C%|L|Time (s)||Name |E#|All|Det| C%|L|Time (s)||Name|E#| All|Det| C%|L|Time (s)
vl 1|131(131| 8.2{2| 0.058 || v15 |1 |10| 10| 6.6/2| 0.051 v29 | 1| 18] 18]12.7|2| 0.059
v2 1| 69| 69|12.2/3| 0.055 || v16 | 1|70/ 70/11.2|/3| 0.054 || v30 | 1 | 58| 58{12.4|3| 0.057
v3 1| 23| 23| 7.3|2| 0.057 || v17 | 1|35 35/11.3/3| 0.060 || v31 | 3 | 14| 14| 5.2|2| 0.049
v4 1| 20| 20| 8.2{2| 0.055 || v18 | 1|29| 29/11.3|3| 0.060 || v32 |3 2| 2| 3.1/2| 0.055
v5 1| 10| 10| 8.2{2| 0.054 || v19 |1 |19| 19/11.3/3| 0.061 || v33 |4 | 89| 89| 6.7|1| 0.011
v6 1| 12| 12| 7.5/2| 0.053 v20 | 1|18] 18/13.2/3| 0.051 v34 | 1| 77 77| 6.4|2| 0.050
v7 1| 36| 36|13.4/3| 0.058 || v21 |1 |16| 16/12.2|/3| 0.054 || v35 | 1| 76| 76|11.5|3| 0.057
v8 1 1| 1/13.7|3] 0.052 || v22 |1 |11| 11|10.4|3| 0.057 || v36 |1 120|120/ 1.1|/1| 0.065
v9 1 7|14.6|3| 0.057 || v23 | 1 |41| 41(10.5/3| 0.053 || v37 |1 | 93| 93/10.2|3| 0.063
v10 2| 14| 14| 7.9/2| 0.050 || v24 | 1| 7| 7|10.8/3| 0.059 || v38 | 1| 91| 91| 6.7/1| 0.012
vll 3| 14| 14| 9.4/3| 0.042 || v25 | 1| 3| 3| 5.4|2| 0.065 || v39 |1 3| 3| 4.9/2| 0.064
v12 1| 70| 70| 8.2|2| 0.054 v26 | 1|11 11} 7.5/2| 0.053 v40 | 2 /120|120 3.4|2| 0.062
v13 1 4| 4| 7.5/2| 0.055 || v27 |1 |10| 10| 6.7/2| 0.053 v4l | 1| 20| 20| 5.8/2| 0.053
v14 1| 50| 50| 5.0{2| 0.031 || v28 |1 |76| 76/12.4|2| 0.054 - - - -

5. EVALUATION

We have implemented our method in a software tool built upon the LLVM compiler
[Lattner 2002] and the KLEE symbolic virtual machine [Cadar et al. 2008]. To compute
the UNSAT cores from unsatisfiable logic formulas, we have replaced KLEE’s default
constraint solver STP [Ganesh and Dill 2007] with Yices [YIC]. Our tool, called CaFL,
first transforms the C/C++ program to LLVM bytecode, and then leverages KLEE to
discover new faulty executions or replay a known faulty execution, before conducting
the cascade analysis.

We have evaluated CaFL on two sets of benchmark programs. The first set comes
from the Siemens suite [Do et al. 2005], which has been widely used in previous fault
localization studies [Griesmayer et al. 2007; Renieris and Reiss 2003]. The second set
consists of real-world Linux applications from Busybox [Bus] and GNU Coreutils [Cor].
All experiments were performed on a computer with a 2.66GHz Intel dual core CPU
and 4GB RAM.

5.1. Experiments on the Siemens Suite

We first present our experimental results on variants of a program called TCAS, and
then present our results on the other six programs in the Siemens suite.

Results on TCAS programs. TCAS is a model of an aircraft collision detection system,
which continuously monitors the radar information for any potential collision. TCAS is
a small and yet relatively complex program with 143 lines of code. There are 41 buggy
versions of TCAS with 1600 test inputs that can trigger a failure. For the purpose of
experimental evaluation, we manually compared each buggy version with the correct
version and marked the set of different statements as the root cause. In addition, we
instrumented every buggy version with a statement that asserts its output to be same
as the output of the correct version. Thus, during the experimental evaluation of our
methods, an execution on a buggy version always terminates with an assertion failure.

