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Abstract

Sonority projection refers to behavioral distinctions speakers make between
unattested phonological sequences on the basis of sonority. For example, among
onset clusters, the well-formedness relation [bn] > [Ib] is observed in speech
perception, speech production, and nonword acceptability (Albright, in preparation;
Berent, Steriade, Lenertz, & Vaknin, 2007; Davidson 2006, 2007). We begin by
replicating the sonority projection effects in a nonword acceptability study. Then we
evaluate the extent to which sonority projection is predicted by existing
computational models of phonotactics (Coleman & Pierrehumbert 1997; Hayes &
Wilson 2008; et alia). We show that a model based only on lexical statistics can
explain sonority projection in English without a pre-existing sonority sequencing
principle. To do this, a model must possess (i) a featural system supporting
sonority-based generalizations and (ii) a context representation including
syllabification or equivalent information.



1 Introduction

The Sonority Sequencing Principle (SSP) is the cross-linguistic generalization
that the most well-formed syllables are characterized by a sonority rise throughout
the onset to the nucleus, and a fall from the nucleus throughout the coda (Sievers
1881; Jesperson 1904; Hooper 1976; Steriade 1982; Selkirk 1984). For example, the
onset [bn] is more well-formed than the onset [Ib] because the former contains a
small sonority rise (obstruent to nasal) and the latter contains a large sonority fall
(liquid to obstruent). A fundamental goal of phonological theory is to understand
broad generalizations like the SSP.

A complete understanding involves answers to the following questions. Is the
SSP synchronically active in speakers’ grammars, or a diachronic byproduct of
physical factors governing speech perception and production, or some combination
of both? If the SSP is a part of speaker’s grammars, is it innate, or learned, or some
combination of both? And if learned, from what? How is knowledge of the SSP to be
formally characterized? And how is it deployed during speech production and
speech perception?

What is known at present is that the SSP is synchronically active in speakers’
grammars (although this does not rule out diachronic factors in addition). The most
recent form of evidence to support this conclusion is the existence of sonority
projection effects - responses to novel stimuli that vary depending on the extent of
the sonority violation. In particular, strongly SSP-violating clusters are more likely
to be produced and perceived with vowel epenthesis, e.g. [Ib] = [leb] is more likely
than [bn] = [ben] (Davidson 2006, 2007; Berent et al. 2007).1 These are termed
projection effects (in the sense of Baker, 1979) because the offending clusters are
systematically and equally absent from speaker’s input, and yet speakers appear to
differentiate some clusters as less well-formed than others.

What is not known is how the SSP comes to be a part of speakers’ grammars;
in fact, this is controversial in the literature, and a principal goal of this paper is to
contribute to the debate. This paper focuses on the following questions:

1. What properties must any phonotactic model have in order to predict
sonority projection effects?

2. How do speakers come to possess knowledge of the SSP? If it is not innate,
upon what kind of experience is it based?

1 Lisa Davidson (p.c.) and Donca Steriade (p.c.) suggest that ‘sonority’ may not be a true phonological
primitive, but rather consists of a host of phonetic factors. For example, Davidson (2010) proposes an
account of her (2006) production effects in terms of articulatory (mis)coordination. We imagine that
perceptual epenthesis (Dupoux et al,, 1999; Berent et al., 2007) can be accounted for similarly to the
production account outlined in Wilson & Davidson (in press): the phonotactic probability of the
epenthetic parse is so much higher than the intended parse that the listener simply misconstrues the
token as containing the phonotactically acceptable sequence. These are all important questions that
deserve further research, but for the purposes of the present paper, what is crucial is that behavioral
variation can be predicted for clusters speakers have no experience with, and this variation generally
lines up with traditional definitions of sonority. We believe the experimental and modeling results
presented here are just as compelling whether sonority is interpreted as a true phonological
primitive or as a cover term for a variety of phonetic properties.



We defer the question of model properties for the moment. As for how something
like the SSP comes to be known, we distinguish lexicalist theories - in which the SSP
is projected from the lexicon - from universalist theories. The lexicalist hypothesis is
consistent with a body of work demonstrating other phonotactic generalizations
that are projected from the lexicon (e.g. Frisch & Zawaydeh 2001; Hay,
Pierrehumbert, & Beckman 2003). The universalist hypothesis comes in two forms.
The most direct form is to posit that the SSP is innate. The innatist approach is
common currency in linguistic theory, although for many specific aspects of
grammar it is difficult to find a theorist who advocates an innate explanation. The
other universal approach that has been proposed is that the SSP is phonetically
grounded - learned from experience in producing and comprehending speech, and
universal because “certain basic conditions governing speech perception and
production are necessarily shared by all languages, experienced by all speakers and
implicitly known by all” (Hayes & Steriade 2004). These possibilities are
schematized in Table 1.

Hypothesis Projected from
lexicalist lexicon
innatist Universal Grammar
phonetically grounded | speech perception/production experience

Table 1. Explanations for the Sonority Sequencing Principle.

At present, the lexicalist hypothesis is the dominant explanation for
phonotactic knowledge: evidence from a variety of methodologies converges on the
conclusion that the lexicon is an important seat of phonotactic generalizations. For
example, the strength of gradient OCP-Place effects in nonword acceptability
judgements is predictable from lexical type statistics (Frisch & Zawaydeh 2001; see
also Coleman & Pierrehumbert 1997). As another example, nonword repetition
accuracy is believed to index phonotactic proficiency (Coady & Evans 2008) and is
strongly predicted in children by their vocabulary size, as consistent with the view
that the phonotactic grammar is projected from the lexicon (Edwards, Beckman, &
Munson 2004; see also Hay et al. 2003). The question is not whether the lexicon is a
source for phonotactic generalizations, but whether it is the sole source.

To show that there is some other source, it would be necessary to find a
particular phonotactic generalization and demonstrate that it cannot be projected
from the lexicon. Just such an argument has been made for the SSP, in stronger or
weaker forms, by several authors. The argument goes as follows: Lexicalist models
assign well-formedness on the basis of lexical frequency. Unattested clusters have a
frequency of 0. Therefore, lexicalist models should classify all unattested clusters as
ungrammatical, and crucially, equally ungrammatical. In other words, they should
fail to pick out some (strongly SSP-violating) clusters as more ungrammatical than
other (weakly SSP-violating) ones. Sonority projection effects occur, and so lexicalist
models are unable to account for them. This argument is made explicitly by Ren,
Gao, & Morgan (2010, abstract):



The sensitivity to the SSP can hardly be accounted for by lexical statistic factors
because Mandarin syllables have no onset clusters and no coda consonants with the
exception of [n] and [n], so all the stimuli in our experiments were alien to them.
The sensitivity cannot be explained by phonetic confusions either, because similar
sensitivity has also been found in reading tasks (Berent 2009). The two findings
shed light on ... basic questions of Generative Grammar by indicating that the SSP, as
a Universal Principle, may constitute a part of human linguistic knowledge.

Berent et al. (2007) argue similarly. They show that a particular lexical model, the
Vitevitch & Luce (2004) Phonotactic Probability Calculator, has no statistically
significant correlation with the results of their sonority projection study. They
conclude (pp. 624-625):

Our findings demonstrate that English speakers manifest sonority-related
preferences despite the lack of lexical evidence, either direct (i.e., the existence of
the relevant onsets in the English lexicon) or indirect (the statistical co-occurrence
of segments in English words).

Experimental results along these lines (see also Berent, Lennertz, Jun, Moreno, &

Smolensky 2008; Albright 2009) constitute intriguing evidence for the hypothesis
that the SSP is not projected from the lexicon. In the theoretical taxonomy of Table
1, they may be taken as supporting either the innate or the phonetically-grounded
hypotheses. However, as Berent et al. (2007, p. 624) point out, the argument relies
on the failure of particular statistical models to predict the result, and there is no

guarantee that other models will similarly fail. It is this point that we pursue here.

Lexicalist models assign well-formedness on the basis of lexical frequency.
The key question, however, is frequency of what? Segments are a natural starting
point for phonological analysis, and there is abundant evidence that they represent
a psychologically important level of representation. However, segments are not the
only representation available for analysis, and from a phonological standpoint, they
are not necessarily even the best one. An alternative, noted by Berent et al., is to
consider models that employ features, i.e. acoustic and/or articulatory properties
that are shared by natural classes of segments.

If a model is limited to counting segments, then it is true that, for example,
the onsets [tl] and [It] are equally unattested. However, from a featural perspective,
the onset [tl] receives more lexical support than the onset [It]. There are many
attested onset clusters that are featurally similar to [tl], e.g., [pl], [K]], [tr], [tw], [s]].
In contrast, there are no attested onset clusters that are equally similar to [lt]. A
lexicalist model that generalizes across multiple featural levels of abstraction might
distinguish degrees of well-formedness between these clusters on this basis, even
though the segmental frequency of each cluster is 0. Indeed, at least two lexicalist
models have been proposed that do generalize on the basis of features: the Hayes &
Wilson (2008) Phonotactic Learner and Albright’s (2009) featural bigram model.
However, there is as yet no published work assessing feature-based computational
models for sonority projection (though see Albright, in preparation).



Thus, the goal of this paper is to test a variety of published computational
models of phonotactics on this case of sonority projection effects. The value of a
direct comparison on the same stimuli is that we may gain clear insight on what
model properties are responsible for success and failure on this particular
phonotactic domain - which may inform our understanding as to what collection of
properties the next generation of models should have.

