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In common interest games, players generally manage to coordinate their actions on
mutually optimal outcomes, but orthodox game theory provides no reason for them to
play their individual parts in these seemingly obvious solutions and no justification for
choosing the corresponding strategies. A number of theories have been suggested to
explain coordination, among the most prominent being versions of cognitive hierarchy
theory, theories of team reasoning, and social projection theory (in symmetric games).
Each of these theories provides a plausible explanation but is theoretically problematic.
An improved theory of strong Stackelberg reasoning avoids these problems and
explains coordination among players who care about their co-players’ payoffs and who
act as though their co-players can anticipate their choices. Two experiments designed
to test cognitive hierarchy, team reasoning, and strong Stackelberg theories against one
another in games without obvious, payoff-dominant solutions suggest that each of the
theories provides part of the explanation. Cognitive hierarchy Level-1 reasoning,
facilitated by a heuristic of avoiding the worst payoff, tended to predominate, especially
in more complicated games, but strong Stackelberg reasoning occurred quite frequently
in the simpler games and team reasoning in both the simpler and the more complicated
games. Most players considered 2 or more of these reasoning processes before choosing
their strategies.
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As Schelling (1960, chap. 3) was the first to
demonstrate empirically, human decision mak-
ers are remarkably adept at coordinating their
actions and their expectations of one another’s
actions, but it is surprisingly difficult to explain
how they achieve this. Game theory provides

the appropriate framework for formulating co-
ordination problems rigorously, but although
this helps to clarify the problem, it also exposes
what is arguably game theory’s most conspicu-
ous limitation, namely its indeterminacy—its
failure to generate determinate solutions to
many games, the prime examples being games
of common interest.

Consider the following problem of coordina-
tion between doubles partners in a tennis match.
The server has to choose between aiming the
service wide or down the center line, and the server’s
partner has to prepare to intercept a service return
from either a wide or center line service. Let us
assume that the partners have not discussed the
service but are twice as likely to win the point if
both choose the wide rather than the center
option and have no chance of winning the point
if they choose different options, given the par-
ticular circumstances at the time. If both players
know all this, then they are involved in a
coordination problem with a strategic struc-
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ture corresponding to the Hi-Lo game shown
in Figure 1, where wide corresponds to H and
center to L.

In the payoff matrix depicted in Figure 1,
Player 1 chooses a strategy represented by a
row, either H or L and, independently of Player
1, Player 2 chooses a strategy represented by a
column, either H or L. The outcome of the game
is one of the four cells where the chosen strat-
egies intersect. The numbers in each cell repre-
sent the payoffs to Player 1 and Player 2 in that
order. In this game, it is in both players’ inter-
ests to coordinate their strategy choices on ei-
ther the (H, H) or the (L, L) outcome, and (H, H)
is obviously better for both than (L, L); this is
represented by the payoffs of 2 to each player in
(H, H), 1 to each (L, L), and 0 to each in
outcomes in which they fail to coordinate. More
generally, any 2 	 2 game with payoffs of (a, a)
and (b, b) in the main diagonal and zero elsewhere is
a Hi-Lo game, provided that 0 � b � a, and all such
games are strategically equivalent.

Like any other game, the Hi-Lo game is an
idealized abstraction of a potentially unlimited
number of social interactions sharing a common
strategic structure. To illustrate this point, one
further radically different example of a Hi-Lo
interaction will suffice. Consider a scenario in
which three children are trapped in a burning
building, two of them in one room and the third
in a second room some distance away. A neigh-
bor breaks in and has just enough time to rescue
either the two children in the first room or the single
child in the second room, but the rescue can
succeed only if another neighbor with a fire
extinguisher, who has found a different point of
entry, heads straight for the same room. If both
neighbors go to the first room, then the two
children in it will be rescued, and if both go to
the second room, then the single child in that
room will be rescued; but if each neighbor goes

to a different room, then none of the children
will be rescued. If both neighbors know all this,
then the strategic structure is once again the
Hi-Lo game shown in Figure 1, with the first
room corresponding to H and the second room
to L. As in the previous example, it is in both
players’ interests to coordinate their strategy
choices on either the (H, H) or the (L, L) out-
come, and both prefer (H, H) to (L, L) if their
objective is to save as many lives as possible.
The game model strips out complicating factors
such as dynamic visual monitoring and adjust-
ment in tennis or communication via cell
phones in a fire emergency. It is not difficult to
think of other lifelike examples of the Hi-Lo
game; see Bacharach (2006, pp. 36–42) and
Sugden (2005, pp. 181–182) for several further
suggestions.

The Hi-Lo game is the simplest example of a
common interest game, a class of games that
illustrate most starkly the inability of game the-
ory to explain strategic coordination. A com-
mon interest game is one in which a single
strategy profile or outcome strongly payoff-
dominates all others, in the sense that it yields
strictly better payoffs to every player than any
other outcome and is, therefore, jointly optimal
for all (Anderlini, 1999; Aumann & Sorin,
1989). It seems intuitively obvious that rational
players will choose H in the Hi-Lo game, re-
sulting in the payoff-dominant outcome (H, H),
and it is therefore surprising that game theory
provides a player with no reason or justification
for choosing H. To see why this is so, consider
the following standard common knowledge and
rationality assumptions of game theory:

1. Common knowledge: The specification of
the game, represented in a simple two-
player case by its payoff matrix, together
with everything that can validly be de-
duced from it, is common knowledge in
the game, in the sense that both players
know it, know that both know it, know
that both know that both know it, and so
on.

2. Rationality: The players are instrumen-
tally rational in the sense of always
choosing strategies that maximize their
own individual payoffs, relative to their
knowledge and beliefs, and this too is
common knowledge in the game.

  Player 2
  H L 

Player 1 H 2, 2 0, 0
L 0, 0 1, 1

Figure 1. The Hi-Lo game, with a payoff-dominant Nash
equilibrium at (H, H) and a dominated equilibrium at (L, L).
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On the basis of these assumptions, Player 1,
for example, has a reason to choose H in the
Hi-Lo game if and only if there is a reason to
expect Player 2 to choose H. The “only if”
condition arises from the fact that H is not an
unconditionally best strategy, because if Player
2 were to choose L, then Player 1 would do
better by also choosing L. The crucial question
is, therefore, whether Player 1 has a reason to
expect Player 2 to choose H. The answer is no,
because the symmetry of the game ensures that
Player 2 faces exactly the same dilemma, hav-
ing no reason to choose H in the absence of a
reason to expect Player 1 to choose it.

This problem of coordination cannot be
solved by pointing out that the (H, H) outcome
is more salient or prominent than (L, L), because
of its superior payoffs, or in other words that it
is a focal point in the sense of Schelling (1960),
although it obviously is. Gilbert (1989) pro-
vided a rigorous and conclusive argument
showing that “mere salience is not enough to
provide rational agents with a reason for action
(though it would obviously be nice, from the
point of view of rational agency, if it did)” (p.
69, italics in original). She showed that a player
has no reason to choose a salient focal point in
the absence of a reason to expect the co-player
to choose it. Any attempt to derive a reason for
choosing H from the standard common knowl-
edge and rationality assumptions generates a
vicious circle that loops back to the starting
point without reaching any definite conclusion
(Anderlini, 1999; Aumann & Sorin, 1989;
Bacharach, 2006, chap. 1; Bardsley, Mehta,
Starmer, & Sugden, 2010; Cooper, DeJong,
Forsythe, & Ross, 1990; Crawford & Haller,
1990; Harsanyi & Selten, 1988; Janssen, 2001).
The problem of coordination is of central im-
portance to our understanding of human social
behavior, and it arises frequently in everyday
strategic interactions, but it is poorly under-
stood, and both psychologists and decision sci-
entists have failed to pay it as much attention as
it deserves.

The fundamental solution concept of game
theory is Nash equilibrium (Nash, 1950, 1951).
In a two-player game, a Nash equilibrium is a
pair of strategies that are best replies to each
other, a best reply being a strategy that maxi-
mizes the payoff of the player choosing it, given
the strategy chosen by the co-player. It follows
from this definition that any pair of strategies

that are out of equilibrium constitute an out-
come that is necessarily self-destabilizing, be-
cause at least one player could have done better
by acting differently and, therefore, has a mo-
tive to avoid that outcome. In the Hi-Lo game,
(H, H) is a Nash equilibrium, because if Player
1 chooses row H, then Player 2’s best reply is
column H (because 2 
 0), and if Player 2
chooses column H, then Player 1’s best reply is
row H for the same reason. The H strategies are
best replies to each other, but essentially the
same argument establishes that (L, L) is also a
Nash equilibrium, because L is a best reply to L
for both players, although with lower payoffs of
1 to each. The game also has a mixed-strategy
equilibrium, the details of which need not detain
us here, in which both players choose randomly
with probabilities of 1/3 H and 2/3 L. The
outcomes (H, L) and (L, H) are both out of
equilibrium, neither strategy being a best reply
to the other. The (H, H) equilibrium payoff-
dominates (or Pareto-dominates) all other out-
comes of the game, including the (L, L) and
mixed-strategy equilibria, in the sense that both
players receive higher payoffs in (H, H) than in
any other outcome of the game, and the Hi-Lo
game is, therefore, a common interest game.
However, there is no reason, based on the stan-
dard assumptions of game theory, for either
player to choose H, and neither the influential
subgame-perfect equilibrium introduced by
Selten (1975) nor any of the other Nash equi-
librium refinements that have been proposed
solves this surprisingly tricky problem.