The experimental results on all 41 versions of TCAS are given in Table III. The first
two columns show the name and the number of incorrect statements in the program.
The next two columns, under the label TC#, show the the number of all failing test
runs and the number of test runs on which CaFL was able to generate the correct root
cause. When a test run contains multiple buggy statements, we consider CaFL to be
accurate only when it localized all the executed buggy statements. Column C% shows,
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Table IV. Comparing CaFL with BugAssist [Jose and Majumdar 2011a] on all Buggy TCAS Programs

Line# Line# Line#
Name | CaFL ‘ BugA ‘ Ratio || Name | CaFL ‘ BugA ‘ Ratio || Name | CaFL ‘ BugA ‘ Ratio
vl 6 11 0.55 v15 11 13 0.85 v29 10 12 0.83
v2 11 13 0.85 v16 8 8 1.00 v30 9 9 1.00
v3 15 17 0.85 v17 7 4 1.75 v31 5 7 0.71
v4 6 12 0.50 v18 7 4 1.75 v32 4 10 0.40
v5 15 14 1.07 v19 7 4 1.75 v33 1 1 1.00
v6 12 5 2.40 v20 6 13 0.46 v34 5 14 0.36
v7 11 5 2.20 v21 14 12 1.17 v35 9 9 1.00
v8 8 13 0.62 v22 15 23 0.65 v36 2 14 0.14
v9 10 10 1.00 v23 9 8 1.13 v37 7 3 2.33
v10 12 6 2.00 v24 10 14 0.71 v38 5 2 2.50
v1l 7 9 0.78 v25 7 12 0.58 v39 6 3 2.00
v12 15 14 1.07 v26 11 14 0.79 v40 4 15 0.27
v13 12 14 0.86 v27 11 14 0.79 v41 6 12 0.50
v14 3 1 3.00 v28 10 9 1.11 Avg | 851 | 9.93 | 0.86

on average, the percentage of instances in the given trace that were included in cause
tree. Column L shows the level of the root cause reported by CaFL. Column Time(s)
shows the average time take by CaFL to analyze a faulty execution trace.

For all the buggy versions of TCAS, CaFL was able to catch the root causes and the
execution time was small. This is the case even for v11, which has a missing code error,
meaning that some necessary program statements are missing from the program. CaFL
was able to find the root cause because there was only a partial statement missing,
that is, the buggy statement was (if (A) when it should have been if (A&& B)).

Comparing CaFL with BugAssist. In table IV, we compare CaFL with BugAssist [Jose
and Majumdar 2011a, 2011b] on all 41 buggy versions of TCAS. We downloaded the
executable of BugAssist from its website. For each buggy TCAS version, we compare
the number of source code lines explored by CaFL and by BugAssist when the root
cause is identified. We also compare these numbers in the column labeled Ratio, where
a ratio less than 1 means that CaFL identified fewer statements than BugAssist. On
average, the number of statements identified by CaFL is 0.86 times of the number of
statements identified by BugAssist.

It is worth noting that comparing the number of statements identified by the two
methods is only part of the story, since BugAssist was designed to return a most likely
cause for the given failure, whereas CaFL was designed to explore all possible causes.
Therefore, it is possible for BugAssist to miss the real bug. Indeed, we have observed a
couple of cases in our experiments on real-world applications from the GNU Coreutils.
Unfortunately, most of the applicatoins other than T'CAS could not be handled by
BugAssist due to limitations of its C/C++ front-end.