In order to assess the predictive utility of a model, it is necessary to have
human behavioral data for the model to explain. In this case, the focus is sonority
projection effects, and so we begin the paper by collecting nonword acceptability
ratings with nonwords whose onset clusters vary in the extent of SSP-violation. As a
matter of general interest, we also included nonwords with frequently attested
onsets (like [bl]) and marginally attested onsets (like [bw]).

With nonword acceptability data in hand, the paper will proceed to the
modeling stage. We implement a number of computational models of phonotactics
described in the literature, specifically:

* classical bigram model (Jurafsky & Martin 2009)

¢ featural bigram model (Albright 2009)

* syllabic parser (Coleman & Pierrehumbert 1997)

* Phonotactic Learner (Hayes & Wilson 2008)

* Phonotactic Probability Calculator (Vitevitch & Luce 2004)
* Generalized Neighborhood Model (Bailey & Hahn 2001)

The adequacy of the models is assessed by linear regression against the nonword
acceptability data.

To anticipate briefly, we find that some published models exhibit
considerable success in predicting sonority projection effects. The key findings are
discussed in depth later; for now they may be summarized as follows: a lexicalist
model can and does predict sonority projection effects if it has (a) the capacity to
represent sonority, and (b) a representation of phonological context that is rich
enough to represent the expected sonority level. In other words, lexicalist models
exhibit sonority projection when they are equipped with the representations and
architecture necessary to do so. This work supports a lexicalist account of the SSP.

The paper is structured as follows. In Section 2, we describe two experiments
collecting nonword acceptability judgements from the Mechanical Turk, an online
labor forum. In Section 3, we give brief descriptions of the computational models
tested here, none containing the SSP as a bias. In Section 4, we describe the results
of computational modeling; each model was trained on the same English lexicon and
then assessed on its ability to predict human judgements for unattested clusters
varying in their degree of SSP-violation. In Section 5, we discuss the empirical
findings of this work and their theoretical implications.

2 Sonority Projection in Acceptability Ratings

In this section we describe a nonword acceptability judgement experiment
with nonwords that were designed to vary in the level of SSP violation. We begin
with a summary of sonority scales, followed by a brief description of the Mechanical



Turk. The nonwords are then described, followed by the acceptability experiment.
The experiment had two conditions: in the first condition, participants rated forms
on a Likert scale; in the second condition, participants compared two forms and
selected the better choice. The section concludes with a theoretical discussion of
sonority projection, and a methodological comparison of the sensitivities of Likert
rating versus comparison.

2.1 Sonority scale

To determine whether participants exhibit sonority projection (and whether
phonotactic models can explain it), it is necessary to have an independent measure
of sonority. A number of sonority scales have been proposed in the literature (e.g.
Steriade 1982; Selkirk 1984; Clements 1988; Parker 2002), generally? having the
following properties:

* each segment has a sonority value represented by an integer

* segments are grouped into sonority classes sharing the same sonority value

* the minimally sonorous class has a sonority value of 0

* sonority increments by 1 between classes
The rise of a sequence XY is defined as sonority(Y)-sonority(X). Then the SSP can be
formalized by defining a threshold for acceptable rises, e.g. “onsets must have a rise
of at least 2” implies that [bl] is acceptable so long as sonority(l)-sonority(b) = 2. This
type of formulation has proven remarkably successful in delimiting onset
inventories cross-linguistically (see references above), and is what justifies the
assignment of particular integer values to particular segment classes.

Scales proposed in the literature differ chiefly in granularity. Elaborated
scales such as Selkirk (1982) distinguish obstruent voicing and manner, vowel
height, and rhoticity. We selected the coarse-grained scale in Clements (1988):
obstruents (0) << nasals (1) << liquids (2) << glides (3) << vowels (4). This scale
makes only uncontroversial distinctions representing the consensus of the
phonological community.3

2.2 The Mechanical Turk

The Mechanical Turk (https://www.mturk.com) is an online labor forum
provided by Amazon.com. It was used because it offers a quick and easy way to
conduct word acceptability and similar studies - the total time to complete data
collection was about 1 hour for each rating method, with a cost of $3 /participant +
10% commission for Amazon.com, which compares favorably with 2-3 weeks and
$5-$10/participant for the equivalent laboratory study. Quality is maintained in the
Mechanical Turk by the approve/reject option, and the approval threshold.
Researchers may reject the work of any individual worker (and refuse to pay); they
may also pre-screen by selecting workers whose approval rate is above a threshold;
the recommended approval threshold is 95%. As a result, workers and the website
are both directly incentivized to ensure an overall high quality of work.

2 Selkirk’s scale starts at 0.5 for voiceless stops. The remainder of the scale has these properties.

3 The analyses reported in §2.5 were also computed with the richly elaborated sonority scale of
Selkirk (1982). The general effects were the same: attestedness, and sonority in the unattesteds.



All participants were recruited from the Mechanical Turk using the
recommended 95% approval threshold. Participants gave online consent and
completed a brief language background survey surveying English proficiency,
dialect, and other languages spoken. Results were retained from participants
reporting ‘high’ English proficiency (Likert rating: n=2; comparison rating: n=12) or
‘native’ proficiency (Likert rating: n=17; comparison rating: n=36). The research
team inspected non-native results and found that they exhibited the same
qualitative patterns as natives, i.e. attesteds >> marginals >> unattesteds (see next
section for details). Participants reporting ‘intermediate’ proficiency were paid, but
their results were discarded and replaced. One (native) participant was excluded
from the Likert condition for rating over 80% of the items as ‘1’.

2.3 Stimuli

The stimuli consisted of 96 stress-initial CCVCVC nonwords, generated by
concatenating a CC onset with a VCVC tail (e.g., pr- + -eebid = preebid). There were
48 onsets and 6 tails. Thus, each onset was paired with 2 tails, and each tail was
paired with 16 onsets (48*2 = 96 = 16*6). Eighteen clusters that never occur as
English onsets (unattesteds) were chosen to vary across the whole range of sonority
(e.g. [tl] involves a large sonority rise whereas [rg] involves a large sonority fall).
Also included were 18 clusters that occur frequently as English onsets (attesteds)
and 12 clusters that occur only rarely or in loanwords (marginals, e.g. [gw] in
Gwendolyn, [[1] in schlep). Attested and marginal clusters were included to validate
the task (participants should exhibit the preference attesteds >> marginals >>
unattesteds) and to increase ecological validity by providing at least some test items
that are plausible English words. Six VCVC tails were selected to yield almost no
lexical neighbors and to avoid violating any major phonotactic constraints of
English.

The list of onsets and tails is shown in Table 2, with sonority values in
parentheses for the unattesteds:

Attested Marginal Unattested Onsets Tails
Onsets Onsets (sonority)

tw, tr, sw, gw, shl, pw (3), zr (3), mr (2), -ottiff [-atif]

shr, pr, pl, vw, shw, tl (2),dn (1), km (1), -eebid [-ibid]

kw, kr, Kl, shn, shm, fn (1), ml (1), nl (1), -ossip [-asIp]
gr, gl, fr, vl, bw, dg (0), pk (0), Im (-1), -eppid [-epid]
fl, dr, br, dw, fw, In (-1), rl (-1), 1t (-2), -eegiff [-igif]
bl, sn, sm vr, thw rn (-2), rd (-3), rg (-3) -ezzig [-ezig]

Table 2. List of onsets and tails.

The stimuli were counterbalanced in a number of ways. Each tail appeared
approximately the same number of times for each sonority range, so that, e.g. —ottiff
would not appear more often with relatively well-formed unattested onsets. The co-
occurrence of tails with onset phonemes was counterbalanced; for example, —ottiff



would not appear more often with an onset containing /p/. Repeated segments (e.g.
dgeegiff) would be independently dispreferred by the OCP, so these items were
avoided as much as possible. Onsets and tails were combined so as to ensure that no
nonword had more than one lexical neighbor (neighbor = an existing word
obtainable from the nonword by inserting, deleting, or substituting one phoneme).
To control for embedded words, we avoided nonwords whose C1C2VC3 parts formed
a real word with attested and marginal onsets; for unattested onsets, nonwords
whose embedded C;VC3 parts formed a real word were distributed across the
sonority range. All of the non-words were presented in English orthography in all
capital letters. To ensure that the stimuli were phonologically unambiguous, they
were presented to five naive English speakers; all non-words were pronounced as
intended, suggesting that the spellings are largely unambiguous.

2.4 Design and Procedure

After giving consent and filling out the language background survey,
participants completed 6 practice items, and then performed the main task. All
items were presented on a single page, with radio buttons for the answers.

For the Likert rating condition, participants were instructed that they would
be rating potential new words of English, that they would see multiple potential
words and that they should rate them based on how likely it was that the words
could become new words of English in the 21st century. The practice items were
STALLOP, SKEPPICK, THRISHAL, SHMERNAL, LBOBBIB, SHTHOKKITH, and were
intended to expose participants to a wide range of well-formedness. Each item
consisted of a single nonword, and the responses were ‘1’ (unlikely) to ‘6’ (likely).
Each participant rated all 96 items; four different randomizations were used to
control order-of-presentation effects.

For the comparison rating condition, participants were instructed to choose
the nonword that seemed more like a typical English word. The practice items were
STALLOP vs. THMEFFLE, LBOBBIB vs. PRIFFIN, THRISHAL vs. FTEMMICK, SKEPPICK
vs. MZIBBUS, SHMERNAL vs. DWIFFERT, and SHTHOKKITH vs. THPELLOP. Each
unique nonword pair was presented to exactly 1 participant, and each participant
was assigned a list of 95 items, so there were 48 participants (96*95/2 pairs = 4560
pairs = 48 participants * 95 pairs/participant). Nonword position (left or right) was
counterbalanced, and participant lists were constrained to not contain any nonword
more than twice.