A celebrated indirect argument, first put for-
ward by von Neumann and Morgenstern (1944,
section 17.3.3, pp. 146 –148) in relation to
strictly competitive games and later generalized
to other games by Luce and Raiffa (1957, pp.
63– 65, 173) proves that if a game has a
uniquely rational solution, then that solution
must be a Nash equilibrium. The proof can be
outlined for a two-player game as follows. The
standard common knowledge and rationality as-
sumptions imply that if a game has a uniquely
rational solution—in a two-player game, if it is
uniquely rational for Player 1 to choose a par-
ticular strategy s1 and for Player 2 to choose a
particular strategy s2—then those strategies
must be best replies to each other, because
common knowledge ensures that each player
can anticipate the other’s strategy and will
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choose a best reply to it. Because s1 and s2 are
best replies to each other, they are in Nash
equilibrium by definition. However, although a
uniquely rational solution must necessarily be a
Nash equilibrium, the theory is indeterminate in
games with two or more Nash equilibria, even
in common interest games in which one equi-
librium is better for both players than any other,
because the standard common knowledge and
rationality assumptions provide no reason for
choosing strategies associated with a payoff-
dominant equilibrium (Harsanyi & Selten,
1988). Nevertheless, in the Hi-Lo game, for
example, experimental evidence confirms that,
in practice, more than 96% of players manage
without difficulty to coordinate on the obvious
payoff-dominant (H, H) equilibrium (Bardsley
et al., 2010).

Ad-Hoc Explanations

How can coordination in common interest
games be explained? In particular, what ac-
counts for the powerful intuition that it is ratio-
nal to choose strategies associated with payoff-
dominant Nash equilibria in the Hi-Lo game
and other common interest games? Harsanyi
and Selten (1988) called this the payoff-
dominance problem and discussed it at length in
relation to the Stag Hunt game shown in Figure
2. Like the Hi-Lo game, the Stag Hunt game is
a common interest game with two Nash equi-
libria in the main diagonal, (C, C) payoff-
dominating (D, D). It is named after Rousseau’s
(1755, Part 2, paragraph 9) example of two
hunters who need to cooperate (C) to catch a
stag, but who are both tempted to defect (D) and
chase after a hare, which they can catch without
each other’s help. (In Harsanyi and Selten’s
version shown in Figure 2, if both players de-
fect, then they are slightly less likely to catch

hares, perhaps because they may chase after the
same one.)

Harsanyi and Selten (1988) solved the prob-
lem by introducing a payoff-dominance princi-
ple as an axiom of rationality. According to this
principle, it is simply an axiomatic feature of
human rationality that if one Nash equilibrium
payoff-dominates all others in a game, then
players will choose the strategies associated
with it. Harsanyi and Selten proposed this prin-
ciple (together with a secondary risk-dominance
principle that we need not discuss here) merely
as a temporary workaround, acknowledging that
it provides no explanation for the fact that pay-
off-dominant equilibria are easily chosen by
players in practice, or for the powerful intuitive
appeal of such solutions (see their comments on
pp. 355–363). Janssen’s (2001, 2006) principle
of individual team member rationality is a weak
variant of the same ad hoc axiom, applying to
payoff-dominant outcomes whether or not they
are Nash equilibria.

A number of other researchers have grasped the
nettle and attempted to explain the payoff-
dominance phenomenon. Following these intro-
ductory remarks, we critically review the most
prominent explanations. We refer to these expla-
nations as theories, restricting the term strategies
to the game-theoretic sense of options that players
can choose in any particular game. We leave aside
theories that depend on essential alterations of the
rules of the game—that it is played just once and
that players choose their strategies independent-
ly—particularly those that require repetitions of
the game (Anderlini & Sabourian, 1995; Aumann
& Sorin, 1989) or costless preplay communication
or “cheap talk” between the players (Anderlini,
1999; Ellingsen & Östling, 2010; Farrell, 1988;
Rabin, 1994). Among the theories that we discuss
is a theory of strong Stackelberg reasoning, de-
signed to avoid the problems associated with other
theories and presented here for the first time in its
improved form. We then report the results of two
experiments designed to compare the performance
of the leading theories against one another, and we
conclude with a discussion of the results.

Principle of Indifference and Theory of
Rational Beliefs

According to the principle of indifference
(Keynes, 1921, pp. 41–64), also called the prin-
ciple of insufficient reason, we may assign equal

Player 2
C D

Player1 C 9, 9 0, 8
D 8, 0 7, 7

Figure 2. The Stag Hunt game, with a payoff-dominant
Nash equilibrium at (C, C) and a payoff-dominated Nash
equilibrium at (D, D).
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probabilities to events whenever there is no
reason to believe that one is more probable than
another. A common fallacy (e.g., Gintis, 2003;
Monterosso & Ainslie, 2003) involves an at-
tempt to apply this principle to the payoff-
dominance problem, using an argument along
the following lines. In the Hi-Lo game shown in
Figure 1, if Player 1 does not know which
strategy Player 2 is likely to choose, then Player
1 may assign equal probabilities to Player 2’s
strategies. Player 1’s expected payoff from
choosing H is then (1/2 	 2) � (1/2 	 0) � 1,
and because this is better than the expected
payoff from choosing L, namely (1/2 	 0) �
(1/2 	 1) � 1/2, it is rational for Player 1 to
choose H and, by symmetry, it is also rational
for Player 2 to choose H. This appears to estab-
lish a reason for choosing strategies associated
with the payoff-dominant Nash equilibrium (H,
H). Unfortunately, it is not valid to assign prob-
abilities to a co-player’s strategies in this way,
as the following proof by reductio ad absurdum
shows (Colman, 2003a). According to the stan-
dard common knowledge assumption (1) stated
formally earlier in the article, Player 1’s deduc-
tion that it is rational to choose H, if it were
valid, would be common knowledge in the
game, and according to the rationality assump-
tion (2), Player 2 would therefore choose H with
certainty, contradicting Player 1’s initial as-
sumption that this probability is 1/2. Therefore,
Player 1 cannot apply the principle of indiffer-
ence without contradiction.

Other versions of this argument, more subtle
but equally invalid, are also based on subjective
probabilities. For example, Hausman (2003) in-
voked the theory of rational beliefs as a basis
for arguing as follows: “Player 1 can believe
that the probability that Player 2 will play H is
not less than one half, and also believe that
Player 2 believes the same of Player 1. Player 1
can then reason that Player 2 will definitely play
H, update his or her subject probability accord-
ingly, and play H” (pp. 163–164).1 But why
should a player believe that the probability is
not less than 1/2 that the co-player will choose
H? Can Player 1 believe that the probability is
not less than 3/4 and then apply the same rea-
soning? The absurdity becomes clear if we carry
this to its logical conclusion and assume Player
1 believes that the probability is not less than
unity that Player 2 will play H. This exposes the
hidden logical fallacy of begging the question

(petitio principii) or assuming what we are try-
ing to prove. Solutions of this type, together
with those based on the principle of indiffer-
ence, are spurious, and we do not include them
in our experimental tests, described later in this
article.

Social Projection Theory

Social projection theory (Acevedo &
Krueger, 2004, 2005; Krueger, 2007, 2008;
Krueger & Acevedo, 2005; Krueger, DiDonato,
& Freestone, 2012) rests on a fundamental as-
sumption that people tend to project their preferences
and intentions on to others and, in particular,
that “most people have a strong expectation that
members of their own groups will act as they
themselves do” (Krueger, 2008, p. 399). In the
Hi-Lo game (see Figure 1), a player therefore
expects either strategy choice to be matched by
the co-player. The payoff from choosing H is
thus expected to be 2 and from choosing L it is
expected to be 1, and a rational player has a
reason to choose H, because 2 
 1. This theory
seeks to explain not only coordination in sym-
metric common interest games, but also coop-
eration in social dilemmas, from the assumption
that players expect their strategy choices to be
matched.

A mathematical foundation for social projec-
tion theory was first suggested by Dawes (1989)
in his rationalization of the false consensus
effect, later elaborated by Krueger (1998),
Dawes (2000), and Krueger, DiDonato, and
Freestone (2012), among others. Suppose that
you have literally no basis for predicting
whether your co-player will choose H or L in
the Hi-Lo game. You apply the principle of
indifference and, in the terminology of Bayes-
ian decision theory, start off with a uniform
prior—your initial subjective probability that
your co-player will choose the H strategy is
P(H) � 1/2. Suppose further that you decide to
choose H. Your own choice provides data that
you should use to update your probability esti-
mate of the co-player’s choice to P(H) 
 1/2.
Dawes argued that there is no good reason to
ignore it, because it is empirical evidence of
how people behave, even though the size of the

1 Hausman (2003) was referring to a slightly different
coordination game, but this does not affect the point that he
was making or our rebuttal.
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sample is just N � 1 and its only member is
you. We can model this with the process of
judging the probability that a ball drawn from
an urn will be red, assuming that the urn con-
tains an unknown mixture of red and black
balls, every possible ratio of red and black balls
being equally likely. Initially, you have no way
of knowing the composition of the urn, so it
seems reasonable to start with a uniform prior.
Suppose that you then draw a single ball, note
that it is red, and replace it in the urn. Your task
is to estimate the probability that a second draw
will produce another red ball. Your estimate
should be influenced by the color of the first
ball, because whatever your prior was before
drawing any balls, a red ball should nudge your
posterior (the probability of a second red ball)
higher. This appears to provide a reason for
choosing H in the Hi-Lo game, because if you
choose H and consider your own choice as
evidence, you should expect that your co-player
will probably choose H also.