Results on all Siemens programs. We also evaluated CaFL on the other six programs
in the Siemens suite. The results are shown in Table V. In addition to TCAS, schedule2
and schedule are two priority schedulers, fotinjfo is a program that computes statistics of
the given data sets, printtokens and printtokens2 are two lexical analyzers, and replace
is a program that performs pattern matching and substitution. Since these are small
programs, our goal is to evaluate the accuracy and effectiveness of CaFL in localizing
the root cause as opposed to the execution time. We say that CaFL is accurate if the
root cause identified by the user is included in the cause tree computed by CaFL. We
say that CaFL is effective if the reported cause tree is small.
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Table V. Comparing CaFL with Dynamic Slicing (DS) [Korel and Laski 1988] and Relevance Slicing
(RS) [Gyiméthy et al. 1999] on All Programs in the Siemens Suite

DS RS CaFL
Name LoC | Trace# | V# | DV# ‘ C% ‘ Time(s) | DV# ‘ C% ‘ Time(s) | DV# ‘ C% ‘ Time(s) ‘ Level
tcas 143 276 40 | 40 |56.2 0.01 40 | 88.5 0.01 40 | 8.7 0.04 2
schedule2 564 | 8327 3 2 | 443 1.54 3 87.3 1.56 3 9.6 4.52 2
schedule 374 | 7623 3 2 61.3 2.11 3 75.3 2.25 3 4.2 6.12 2
totinfo 565 | 4377 6 4 |46.2 3.07 6 81.3 3.11 6 10.5 5.73 2
printtokens2 | 523 | 5094 7 4 |27.0 2.15 7 73.7 2.38 7 4.8 13.71 3
printtokens | 726 | 3469 5 4 | 585 1.12 5 81.5 1.44 5 3.0 5.11 2
replace 512 | 12458 | 6 4 |46.2 2.47 6 88.2 3.69 6 7.6 7.87 2

[Average [487] 5946 [10] 8.6 [485] 178 [ 10 [82.3] 206 [ 10 [69 [ 616 [ 21 |

$ busybox arp -Ainet § paste -d\\ abcdefghijklmnopqrstuvwxyz
$ busybox tr [ $ mkdir -Z ab
$ busybox top d $ mkfifo -Z ab
$ busybox printf %Lu $ mknod -Z ab p
$ busybox Is -co $ ptx x t4.txt
$ busybox install -m $ seq -f %0 1
(a) Busybox (b) Coreutils

Fig. 9. Commands for triggering crashes of applications in Busybox and GNU Coreutils, where the content
of t4.txt is “a”.

Toward this end, we compared the result of CaFL with the results of two related
methods: dynamic slicing [Korel and Laski 1988] and relevant slicing [Gyimé6thy et al.
1999]. Columns 1-4 shows the name of the program, the number of lines of code, the
average length of the faulty execution trace, and the total number of buggy versions of
the program analyzed. The remaining columns show the result of dynamic slicing (DS),
relevant slicing (RS), and CaFL, respectively. For each method, we show the number
of versions for which root causes are identified (DV#), the percentage of instruction
instances localized (C%), and the execution time in seconds. CaFL has an additional
sub-column named Level, showing the the level of the root cause found in the cause
tree.

Overall, dynamic slicing missed 9 real root causes and retained 48.5% of the instruc-
tion instances in the given trace. Furthermore, all the 9 undetected root causes are
execution omission errors [Zhang et al. 2007], in which certain statements are mis-
takenly omitted during execution. Relevant slicing addressed this issue by adding the
implicit dependency in its analysis. As a result, relevant slicing was able to capture all
the root causes missed by dynamic slicing. However, on average, it retained 82.3% of
instruction instances, which means that it is less effective in pruning away the redun-
dant instances. In contrast, CaFL successfully detected all the root causes, and at the
same time, retained only 6.9% of the instruction instances in the given trace—this is a
significant improvement over DS and RS.

5.2. Experiments on Busybox and Coreutils

We now present our experimental results on a set of buggy applications from Busy-
box [Bus] and GNU Coreutils [Cor]. Busybox is the de-facto standard implementation
of Embedded Linux for networking devices such as the wireless routers, which bun-
dles many standard Linux utilities into a single executable. GNU Coreutils has a total
of 72.1K lines of C code, which implements some of the most frequently used Linux
commands such as Is, mkdir, and top.
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1 const struct hwtype *get_hwtype (const char xname) {
2 const struct hwtype » const xhwp;

3 hwp = hwtypes;

4 while (xhwp != NULL) {

5 assert (name != NULL);

6 if (!strcmp ((*hwp)->name, name)) // crash point
7 return (xhwp) ;

8 hwp++;

9 }
10 return NULL;
11}

446 int arp_main(int argc, char *xargv) {
// set mask in option_mask32
469 getopt32 (argc, argv, "A:p:H:t:i:adnDsv", &protocol, &protocol, &hw_type,

&hw_type, &device);

477 if (option_mask32 & ARP_OPT_A || option_mask32 & ARP_OPT_p) { //error
478 hw = get_hwtype (hw_type);

Fig.10. Code snippet of the buggy arp in Busybox, where the bug is in the conditional expression at Line 477.