2.5 Results

All regressions were done using the Imer function from the Ime4 package
(Bates & Sarkar 2006) in R (R Development Core Team 2006). As a check on the
task, the entire data set was regressed, using the ordered factor of attestedness
(unattested << marginal << attested) as the fixed effect. Linear regressions with
rating as the dependent variable were used for the Likert condition because the
response variable is scalar; onset, tail, and participant were included as random
effects. Logistic regression was used for the head-to-head condition, with each trial
split into two observations corresponding to each of the nonwords; the dependent
variable indicated whether the nonword was chosen (note that this splitting was



necessary because unlike normal logistic regression, the two choices change from
trial to trial*); onset, tail, and participant preference for left/right response were
included as random factors. To determine whether sonority influenced listener
judgements, the data sets were restricted to trials containing only unattested
clusters. Sonority was used as the fixed effect, but otherwise the regressions were
the same as above (linear for Likert, logistic for head-to-head, same random effects).

Attestedness was a significant predictor of well-formedness in both
conditions. Marginals (nonwords containing marginal onsets) were rated
significantly higher than unattesteds (Likert: t=-7.4, p<le-4;> head-to-head: z=-6.4,
p<le-9) and attesteds were rated significantly higher than marginals (Likert: t=10.1,
p<le-4; head-to-head: z=6.2, p<le-9). To visually inspect whether there is a sonority
effect in the unattested clusters, Fig. 1 plots this regression’s unattested cluster
random intercepts against sonority. The plot shows that sonority is an excellent
predictor of the variance remaining in unattestested clusters.

4 This analysis separates a trial into two observations, one for each nonword of the pair. The
statistical model assumes these observations are independent, which is false because if one word is
chosen the other must not be. This coding choice reduces the power of the method, and hence can be
regarded as conservative. One alternative method was specifically designed for such circumstances,
and is known as “alternative-specific condition logistic regression” (McFadden, 1974) because the
choice between the alternatives is conditioned on properties that are specific to each alternative, e.g.
sonority of the onset cluster. However, there does not yet appear to be an implementation that allows
for random effects. Another alternative would have been to model the choice between left and right,
and to include both the left and right nonwords’ properties as fixed or random effects; however, this
ignores the real-world structure of the problem since it assigns numerically distinct coefficients for
items that occur on the left versus the right. Such a model is incorrect because, for example, [bl] is the
same onset whether it occurs on the left or the right. In short, the currently available statistical
methods all have minor flaws. The analysis method we selected is implemented, interpretable because
there is only one set of coefficients, and conservative because ignoring perfect anti-correlations
within a pair should reduce power.

5 Degrees-of-freedom (df) are unreported because df s ill-defined for linear mixed-effects models
(Bates & Sarkar, 2006; see also Bates’ comments at https://stat.ethz.ch /pipermail/r-help/2006-
May/094765.html). Accordingly, those p-values were calculated with Monte Carlo sampling using
pvals.fnc in the languageR package (Baayen. Davidson, & Bates 2008).
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Fig. 1. Unattested cluster (random) coefficients plotted against sonority.

The sonority regression confirmed that sonority was a significant predictor of well-
formedness for unattested onsets (Likert: t=6.2, p<le-4; head-to-head: z=7 .4, p<le-
12).

For modeling purposes, it will prove useful to have a canonical “acceptability
score” assigned to each nonword. We define this as the proportion of comparisons
trials in which a nonword was selected as better than its competitor; this value is
used in preference to random intercepts from a regression model for conceptual
transparency and for greater comparability to previous studies (Coleman &
Pierrehumbert, 1997), though the two are highly correlated.

2.6  Discussion

The results of the nonword acceptability experiment demonstrated several
important patterns. First, both the Likert rating and comparison conditions
exhibited the expected effect of attestedness, with the well-formedness scale
attested >> marginal >> unattested; this shows that participants recruited from the
Mechanical Turk exhibit the same coarse behavior as laboratory participants in
previous studies. Second, sonority was a significant predictor of acceptability for
unattested onsets; this result is consistent with the hypothesis that speakers have
internalized knowledge of the SSP, but is hard to otherwise explain. Finally, as
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discussed below, while both conditions exhibited the same pattern of significant
differences, the comparison condition was more sensitive for the unattested items
of interest. These points are discussed in turn.

2.6.1 Inclusion of non-native speakers

The results of the present study show that at a coarse level, participants
recruited via the Internet exhibit the same behavior as participants recruited
through subject pools or campus flyer. Internet recruitment arguably represents a
more ecologically valid sample of English speakers than a study with monolinguals,
because a non-trivial percentage of speakers so recruited are early or late bilinguals.
This is a potential cause for concern, as even highly proficient late bilinguals may
exhibit subtle differences in judgement from native speakers (Coppieters, 1987).
Note however that in this experiment the research goal is not to isolate competence
of the idealized monolingual English speaker-hearer, but rather to determine
whether sonority projection occurs in English nonword acceptability judgements.
The other languages our participants report speaking include Dutch, French, Hindi,
Mandarin, Marathi, Punjabi, and a few others; these languages are generally equally
or more restrictive than English with respect to onset sonority profiles. Thus, the
sonority-violating clusters in the present study are equally novel to all participants.

2.6.2 Sonority projection

The statistical modeling results showed that sonority is a significant
predictor of participants’ well-formedness ratings for unattested clusters. The most
natural explanation for this finding is that participants have internalized knowledge
of the SSP. However it is worth considering the alternative hypothesis that these
results reflect some sort of orthotactic knowledge.

The orthotactic account can explain the coarse difference in rating between
attested, marginal, and unattested onsets, but it fails to explain the effect of interest:
sonority projection in unattesteds. The frequency of all unattested onset clusters is
(by definition) 0, so they are crucially not differentiated by frequency. Moreover, the
visual structure of the English alphabet does not reflect its phonology, e.g. R is more
visually similar to P than to L, but more phonologically similar to L. The principled
relationship between sonority and well-formedness cannot be explained by English
orthotactics.

2.6.3 Sensitivity at the bottom of the scale

The pattern of significant differences was the same across the Likert rating
condition and the head-to-head comparison condition. However, the comparison
task was evidently more sensitive for the items of interest, the unattested onsets.
One bit of evidence for this claim is that the z statistic for the head-to-head sonority
comparison is greater than the ¢ statistic for the Likert comparison, with a
corresponding difference in significance (Likert: t=6.2, p<le-4; head-to-head: z=7 .4,
p<le-12). The point can be appreciated more clearly in Fig. 2, which plots raw onset
averages from the comparison condition against the Likert condition. (The onset
‘average’ for the comparison condition is defined as the proportion of competitions
won by nonwords containing the cluster.)
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Figure 2. Scatterplot of comparison scores against Likert ratings

The comparison average differentiates the unattested onset clusters much better
than the raw Likert average does. Presumably this occurs because the target,
unattested items are concentrated at the bottom end of the well-formedness
spectrum, yielding near-floor ratings for all of them. This fact suggests the following
methodological point: in nonword acceptability studies, head-to-head comparison is
preferable to Likert rating whenever the stimuli of interest are concentrated at one
end of the well-formedness scale, owing to ceiling/floor effects in Likert ratings.
Similar conclusions were reached in Coetzee’s (2004) unpublished dissertation, and
by Kager & Pater (under revision); and different but related points are addressed in
Kawahara (ms); we mention this methodological point here in the hope of averting
unnecessary replication-of-effort in the future.

3 Computational Models of Phonotactics

Having established the human behavioral data of interest on sonority
projection, we turn now to the question of explaining the judgements that humans
make. In this section, we give a brief overview of six computational models that have
been proposed to explain nonword well-formedness judgements. The ‘training data’
that will be used here is the lexicon described in §4.1, though in principle these
models can train on any lexicon.

3.1 Bigram
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Classical bigram models assign probabilities compositionally: the probability
of the whole is the product of the probability of the sub-parts and the way they are
combined. In classical bigram models, the sub-parts are bigrams, and the whole
word probability is the product of the transitional probabilities. For example, ‘cat’
can be expressed as #keet# (where # are boundary symbols); its bigrams are #k, kae,
e@t, and t# (for detailed exposition see Jurafsky & Martin 2009; for a recent linguistic
study see Goldsmith & Riggle, to appear). From these, the probability of [keet] is
calculated as in (1):

(1) Calculating probability of [keet] in a classical bigram model

# k x t #

p(#—k) * plk—z) * ple—t) * p(t—#)

The transitional probabilities are estimated from training data using relative
frequency; for example p(k—a) is estimated by dividing the frequency of [kee] by
the frequency of [k]. This model is termed a lexical model because bigram
frequencies are calculated by their type frequency in the training data - in the
present study, an English lexicon.

In the natural language processing literature, where bigram and related
models are heavily employed, it is considered best practice to smooth the
transitional probabilities (Manning & Schutze 1999; Jurafsky & Martin 2009).
Smoothing assigns a modest amount of probability to unseen items, so as to avoid
assigning zero probability to items that happen to be absent from the training set.6
In our implementation of the classical bigram model, we used Good-Turing
smoothing (Gale & Sampson 1995).

3.2 Coleman &Pierrehumbert (1997)

Coleman & Pierrehumbert’s (1997) model is similar to a bigram model in
that it assigns word probabilities compositionally by multiplying the probabilities of
sub-parts. However, it differs in the sub-parts: words are parsed not into bigrams
but into a phonologically-motivated hierarchy consisting of syllables, onsets, and
rhymes. Separate counts are maintained for stressed vs. unstressed, initial vs. non-
initial, and final vs. non-final syllables, for a total of eight onset and eight rhyme
distributions. Just as in the bigram model, the counts are estimated from the lexicon.
Our implementation differs slightly from what is described in the original paper,
because our training lexicon includes more than just the binary feet on which the
original implementation is based. Therefore, rather than parsing into binary feet,
our implementation uses the distribution over all attested stress patterns.