Dawes (1989, 1990, 2000) claimed that, ac-
cording to Bayesian theory, a person who starts
out with a uniform prior, P(H) � 1/2, should
update the probability to P(H) � 2/3 after draw-
ing a single red ball. He offered several heuris-
tic arguments and partial proofs, and other re-
searchers have repeated his claim but, as far as
we are aware, no complete proof has appeared.
The result is, however, correct, and the phenom-
enon turns out to be a special case of Laplace’s
rule of succession (see Kendall, 1945, pp. 176–
177). In Appendix A we provide a proof of it
that is not difficult but (surprisingly) requires
integral calculus. The relevance of this to social
projection theory is that a player with a uniform
prior who chooses either H or L in the Hi-Lo
game shown in Figure 1 should assign a prob-
ability of 2/3 to the event that the co-player will
choose the matching strategy. It is argued that a
player’s expected payoff from choosing H is
therefore (2/3 	 2) � (1/3 	 0) � 4/3, and from
choosing L is (1/3 	 0) � (2/3 	 1) � 2/3,
therefore a player who is rational in the sense of
the rationality assumption (2) stated formally
earlier in the article will choose H. This is the
mathematical foundation of the social projec-
tion theory of coordination in common interest
games first suggested by Acevedo and Krueger
(2004, 2005).

There are two main problems with this. The
first is that the Bayesian reasoning underlying it

applies only if players have no grounds what-
soever, apart from the evidence of their own
choices, for judging the probabilities associated
with the choices of others. This condition is
never satisfied in real-life social interactions.
Past experience invariably provides clues from
similar interactions that are bound to influence a
player’s assessment of the probabilities. In fact,
in the context of past experience, a player’s own
choice is hardly likely to provide a significant
amount of additional evidence, still less the only
evidence.

A more fundamental problem arises from the
temporal structure of the hypothesized judg-
ment and decision process. According to social
projection theory as applied to the Hi-Lo game,
(a) players expect others to choose the same
strategies that they choose themselves; (b)
therefore, whatever they choose in the Hi-Lo
game, they expect their co-players to choose the
matching strategy; and (c) this explains why
they normally choose H and why this seems
intuitively appealing. The problem is that play-
ers’ expectations follow after and as a conse-
quence or effect of their own choices and cannot
therefore explain those choices, because an ef-
fect cannot precede its own cause. This problem
can be evaded by assuming that players merely
contemplate choosing each of the available
strategies, assuming in each case that their
choice would be matched if they were to make
it, and then choose the strategy that promises
the best payoff given that assumption (Krueger
et al., 2012), but this seems acceptable only if
choices that are merely contemplated are treated
on an equal footing, for purposes of Bayesian
updating, with choices that are actually made. A
player’s actual choices may possibly provide
evidence that others are likely to choose the
same strategies, but it could be argued that
options that are merely contemplated and not
chosen provide no such evidence. A consistent
interpretation of social projection theory sug-
gests that people should expect others not to
choose what they themselves have not chosen,
after contemplation.

Social projection theory relies on a form of
reasoning, called evidential decision theory,
that is rejected by many decision theorists but
also has some distinguished advocates (e.g.,
Eells, 1984, 1989; Jeffrey, 1983, 2004; Nozick,
1993, pp. 43–59). The temporal structure objec-
tion set out in the previous paragraph is not
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universally accepted and, whether or not evi-
dential decision theory is valid, there is exper-
imental evidence that many people do, in fact,
apply it in certain circumstances (Anand, 1990;
Quattrone & Tversky, 1984). However, social
projection theory is obviously limited to sym-
metric games, because decision makers have no
reason to expect others to act as they themselves
do in situations in which similar actions have
different consequences, or in games in which
similar actions cannot even be unambiguously
specified. Cognitive hierarchy theory and other
theories of coordination outlined in the follow-
ing paragraphs apply to both symmetric and
asymmetric games, and any empirical compar-
ison of theories requires asymmetric experi-
mental games, because different theories all
predict the same choices in symmetric games.
For this reason, we do not include social pro-
jection theory in our experimental tests, al-
though we acknowledge that it may help, in part
at least, to explain choices in symmetric games
such as the Hi-Lo and Stag Hunt games shown
in Figures 1 and 2.

Cognitive Hierarchy Theory

Cognitive hierarchy theory was first proposed
by Camerer, Ho, and Chong (2004), following
slightly more elaborate versions put forward by
Stahl and Wilson (1994, 1995) and Bacharach
and Stahl (2000). It is a theory of bounded
rationality designed to model players who rea-
son with varying levels of strategic depth.
Level-0 players have no beliefs about their co-
players and choose strategies randomly, with
uniform probability; Level-1 players maximize
their own payoffs given their belief that their
co-players are Level-0 players; Level-2 players
maximize their own payoffs given their belief
that their co-players are Level-1 or Level-0
players; and so on. The integrative models of
social value orientation proposed by Van Lange
(1999) amount to Level-1 reasoning applied to
transformed payoffs, after each player’s payoffs
have been incremented by a fixed amount h in
outcomes where their co-players receive identi-
cal payoffs or decreased by h in outcomes
where they are different, to reflect equality-
seeking, and in some models, additional payoff
transformations are applied (Colman, Pulford,
& Rose, 2008b; Van Lange, 2008).

Experimental evidence reported by Camerer
et al. (2004) suggested that Level 1 is most
common, followed by Level 2, and that higher
levels occur only very infrequently. This has
been corroborated by Hedden and Zhang
(2002), Bardsley, Mehta, Starmer, and Sugden
(2010), and others, and it is also consistent with
evidence of levels of recursive thinking typi-
cally found in other domains of cognition (Col-
man, 2003b).

The reasoning used by Level-1 players
amounts to unweighted (or equal-weighted) ex-
pected payoff maximization, and it is nonstra-
tegic in the sense that it makes no attempt to
analyze the game from the co-player’s point of
view. In the Hi-Lo game shown in Figure 1, a
Level-1 player believes that the co-player will
choose H or L with equal probability, and the
Level-1 player chooses the strategy that maxi-
mizes expected payoff relative to that belief
about the co-player. That strategy is H, because
(1/2 	 2) � (1/2 	 0) 
 (1/2 	 0) � (1/2 	 1).
A Level-2 player also chooses H because it
yields the best payoff (2 rather than 0) against a
Level-1 player who, as we have just shown,
chooses H.

One major weakness of cognitive hierarchy
theory as a theory of coordination is that,
whereas it works for pure coordination games
such as the Hi-Lo game, it fails in other com-
mon interest games. It will suffice to consider
the Stag Hunt game shown in Figure 2. A Lev-
el-1 player chooses D, because (1/2 	 9) �
(1/2 	 0) � (1/2 	 8) � (1/2 	 7), a Level-2
player also chooses D, because 7 
 0, and the
same applies to higher-level players. Thus, cog-
nitive hierarchy theory fails to predict the pay-
off-dominant (C, C) outcome in this frequently
discussed version of an iconic common interest
game, even with arbitrarily deep levels of stra-
tegic reasoning. However, (C, C) is intuitively
appealing, and 79% of players in an experimen-
tal Stag Hunt game reported by Colman and
Stirk (1998) chose C.

A second problem with the theory is its asym-
metry: It relies on an assumption that players
never credit their co-players with the same level
of strategic sophistication as themselves. Al-
though there is evidence for self-serving beliefs
in other domains (Krueger & Wright, 2011), it
is not clear why players should hold this patron-
izing belief, and it seems unlikely that they do.
A world in which everyone is a deeper strategic
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thinker than everyone else is reminiscent of
Lake Wobegon in Garrison Keillor’s radio
show A Prairie Home Companion, “where all
the women are strong, all the men are good-
looking, and all the children are above average.”
Nevertheless, the theory certainly provides a
simple explanation for coordination in many
common interest games, including asymmetric
games, therefore we include it in our experi-
mental tests.

Team Reasoning

According to theories of team reasoning
(Bacharach, 1999, 2006; Gold & Sugden, 2007;
Smerilli, 2012; Sugden, 1993, 2005), there are
circumstances in which players are motivated to
maximize not their individual expected payoffs,
as specified by the standard rationality assump-
tion (2) stated formally earlier in the article, but
the collective payoff of the group of players
involved in the game. Decision making based
on such collective preferences is usually called
team reasoning, and theories of team reasoning
generally assume that circumstances dictate
whether players attempt to maximize their col-
lective payoffs (team reasoning) or their indi-
vidual payoffs (orthodox individual reasoning).
Common interest games provide typical cir-
cumstances in which collective payoff maximi-
zation and team reasoning might be expected to
occur (Tan & Zizzo, 2008). Standard game the-
ory is interpreted as a special case of team
reasoning in which the group happens to be a
singleton.

The key assumption, that team-reasoning
players attempt to maximize collective rather
than individual payoffs, is a radical departure
from orthodox game theory and decision theory.
In orthodox theory, players are assumed to ask
themselves, in effect, What do I want, and what
should I do to achieve it? Team-reasoning play-
ers are assumed to ask, What do we want, and
what should I do to play my part in achieving it?
If we make the natural assumption that the
collective payoff is simply the sum (or equiva-
lently, the average) of the individual payoffs in
any outcome, then in the Hi-Lo game shown in
Figure 1, the team-reasoning answer is obvi-
ously: We want (H, H), because the collective
payoff of 4 is greater than in any other outcome,
and what I need to do to play my part in
achieving that outcome is to choose H. In the

Stag Hunt game shown in Figure 2, a team-
reasoning player reasons: We want (C, C), be-
cause the collective payoff of 18 in that outcome
is greater than in any other, and I should play
my part by choosing C. Team reasoning thus
provides a compelling solution to both of these
games, and to all other common interest games
as well.

Team-reasoning players use a distinctive
mode of reasoning to reach decisions on the
basis of their own and their co-players’ individ-
ual preferences. They begin by searching for a
profile of strategies that maximizes the collec-
tive payoff of the pair or group of players. If
such a profile is unique, they choose and play its
component strategies. If the game has no unique
strategy profile that is collectively rational, then
the theory is indeterminate. Team reasoning
provides a complete solution to the payoff-
dominance problem. It solves all common in-
terest games, because these games have payoff-
dominant Nash equilibria that are necessarily
collectively rational outcomes.