In this experiment, we used twelve randomly chosen buggy applications from Busy-
box version 1.4.2 and GNU Coreutils version 6.10. Figure 9 shows the commands and
command-line arguments that we used to reproduce the faulty executions. In the re-
mainder of this subsection, we will first present the details of two case studies on arp
from Busybox and mkdir from GNU Coreutils, and then present our results on the
other applications.

Case study on arp. The arp utility manages the Linux kernel’s network neighbor
cache. It may add entries to or delete entries from the cache, or display the current
content. Using the command ‘busybox arp -Ainet’ we can reproduce a bug in the arp im-
plementation that crashes at Line 6 of the code shown in Figure 10. In this experiment,
we manually added an assertion assert(name = NULL) before the crash point. The root
cause of the failure is at Line 477. Before using hw_type at Line 478, the mask of hard-
ware type (ARP_OPT _H), instead of the mask of address family (ARP_OPT_A), should
be checked. That is, the correct statement should be if (option_mask32 & ARP_OPT_H
|| option_mask32 & ARP_OPTt). Since the command line does not provide the H option
or the ¢ option, hw_type is set to NULL in getopt32 at Line 469. Through parameter
passing, name in get_hwtype obtains the value NULL, which leads to the failure at
Line 6 as the string comparison function strecmp does not expect a NULL parameter.

We illustrate how CaFL can help the user identify the root cause of the failure in arp.
The first generated cause contains Lines 5 and 478, which state that (name/=NULL)
conflicts with the actual argument Aw _type. The value of hw_type is actually NULL.
After checking this cause, the programmer realizes that something is wrong with the
actual argument, but the code at Line 478 itself is correct. Based on this information,
CaFL identifies (option_mask32&ARP_OPT _A) at Line 477 as a critical condition, since
it controls whether Line 478 will be executed. Indeed, the correct execution would
follow if the else-branch had neither the option H nor the option ¢ provided.

Starting from Line 477, our cascade analysis performs a new weakest precondition
computation on the predicate (option_mask32 & ARP_OPT_A==FALSE). The second
level cause computed by CaFL contains Line 477, Line 469, and some omitted assign-
ments to option_mask32 in the function getopt32, which set the mask of address family
instead of hardware type. By studying Lines 477 and 469 side-by-side, a user with
sufficient knowledge of the code can identify the bug within the cause. During this
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@
S

142 main(int arge, char %*xargv) { ]

w

162 while ((opt = getopt long(arge, argv, “pm:vZ:” , longopts, NULL)) != -1)

1188 return getopt internal (arge, argv, options, long options, opt index, 0);

w
i

1165 result = getopt_internal r(arge, argv, optstring, longopts, mkdir. ¢
longind, long only, &getopt_data);

getopt. ¢

z

431 d—>optarg = NULL;

&

|
1
1
1
i s!
1

1169 optarg = getopt_data. optarg;

192 error (EXIT _FAILURE, errorno,
s6 _( “failed to set default file creation context to %s” ),
quote (optarg)) ;

57139 return quote n(0, name);

quote. ¢
s8131 return quotearg n style(n, local quoting style, name);

»

666 return quotearg n options(n, arg, SIZE MAX, &o);

s10 |624 size_t gsize = quotearg buffer(val, size, arg, argsize, options);

526 size t r = quotearg buffer restyled(buffer, buffersize, quotearg. ¢

arg, argsize, p—>style, p);

sio [T assert(arg 1= 0); //the inserted assert statement

s13 {248 for (i=0; !(argsize == SIZE MAX ? argli] == ‘\0" : i == argsize); i++)

Fig. 11. The root cause of the failure in mkdir under the command’mkdir -Z a b’.

debugging process, CaFL can significantly reduce the amount of software code that
the user has to inspect. Although the faulty trace has a total of 32,479 instruction
instances, the user only needs to inspect 28 instruction instances (0.086%).