6 Smoothing is appropriate for Zipfian distributions, in which novel events continue to be observed
for arbitrarily large samples. Segmental bigrams in English follow such a distribution (Daland &
Pierrehumbert, 2011).

13



Here is an illustration of how the model computes the probability of the word
agenda:

(2) Calculating probability of [o'd3endo] in the Coleman,/Pierrehumbert model

)
O[-s,+i,-f] Ol +s-i-f] O[-s-i+f]
O-[s,+i-f] Ris+if]  Ofesif Rits-i] Ops-i+f]  Rps-isf]

N

) d3 )
P(agenda) = the product of
P(w = O[5j0[+s10[s))  probability of a medial-stressed trisyllable
*  P(Ops+i-n=9) probability that onset of initial stressless syllable is null
* P(Rpsq+if1 =[9]) probability that rhyme of initial stressless syllable is [9]

¢ P(Ops-i-g = [d3]) probability that onset of medial stressed syllable is [d3]
* P(Rpsqi-1 =[€n]) probability that rhyme of medial syllable is [€n]

* P(Orsqi+n =[d]) probability that onset of final stressless syllable is [d]

* P(Rps-i+ =9]) probability that rhyme of final stressless syllable is [9]

As with the bigram model, Good-Turing smoothing was used; a separate smooth
was done for each onset and rhyme distribution.

3.3  Albright (2009)

The featural bigram model is broadly similar to the classical bigram model
described above. It differs in how the transition probabilities are calculated. Rather
than treating each segment as a distinct, unique type, it deploys phonological
features, so that each segment may be characterized by any of the natural classes to
which it belongs. For example, the segment [b] can be construed as [+labial],
[+consonantal], [+labial,+consonantal], [+labial,-nasal], and so on. The likelihood of
a bigram is calculated from its ‘best’ natural-class featural description, according to

(3):

(3)  Formula for selecting featural bigrams in the Albright (2009) model’

1(xy) = maxas p(AB) * p(x|A) * p(y|B)

7 Note that this formula assigns a likelihood distribution rather than a true probability
distribution, because the values do not sum to 1. This is why 1(xy) is used instead of Pr(xy).
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where
A and B represent natural classes to which x and y respectively belong
p(AB) is the type frequency of natural class bigram AB in the training lexicon
p(x | A) =1/|A| (1 over the number of segments in A)

p(y | B) =1/[B]|

The overall rationale of the model is that a word containing populous natural class
bigrams are likely to be particularly well-formed, especially when the segments that
instantiate the natural class form a large share of that class’s population. The rest of
the computation works analogously to the classical bigram model.

We ran our own implementation of the model, meant to function identically
to Albright’s but facilitate the use of our own feature set and training data.

3.4 Hayes & Wilson (2008)

The Hayes & Wilson (2008) Phonotactic Learner is a constraint-based
learning model. Constraints are stated in the phonological vocabulary made
standard by Chomsky & Halle (1968) and subsequent work. For example, the
constraint *#[+sonorant, -syllabic][+consonantal] militates against word-initial [lb]
clusters and similar SSP-violating forms. Just as with the featural bigram model, the
features allow the Hayes/Wilson model to make generalizations over segments,
including generalizations based on sonority.

To assess well-formedness, the Hayes/Wilson model employs the maximum
entropy variant (Della Pietra, Della Pietra, & Lafferty 1997; Goldwater & Johnson
2003) of Harmonic Grammar (Legendre, Miyata, & Smolensky 1990; Smolensky &
Legendre 2006; Pater 2009; Potts, Pater, Jesney, Bhatt, & Becker 2010). Each
constraint Cj has a nonnegative weight wi. A word x is evaluated by finding its
constraint violation counts Ci(x), multiplying each violation count by the
corresponding weight, and taking the sum. The negative of this sum is known as the
harmony of x, and the likelihood of x is the exponential of its harmony. To ensure
this is a true probability distribution, likelihood is divided by a normalization
constant that guarantees it sums to 1:

(4) Probability of word x in Hayes/Wilson model

PI'(X) = eharmony(x]/z
harmony(x) = -} wi-Ci(x)
Z = Y xeor harmony(x) (Q" is the set of all possible words)

The constraints deployed in the grammar are found by a search algorithm
that attempts to identify constraints that best explain the training lexicon. The
algorithm privileges constraints that are brief (few feature matrices), accurate (low
expected/observed violations), and general (covering large numbers of possible
forms). The number of constraints that the algorithm includes in a grammar can be
set by the user. We caused the model to terminate at 400 constraints, and explored
the effect of constraint number by considering sub-grammars including only the
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first 100, 150, 200, 250, 300, and 350 constraints. We ran the algorithm using the
software posted at www.linguistics.ucla.edu/people/hayes/Phonotactics/.

3.5 Vitevitch & Luce (2004)

The Vitevitch & Luce (2004) Phonotactic Probability Calculator is widely
used in psycholinguistic research. It resembles several models described already in
that it assigns a score to a word by dividing it into parts and combining their
probabilities. The model is similar to a bigram model in that it uses bigrams as well
their simpler cousin unigrams.

The model employs a positional representation, based on left-to-right serial
position of segments. Separate counts are maintained for each position. For example,
the probability of [b] as the first segment of a word is based on what fraction of all
word-initial segments are [b]; the probability of [b] as the fourth segment of a word
is based on what fraction of all fourth-position segments (in words with at least four
segments) are [b], and so on. In the bigram version, analogous computations are
carried out on bigrams.

The model uses a weighting system evidently intended to provide a
compromise between type and token frequency. It weights unigrams and bigrams
by the log of their token frequencies, which are rescaled by the total log frequency
weight to get unigram and bigram probabilities.

Our implementation reflects the standard practice that has evolved in
experimental work making use of this model: a unigram score is calculated as the
sum of the unigram probabilities, and a bigram score is calculated analogously (see
http://www.people.ku.edu/~mvitevit/PhonoProbHome.html). Note that because
the sub-part probabilities are not mutually exclusive, summing in this way implies
that nonword scores cannot be interpreted as probabilities.

3.6 Bailey & Hahn (2001)

The Generalized Neighborhood Model (Bailey & Hahn 2001, hereafter
BH2001) is an exemplar model in which the well-formedness score of an item is
determined directly from the lexicon, by the sum of its similarities to existing words.
This is in contrast to the other models discussed above, in which a grammar is first
projected from the lexicon, and then well-formedness is evaluated by the grammar.

The similarity of a nonce word wito an existing word wj is calculated from
the string-edit distance dj;. String-edit distance is calculated from the number of
insertions, deletions, and substitutions need to change w; to w;. As in the original
paper, we used an insertion and deletion cost of 0.7, and the proportion of shared
natural classes (Frisch, Broe, & Pierrehumbert 1997) as the substitution cost. The
similarity of w; to wj is given by exp(-D-djj), where D is a scaling factor. Similarly to
Vitevitch & Luce (2004), log token frequency weighting was included, although this
model adopts a more complicated quadratic weighting scheme. The total score for a
form is calculated by summing similarities; we differ slightly from BH2001 by
summing over the entire lexicon, an operation that was not computationally feasible
in 2001. The full formula is given in (5):
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(5) Nonword acceptability score in Bailey and Hahn (2001)

score;j = Zj (A logfi? + B logf; + C)-exp(-D-dj)
where

logfj = log (token frequency of w; + 2)

D = 5.5;8 dj is the string-edit distance

Owing to differences between the training lexicon and test items here versus in
BH2001, we considered several sets of free parameters:

Label A B C basis
fig -845 3.78 -2.89 estimated from figure in BH2001
oral -0.47 2.02 -.289 oraltaskin BH2001 (Bailey, pc)
writ -615 2.767 -1.82 written task in BH2001 (Bailey, pc)
lin 0 0 1  no frequency weighting

3.7 Summary

Each of the models discussed in the preceding section is a learning model. It
is trained on a lexicon of a language and assigns scalar well-formedness values
based on a grammar projected from the lexicon (or based on the lexicon itself). A
summary of models’ properties is given Table 3.

model output based on from
bigram probability | segmental bigrams | lexicon 2 grammar
syllabic parser probability | syllabic constituents | lexicon 2 grammar
featural bigram likelihood featural bigrams lexicon = grammar
Phonotactic Learner likelihood | featural constraints | lexicon 2 grammar
Phonotactic Probability scalar positional bigrams | lexicon 2 grammar

Calculator
Generalized scalar string-edit distance lexicon
Neighborhood Model

Table 3. Summary of model properties

For the models whose outputs have a probabilistic interpretation (the first four in
Table 3), the outputs were log-transformed. This was partly done for comparison
with well-formedness ratings since Coleman & Pierrehumbert (1997) found that
nonword log-likelihoods were linearly related to human acceptability judgements; it
was also simpler, as the underlying computations are actually performed in the log
domain. No such log transform was applied to the scores for Vitevitch & Luce (2004)
and Bailey & Hahn (2001), both for greater comparability to existing studies, and
since these values are scalars that do not have a probabilistic interpretation.

8 The approximate value of D was kindly shared by Todd Bailey, as were the A/B/C values for the
oral and writ set. The lin setting was recommended by a reviewer.
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4 Modeling nonword acceptability judgements
4.1 Training on an English lexicon

The models described in section 3 are lexicalist learning models, meaning
that the well-formedness scores they assign are directly or indirectly projected from
the lexicon. For a fair comparison, it is necessary to train all models on the same
lexicon. This subsection describes the training lexicon.