A player has no reason to adopt the team-
reasoning mode in the absence of a belief that
the other player(s) will do likewise, and all
versions of the theory assume that team reason-
ing occurs only when a player expects the co-
player(s) to adopt the team-reasoning mode.
This should be distinguished from social pro-
jection theory, according to which players as-
sume automatically that others will act as they
do themselves. In Bacharach’s (1999, 2006)
stochastic version of the theory, players adopt
the team-reasoning mode if the probability that the
co-player(s) will do the same is high enough. The
probability that a player will adopt the team-
reasoning mode is represented by a parameter
omega (0 � � � 1), the value of which is
common knowledge in the game, and players
are assumed to adopt the team-reasoning mode
if and only if � is high enough to ensure that the
expected collective payoff is maximized by
team reasoning; otherwise, the player is as-
sumed to lapse into the individual payoff max-
imization characteristic of standard game-
theoretic reasoning.

Team reasoning requires the abandonment of
a fundamental assumption of methodological
individualism, the bedrock of rational choice
theory, incorporated in the standard rationality
assumption (2) stated formally earlier in the
article. More generally, methodological individ-
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ualism implies that decision makers are rational
in the sense of attempting to do the best for
themselves as individuals in all circumstances
that arise (Elster, 1982). This creates problems
in interpreting team reasoning within the frame-
work of orthodox game theory, where the pay-
offs are von Neumann–Morgenstern utilities in
the sense of expected utility theory. These are
supposed to represent the players’ preferences,
taking into account everything that affects these
preferences, including other-regarding consid-
erations of how co-players are affected by the
outcomes. Theories of team reasoning assume
that team-reasoning players’ utilities are func-
tions of their own and their co-players’ individ-
ual payoffs, but individual payoffs, if they are
von Neumann–Morgenstern utilities, already in-
corporate considerations of co-players’ payoffs,
and all that ought to remain is for players to
maximize their own individual utilities. We
cannot get around this problem by conceding
that team-reasoning players do indeed attempt
to do the best for themselves as individuals,
but that they happen to be individually moti-
vated to achieve collectively rational out-
comes, because in that case their collective
preferences should be fully reflected in their
individual payoff functions, and conventional
individual reasoning should suffice, so that
we could simply replace each individual pay-
off by the sum of both players’ payoffs in the
corresponding outcome. For example, in Fig-
ure 1, we could replace the payoffs in (H, H)
with (4, 4) and the payoffs in (L, L) with (2,
2), but this would not provide players with
any reason to choose H: The strategic struc-
ture of the game would be unaltered and team
reasoning would still be required.

However, the financial payoffs used to moti-
vate players in experimental games do not and
cannot incorporate other-regarding preferences,
and there is persuasive experimental evidence
that team reasoning applied to individual objec-
tive payoffs, rather than subjective utilities, does
indeed occur in experimental games (Bardsley
et al., 2010; Butler, 2012; Colman, Pulford, &
Rose, 2008a). Although team reasoning violates
the assumption of methodological individual-
ism at a theoretical level, from a more practical
point of view it offers a persuasive explana-
tion for coordination in experimental games,
where it applies to objective payoffs rather

than utilities, and we therefore include it in
our experiments.

Strong Stackelberg Reasoning

The theory of strong Stackelberg reasoning
is an improved version of an earlier theory of
Stackelberg reasoning (Colman & Bacharach,
1997), named after a simple model of leader-
follower games proposed by Heinrich von
Stackelberg (1934). The new theory is de-
signed to overcome a limitation of the previ-
ous version and to avoid problems associated
with the other theories of coordination that we
have outlined. It requires no modification of
the one-shot, independent choice rules of the
game, or of methodological individualism,
and it retains the standard common knowl-
edge and rationality assumptions of orthodox
game theory. Its distinctive assumption is that
players choose strategies as if they believed
that their co-players could anticipate their
choices and invariably choose best replies to
them, and that they maximize their own pay-
offs accordingly. In other words, players
choose strategies according to standard game-
theoretic assumptions, but they behave as if
choosing first in a sequential game with per-
fect information—a game in which the player
moving second always knows the first play-
er’s move, as in chess, for example. Game
theory places no limitations on players’ be-
liefs, apart from technical assumptions of
completeness and consistency, hence this the-
ory would not require any nonstandard as-
sumptions even if we stipulated that players
using strong Stackelberg reasoning actually
believed that their co-players could anticipate
their choices. A related theory proposed by
Weber, Camerer, and Knez (2004) applies to
games in which players actually do choose
strategies sequentially but the player moving
second does not know the first player’s pre-
vious move.

Players are assumed to generate strong Stack-
elberg strategies by identifying the strategies
that maximize their own payoffs against invari-
ably best-replying co-players, and they then
play those strong Stackelberg strategies if they
form Nash equilibria. Stackelberg reasoning
thus involves a strong Stackelberg strategy gen-
erator (a mode of reasoning that generates
Stackelberg strategies, provided that best replies
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are strong) followed by a Nash filter to check
that the Stackelberg strategies are in Nash equi-
librium.2 Games in which strong Stackelberg
strategies form Nash equilibria are S-soluble.
Games in which strong Stackelberg strategies
are not well defined or are out of equilibrium are
non-S-soluble, and in such games the theory
makes no specific predictions. The theory is
presented formally in Appendix B.

The principal limitation of the earlier theory
of Stackelberg reasoning (Colman & Bachar-
ach, 1997) is its failure to deal with the problem
that Stackelberg strategies are not necessarily
well defined if the co-player has a best reply that
is not unique—if two or more replies are best
and yield payoffs that are jointly optimal. An
example of such a game is given in Figure 3.
Suppose that I am Player 1 and you are Player
2. Using Stackelberg reasoning, I expect that
any strategy choice of mine will be met by your
best reply. But you have two jointly best replies
to my A strategy, because you receive the same
payoff (2) whether you reply with A or B. Al-
though I am motivated to choose a payoff-
maximizing strategy of my own, I cannot antic-
ipate your response to my A strategy, and hence
Stackelberg reasoning does not enable me to
work out which of my own strategies is best for
me: A would be best for me if you were to reply
with A (my payoff would be 3, rather than 2
from choosing B), otherwise B would be best
for me (my payoff would be 1, rather than 0
from choosing A). The Stackelberg strategy
generator simply breaks down in a game such as
this, and the earlier theory of Stackelberg rea-
soning provides no solution to this problem.

The theory of strong Stackelberg reasoning
overcomes the problem by exploiting the strong
best reply function, introduced by Harsanyi and
Selten (1988), in which best replies are unique
by definition. Although strong best replies in
this sense obviate the problem of ill-defined

Stackelberg strategies, we show that a slightly
weaker condition, inspired by the concept of
mutual ordinality (Howard, 1971, pp. 147–151),
suffices to ensure that the Stackelberg generator
always yields a unique best reply. The key
assumption (see Appendix B) is that when a
player strictly prefers one outcome to another,
the co-player is never indifferent between the
same two outcomes. This ensures that strong
Stackelberg strategies are invariably well de-
fined. Our condition may appear, at first, to limit
the applicability of the theory by arbitrarily
excluding some (perhaps many) real-life strate-
gic interactions from the scope of the theory,
but that turns out not to be the case for two
reasons. First, even in games in which our con-
dition does not hold, strong Stackelberg strate-
gies may nevertheless be well defined—all that
is strictly necessary is that the maximum payoff
to Player 1 in each column of the payoff matrix
and the maximum payoff to Player 2 in each
row is unique. Second and more important, our
condition for strong best replies is violated only
if players are completely indifferent to the pay-
offs of their co-players, and that is never the
case in real-life strategic interactions. In the
game depicted in Figure 3, Player 2 is indiffer-
ent between the (A, A) to the (A, B) outcomes
because 2 � 2, although Player 1 prefers (A, A)
to the (A, B) because 3 
 0. This could arise in
real life only if Player 2 were utterly indifferent
to Player 1’s payoffs.

It is widely acknowledged that other-
regarding social value orientations such as co-
operativeness, competitiveness, and altruism
(Colman, Körner, Musy, & Tazdaït, 2011; Rus-
bult & Van Lange, 2003; Van Lange, 2000),
and other-regarding considerations of fairness
and reciprocity (e.g., Arnsperger & Varoufakis,
2003; Bolton & Ockenfels, 2000; Brosnan & de
Waal, 2002; Fehr & Schmidt, 1999; Trivers,
2005) influence the preferences of humans and
even nonhuman primates. We are never entirely
indifferent to the payoffs of others with whom
we interact. It is also worth noting that the
condition that turns out to be sufficient to es-
tablish that best replies are strong does not
imply any abandonment of methodological in-
dividualism, because the generic other-regard-

2 We are grateful to Werner Güth for suggesting this
terminology.

Player 2
A B

Player1 A 3, 2 0, 2
B 2, 2 1, 1

Figure 3. A game in which Player 2 does not have a strong
best reply to Player 1’s A strategy.
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ing preferences specified in Equations and In-
equalities 4 and 5 in Appendix B are fully
integrated into the players’ own payoff func-
tions, and players are motivated to maximize
their individual payoffs in accordance with
standard game-theoretic assumptions.

Applying strong Stackelberg reasoning to the
Hi-Lo game shown in Figure 1, Player 1
chooses a strategy as though believing that H
would be met by Player 2’s best reply H, and L
would be met by Player 2’s best reply L. Player
1 receives a payoff of 2 in the first case and 1 in
the second and, therefore, prefers the payoff-
maximizing strategy H and, because the game is
symmetric, Player 2 arrives at the same conclu-
sion. Because (H, H) is in equilibrium, it is the
strong Stackelberg solution of the game, and
both players therefore choose H. In the Stag
Hunt game shown in Figure 2, a similar analysis
shows that both players choose C.