Case study on mkdir. The mkdir application from GNU Coreutils is meant to be used
for creating new directories. In our experiment, the buggy version encountered a crash
under the command ‘mkdir -Z a b’. By using KLEE, we were able to reproduce this
crash and analyze the faulty execution trace. We found that the first cause computed
by CaFL was the root cause. However, this cause is somewhat complex and not easy to
manually identify since it spans across nine functions from four disk files. We organize
the corresponding statements in the ladder shape, shown in Figure 11.

The assert(arg != 0) statement inserted before Line 248 of file quotearg.c represents
the condition under which the crash occurs. The statements contained in the root cause
are (s3, s4, s5, 56,57, 58, 59,510, s11, s12), and the bold expressions are responsible for
propagating the error value. We explain how the root cause leads to the failure as
follows.

—Step 1, s3 passes getopt_data as a parameter to the function _getopt_internal_r, which
then sets the field optarg to NULL at s4. Then, the global variabe optarg is set to
getopt_data.optarg, which is NULL at the moment.

—Step 2, s6 invokes the function quote with optarg as a parameter, which
eventually is propagated to the variabe arg at the statement si12 through
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Table VI. Applying CaFL to Applications in Busybox and GNU Coreutils with Different Optimization Heuristics

Trace# Line# C%
Name | Original | After_C | After_S | After_CS | None ‘ C+L ‘ SO+SL | All | None ‘ C+L ‘ SO+SL | All
arp 32,405 7,399 | 9,215 5,505 - 102 124 | 102 - 3.19 7.23 | 3.19
tr 15,993 | 10,828 | 4,739 3,857 | 36 24 36 24| 5.11]|3.58 5.11 | 3.58
top 32,127 7,719 | 9,111 5,968 - 140 158 | 140 - 1.73 9.26 | 1.73
printf 9,150 5,650 | 5,362 4,166 | 96 72 96 72| 6.52|2.13 6.52 |2.13
ls 35,769 8,462 | 11,724 6,186 - 91 123 91 - 3.24 542 | 3.24
install 31,999 7,591 | 8,856 5,692 - 82 115 82 - 2.02 8.32 |2.02

paste 10,183 5,159 | 5,816 3,535 68 | 53 68 | 53|11.68|4.55 11.68 |4.55
mkdir | 13,492] 7,504 7,539 5469 | 77 | 69 77 | 69|14.72 | 4.85 | 14.72 | 4.85
mkfifo | 12,854 | 6,896 | 6,971 4,931 74 | 64 74  64|16.66 | 6.33 | 16.66 | 6.33
mknod | 13,176 | 17,082 | 7,026 4,986 | 75 | 67 75 | 67|17.08|5.86| 17.08 |5.86
ptx 130,951 | 68,036 | 49,467 | 45,630 | - - 387 |354| - - 1027 |7.95
seq 11,719 | 5583 | 6,044 3,928 97 | 75 97 | 75|14.29|6.54 | 1429 |6.54

parameter passing of quote_n, quotearg_n _style, quotearg_n_options, quotearg buffer,
and quotearg _buffer restyled.
—Step 3, the assertion at s12 fails because the value of arg is NULL.

The actual faulty statement is s6, which should invoke function quote with the param-
eter scontext instead of optarg.? In addition to s6, the root cause identified by CaFL
also contains nine other statements, which are necessary for the user to understand
why the failure occurs.

Results on all Linux applications. Table VI shows our experimental results on all
twelve buggy applications from Busybox and Coreutils. In this experiment, our goal
is to evaluate the effectiveness of CaFL with various optimization heuristics. We have
compared the following four variants.

—None: no optimization.

—C + L: with designated Correct functions and Loop recognition optimizations. In
other words, functions in the standard C libraries such as stremp are designated as
correct.

—S O + SL: with SOlving performance enhancement and dynamic SLicing.

—All: with all the optimizations described in Section 4.