Our goal was to create a representative dictionary of the words likely to be
known to the participants. We used the CMU Pronouncing Dictionary
(http://www.speech.cs.cmu.edu/cgi-bin/cmudict) transcriptions, selecting only
those words that have a frequency of at least 1 in the CELEX wordform database
(Baayen, Piepenbrock, & Gulikers 1995). From this set, we removed compounds,
residual inflected forms, and forms created by highly transparent processes of
morphological derivation, yielding a set of 18,612 words in phonemic transcription.

Two versions of the training set were used. In one, syllabification was
lexically specified by annotating consonants as belonging to the coda or not.? In the
other, coda position was not distinguished in the lexical form. The phonemes of the
training set were supplemented by a feature chart. (The lexicon and features charts
are available from the corresponding author upon request.) The feature chart was
used by the featural bigram model, the Phonotactic Learner, and the Generalized
Neighborhood Model. For these featural models, annotated coda consonants were
featurally identical to their onset cousins except they were marked [+rhyme]; for
the non-featural models, annotated coda consonants were counted as distinct
atomic symbols, i.e. onset [b] was just as distinct from coda [b] as it was from [1].

4.2 Method

Each model was trained on the training lexicon and was then tested on the
set of nonwords used in Experiments 1 and 2. Training consisted of estimating
model parameters as described in §3.1-6. Testing consisted of assigning a well-
formedness value to each nonword stimulus.

4.3 Results

To get a broad overview of model performance, we calculated for each model
the correlation of its well-formedness score with the empirically derived well-
formedness score from the experimental head-to-head data in §2.5. These
correlations are shown in Table 4. The focus of this paper is on sonority projection,
so what is of most interest is a model’s ability to predict variation among the subset
of unattested items. However, for completeness and general intellectual interest, we
also computed correlations for the attested and marginal subsets, as well as the
entire data set. These are reported in Table 4.

| | syllabification | | no syllabification

9 Syllabification was assigned using the maximum onset principle (Selkirk, 1982): medial consonant
sequences were parsed with the longest onset that occurs word-initially. Given that these are
learning models, it is reasonable to wonder how the hidden structure of syllabification is learned. We
leave this issue for future research.

18



model attested marginal unattested  overall attested marginal unattested overall
albright | 0.21 0.03 0.55 0.51 0.13 -0.07 0.18 0.26
bigram 0.19 0.16 0.22 0.7810 0.23 0.01 -0.14 0.50
coleman | 0.35 0.31 -0.01 0.55 -- -- -- --
gnm.fig 0.07  0.25 -0.29  0.15 0.06  0.24 -0.32  0.08
gnm.oral 0.28 0.23 -0.25 0.28 0.26 0.23 -0.28 0.21
gnm.writ 0.17 0.24 -0.27 0.22 0.16 0.24 -0.30 0.15
gnm.lin 0.32 0.23 -0.22 0.31 0.30 0.22 -0.26 0.24
hw100 0.00 0.02 0.76 0.83 0.00 -0.31 0.79 0.68
hw150 0.00 0.06 0.69 0.82 0.00 0.04 0.67 0.75
hw200 -0.09 0.03 0.64 0.80 0.00 0.05 0.69 0.77
hw250 -0.09 0.13 0.64 0.84 0.00 0.00 0.70 0.80
hw300 -0.39 0.04 0.54 0.80 0.00 -0.02 0.70 0.81
hw350 -0.39 0.03 0.51 0.80 0.00 -0.10 0.67 0.81
hw400 -0.39 0.04 0.52 0.81 0.00 0.00 0.68 0.80
vl.uni 0.27 0.11 0.38 0.43 0.30 0.19 0.34 0.36
vl.bi 0.30 0.06 0.27 0.56 0.30 0.08 0.22 0.54

Table 4. Correlations of model ratings with Experiment 2 scores. Key: albright = featural
bigram; bigram = classical bigram; coleman = Coleman & Pierrehumbert (1997); gnm.set =
Generalized Neighborhood Model with parameter set; HW[n] = Phonotactic Learner with n

constraints; vl.uni/bi = Phonotactic Probability Calculator, unigram and bigram models,

respectively. “Good” model correlations are bolded (see text for details).

Models are arranged in the rows, with members of the same ‘family’ adjacent to one
another. The columns are divided into two groups, with syllabified training/testing
on the left, and unsyllabified input on the right. The columns represent the subset of
the data being regressed, and the entries in each cell represent the correlation. For
example, the top leftmost numerical cell indicates that the syllabified featural
bigram model ratings had a 27% correlation with human judgements on the
nonwords with attested onsets. These correlations provide a convenient macro-
level summary of the models’ predictions.

To simplify further analysis, from each family we selected a ‘best’ model
which in our judgement represented the best or near-best performance of that
family. For example, HW100 (syllabified) was selected from the Hayes/Wilson

family because it had the (near-)highest attested, unattested, and overall

correlations. The intention is to focus in on the most informative comparisons -

those in which we can be sure relatively poor performance is not simply the result
of an unfortunate choice of parameters for a model. Put another way, it is easier to
understand 6 data series than 30, and since many of the data series are parametric

10 The ‘overall’ score includes variation within and across subsets. For example, the bigram model
does not do well at distinguishing unattested items from one another (low ‘unattested’ correlation)
but it does distinguish unattesteds as a class from attesteds as a class (high ‘overall’ correlation).
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variants, it is better to just focus on the 6 ‘best’ ones. Fig. 3a-f plots model nonword
predictions against the comparison judgements from the experiment.

albrlght bigram
N o ~
X
o X
- 5 y - « X
X X
X X
o P g o Opg XX R 9
© Xoo o 2] ¥0 x x% o - X y <
Opg X x o 0o g oOxp™ O xX
0o g o o o B o o Box %
~ Jo X -1 5 i %
! oo X I 2, 0 o v x
oo, o o omoo m Xx “x attested
Y4 o . . < x marginal
% O unattested
T T T T T T
-1 0 1 -1 0 1
coleman gnm.lin
X
N o~ 4
X
- -
o oo o o o XX X oo o X
Do o oo XOXX X o o
R I B OO o X X © o X
o Doo B X X om =PmoofhodHpdORx KR
T X T
B AP OP Fex X X
o o ]
J X ]

-1 0 1 -1 0 1
hw100 vl.bi
o o
A 0 e X O XXX e A o
X [n] X X
o o
oo o X
o x x_ 9 OX XXox X X X °© T - o
o ﬁ>< X X XX T " E‘:‘X>§%><X><>< 7>
ooo ﬂﬂ m
o O o = X
T - Dﬂ:ll:\ T - o i OX >
o B X %
Oog om  ooo
Q4 =[] a4
o o

T T T T T T
-1 0 1 -1 0 1

Figure 3 Model nonword predictions versus human judgements. x-axis: well-formedness score
as determined by head-to-head comparison data (z-transformed); y-axis: model score (z-
transformed). Each point represents a nonword. Each ‘best’ model is plotted in a different

pane: albright = featural bigram model; bigram = classical bigram model; coleman = Coleman
& Pierrehumbert (1997); gnm.lin = Generalized Neighborhood Model with no frequency
weighting; hw100 = Phonotactic Learner; vl.bi = Phonotactic Probability Calculator

4.4 Discussion

Several points emerged from the results of the modeling study. The most
significant finding for linguistic theory as a whole was that there exist lexical models
that explain sonority projection, i.e. predict sonority-related variation in human
behavior for unattested phonological sequences. Among the models tested here, the
models which were most effective at modeling sonority projection effects were the
Phonotactic Learner (Hayes & Wilson, 2008) and Albright’s (2009) featural bigram
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model; we will argue that sonority projection owes to a featural representation of
sonority and a rich enough representation of context to track the expected sonority
profile. Another finding of interest was that no current model excelled across the
well-formedness spectrum, i.e. the models that were best on unattested onsets were
not best on attested onsets. These points are discussed in detail below.

4.4.1 Sonority projection is possible from the lexicon alone

The most theoretically significant finding of the present study is that sonority
projection is achieved by a number of published lexicalist phonotactic models. This
finding directly contravenes previous claims in the literature, such as the following
passage from Berent et al. (2007, pp. 624-625):

Our findings demonstrate that English speakers manifest sonority-related
preferences despite the lack of lexical evidence, either direct (i.e., the existence of
the relevant onsets in the English lexicon) or indirect (the statistical co-occurrence
of segments in English words).

Berent and colleagues found sonority projection effects in perception, which is a
substantial contribution to the field, because it unequivocally demonstrates that the
SSP is a part of speakers’ synchronic knowledge. What we disagree with is the claim
that there is no lexical evidence for the sonority-based preferences. It is true that,
for example, Ib and tl are equally unattested as English onsets, but there are many
onset clusters that are featurally similar to t/ whereas there are none that are so
featurally similar to [b. A lexicalist model that is equipped to make generalizations
on the basis of features should in principle be able to explain sonority projection,
and we have shown here that this is exactly what happens.

From the belief that there is no lexical support for sonority projection, Berent
and colleagues draw the inference that listeners must possess some form of
universal knowledge, whether it arises from “inherent preferences of the language
system” (p. 593) or knowledge that is “induced from phonetic experience” (p. 625).
Our results show that the inference of universal, non-lexical phonotactic knowledge
does not follow as a logical necessity - although it may still be correct. In short, the
ability of a lexical model to explain sonority projection effect bears on foundational
issues of our field, because it refutes a powerful argument for the existence of
universal phonotactic knowledge.