It is not difficult to prove that every common
interest game is S-soluble, and that, if a game
with multiple Nash equilibria has one equilib-
rium that payoff-dominates the others, then its
strong Stackelberg solution is its payoff-
dominant Nash equilibrium (see Colman &
Bacharach, 1997, for proofs that apply with
only minor modifications to strong Stackelberg
reasoning). The theory of strong Stackelberg
reasoning therefore appears to provide a com-
prehensive explanation of coordination in com-
mon interest games between players who care
about one another’s payoffs, and it avoids the
problems associated with the other theories that
we have reviewed.

Other theories discussed in this article appear
also to explain coordination, at least in experi-
mental games, although it is conceivable that
none of the existing theories is satisfactory. We
therefore tested the theories of cognitive hierar-
chy theory (Level-1 and Level-2 reasoning),
team reasoning, and strong Stackelberg reason-
ing in two experiments specifically designed to
compare their performance against one another.
We did not use common interest games because
the theories under investigation would all pre-
dict the same strategy choices, and we did not
use 2 	 2 games because they would not have
been very useful for distinguishing between
four potentially different theoretical predictions.
Instead, we designed 3 	 3 and 4 	 4 experi-
mental games in which the theories generate
conflicting predictions.

Experiment 1

Method

Participants. The participants were 68 stu-
dents and employees at the University of
Leicester (45 female, 23 male), aged 18–52
years (M � 25.28, SD � 6.71) recruited from
the School of Psychology’s participant panel, an
approximate sample size of 70 having been
determined in advance. They were remunerated
according to the random lottery incentive sys-
tem, a technique that avoids a number of prob-
lems associated with other payment schemes
(Lee, 2008) and has been shown to elicit true
preferences (Cubitt, Starmer, & Sugden, 1998;
Starmer & Sugden, 1991). We paid each partic-
ipant a show-up fee of £3.00 ($5.00) plus an
additional amount, up to £5.00 ($8.00) accord-
ing to their payoffs in a single game randomly
preselected from the 12 games used in the ex-
periment. To maximize the incentive value of
the remuneration, we did not mention the
show-up fee until the experiment was over:
Before and during the experiment the partici-
pants knew only that they could win up to £8.00
($13), depending on their choices in a randomly
chosen game.

Materials. We devised eight S-soluble 3 	
3 games and four S-soluble 4 	 4 games capa-
ble of distinguishing between the various theo-
ries under investigation, namely cognitive hier-
archy theory (Level-1 and Level-2 reasoning),
team reasoning, and strong Stackelberg reason-
ing. The 12 games used in the experiment are
displayed in Figure 4. Seven of the eight 3 	 3
games (all apart from Game 3) and all four of
the 4 	 4 games are asymmetric, and best
replies are strong in the sense defined in Ap-
pendix B. There are no strongly or weakly dom-
inant strategies in any game. We randomized
the order of the 12 games and presented them in
reverse order to half the players to check for
possible order effects. We did not drop any
variables, conditions, or games from our analy-
ses in this experiment or in Experiment 2.

The experimental participants were assigned
to the role of Player 1 (row chooser). In each
testing session, a single participant, whose re-
sponses were not included in our data analysis,
served as Player 2 for all other players in the
same testing session. Predictions derived for
Player 1 choices are unique in every game, in
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the sense that each theory predicts exactly one
strategy choice. In Game 1, for example, the
cognitive hierarchy Level-1 prediction for
Player 1 is B, because a Player 1 who believes
that Player 2 will choose randomly with uni-
form probability has the following expected
payoffs: from choosing A, (3 � 1 � 0)/3; from
choosing B, (1 � 2 � 3)/3; and from choosing
C, (2 � 1 � 2)/3; and because the greatest
expected payoff is from choosing B, a Level-1
cognitive hierarchy reasoner will choose B. The
cognitive hierarchy Level-2 prediction for
Player 1 is B, because a Level-2 Player 1 who
believes that Player 2 will use Level-1 reason-
ing will expect Player 2 to choose C, and the
best reply to C is B. The team reasoning pre-
diction is that Player 1 will choose C, because
the collective payoff in the (C, C) outcome (2 �
5 � 7) is greater than in any other outcome. The
theory of strong Stackelberg reasoning predicts
that Player 1 will choose A because a Player 1
who expects Player 2 to choose a best reply to
any strategy expects A to elicit the reply A,
paying 3 to Player 1, B to elicit the reply B, paying
2 to Player 1, and C to elicit the reply C, paying
2 to Player 1. Therefore, Player 1 will choose A
(because 3 
 2), and a similar argument shows
that Player 2 will also choose A. Finally, (A, A)
is a Nash equilibrium because these A strategies
are best replies to each other, hence the game is
S-soluble, and Player 1 will therefore choose A.

It is clearly impossible to have four distinct
predictions in a game with only three strategies
per player, hence in Game 1, cognitive hierar-
chy Level-1 reasoning, team reasoning, and

strong Stackelberg reasoning make distinct pre-
dictions for Player 1’s choice, but cognitive
hierarchy Level-2 reasoning predicts the same
choice as cognitive hierarchy Level-1 reason-
ing. In the other 3 	 3 games, there was always
one strategy choice that was predicted by two
theories. In each of our 4 	 4 games, cognitive
hierarchy Level-1 reasoning, cognitive hierar-
chy Level-2 reasoning, team reasoning, and
strong Stackelberg reasoning are fully sepa-
rated, each yielding a different prediction for
Player 1’s choice.

Procedure. The experiment was conducted
over four 35-min testing sessions, with approx-
imately 16–18 participants per session. The par-
ticipants sat at computer monitors and logged
on to the SurveyGizmo data-gathering Web site,
where they were presented with the following
on-screen instructions:

You will be presented with a series of 12 grids. For
some grids you will be asked to choose between A,
B, and C, and for others you will be asked to choose
between A, B, C, and D. You will be paired with
another randomly selected participant in this room
for each of your 12 decisions. In each case, the other
participant will be presented with the identical grid
and will also be choosing between A, B, and C, or A,
B, C, and D. Your objective for each grid will be to
maximize the number of points that you score. At
the end of the experiment, one of the grids will be
chosen randomly from the 12. The number of points
that you and the other participant scored in that grid
will be converted to pounds Sterling, and you will be
paid that in cash at the end of today’s session. When
you are making your choices, you will not know who
you are paired with or what choices they are making,
and they will also not know what choices you are

A B C
A 3, 3 1, 0 0, 2
B 1, 1 2, 2 3, 0
C 2, 0 1, 2 2, 5

Game 1

A B C
A 3, 3 1, 1 0, 2
B 1, 1 1, 4 3, 0
C 0, 0 2, 1 2, 5

Game 2

A B C
A 3, 3 0, 5 1, 0
B 5, 0 2, 2 0, 4
C 0, 1 4, 0 2, 2

Game 3

A B C
A 4, 3 1, 4 1, 0
B 5, 0 3, 3 0, 4
C 1, 1 4, 0 2, 2

Game 4

A B C
A 2, 5 0, 1 3, 1
B 0, 2 3, 3 0, 2
C 4, 1 2, 1 0, 3

Game 5

A B C
A 1, 4 0, 1 5, 2
B 0, 1 3, 3 0, 1
C 3, 2 2, 1 2, 3

Game 6

A B C
A 4, 3 1, 4 5, 1
B 0, 0 4, 2 3, 4
C 5, 5 1, 4 2, 2

Game 7

A B C
A 4, 3 2, 4 5, 2
B 0, 0 4, 2 3, 4
C 5, 5 1, 4 2, 1

Game 8
A B C D

A 4, 4 2, 0 3, 2 1, 5
B 2, 2 3, 3 2, 2 2, 0
C 4, 3 2, 4 2, 5 3, 2
D 5, 2 0, 3 0, 0 1, 1

Game 9

A B C D
A 4, 4 1, 5 0, 2 2, 3
B 5, 1 3, 3 1, 5 1, 4
C 2, 1 2, 1 2, 2 3, 1
D 1, 3 4, 1 1, 0 1, 1

Game 10

A B C D
A 4, 3 0, 4 3, 0 0, 0
B 5, 0 3, 3 2, 1 0, 4
C 0, 3 4, 0 2, 2 0, 1
D 0, 0 2, 0 1, 0 1, 1

Game 11

A B C D
A 4, 3 2, 0 2, 2 0, 4
B 1, 2 3, 3 3, 0 1, 0
C 3, 2 2, 3 2, 2 2, 2
D 5, 1 1, 1 0, 3 1, 1

Game 12

Figure 4. S-soluble experimental games, with shaded cells indicating strong Stackelberg
solutions and hence also Nash equilibria. Player labels (1 for row chooser and 2 for column
chooser) are suppressed to save space.

46 COLMAN, PULFORD, AND LAWRENCE



making. For each grid, please indicate your choice
by selecting either A, B, C, or D.

The participants were given the opportunity
to seek clarification of anything they did not
understand, after which the payoff matrices
were presented in succession on their moni-
tors, with Player 1’s labels and payoffs shown
in blue and Player 2’s in red. In each session,
the participant in the role of Player 2 was
presented with similar material, but written
from the perspective of the red player. For the
participants in the role of Player 1, the fol-
lowing text was displayed below each payoff
matrix to help them interpret the game: “You
are the Blue decision maker, choosing be-
tween the rows marked A, B, or C [or D]. The
person you have been paired with is the Red
decision maker, choosing between columns A,
B, or C [or D]. Depending on what you and
the other decision maker choose, you will get
one of the blue payoffs, and the red decision
maker will get one of the red payoffs.” This
was followed by a full textual summary of the
information shown in the payoff matrix, as
follows (this example relates to Game 1):

If you choose A, then:

If Red chooses A, you will get 3, and Red will get 3

If Red chooses B, you will get 1, and Red will get 0

If Red chooses C, you will get 0, and Red will get 2

[and so on . . . .]