We combine optimization C with L because they are designed for reducing the size of
the cause tree. We combine SO with SL because, although they do not change the size
of the cause tree, they may speed up the cause tree computation.

As shown in Table VI, the four columns under Trace# show the statistics of the faulty
execution traces, including the actual length of the trace, the length after excluding the
correct functions, the length after slicing, and the length after applying both simplifica-
tions. The four columns under Line# compare, under different optimization heuristics,
the number of source code lines reported by CaFL as responsible for the given failure.
The four columns under C% compare the percentage of the given trace reported by
CaFL as responsible for the given failure. In all cases, the symbol '—" means that our
experiment timed out after the one-hour limit.

We manually examined the buggy programs and found that CaFL was able to identify
the root cause in all benchmark examples as long as it is allowed to run into completion.
In order to compare the efficiency and effectiveness of the different optimizations, we

Zhttp://lists.gnu.org/archive/html/bug-coreutils/2008-03/msg00189.html.
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Table VII. Comparing the Execution Time of Different Optimizations in CaFL on Busybox and Coreutils

None C+L SO+SL All
Name | WP (s)‘SMT (s)‘Total(s) WP (s)‘SMT (s)‘Total(s) WP (s)‘SMT (s)‘Total(s) WP (s)‘SMT (s)‘Total (s)
arp = - >3600‘ 4.1 26.0 30.9 3.6 28.0 32.0 1.7 9.7 11.9
tr 9.1| 1146.8| 1156.0 8.1 16.7 25.2 3.6 1.7 5.6 1.8 0.2 2.2
top - —| >3600 3.2 62.1 65.6 4.9 50.1 55.2 3.2 33.2 36.8
printf 5.0/ 440.2| 445.9 2.1 4.5 6.9 1.1 4.3 5.8 0.8 0.2 1.2
ls - —| >3600 5.6 48.5 54.9 4.1 39.7 44.2 3.0 17.6 20.7
install - —-| >3600 6.9 29.5 37.2 3.1 1.0 4.5 2.3 0.1 2.7
paste 7.1 812.2| 820.6 4.8 11.2 16.7 3.5 1.2 5.3 0.8 0.1 1.1
mkdir 5.3| 485.2| 494.4 2.3 18.2 214 2.1 5.9 8.9 0.7 0.1 1.0
mkfifo 6.7 512.8/ 520.6 2.1 20.3 24.3 1.8 6.2 8.5 0.8 0.1 1.0
mknod 6.2| 555.1| 562.5 2.1 20.4 24.5 1.9 6.3 8.7 0.5 0.1 1.0
ptx - —| >3600 - —| >3600, 107.4| 158.3| 266.5| 34.1 79.3 1442
seq 10.2| 1147.2| 1158.8 2.2 3.1 5.7 1.7 5.7 7.9 1.3 0.2 1.9

[Avg. |>1504] >1924] >1929] >303] >321] >326] 11.6] 25.7] 37.8) 4.3] 11.7] 1838

forced CaFL to continue the computation of the cause tree even after the root cause
has been discovered. Our results show that for Line# and C%, the variants None and
SO + SL always return the same results. Similarly, the variants C + L and All always
return the same results. This is consistent with our expectation, as C + L is designed
for reducing the size of the cause tree, whereas SO + SL is designed for speeding up
the computation only. Furthermore, we found that for this set of benchmark examples,
less than one percent of the instruction instances in the faulty execution trace were
explored by CaFL before the root causes was identified, highlighting the effectiveness
of CaFL in localizing the bugs.

Table VII shows the results of comparing the efficiency of the four optimizations in
terms of the execution time. For each optimization method, we report the following
data:

—WRP. as the time (in seconds) spent on weakest precondition computation;
—SMT. as the time (in seconds) spent on the SMT solver;
—Total. as the overall time (in seconds) spent on the entire cascade analysis.

The last row shows the average time for each step.

The results show that, in all cases, CaFL was able to complete the cascade analy-
sis within 20 seconds if all heuristic optimizations are used. However, without using
SO + SL, CaFL would time out after one hour on ptx and the average time taken by the
analysis would rise to >326 seconds. Without using any of the heuristic optimizations,
CaFL would time out on five of the twelve benchmark programs. A closer look at the
data revealed that, for the timed-out cases, most of the time were spent on constraint
solving inside the SMT solver.