4.4.2 Model properties needed for sonority projection

Beyond the sheer fact that sonority projection occurs, it is of interest to know
why some models exhibit it and others do not. We will argue that what is needed is
the ability to capitalize on two representational properties: a sufficiently rich
representation of phonological context (e.g. syllabification), and a sufficiently rich
representation of sonority itself (e.g. features). The syllabified featural bigram
model exhibits sonority projection. However the unsyllabified featural bigram
models does not, so removing syllabification inhibits sonority projection. Similarly,
the syllabified classical bigram model does not, so removing featural generalization
also inhibits sonority projection. Thus, sonority projection requires both properties.
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Phonological context. To express sonority restrictions, a model needs to be
able to distinguish contexts that constrain the sonority profile, e.g. it should be
rising word-initially. Models trained on syllabified data can do this, since they are
told whether a consonant sequence is parsed as an onset, a rhyme, or as a
heterosyllabic cluster. With this information, such models are in a position to
inductively track the sonority profiles characteristic of these three contexts, and
characterize well-formedness of these configurations when they are filled by
particular segments.

We illustrate using the specific example of the featural bigram model. A
cluster like [lt] is perfectly acceptable in English when it is not an onset cluster, e.g.
halt, Elton. When syllabification is made available to the model, it should be able to
distinguish the unacceptable onset cluster from the acceptable coda and
heterosyllabic clusters. Indeed, when it is trained with syllabified data, the Albright
model achieves a correlation of r=.55 with human judgements for unattested onsets.
The correlation drops to r=.18 when the same model is trained on unsyllabified data
(we will show later that this level of correlation arises merely from modeling tails).
Since the only difference between these two cases is the presence of syllabification,
it follows that the contextual information represented by syllabification caused the
difference. In other words, syllabification provides a sufficiently rich representation
of the context as to allow Albright’s model to represent the expected sonority
contour.

[t is possible for a model to succeed without an explicit representation of
syllabification. In particular, with a sufficiently large number of constraints the
Phonotactic Learner achieves roughly equivalent performances on syllabified or
unsyllabified data. We believe this owes to the fact that the Phonotactic Learner
allows trigram constraints. English trigrams provide a level of phonological context
that is more specific than syllabification; for example a trigram model can use
structural descriptions of the form [x y C] and [x y #] in place of XcodqVcoda, aS Was
done in Chomsky and Halle (1968). At the same time, scaling up a model to trigrams
has its own costs in terms of sparseness of data and computational complexity
(Jurafsky & Martin 2009).

In summary, what a model needs is some representation of phonological
context that is sufficiently rich as to track the expected sonority contour (see Kager
& Pater, under revision, for another study concluding that phonotactic models must
represent syllabification). Explicit syllabification is an especially simple and
effective means of doing this, as evident from the fact that nearly every model does
better on nearly every subset of the data when it has access to syllabification.

Phonological features. In addition to phonological context, a model needs a
system of phonological features. The rationale for this claim is very simple: in order
to make generalizations on the basis of sonority, a model must be able to make
generalizations, and it must have an explicit representation of segments’ sonority.
Phonological features perform both of these functions. Features represent inherent
generalizations, because the presence or absence of a feature represents an
underlying acoustic or articulatory property shared by a natural class of segments.
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And many of the features commonly used in generative phonology pertain to
sonority - for example [+sonorant] segments like [n], [1], and [w] have a relatively
open vocal tract providing support for formant resonance, rendering them more
sonorous than obstruents like [s], [t], and [tg]. Phonological features are a
theoretically convenient way to provide for sonority-based generalizations, because
they organize segments into classes on the basis of sonority, and are independently
motivated.

The necessity of an explicit representation of sonority can be illustrated by a
comparison between the classic bigram and the featural bigram models. These two
models differ principally in whether they are designed to generalize on the basis of
featural similarity, or to stick narrowly to segmental biphone probabilities. The two
models achieve comparable performance on the attested clusters (classic: r=.19;
featural: r =.21), but differ substantially on unattested clusters (classic: r = .22;
featural: r =.55). Since the primary difference between these models is whether
they make featural generalizations, and the featural bigram model outperforms the
classical bigram model on the unattesteds, it is evidently the ability to make feature-
based generalizations that causes the difference. In other words, a featural
representation of sonority and the capacity to make feature-based generalizations
are responsible for sonority projection in Albright’s (2009) model.

Extant models that lack a feature system, such as the classic bigram model
and the syllable parser, treat segments or other prosodic constituents as atomic
units. These models do not ‘know’ that [z] is less sonorous than [1], and so to them
there is no or little principled distinction between, e.g., the onset clusters [zl] and
[1z]. This seems, almost as a point of logic, fatal to the enterprise of predicting
sonority projection to novel clusters. And indeed, all such models achieve at best
low correlations with the unattested clusters, which we will argue below arise from
modeling the tails. In contrast, the models which employ a feature system - the
Phonotactic Learner and the featural bigram model - are exactly the ones with the
best success at predicting sonority projection in the behavioral data. Some explicit
representation of sonority, such as is generated by a set of phonological features, is
a crucial ingredient for making generalizations on the basis of sonority.

4.4.3 Why lexical analogy is insufficient

[t is worth asking why the syllabified GNM (Bailey & Hahn 2001) does not
succeed at sonority projection. After all, this model is equipped with a featural
representation. As we will show in this subsection, the reason the GNM does not
exhibit sonority projection is because even when syllabification is available, the
GNM fails to leverage it.

The point can be illustrated most clearly with a slight idealization. We define
GNM’ as identical to the GNM, except that it considers only the closest word in
assigning a score. This idealization is relevant for the nonwords in the present study
because the exponent D is quite high, which means that the score is effectively
controlled by whatever word(s) have the minimal string-edit distance. Because the
nonwords in the present study are in sparse lexical neighborhoodes, it is safe to
assume that the closest word is unique. Thus for a nonword v with the existing word
w as a neighbor, the assigned score is GNM’(v) = exp(-5.5°dvw), where dy, is the

23



string-edit distance between v and w. Crucially, a nonword’s score is determined
purely by string-edit distance to its nearest neighbor.

Now let us consider the nonword guzu, for which we will suppose guru is the
closest neighbor. It is evident that the best string alignment between guzu and guru
is the one in which z maps to r and all other segments match. Thus, the string-edit
distance between guzu and guru is simply the substitution cost of z 2 r. For
concreteness, let us suppose this is 0.7, which was the insertion/deletion cost in
Bailey & Hahn (2001). Then the score assigned to guzu is GNM’(guzu) = exp(-5.5*.7),
because 0.7 is the cost of substituting z > r.

Now let us consider the nonword bzoker, for which we will suppose broker to
be the only neighbor. It is evident that the best string alignment between bzoker and
broker is the one in which z maps to r and all other segments match. The string-edit
distance again consists simply of the substitution cost z = r. Then the score of
bzoker is also determined entirely by the cost of substituting z > r. It follows that
GNM'’ will assign the same score to bzoker as to guzu, namely exp(-5.5*.7), and
moreover it is clear why GNM’ will assign the same score to both nonwords -
because both differ in exactly the same z - r way from an existing neighbor.

Now let us consider these facts from a phonological perspective. GNM’
assigns the same well-formedness score to guzu as to bzoker; however, guzu is a
perfectly legitimate nonword of English, whereas bzoker contains an unattested,
sonority-violating onset cluster. The difference in well-formedness is evidently
contextual: z is acceptable intervocalically, but not in the onset cluster *bz. Indeed,
Albright (2009) noted that the GNM was vulnerable to items like bzeakfast, which
overlap strongly with existing words but contain a contextually ungrammatical
substitution. We have illustrated here that it is a property of the string-edit metric
that the distance between z and r does not depend on context; it treats both z’s
equally. In other words, context-insensitivity in the underlying string-edit metric
implies that the GNM’ is insensitive to phonological context.

For expository purposes, the insensitivity of the GNM to phonological context
was demonstrated with an idealized model in which well-formedness is determined
by string-edit distance to only the nearest neighbor. However, the idealized model is
a good approximation to the true GNM for the nonwords in this study, and the
insensitivity of the string-edit distance to phonological context holds equally true
for the real, non-idealized GNM. Thus, the GNM fails to leverage the phonological
contextual information that conditions sonority projection, even when it is provided
in the training data.

The reader may wonder why the GNM is actually anti-correlated with
human judgements on the unattesteds, rather than simply uncorrelated. The answer
lies in what we refer to as delete-initial neighbors. A word y is a delete-initial
neighbor to nonword x if y is the closest!! nonword to x, and the initial segment of y
is deleted in the string alignment to x. For example, the nonword rteppid has tepid as
a delete-initial neighbor. In the GNM, the effect of a delete-initial neighbor is to give
a boost to a nonword, irrespective of whether its onset is attested or unattested. It is

11 This does not imply that the only difference is in the initial segment. There may be other changes,
as long as there is no other word that is closer.

24



evident from inspection of the GNM pane of Fig. 3 that several nonwords with
unattested onsets have such delete-initial neighbors. The relevant nonwords are
rgeebid, rgeppid, Imeebid, rlezzig, dgeppid. These words are concentrated at the
bottom end of the well-formedness spectrum, and so the GNM assigns a higher score
to a few particular words that are phonologically the least well-formed. This
explains why there is actually a negative correlation with well-formedness ratings:
our nonword set happened to contain a number of bzeakfast-type items that were
concentrated at the bottom of the well-formedness spectrum.

