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Abstract

Background: Phylogenetic analysis is now an important tool in the study of viral outbreaks. It can reconstruct

epidemic history when surveillance epidemiology data are sparse, and can indicate transmission linkages among

infections that may not otherwise be evident. However, a remaining challenge is to develop an analytical framework

that can test hypotheses about the effect of environmental variables on pathogen spatial spread. Recent

phylogeographic approaches can reconstruct the history of virus dispersal from sampled viral genomes and

infer the locations of ancestral infections. Such methods provide a unique source of spatio-temporal information, and

are exploited here.

Results: We present and apply a new statistical framework that combines genomic and geographic data to test the

impact of environmental variables on the mode and tempo of pathogen dispersal during emerging epidemics. First,

the spatial history of an emerging pathogen is estimated using standard phylogeographic methods. The inferred

dispersal path for each phylogenetic lineage is then assigned a “weight” using environmental data (e.g. altitude,

land cover). Next, tests measure the association between each environmental variable and lineage movement. A

randomisation procedure is used to assess statistical confidence and we validate this approach using simulated

data. We apply our new framework to a set of gene sequences from an epidemic of rabies virus in North American

raccoons. We test the impact of six different environmental variables on this epidemic and demonstrate that elevation

is associated with a slower rabies spread in a natural population.

Conclusion: This study shows that it is possible to integrate genomic and environmental data in order to test

hypotheses concerning the mode and tempo of virus dispersal during emerging epidemics.
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Background

Evolutionary and phylogenetic analysis has become an

important tool in the study of established and emerging

viruses, including influenza e.g. [1], HIV e.g. [2], MERS

e.g. [3], and most recently, Ebola [4, 5]. The application

of evolutionary concepts to epidemiological surveil-

lance and outbreak control has been transformed in re-

cent years by the increasing availability of viral genome

sequences, the growth in computer processing power, and

the development of sophisticated analytical methods (e.g.

[6]). Information gleaned from genetic data has the po-

tential to identify factors that influence the spread and

evolution of viral diseases. An evolutionary approach to

epidemiology provides several benefits when combined

with traditional methods, as it allows reconstruction of

epidemic transmission history from a small number of

pathogens sampled shortly after the discovery of an

outbreak, the estimation of migration histories, and the

inference of transmission links among cases that may not

be evident using data on spatio-temporal incidence alone.
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Evolutionary approaches are particularly powerful in

the context of RNA viruses because these viruses are

characterised by very rapid evolution [7], such that their

evolutionary and ecological processes occur on the same

time scale [8, 9]. As a consequence the pattern of genetic

differences among viruses sampled from a population

contains information about transmission history. Specif-

ically, phylogeographic and statistical studies of virus ge-

nomes sampled through space and time can answer

questions relating to the geographic dissemination of ep-

idemics e.g. [4, 10] and numerous methods are available

to infer patterns of spatial spread from genetic data, e.g.

[11–15]. However, the explanatory power of viral phylo-

geography would be greater if it could identify and test

the effects of specific aspects of the environment on

spatial spread and growth. This question represents a

major focus of current research in viral phylogeography.

Lemey et al. [15] developed a method based on re-

laxed random walk models that can reconstruct virus

dispersal in continuous space using viral genomes

sampled from known locations at known times. This

method co-estimates both the virus phylogeny and the

locations of unsampled common ancestors, thereby

producing a full spatial dispersal history of the sampled

infections. This history includes an estimate of the loca-

tion of epidemic origin and of the velocity, direction

and heterogeneity of spatial spread. The method has

been used in several studies to reconstruct the spatial

spread of pathogenic viruses, including crop diseases,

dengue virus, West Nile virus and avian influenza vi-

ruses [16–18]. However, while this method can place

phylogenies in a geographical context, it does not expli-

citly incorporate environmental differences across the

geographic landscape within which transmission oc-

curs. Such heterogeneity may have a significant effect

on spatial dissemination, especially for outbreaks in

natural animal and plant populations e.g. [19–21].

At present there is only one phylogeographic method

that explicitly tests potential predictors of spatial spread.

This is the “phylogeographic GLM” approach [22, 23]

that estimates rates of lineage movement among a fixed

number of discrete locations, and in doing so parame-

terises each among-location rate as a linear function of

one or more predictor variables. The coefficients of the

linear model are then co-estimated with the among-

location rates, the phylogeny, and other parameters,

using Bayesian Monte Carlo Markov Chain (MCMC)

inference. However, this framework is only currently

applicable to discretised spatial locations and is more

suited to hypotheses concerning human mobility among

population centres via transportation hubs, such as

airports [23, 24] and is less suitable for hypotheses

concerning the dissemination of animal and plant

pathogens throughout natural landscapes. Further, it is

computationally demanding because predictor vari-

ables are assessed whilst sampling phylogenies using a

Bayesian MCMC algorithm. There is therefore a need

for complementary approaches.