Table VIII compares the number of logical constraints fed to the SMT solver under
different optimizations. The results show that the optimization C + L was effective in
pruning away the redundant constraints. Furthermore, since many of the remaining
constraints did not intersect with each other, the optimization SO was able to avoid a
large number of solver calls. This proved to be particularly important for ptx, which
otherwise could not be analyzed by CaFL within the one-hour time limit.

6. LIMITATIONS

Although CaFL is able to identify root cause within a reasonable amount of time for
all the evaluated cases in the Siemens suite, Busybox, and Coreutils, there are still
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Table VIII. The Number of Logical Constraints Fed to the
SMT Solver under Different Optimizations

Name None C+L SO+SL All
arp - 65,026 9,601 1736
tr 5,813,789 71,480 842 252
top - 182,913 4,481 2,188
printf 884,241 13,793 6,628 286
Is - 126,395 | 17,171 1194
install - 86,290 3,721 794

paste | 2,888,436 | 80,404 | 1,141 576
mkdir | 1,997,815 | 78,701 | 6,229 944
mkfifo | 1,988,116 | 79,936 | 6,448 950
mknod | 2,072,425 | 90,228 | 6,692 | 1018
pix R E 52,063 | 28,705
seq 6,251,612 | 132,392 | 6,263 686

several limitations. First, for programs with complex control dependency and long
traces, the cause trees computed by our method may be very large. In this case, more
aggressive heuristics may need to used to prune the cause tree, even if such pruning in
principle is unsound, for instance, it may lead to missed root causes. Although we do not
expect fault localization to be fully automated for general applications, such unsound
reduction—which aggressively prunes away causes without the user’s involvement—
may still be useful in practical settings. Second, CaFL concentrates only on one failing
execution, which means that sometimes the critical conditions and related causes
produced by CaFL cannot fully explain the observed failure. An example of this is
handling missed code errors. Although we have shown through experiments that CaFL
does better in identifying such errors than existing methods, there is still room for
improvement. Finally, frequent use of SMT solving on large formulas can become a
performance bottleneck. Although we have developed several effective heuristics to
mitigate the problem, it remains an issue when the input trace become even larger. For
future work, we plan to design a compositional analysis framework to further reduce
the runtime overhead of SMT solvers, similar to the techniques used in [Lee et al. 2011;
2009].

7. RELATED WORK

There is a large body of work on automatically localizing the faulty statements in a piece
of software code. A method closely related to ours is BugAssist [Jose and Majumdar
2011a, 2011b], which first encodes the faulty execution trace into an unsatisfiable
extended trace formula, and then uses a MAX-SAT solver to find a maximal subset of
statements that remain unchanged for the program to become correct under the given
input. It reports the complement set to the user as a likely cause of the manifested
failure. However, BugAssist does not attempt to compute all causes as in our method,
nor does it report additional information to highlight the causal relationships between
these causes.

Ermis et al. [2012] introduce the concept of error invariants to explain why certain
portions of a faulty trace are irrelevant. The method is later improved by Christ et al.
[2013], who introduce the concept of flow-sensitive trace formulas to explain how rel-
evant statements can be reached in the faulty trace. In addition, Murali et al. [2014]
proposes another interpolants-based method, which relies on the minimal unsatisfiable
core for computing a sound and minimal slice for the identified error trace. However,
neither of these two methods systematically generates all possible causes as in our
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method. Furthermore, these methods rely on Craig’s interpolants [Craig 1957], which
requires a specialized SMT solver to compute. In contrast, our method uses a combina-
tion of weakest precondition and UNSAT core computations, which are more broadly
supported by existing SAT and SMT solvers. Weakest precondition computation has
also been used in Wang et al. [2006], but the method can only report a single cause,
which may not always be the root cause.