As a side note, the failure of the GNM rules out an important alternative
interpretation of the experimental results. Various scholars have raised the issue
that nonword acceptability judgements do not reflect pure phonological intuitions,
since lexical analogy is known to play a role (Bailey & Hahn, 2001; Goldrick, in
press). We have explained in detail why lexical analogy - at least as it is
implemented in the GNM - fails to predict sonority projection, and actually results in
anticorrelation with human judgements. This strongly suggests that lexical
similarity cannot explain the sonority projection effect we observe for unattested
onset acceptability.

4.4.4 The contribution of tails

A reviewer raised the concern that for non-featural models, even small
correlations on the unattested items are unpredicted under our account (because
they do not have featural generalization). Thus, the modest success of the
Phonotactic Probability Calculator (r=.27) and the bigram model (r=.22) on
syllabified training data are of some concern, as are the same models’ correlations
on unsyllabified training data (r=.22 and r=.18, respectively). We will show that
these modest correlations arise entirely from modeling the contribution of tails,
beginning with Fig. 4.
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Fig. 4: Model cluster prediction versus human judgements. Each point represents a cluster. All
other graph properties are as in Fig. 3.

Fig. 4 isolates the contribution of clusters in the following way. For each
model, the contribution of a tail was defined as the average score assigned by the
model across all nonwords possessing that tail. For each nonword, this contribution
was subtracted out from the nonword score. Once the tail contributions were
subtracted out, cluster scores were obtained by simple averaging. As with Fig. 3,
both x- and y- coordinates were z-transformed for visual comparison.

Itis evident in Fig. 4 that the non-featural bigram models assign essentially
flat scores to all the unattested items. The correlation of a constant (model score on
unattested onsets) with a variable (human judgements of the same onsets) is zero.
Since the models achieve zero correlation on the onsets alone, but a modest positive
correlation on the onsets plus the tails, the modest correlations must be caused by
modeling the tails’ contributions to well-formedness.



Indeed, not only do the non-featural model scores reflect variability from the
tails, but they appear to weight the tail contribution too heavily. This conclusion
follows from an important difference between human judgements and model scores.
Human judgements are dominated by the onset differences. This is evident from the
fact that the three attestedness categories are cleanly separated on the x-axis of
Fig.’s 3 and 4; it is also evident from Fig. 1, which suggests that onset sonority
profile is the most important predictor of nonword well-formedness. In contrast, the
non-featural bigram models sometimes assign higher scores to illegal nonwords
than to legal ones, as evident from the fact that the attestedness categories are not
cleanly separated on the y-axes of Fig. 3. This fault cannot originate with the onset
component of the model scores, since the unattested onset components are
essentially flat (as shown in Fig. 4). Therefore the issue must lie with the tails. In
other words, a nonword with an illegal onset and a very likely tail (e.g. nlezzig) can
be scored better than a nonword with a legal onset and a somewhat likely tail (e.g.
sneegiff). For example, the Phonotactic Probability Calculator scores nlezzig as .0040
and sneegiff as .0028. In non-featural models, the tail component sometimes trumps
the onset component, but this does not occurs in our human judgement data.

In summary, the modest positive correlation of the non-featural models on
the unattesteds can be attributed to the contribution of the tails, as evident from
factoring out tail contributions (in Fig. 4). Moreover, the comparison between Fig. 3
and Fig. 4 draws out an important weakness of these models - they are too sensitive
to the tails: the tail component sometimes trumps the onset component in non-
featural model scores, but not in human judgements.

4.4.5 Predicting judgements on attested items

Although the focus of this study is the models’ predictions for the unattested
items, their predictions for attested onsets are of general theoretical interest as well.
As shown in Table 3, the models that achieve the best performance on nonwords
with attested onsets are the syllabic parser (r=.35), the GNM (r=.32), and the
Phonotactic Probability Calculator (r=.30). This finding is of special interest since
these are among the worst models at predicting judgements on the unattested
items. In other words, the properties that are necessary for predicting judgements
on unattested items are not the same as the properties necessary for predicting
judgements on attested items (although there may be some overlap). Then, what is
responsible for these relative successes on the attested items?

We believe the property is inherent in the design of these models:
conformance to lexical type statistics (e.g. type frequency). This is the essential
property that the syllabic parser and Phonotactic Probability Calculator share; and it
is directly encoded in the lexical similarity measure of the GNM. For additional
theoretical and empirical evidence and argumentation supporting the role of lexical
type statistics, see Hay et al. (2003), Edwards et al. (2004), inter alia.

4.5 Summary

The models that predict sonority projection on the unattested onsets were
the syllabified featural bigram model (Albright 2009) and the syllabified
Phonotactic Learner (Hayes & Wilson, 2008). We argue that the model properties
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that underlie this success are (i) a representation of context sufficiently rich as to
distinguish expected sonority contour, and (ii) a featural representation enabling
sonority-based generalizations. Models that lack either of these properties - or the
ability to exploit them in the proper way - will fail at sonority projection. For
example, the GNM fails because the string-edit metric is not sensitive to
phonological context. The modest positive correlations in Table 6 of some models
not possessing both properties can be attributed to modeling variation in the tails;
comparison between Fig. 3 and Fig. 4 shows that these models overweight the
contribution of tails relative to human judgements. Finally, the models which do
best at predicting judgements on unattested onsets are among the worst at
predicting judgements on attested onsets; apparently what is needed for attested
items is conformance to lexical type statistics or lexical analogy.

5 Pushing the lexicalist account to its limits

It has been argued that sonority projection effects in Korean (Berent et al.
2008) and Mandarin (Ren et al. 2010) provide evidence against the lexicalist
account. The argument runs as follows. (i) Korean and Mandarin lack onset clusters.
(ii) Lexicalist accounts predict that a language must have consonant clusters in
order to induce the SSP. Therefore, the lexicalist account predicts no sonority
projection effects in these languages. (iii) Sonority projection effects are evident in
Korean (Berent et al. 2008) and Mandarin (Ren et al. 2010). (iv) So the lexicalist
account makes an incorrect prediction. We do not dispute the existence of sonority
projection effects in Mandarin and Korean, or that conclusion (vi) follows if (i)-(iii)
are true. However, we will show here that (i) is questionable and (ii) is false. Both
languages could be analyzed as having surface obstruent-glide clusters, so it is not
clear these languages are the proper test case. However, even if they are, modeling
results show that sonority projection can be explained even from exposure to a CV
language.

We will begin with the phonological analysis of Korean and Mandarin. We
take it as uncontroversial that Korean and Mandarin allow syllables whose onset
and nucleus jointly contain 3 segments, such as the family names Choi (Korean) and
Huang (Mandarin). These items are traditionally analyzed (e.g. Hockett 1947, p.
223) as containing diphthongs in which the second segment is affiliated to the
nucleus: [teuae], [huan]; under this analysis, it is true that both languages lack onset
clusters. However, there are good reasons to analyze these items as having complex,
obstruent-glide onsets: [tewza], [hwan] (Korean: Lee 1994; Mandarin: Duanmu
2000, p. 86). For example, Korean generally allows labial and coronal approximants
in the onset position, but specifically disallows them before the structurally
ambiguous segment in question (*[juae], *[wiae]); this absence has every appearance
of a sonority effect, and could be taken as evidence for the complex onset analysis if
the SSP is construed as regulating the onset profile specifically. Since it is a priori
reasonable for learners to entertain the hypothesis that such sequences are surface
clusters, and some aspects of the data arguably favor this hypothesis, the claim that
Korean and Mandarin lack complex onsets is not really clear-cut.

Even if sonority projection were demonstrated in a strict CV language, Hayes
(in press) showed this does not demonstrate the need for universal (non-lexical)
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phonotactic knowledge. This point was demonstrated using simulations with the
Phonotactic Learner on artificial languages called Ba and Bwa. Ba consisted of every
possible CV syllable; Bwa included all CV syllables as well as all possible syllables
with a stop-glide onset (hence the name Bwa). The segmental inventory, arranged
by sonority class, was [ptkbdg] (stop) <<1 [fvsz] (fricative) << [mn] (nasal) <<z [r]]
(liquid) <<4 [wyj] (glide) <<s [a] (vowel). The integers here are for expository
convenience and represent the divisions between classes on the sonority scale, as
follows: [-son a] represents all segments below breakpoint a, e.g. [-son 2]
represents the stops and fricatives. The Learner was endowed with two families of
‘sonority-regulating’ constraints, i.e. those in which some minimal difference
between the initial and the final consonant of the cluster is enforced:

SSP: *[+son a][-son 3]
anti-SSP: *[-son B][+son a

Crucially, the constraints included both SSP-enforcing constraints and their exact
opposites. For example, *[+son 4][-son 1] bans glide-stop clusters like rd; *[-son
1][+son 4] bans stop-glide clusters like dr. Sonority projection was identified as the
presence of a gradient of well-formedness across C1C: clusters, in which well-
formedness increased with the sonority of Cz, and decreased with the sonority of Ci.
Hayes (in press) found sonority projection in Bwa, indicating that the presence of
just obstruent-glide clusters is enough to trigger sonority projection. Crucially,
Hayes also found sonority projection in Ba, indicating that sonority projection from
the lexicon may occur even without clusters in the input. This arose because featural
generalization of the sharp sonority rise from C to V results in a sonority-dependent
gradient of well-formedness for C-to-C.

In summary, the claim that Korean and Mandarin lack complex onsets is
problematic. Even if this analysis is accepted as the one that learners definitely
make, the existence of sonority projection in these languages does not clearly refute
the adequacy of a lexicalist model. Hayes (in press) demonstrated that the
Phonotactic Learner exhibits sonority projection on CV languages when it is
equipped with constraints that include both the SSP and its exact opposite. The
existence of sonority projection in these languages therefore does not demonstrate
the need for, and existence of, universal (non-lexical) phonotactic knowledge.