The participants then made one-off (unre-
peated) strategy choices in each of the 12
games by clicking radio buttons marked A, B,
C, or D. No feedback was provided. They
were able to change their strategy choice at
any time until they hit the Next button to
move on to the following game (returning to
previous games was not allowed).

After the participants had indicated their
decisions for all 12 games, they were pre-
sented with a list, with the order randomized
separately for each participant, of eight pos-
sible reasons that may have influenced their
decisions in choosing between A, B, C, and D,
and they were asked to indicate on a 7-point
Likert scale to what extent they agreed or
disagreed with the reason (Strongly disagree;
Moderately disagree; Slightly disagree; Neu-
tral; Slightly agree; Moderately agree;
Strongly agree). The eight reasons were based

on an extensive pilot study (N � 127), in
which participants were asked to state in their
own words their reasons for choosing strate-
gies; the eight items in our list represent the
reasons most frequently cited by the partici-
pants in the pilot study. Below the list of eight
reasons, participants were asked: “If you of-
ten used one reason followed by another in
the same grid, please indicate here the reasons
in the order in which you usually used them.
If you tended to use only one reason, please
select N/A.” Lastly, an open text box was
provided for participants to type any addi-
tional reasons, not listed, that they might have
used, but this did not elicit any new reasons,
apart from a response from one participant
who cited a purely altruistic reason for choice
(“I chose the rows sometimes by maximizing
the benefits of the other person”).

Data were then downloaded from Survey-
Gizmo into a preprogrammed Microsoft Ex-
cel spreadsheet. In order to calculate the pay-
offs, data from the participant in the role of
Player 2 were matched to each Player 1, and
their payoffs were then automatically com-
puted for a randomly preselected game. Par-
ticipants were paid what they had earned and
thanked before they left the laboratory. Par-
ticipants in the role of Player 2 were remu-
nerated according to their payoffs in their
pairing with the first Player 1 who happened
to log on.

Results3 and Discussion

Strategy choices. Modal choices of players
in all 12 S-soluble experimental games are
shown in Table 1, together with unique predic-
tions of Player 1’s strategy choices for each of
the theories under investigation. In the eight
3 	 3 games, the modal choice was predicted
by cognitive hierarchy Level-1 reasoning in five
games, by cognitive hierarchy Level-2 reason-
ing and strong Stackelberg reasoning in three
games, and by team reasoning in two games. In
the four 4 	 4 games, the modal choice was
predicted by cognitive hierarchy Level-1 rea-

3 Raw data are presented in the supplemental materials. A
free online strategy generator for cognitive hierarchy Lev-
el-1 and Level-2 reasoning, strong Stackelberg reasoning,
and team reasoning can be found at http://hdl.handle.net/
2381/27886
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soning in all four games, by team reasoning in
one game, and by cognitive hierarchy Level-2
reasoning and strong Stackelberg reasoning in
none of the games. On this crude criterion,
cognitive hierarchy Level-1 reasoning appears
to have outperformed all of the other theories,
especially in the 4 	 4 games.

Table 2 shows the choice data in more detail,
with frequencies of Player 1 strategy choices for

each experimental game and associated chi-
square values indicating departures from a null
hypothesis of equally likely expected frequen-
cies, significance levels, and values of Cohen’s
(1988, 1992) effect size index w � 
(�2/N).
For the 3 	 3 games, all but one of the {A, B,
C} strategy choice distributions deviate signif-
icantly from chance. The only exception is
Game 1, in which the frequencies do not differ

Table 1
Experiment 1: Modal Choices of Players in 12 S-Soluble Experimental Games,
and Unique Strategy Choice Predictions for Player 1 of Cognitive Hierarchy
(CH) Theory for Level-1 and Level-2 Reasoning, Strong Stackelberg Reasoning,
and Team Reasoning

Games Modal choice CH Level-1 CH Level-2 S. Stack. Team R.

3 	 3 games
1 B B B A C
2 A B B A C
3 B B C C A
4 B B C C A
5 C C C B A
6 C C C B A
7 C A B C C
8 C A B C C
4 	 4 games
9 C C D B A
10 A/B B D C A
11 B B C D A
12 C C D B A

Table 2
Experiment 1: Frequencies of Player 1 Strategy Choices in 12 Experimental Games, With Chi-Square
Values, Significance Levels, and Effect Sizes (N � 68)

Games CH-L-1 CH-L-2 S. Stack. Team R. �2 df p Effect size w

3 	 3 games
1 28 (21) 28 (7) 25 15 4.09 (10.82) 2 (3) .129 (.013) 0.25 (0.40)
2 27 (20) 27 (7) 33 8 15.03 (26.24) 2 (3) .001 (.000) 0.47 (0.62)
3 31 13 (4) 13 (9) 24 7.27 (28.12) 2 (3) .026 (.000) 0.33 (0.64)
4 34 21 (6) 21 (15) 13 9.91 (25.29) 2 (3) .007 (.000) 0.38 (0.61)
5 34 (25) 34 (9) 19 15 8.85 (8.00) 2 (3) .012 (.046) 0.36 (0.34)
6 39 (29) 39 (10) 21 8 21.38 (17.06) 2 (3) .000 (.001) 0.56 (0.50)
7 20 7 41 (26) 41 (15) 25.97 (11.41) 2 (3) .000 (.010) 0.62 (0.41)
8 22 12 34 (22) 34 (12) 10.71 (5.88) 2 (3) .005 (.117) 0.40 (0.29)
Mean 29.37 (25.25) 22.62 (7.75) 25.88 (21.25) 19.75 (13.75)
4 	 4 games
9 25 9 10 24 13.29 3 .004 0.44
10 23 3 19 23 16.00 3 .001 0.48
11 42 8 4 14 52.00 3 .001 0.87
12 35 4 17 12 30.47 3 .001 0.67
Mean 31.25 6.00 12.50 18.25

Note. For 3 	 3 games, adjusted frequencies and chi-square analyses for theories making overlapping predictions are
shown in parentheses. For the effect size index, w 
 0.50 large, w 
 0.30 medium, w 
 0.10 small.
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significantly and the effect size is small; in the
other 3 	 3 games, the deviations are signifi-
cant, and the effect sizes are medium or large.
For the 3 	 3 games only, adjusted frequencies
and associated statistics as explained below are
shown in parentheses. For the 4 	 4 games, all
strategy choice distributions deviate signifi-
cantly from chance, and effect sizes are medium
(Games 9 and 10) or large (Games 11 and 12).

Order effects. To check for possible order
effects, the games were presented to half the
players in one randomized order and to the other
half in the reverse order. A game-by-game anal-
ysis revealed that the distributions of choices do
not differ significantly between presentation or-
ders in any of the 12 experimental games, none
of the chi-square values even approaching sig-
nificance.

Parametric analysis of strategy choices.
Every player made 12 strategy choices, and
each choice corresponded to a prediction of one
of the theories under consideration or in some
cases, in 3 	 3 games, to a prediction of two of
the theories. In the 4 	 4 games, each Player 1
strategy was uniquely predicted by a different
theory. These games provided us with a means
of computing the number of times that each of
the theoretical predictions was corroborated by
players’ strategy choices.

For 3 	 3 games, the mean percentages of
Player 1 strategy choices predicted by each of
the theories, in descending order, are as follows
(based on the unadjusted raw frequencies in
Table 2): cognitive hierarchy Level-1 reason-
ing, 43%; strong Stackelberg reasoning, 38%;
cognitive hierarchy Level-2 reasoning, 33%;
and team reasoning, 29%. These percentages
sum to more than 100% because, in 3 	 3
games, two of the four theories invariably pre-
dict the same strategy choice. For example, in
Game 1, both cognitive hierarchy Level-1 rea-
soning and cognitive hierarchy Level-2 reason-
ing predict the strategy choice B, and 28 players
(41%) chose B; therefore, all we can infer is that
these 28 strategy choices (41% of the choices
made) confirm at least one of the two theories
that predict B. It is unlikely that all 28 of the B
choices in Game 1 arose from players using
cognitive hierarchy Level-2 reasoning, because
that method of reasoning appears to have been
used much less frequently than cognitive hier-
archy Level-1 reasoning in games in which
these theories were alone in predicting a partic-

ular strategy choice. This suggests that the un-
adjusted percentages, in addition to summing to
more than 100%, may be systematically biased.

To obtain unbiased estimates of the true rel-
ative frequencies across all eight 3 	 3 games,
we began by examining strategy choices in
those games in which one theory alone predicts
a particular choice, ignoring games in which
another theory makes the same prediction. For
example, cognitive hierarchy Level-1 reasoning
makes unique predictions in Games 3, 4, 7, and
8, and in those games only, the predicted strat-
egies were chosen by 26.75 players, on average,
whereas cognitive hierarchy Level-2 reasoning
makes unique predictions in Games 7 and 8, and
in those games the predicted strategies were
chosen by 9.50 players, on average. These
means, and analogous means for the other the-
ories, were used as weights to obtain adjusted
relative frequencies for each theory wherever
two theories predicted the same strategy choice
in a 3 	 3 game. Using these weights in Game
1, for example, the 28 choices confirming either
cognitive hierarchy Level-1 reasoning or cogni-
tive hierarchy Level-2 reasoning were adjusted
to 28 	 26.75/(26.75 � 9.50) � 20.66 for
cognitive hierarchy Level-1 reasoning and 28 	
9.50/(26.75 � 9.50) � 7.34 for cognitive hier-
archy Level-2 reasoning. Adjusted figures relate
to the relative frequencies with which the four
theories or reasoning processes were chosen,
whereas unadjusted data relate to the game
strategies chosen from the set {A, B, C}.