Dynamic slicing [Korel and Laski 1988] is an inexpensive and widely used error
triaging technique. However, the resulted slice still consists of a large number of in-
stances. Furthermore, Dynamic slicing cannot locate execution omission errors. In order
to address this problem, relevant slicing [Gyiméthy et al. 1999] has been proposed to
extend dynamic slicing, by considering the potential influence between program state-
ments. Unfortunately, as a result of this extension, the resulted slice becomes even
larger. Zhang et al. [2007] introduce the concept of implicit dependences to eliminate
unnecessary dependence through guided reexecutions of the program. However, the
result is still not precise enough for practical use. Another problem of these slicing
techniques is that, the resulted slice is often presented to the programmer as a sin-
gle piece of information without any structure. In contrast, our new method produces
a tree of causes to highlight their relationships. The difference between navigating
through our cause tree and navigating through the raw data is analogous to reviewing
10 well-structured functions, each with 100 lines of code, versus reviewing a monolithic
function with 1000 lines of code.

Some bug triaging methods are based on comparing the passing and failing execu-
tions [Groce et al. 2006; Groce and Visser 2003; Ball et al. 2003; Renieris and Reiss
2003; Qi et al. 2009; Befrouei et al. 2014]. For a given failing execution, they first find
passing executions that are the most similar to the failing one. Then, they present the
deviation of the failing executions from the passing executions as an explanation of
the failure. For instance, Groce et al. [2006], Groce and Visser [2003], and Groce et al.
[2004] use distance metrics of program executions to find minimal abstractions of erro-
neous traces. Methods based on the use of likely program invariants [Pytlik et al. 2003;
Sahoo et al. 2013] leverage the invariants to identify the differences between failing
and passing executions. They typically infer the invariants from a set of successful
executions, and use the inferred invariants to analyze the failing executions. The in-
variants violated by a faulty execution are candidates for the failure’s root cause, which
will be trimmed further using dynamic slicing and other filtering heuristics. However,
the effectiveness of these techniques is heavily dependent on the test suite quality, such
as the number and coverage of the tests.

Zeller et al. propose delta debugging [Zeller 2002; Cleve and Zeller 2005], which is
a fully automated method for isolating the relevant input variables and input values
of a failing execution. This is a trial-and-error based technique that systematically
narrows the state difference between a passing run and a failing run. It often needs to
run the program a number of times before finding the difference. Rofler et al. [2012]
propose a fully automated fault localization method based on test input generation,
which keeps generating additional execution traces to guide the systematic isolation
of failure causes. Both methods are based on the trial and error approach, which often
requires generating and execution a large number of test runs. Furthermore, they can
only discover the correlation between the anomalous events encountered during the test
runs and the failure, which are not necessarily the causal relationship. The techniques
of delta debugging has also been integrated with symbolic analysis to explain failed
regression tests faults [Yi et al. 2015]. The synergistic approach uses previously correct
version as the golden model to identify the root cause to newly introduced bugs during
software updates.
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There is also a large body of work on automated program repair [Griesmayer et al.
2006, 2007; Balakrishnan and Ganai 2008; Zeller 2002; Zhang et al. 2006; Liu and
Li 2010], which are even more ambitious in that they aim at automatically fixing
bugs. Typically, auxiliary variables, referred to as selectors, are introduced to control
the behavior of certain program statements and branch conditions. Through constraint
solver based analysis of the modified program, the values of these selector variables are
identified, which represent a set of statements that need to be modified to prevent the
observed failure. In addition, automated predicate switching [Zhang et al. 2006] can
be used at runtime to modifying the control flow, with the hope of leading the program
to a successful run. These methods differ from ours in that they focus on solving
a closely related, but different, problem. We believe that the current techniques for
automated program repair is still in the early development stage without knowing the
programmer’s design intent, they tend to rely on certain known error patterns and
often dodge the erroneous code rather than fix them.

8. CONCLUSIONS

We have presented a cascade analysis method for fault localization, which can system-
atically generate potential causes of an observable failure to help the user identify the
root cause. Each cause is augmented with a proper context to illustrate its origin in the
source code, and all causes are organized into a tree structure to highlight their causal
relationships. We have implemented our method in a software tool and conducted ex-
periments on a large set of public benchmarks, including programs from the Siemens
suite, Busybox, and GNU Coreutils. Our experimental results show that CaFL is both
accurate and effective in localizing the root causes for failures in real applications.
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