Here we present and apply a new analytical frame-

work that aims to integrate landscape ecology with a

phylogenetic approach to molecular epidemiology. This

framework uses spatial information obtained from phy-

logeography to study the impact of environmental vari-

ables on epidemic dispersal in continuous space. Our

method differs from previous approaches in that it ex-

plicitly separates the task of testing correlates of lineage

dispersal from the task of inferring the history of move-

ment from genetic data. This separation has two bene-

fits. First, it allows large numbers of environmental

variables to be assessed without the need for phylogen-

etic MCMC sampling. Second, it increases flexibility,

because it can be applied to any dispersal history, irre-

spective of the specific phylogeographic method or

software package that was used to infer that history.

We illustrate our framework by applying it to a well-

characterised viral outbreak, the spread of rabies in

raccoons across the north-east of the USA over ap-

proximately thirty years (hereafter referred as the raccoon

rabies epidemic). This data set has been analysed using

previous phylogeographic methods [15, 25], thus enabling

direct comparison with the results obtained here.

Methods

Overview of methodology

The structure of our framework can be summarised in

the following five steps. A full description of each step is

provided in the next section.

(i) In the first step, the history of lineage dispersal is

recovered from one or more spatial- and temporally-

referenced phylogenies (i.e. trees whose branches

represent time and whose tips and internal nodes

all have a defined location). Such trees are generated by

the continuous phylogeography method implemented

in BEAST [15], but it is important to note that our

method is applicable phylogenies from any source that

are annotated with dates and locations in the same way

(Fig. 1a). The velocity, distance and duration of spatial

movement along each branch in each tree are extracted

and represented by a vector.

(ii) In a second, optional, step, the spatio-temporal data

extracted in step (i) is used to calculate summary

statistics of spatial spread, such as the velocity of the

epidemic wavefront.

(iii)Each of the vectors obtained in step (i) is assigned

a “weight” score, which is calculated using a raster

that defines the spatial heterogeneity of a specified

environmental variable (e.g. elevation, human
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population density, land cover, etc.). We have

implemented three different models of spatial

movement (hereafter called “path models”) to

compute the “weight” allocated to each phylogeny

branch for a given environmental raster. (a) The

“straight-line path” model, which assumes that

movement is in a straight-line between the start

and end locations of each branch. (b) The “least-cost

path” model, which uses a least-cost algorithm [26]

to determine the route taken between the start and

end points. (c) The “random walk path” model,

which uses circuit theory [27] to accommodate

uncertainty in the route taken. Note that for models

(b) and (c), each environmental raster must be

considered twice, once as a conductance factor

(i.e. it facilitates movement) and once as a resistance

factor (i.e. it impedes movement).

(iv)The correlation between the duration of each

phylogeny branch and its “weight” (see step iii) is

then estimated. Correlations are repeated for each

environmental raster, and for each of the three

path models described above.

(v) Finally, the statistical significance of these

correlations is tested using a null model. To

generate this null model, we implement a simple

randomisation procedure: phylogenetic node positions

are randomised within the study area, under the

constraint that branch lengths, tree topology and

root position are unchanged (see Fig. 1b).

Description of methodology

Step 1: Extracting spatio-temporal information from

phylogenies

The input data for our method consists of one or more

spatiotemporally-referenced phylogenies (i.e. trees whose

branch lengths are proportional to time and whose

internal and external nodes are all annotated with a

point location in two-dimensional space; Fig. 1a). If mul-

tiple phylogenies are used then each is assumed to be

equally probable. At present, such trees are mostly likely

to be generated using the phylogeographic models im-

plemented in BEAST [15], but our framework can be ap-

plied to phylogenies from any source that have been

annotated in the same way.

In order to extract the spatio-temporal information in

the input trees, each phylogeny branch in each tree is

summarised as a vector defined by its start and end loca-

tion, and its start and end dates. Each branch therefore

represents an independent viral lineage dispersal event

[18]. Vectors for each input tree are tabulated.

Step 2: Estimation of dispersal and epidemiological

statistics

As an optional step, our analytical framework calculates

several spatio-temporal statistics from these dispersal

vectors. So far, we have implemented three such statis-

tics: the mean lineage dispersal velocity, the mean

lineage diffusion coefficient, and a time-series of the

maximal epidemic wavefront distance. These statistics

are visually summarised as plots of (i) the kernel dens-

ity of lineage dispersal velocity parameters (the mean

and variation among lineages in dispersal velocity), (ii)

the kernel density of lineage diffusion coefficient pa-

rameters (the mean and variation among lineages in

diffusion coefficients), and (iii) the change through time

in the spatial and patristic maximal wavefront dis-

tances, as measured from the location of the tree root.

The spatial distance corresponds to a straight-line dis-

tance, whereas the patristic distance equals the sum of

the spatial distances along each phylogeny branch be-

tween the tree root and its tips.