6 Discussion and Conclusions
We conclude the paper with a summary of the major findings and brief
discussion. In summary, we showed that

(1) Sonority projection is evident in nonword acceptability studies. Head-to-head
comparison is appropriate because the target stimuli are concentrated at
the bottom end of the well-formedness scale.

(2) To explain sonority projection, any phonotactic model must be equipped with a
featural representation of sonority and a representation of phonological
context such as syllabification.
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(3) When so equipped, lexicalist models with the capacity for context-sensitive
featural generalization can and do explain sonority projection. English well-
formedness judgements on SSP-violating clusters were well-modeled by
the Phonotactic Learner (Hayes & Wilson 2008) and Albright’s (2009)
featural bigram model.

(4) The existence of sonority projection effects in Mandarin and Korean (Ren et al.
2010; Berent et al. 2008) do not falsify the lexicalist account, as sonority
projection can be explained by a lexicalist model exposed only to CV
syllables.

The latter two points refute arguments against the lexicalist account that have been
interpreted as powerful support for universal (non-lexical) knowledge of the SSP.
Thus, the results in this paper bear on foundational issues of our field. In the
remaining sections, we enlarge on some of these points.

6.1 Sonority and context are needed for sonority projection

In this paper, we have argued that a representation of sonority and context
are needed for a lexicalist model to exhibit sonority projection. However, there is
nothing in the theoretical arguments we made that is specific to lexicalist models.
Rather, this point should obtain for all phonotactic models that predict sonority
projection. To exhibit gradient sensitivity to degree of sonority violation, a model
must have a gradient representation of sonority, such as a standard featural scale.
And since the sonority profile intrinsically depends on at least two segments and
their relation to the nearest sonority peaks, a model must represent this context in
order to predict the expected sonority contour. These points do not depend on
where knowledge of the SSP comes from (lexicon, phonetic experience, innate, etc..);
rather they refer to properties of the representation that a model must have to
adequately explain human performance.

6.2 Lexical models that generalize succeed with sonority and context

In the preceding section we summarized arguments to the effect that any
phonotactic model must have a gradient representation of sonority and an adequate
representation of phonological context in order to explain sonority projection
effects. The most significant empirical contribution of this paper is to show that
when a model has these properties, and the capacity to make generalizations on the
basis of them, it may succeed at sonority projection. Our results refute the view that
lexicalist models are unable to explain sonority projection and therefore humans
must possess some universal knowledge of the SSP. For example, the model that
Berent et al. (2007) used was the Phonotactic Probability Calculator (Vitevitch &
Luce, 2004). We have shown here that the problem was not that its predictions were
derived from lexical frequencies, but rather that it lacked the capacity for
generalization based on sonority, because its computations were based on atomic
representations of segments that excluded sonority.

In the present paper, we showed that models that possess both a featural
representation of sonority and the capacity for feature-based generalization do in
fact predict sonority projection. The relevance of these properties was empirically
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demonstrated by “minimal model pairs”. Albright’s (2009) featural bigram model
with syllabified input succeeded at sonority projection (= adequately modeled
sonority-based variation in human judgements on nonwords with unattested onset
clusters). In contrast, the featural bigram model without syllabification lacked an
adequate representation of context, and it failed. The classic bigram lacked a
featural representation of sonority from which to generalize, and it failed. Since
these models are otherwise identical in their essentials to the featural bigram model
with syllabification, it must have been syllabification and featural generalization
specifically that caused success in the one case, and their absence that caused failure
in the other cases.

In summary, we have offered both theoretical and empirical arguments for
our core position: when a lexicalist model is equipped with the necessary properties
of a featural representation of sonority and an adequate representation of context, it
not only can but does explain sonority projection.

6.3  Synchrony, diachrony, and the SSP

We began this paper by posing the questions of what properties any
phonotactic model must have, and where knowledge of the Sonority Sequencing
Principle comes from. In the present paper, we have argued that synchronic
knowledge of the SSP may derive from the lexicon; moreover we have shown that
the English lexicon provides a great deal of support for the SSP. However, there is a
significant challenge remaining under the hypothesis that the SSP does in fact derive
from the lexicon: why is the SSP an apparent typological universal?

Under both the innatist and phonetically-grounded accounts, the universality
of the SSP is transparently accounted for. Under the innatist account, universality is
accounted for by the assumption that the SSP is part of our common human
endownment of UG. Under the phonetic grounding account, sonority projection
derives from the speaker-hearer’s implicit knowledge of articulatory and perceptual
relations, e.g. the onset rt is dispreferred both because of the articulatory difficulty
of initiating, pausing, and then re-initiating voicing, and because the perceptual cues
to the presence of a word-initial r are obfuscated by the following obstruent (for a
summary of perceptual cueing see Wright 2004). This knowledge is universal
because we all share the same articulatory and perceptual mechanism. In either
case, it is clear why the SSP is universal.

In contrast, the lexicalist hypothesis is that the SSP emerges from the lexicon.
Thus, the SSP should only be universal if there is some process that universally
causes lexicons to prefer words that are in conformance with the SSP. The lexicalist
account does not in of itself explain why lexicons are cross-linguistically structured
so as to support the SSP, as the null hypothesis is that lexicons are subject to
arbitrary variation (for discussion see Prince & Smolensky, 1993; Joseph, 1995),
including conformance to the SSP. Since they are not, the lexicalist hypothesis must
be supplemented with some diachronic hypothesis that explains why SSP-
conforming words come to predominate in the lexicons of the world’s languages.

The obvious candidate is Evolutionary Phonology (Blevins, 2004). EP
proposes that sound patterns are “phonologized” when a gradient phonetic
phenomenon is analyzed as an automatic, categorical process. A crucial aspect of EP
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is that it posits that phonology is not “teleological”, i.e. phonetically unnatural
patterns (such as the English k-s alternation embodied in electric~electricity;
Pierrehumbert 2006) can be phonologized just as easily as phonetically natural ones
like nasal place assimilation (for additional examples see Baroni 2001, Koo & Cole
2006, and Kawahara 2008). Under this account, the reason that phonetically natural
patterns are more likely to be phonologized is because they occur more frequently.
Thus, EP differs crucially from the phonetic grounding account in locating some
language universals in the conditions governing speech production and perception
in the world, rather than the grammar in the minds of speaker-hearers.

A detailed proposal of how the EP could account for the predominance of
SSP-conforming words in a lexicon is beyond the scope of the present paper.
However, the general idea seems clear. Suppose that a lexicon begins with a number
of SSP-violating words, as well as a number of SSP-conformers. As documented by
Blevins (2004) and others, the phonetic factors governing speech perception and
speech production might cause misperception and misproduction more frequently
in the SSP-violators. For example, sonority-violating clusters might be more likely to
be both produced and perceived with an epenthetic vowel even though the
offending clusters are legal in the language (Berent et al. 2007). Such words might
gradually acquire an underlying vowel that repairs the difficult cluster. Thus the
lexical support for these clusters is gradually eroded, with the end result that they
become unattested.

This sketch is different from the phonetically-grounded account, but not
incompatible with it. Under the phonetically-grounded or innatist accounts,
knowledge of perceptual and articulatory difficulty is encoded in the grammar, i.e.
ill-formedness is mentally represented. Under the EP-style account, evolutionary
selection favors SSP-conforming words even if ill-formedness is not mentally
represented. This is necessary to avoid circularity - we could hardly claim that the
lexicalist account avoided the need to posit universal phonotactic knowledge if it
appealed to an evolutionary account that assumed universal phonotactic
knowledge. Thus it is necessary that the EP account could explain the lexical
universality of the SSP even without universal (non-lexical) knowledge, i.e. that SSP-
conformers are evolutionarily selected for even without an intrinsic grammatical
preference. However, the fact that the EP account can explain the lexical universality
of the SSP without grammatical universals does not thereby imply that we believe
universal accounts are incorrect. Indeed, we suspect that ultimately the SSP will
prove to derive from a combination of lexical and universal (non-lexical) knowledge.

6.4 The next generation

Beyond the theoretical contribution to our understanding of the SSP, the
results of the simulations here suggest a promising outlook for the next generation
of phonotactic models. Recall the finding that the models that did best on the
unattested onsets were not those that did best on attested onsets. Moreover, we
offered informed opinions as to which properties were responsible for success on
each domain. The models with featural generalization did best on unseen,
ungrammatical items, while the remaining models whose computations were based
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on lexical type statistics did best on nonwords whose parts were all attested. These
properties are not inherently mutually exclusive.

Therefore, it is tempting to believe that a better model could be built by
incorporating the best properties for both domains. For example, the Phonotactic
Learner currently assigns essentially flat scores to all nonwords that are relatively
well-formed. It is quite likely that this outcome derives from search biases built into
the model that were explicitly intended to help it find exceptionless constraints
(Hayes & Wilson, 2008), and that the model would also distinguish gradient well-
formedness predictions on attested items if these biases were relaxed. Similarly, the
featural bigram learner here does less well than the classical bigram on nonwords
whose subparts are all attested. Presumably this occurs because the model allocates
too much probability mass to featural generalization, when on attested items it
would do better to simply abide by the existing lexical statistics. Analogously, the
GNM could be improved by using a similarity metric that is sensitive to phonological
context. In short, the model properties needed for unattested items are not mutually
exclusive with the properties needed for attested items; there is nothing principled
standing in the way of the next generation of models incorporating both types of
properties.
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