The adjusted relative frequencies and associ-
ated statistics are shown in parentheses in Table
2. Converting to percentages for ease of inter-
pretation, the adjusted mean Player 1 strategy
choices predicted by each of the theories in 3 	
3 games, in descending order, are: cognitive
hierarchy Level-1 reasoning, 37%; strong
Stackelberg reasoning, 31%; team reasoning,
20%; and cognitive hierarchy Level-2 reason-
ing, 11%. Analysis of variance performed on
the adjusted frequencies reveals that these four
means differ significantly: F(3, 28) � 17.03,
p � .001, �p

2 � .65 (large). Post hoc pairwise
comparisons using the least significant differ-
ence (LSD) test reveal that players chose cog-
nitive hierarchy Level-1 strategies significantly
more frequently than team reasoning strategies
(p � .001) and than cognitive hierarchy Level-2
strategies (p � .001), but not significantly more
frequently than strong Stackelberg strategies.
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Players also chose strong Stackelberg strategies
significantly more frequently than team reason-
ing strategies (p � .009) and than cognitive
hierarchy Level-2 strategies (p � .001), and
they chose team reasoning strategies signifi-
cantly more frequently than cognitive hierarchy
Level-2 strategies (p � .032).

Relative frequencies for 4 	 4 games, for
which no adjustments are required, are also
shown in Table 2. For 4 	 4 games, converting
again to percentages, the means for Player 1
strategy choices predicted by each of the theo-
ries, in descending order, were: cognitive hier-
archy Level-1 reasoning, 46%; team reasoning,
27%; strong Stackelberg reasoning, 18%; and
cognitive hierarchy Level-2, 9%. Analysis of
variance reveals that the four means differ sig-
nificantly: F(3, 12) � 10.71, p � .001, �p

2 � .73
(large). Post hoc pairwise comparisons using
the LSD test reveal that players chose cognitive
hierarchy Level-1 strategies significantly more
frequently than team reasoning strategies (p �
.016), than strong Stackelberg strategies (p �
.002), and than cognitive hierarchy Level-2
strategies (p � .001). Players also chose team
reasoning strategies significantly more fre-
quently than cognitive hierarchy Level-2 strat-
egies (p � .022).

Reasons for choices. Results of the analy-
sis of reasons for choices are presented in detail
in online supplemental materials. In brief, the
findings corroborate the analysis of choice data
in revealing that, among the theories under in-
vestigation, players rated reasons associated
with strong Stackelberg reasoning, team reason-
ing, and cognitive hierarchy Level-1 reasoning
as most influential on their strategy choices, and
that avoiding the worst payoff, equality-
seeking, and cognitive hierarchy Level-2 rea-
soning also appear to have been influential.

Avoiding the worst payoff was the most fre-
quently chosen reason of all, and it is not im-
mediately obvious why this is so. Cognitive
hierarchy Level-1 reasoning was the most suc-
cessful theory in explaining actual strategy
choices, according to our choice data, but play-
ers rated the reason most closely matching that
form of reasoning (I chose rows by working out
or estimating the average payoff that I could
expect if the other person was equally likely to
choose any column, and then choosing the best
rows for me on that basis) as less influential
than several other reasons. However, it turns out

that “Avoid the Worst” (ATW), a “fast and
frugal” heuristic introduced by Gigerenzer and
Goldstein (1996), approximates cognitive hier-
archy Level-1 choices in many of our experi-
mental games (see also Ert & Erev, 2008). If
players avoid any strategy that could yield a
zero payoff to them, picking strategies ran-
domly from those that are playable when more
than one avoids a possible zero payoff and when
none avoids a possible zero payoff, then almost
half (47%) of their strategy choices correspond
to the predictions of cognitive hierarchy Lev-
el-1 reasoning in our games. We infer from this
that some, at least, of the cognitive hierarchy
Level-1 choices may have been generated by
the ATW heuristic.

Our analysis of reasons for choices also re-
vealed that 79% of players used two or more
strategies in the same game. Reasons associated
with avoiding the worst payoff, strong Stackel-
berg reasoning, and team reasoning were used
most frequently in conjunction with each other.
Players sometimes began by reasoning strategi-
cally, using strong Stackelberg reasoning, but
then switched to team reasoning or cognitive
hierarchy Level-1 reasoning, presumably be-
cause these alternatives were easier and less
demanding than strong Stackelberg reasoning.

Experiment 2

The principal aim of Experiment 2 was to
check the robustness and replicability of the
results of Experiment 1 with a fresh sample of
59 players. A secondary aim was to investigate
the hypothesis that players use the simplest and
easiest form of the ATW heuristic by merely
avoiding any strategy that risks a possible zero
payoff. We tested this hypothesis by means of a
within-subjects comparison of strategy choices
in 12 games identical to the games used in
Experiment 1 with choices in versions of the
same 12 games with three units added to every
payoff, thus eliminating zero payoffs altogether.

Full details of Experiment 2 are presented in
online supplemental materials. Modal choices
in the original versions of the games were al-
most identical to those observed in Experiment
1 (see Table 1), fully replicating our main find-
ings. Comparing original and plus-3 versions of
the games in Experiment 2, the modal choices
were the same in eight of the 12 games, and in
those in which they differed, the discrepancies
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were very small, suggesting that although play-
ers may have avoided the worst payoffs, they
did not merely avoid zero payoffs. Self-reported
reasons for choices were strikingly similar to
those of Experiment 1, although the reason as-
sociated with Stackelberg reasoning was rated
as fractionally more influential than avoiding
the worst payoff, reversing the marginal lead of
avoiding the worst payoff in Experiment 1.
Most players (88%) reported considering more
than one reason in the same game, and it is
noteworthy that 28% of players who first used a
reason associated with strong Stackelberg rea-
soning reported switching from it to either
avoiding the worst payoff or a reason associated
with cognitive hierarchy Level-1 reasoning.

General Discussion

Results of the experiments reported here are
highly consistent with each other, and they sug-
gest that cognitive hierarchy Level-1 reasoning,
strong Stackelberg reasoning, and team reason-
ing each played a part in explaining players’
strategy choices in 3 	 3 and 4 	 4 experimen-
tal games. Cognitive hierarchy Level-1 reason-
ing was most influential, especially in 4 	 4
games, but strong Stackelberg reasoning was
also influential in 3 	 3 games, and team rea-
soning in both 3 	 3 and 4 	 4 games. It seems
reasonable to infer that coordination is partly
explained by all three theories. Most players
reported that they considered two or more rea-
soning processes before making their choices.
Furthermore, it is possible that social projection
theory may also provide part of the explanation
in symmetric games. Although it might have
been satisfying, from the point of view of sim-
plicity and clarity, if one theory had emerged as
a single and sovereign explanation in all of the
games that we studied, the picture turns out to
be more complex.

Our results also suggest that the Avoid the
Worst (ATW) heuristic may have steered play-
ers toward cognitive hierarchy Level-1 choices
in some cases, because ATW turns out to yield
cognitive hierarchy Level-1 choices in a sub-
stantial proportion (almost half) of our games.
Part of the motivation for Experiment 2 was to
test the hypothesis that players used the most
elementary version of ATW, simply avoiding
strategies that entail a risk of a zero payoff.
The results provided no clear evidence to

support the “avoid zero” hypothesis, but that
does not rule out ATW as a possible explana-
tion for some cognitive hierarchy Level-1 strat-
egy choices. ATW can be implemented by
avoiding strategies that entail the risk of the
lowest payoff in a game, whatever it might be,
and it is only marginally more difficult when the
lowest payoff is 3 rather than 0, as it was in all
the plus-3 games in Experiment 2. In the play-
ers’ self-reported reasons for choices, ATW
emerged as one of the most popular reasons of
all, and it seems reasonable to infer that it
probably accounted for some cognitive hierar-
chy Level-1 strategy choices.

Our results are consistent with the findings of
Camerer et al. (2004) and others who reported
evidence for cognitive hierarchy Level-1 and
Level-2 reasoning, and also with those of Col-
man, Pulford, and Rose (2008a) and Butler
(2012), who reported evidence for team reason-
ing, using very different types of games and
experimental methods. Our results and our in-
terpretation of them are also consistent with the
findings of Bardsley et al. (2010), who reported
the results of two separate experiments designed
to compare cognitive hierarchy and team rea-
soning theories against each other, using exper-
imental coordination games and research meth-
odologies radically different from our own. The
first of their experiments appeared to support
team reasoning and the second cognitive hier-
archy theory. Bardsley et al. discussed various
ways in which this difference might be due to
differences in the way the players approached
the coordination tasks, but an examination of
their test materials reveals that the games used
in their first experiment all had five pure strat-
egies, whereas those used in their second exper-
iment averaged slightly over four (M � 4.36).
Team reasoning is easier than cognitive hierar-
chy reasoning (Level-1 and above) in larger and
more complicated games, and it is therefore
possible that the difference is explained by
Bardsley et al.’s players tending to use team
reasoning more frequently in games that were
slightly larger and more complicated.

Our findings are also consistent with those of
Colman and Stirk (1998), who reported evi-
dence for Stackelberg reasoning in 2 	 2
games. In the experiments reported in this arti-
cle, strong Stackelberg reasoning was abun-
dantly evident in the strategy choice data in 3 	
3 games but much less so in 4 	 4 games. The
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players’ self-reported reasons for choices con-
firm that they were influenced by strong Stack-
elberg reasoning, but the choice data suggest
that this influence was felt chiefly in the 3 	 3
games and less strongly in the 4 	 4 games.
Taken together with the evidence of Colman
and Stirk, this suggests that strong Stackelberg
reasoning may be used quite frequently in rel-
atively simple 2 	 2 and 3 	 3 games but tends
to be abandoned in favor of team reasoning and
especially cognitive hierarchy Level-1 reason-
ing in more complicated 4 	 4 games. This is
not difficult to understand because strong Stack-
elberg reasoning involves more complex computa-
tion and imposes greater demands than cognitive
hierarchy Level-1 reasoning or team reasoning.
From Player 1’s perspective, cognitive hierarchy
Level-1 reasoning can be implemented by sim-
ply glancing along the rows of the payoff matrix
and estimating which row contains the highest
payoffs to Player 1, and it can be approximated
in many games by simply avoiding the worst
payoff. Team reasoning can be accomplished
even more easily, especially in larger games, by
scanning the payoff matrix for the cell with the
greatest payoff sum, and then checking that it is
unique. In contrast, strong Stackelberg reason-
ing by Player 1 involves noting and remember-
ing Player 2’s best replies to every available
strategy, earmarking the most profitable one for
Player 1, then doing the same from Player 2’s
perspective, and finally checking that neither
player can benefit by deviating unilaterally from
the resulting strategy pair or outcome. This
requires sequential strategic thinking and is
obviously more demanding in terms of mental
computation and working memory capacity
than cognitive hierarchy Level-1 reasoning or
team reasoning.

Orthodox game theory is incapable of ex-
plaining coordination, and several theories that
have been proffered either fail to provide an
adequate explanation or apply to symmetric
games only, but cognitive hierarchy theory,
strong Stackelberg reasoning, and theories of
team reasoning offer potential explanations,
even in asymmetric games. The major problems
with cognitive hierarchy theory as an explana-
tion of coordination are that it fails to explain
coordination in some common interest games,
such as the Stag Hunt game in Figure 2, and that
it is vitiated by an implausible asymmetry—an
assumption that players never credit their co-

players with the same depth of strategic reason-
ing as they enjoy themselves. The main problem
with theories of team reasoning is their aban-
donment of methodological individualism and
consequently also of von Neumann–Morgen-
stern utilities. The theory of strong Stackelberg
reasoning avoids these and other theoretical
problems, and in that sense it seems preferable,
but the results of our experiment suggest that all
three theories provide part of the explanation, at
least in experimental games.

Taking into account Experiments 1 and 2, our
experimental findings suggest that cognitive hi-
erarchy Level-1 reasoning was used in 37%–
46% of choices in 3 	 3 games and 46%–50%
of choices in 4 	 4 games, whereas strong
Stackelberg reasoning was used in 31%–36% in
3 	 3 games and 17%–19% in 4 	 4 games.
Team reasoning was used in 13%–20% of
choices in 3 	 3 games and 26%–27% in 4 	
4 games. These differences suggest that cogni-
tive hierarchy Level-1 reasoning, perhaps facil-
itated by the ATW heuristic, is influential in
games of both sizes, that strong Stackelberg
reasoning is influential especially in the smaller
and simpler games, and that team reasoning
becomes relatively more influential in the
larger, more complex games. However, it is
worth noting that people facing potentially life-
changing strategic decisions may be willing and
able to apply strong Stackelberg reasoning even
in 4 	 4 and larger games.

Are there features of interactive decisions
that determine which theory will predominate in
any particular case? In general, this is a question
for later research, but a consideration of the
relative ease or difficulty of the various psycho-
logical processes implied by the theories offers
some clues. Strong Stackelberg reasoning re-
quires relatively slow, deliberate, and effortful
System 2 thinking (Kahneman, 2011) and tends
to become prohibitively difficult and demand-
ing in games that are larger and more complex
than simple two-strategy and three-strategy
games. Cognitive hierarchy Level-1 reasoning,
especially if approximated by the fast and frugal
Avoid the Worst (ATW) heuristic, provides a
method of reasoning typical of automatic, rela-
tively effortless System 1 thinking. For collec-
tively motivated players, team reasoning pro-
vides a method of play that is also easy to
perform, even in large games.
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It is generally acknowledged that strategy
choices, like individual risky choices, are not
strictly deterministic. If we assume that they are
not merely error-prone but inherently probabi-
listic, such that decision processes map proba-
bilistically into strategy sets, then it is conceiv-
able that an intrinsically stochastic overarching
theory may eventually emerge that fits the data
well.
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Appendix A

A Simple Proof of Laplace’s Rule of Succession

Theorem

An urn containing r red and N – r black balls is
chosen at random from a collection of N � 1 urns
containing r � 0, 1 . . ., N red balls respectively.
From the chosen urn, a ball is drawn at random and
replaced, and the process is repeated m times. If the
m draws produce m red balls, then the probability
that the next ball to be drawn will also be red is
approximately (m � 1)/(m � 2).

Proof

The probability of choosing a red ball on the
first draw is r/N, and the joint probability of
choosing a red ball on m successive draws is
(r/N)m. Call the event of drawing m successive
red balls A. Then

P�A� �
1m � 2m � · · · �Nm

Nm�N � 1�
.

If we call the event of drawing a red ball on
the m � 1st draw B, then the probability of B is
simply the probability of drawing m � 1 balls in
succession, hence

P�B� �
1m�1 � 2m�1 � · · · �Nm�1

Nm�1�N � 1�
.

The probability of drawing a red ball on
the m � 1st draw is the probability of the event (B
and A). According to a well-known rule of con-
ditional probability, P(B | A) � P(B and A)/
P(A). However, event B of drawing m � 1 red
balls is equivalent to the event (B and A), hence
P(B and A) � P(B) and P(B | A) � P(B)/P(A).
For large N, we have

P�A� 	
1

Nm�N � 1�
0

N
xmdx �

N

N � 1

�
1

m � 1
	

1

m � 1
.

Similarly, P(B) � 1/(m � 2). Therefore,

P�B � A� �
P�B�
P�A�

	
m � 1

m � 2
.

Remark

If just one ball is drawn from the urn and is
found to be red, then m � 1, and the probability
that a second ball drawn from the same urn
would also be red is approximately 2/3.
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Appendix B

Strong Stackelberg Reasoning: Formal Development

We begin by defining a two-player game

G :� �S1, S2;�1, �2�,

where Si is Player i’s strategy set and �i is
Player i’s payoff function, i �{1, 2}. We as-
sume that Si is finite and contains at least two
strategies. Player i’s payoff function is denoted
by �i : S ¡ �. The possible outcomes of the
game are members of the set S � S1 � S2, and
s � �s1, s2� � S is a particular strategy profile
determining an outcome. A strategy profile
s′ � �s1′, s2′� is a Nash equilibrium if both

�1�s1
′ , s2

′� 
 �1�s1, s2
′�, (1)

�2�s1
′ , s2

′� 
 �2�s1
′ , s2�, (2)

hold for all s1 � S1 and all s2 � S2. If s and t are
two distinct outcomes of a game, then s strongly
payoff-dominates t if �i�s� � �i�t� for i �{1, 2}.

We use the notation Cisi to denote the event
of Player i choosing strategy i. In a game in-
volving Players i and j, the distinctive assump-
tion of strong Stackelberg reasoning is then:

Cisi ) i believes that j knows that Cisi

for all si � Si and for i, j � {1, 2}. Both players
act as though they believe that whatever strategy
they choose will be anticipated by their co-player.
The standard common knowledge and rationality
assumptions of game theory apply, therefore each
player chooses the strategy that yields the best
payoff given the belief that the co-player will
choose a best reply to any strategy.

Given Player i’s belief that Player j will
choose a best reply to any strategy that Player i
might choose, Player i acts as though believing
that Player j’s strategy choice depends on Player
i’s. Thus, from Player i’s perspective,

sj � ��si�, (3)

where ��si� is a correspondence assigning
Player j’s best replies to si. If ��si� assigns a
unique element sj to a particular strategy si, then
��si� is a strong best reply to si in the sense of
Harsanyi and Selten (1988, p. 39), and if this
holds for all i, then � is a function. We note the
slightly weaker criterion of strong best replies
defined when both of the following hold for
every strategy pair s � �s1, s2�, t � �t1, t2�:

�1�s� � �1�t� ) �2�s� � �2�t�, (4)

�2�s� � �2�t� ) �1�s� � �1�t�. (5)

The condition defined by (4) and (5) means
that if a player strictly prefers one outcome to
another, then the co-player is not indifferent
between those two outcomes, and it ensures that
all best replies are strong. We define Player 1’s
strong Stackelberg strategy as the strategy s1 �
s1

� that maximizes the payoff

�1�s1, ��s1��.

Similarly, we define a strong Stackelberg
strategy for Player 2 as the strategy s2 � s2

� that
maximizes the payoff

�2�s2, ��s2��.

In any game in which the condition defined
by (4) and (5) for strong best replies is met,
strong Stackelberg strategies si

� are well defined.
If the condition for strong best replies does not
hold, it is still possible for strong Stackelberg
strategies si

� to be well defined, provided only
that the maximum payoff to Player 1 in each
column and the maximum payoff to Player 2 in
each row are unique.
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Strong Stackelberg strategies may or may not
form Nash equilibria. In any game in which
strong Stackelberg strategies si

� are well defined,
if s� � �s1

�, s2
�� is a Nash equilibrium, we de-

scribe the game as being S-soluble. In every
game that is S-soluble, the theory predicts that
Stackelberg-reasoning players will choose and
play their strong Stackelberg strategies, and we
call s� the strong Stackelberg solution of the

game. Games in which strong Stackelberg strat-
egies are not well defined or are not in equilib-
rium are non-S-soluble, and in such games the
theory is indeterminate.
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