3
4

4
5

−84 −70 −84 −70

A B

Fig. 1 An illustration of the node position randomisation procedure used to generate null distributions of the D statistic. a The original environmental

raster (representing, in this case, elevation) upon which is superimposed the movement events extracted from one spatiotemporally-referenced

phylogeny. b The result of one randomisation of node positions. This randomisation procedure is performed within a minimum convex hull

(shown in blue), which is defined by the node locations of all selected phylogenies
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Step 3: Computation of environmental weights

In this step, each of the vectors obtained in step 1 (one

per phylogeny branch) is assigned a specific “weight”

based on a raster of values that represent the type or

magnitude of an environmental variable (e.g. elevation,

population density, type of land cover). In order to

compute these “weights”, we have implemented three

different “path models” which represent the path taken

by a phylogeny branch as it travels between its start

and end locations:

(i) Straight-line path: each lineage travels in a straight

line between its start and end location. In this case,

the branch “weight” is computed as the sum of the

values of the raster cells through which the straight

line passes.

(ii) Least-cost path: each lineage travels via the least-

cost path between its start and end location [26].

With this model, the branch “weight” is computed

as the sum of the transition values between adjacent

cells along the least-cost path [28].

(iii)Random walk path: each lineage travels via a

random walk between its start and end location.

In this case, the “weight” is a graph-theoretic metric

based on circuit theory, which takes into account

multiple possible pathways connecting a given pair

of locations, and the values of the raster cells

through which they pass [27, 29]. Specifically, for

each lineage, one node is connected to a one-ampere

current source, while the other is connected to

ground. The “weight” between each pair of nodes

is then defined by the effective electric resistance

or conductance connecting them on the grid, i.e.

the environmental raster in question [27]. More

details about the circuit theory model can be found

in [27] and [29].

For the latter two models, an environmental variable

can be treated either as a conductance or a resistance

factor. For example, if an environmental raster is

treated as a resistance factor then raster cells with low

values will be more permeable to dispersal and those

with high values will correspond to poor dispersal habi-

tat or to movement barriers [27]. When there is no

prior information about whether a given variable will

facilitate or impede lineage movement, it is prudent to

consider it twice, once as a potential conductance

factor, and once as a potential resistance factor. By de-

fault, we use the environmental values as resistance or

conductance values. Log-transformed and/or standar-

dised values may be necessary if the current univariate

approach is in future extended to a multivariate one

(see Conclusion). Note, when all cells in a raster are

identically-valued (i.e. there is no spatial variation in

the environmental factor) then the total “weight” for

any path is simply proportional to its geographic dis-

tance. A special case exists when all cells have values

equal to 1, which we here define as the “null raster”.

Step 4: Correlation analyses

We next calculate the regression between the duration

of each movement event (i.e. each phylogeny branch)

and the “weight” computed for that branch. A separate

regression is performed for each environmental factor of

interest. The absolute strength of the regression can be

measured using its coefficient of determination (R2).

Specifically, we use the statistic D = (R2
env - R2

null), where

R2
env is the R2 obtained when branch durations are

regressed against weights defined by the environmental

raster, and R2
null is the R2 obtained when branch dura-

tions are regressed against weights defined by the null

raster (i.e. when only the spatial distance of each move-

ment event is considered). All environmental raster cell

values are increased by 1 (except for cells with no data)

to enable a direct comparison of R2
env and R2

null. D is

therefore a correlation measure relative to a null hypoth-

esis and represents the degree to which the regression is

strengthened when spatial variation in the environmen-

tal variable is taken into account.

Step 5: Significance testing using randomisation

In the final step, the statistical significance of D is tested.

In order to calculate a null distribution for the D statis-

tic, we have implemented a randomisation procedure

that randomises phylogenetic node positions under the

constraint that branch lengths (i.e. branch durations),

the tree topology and the root position are unchanged

(Fig. 1b). Furthermore, this randomisation procedure is

not applied to the entire raster but to a subset of it de-

fined by the minimum convex hull around a set of loca-

tions. The set of locations comprises the start and end

positions of each branch in the spatiotemporally-

referenced input phylogenies. During the randomisation,

if a randomised branch position falls outside the area de-

fined by this convex hull, the algorithm randomises its

position again until it does not fall outside this area. By

constraining permutation within this convex hull we are,

in effect, using the data to inform the relevant study area.

In contrast, the square raster inputted by the user may be

of arbitrary size and orientation. Without this constraint,

randomised phylogenies will fall in areas with different en-

vironmental values, potentially leading to type I errors.

The result of this procedure is one p-value per input phyl-

ogeny, which equals the proportion of randomisation rep-

licates that generated D values larger than that generated

by the empirical input phylogeny. If multiple input trees

are used then a distribution of p-values is obtained and we

report the percentage of p-values > 0.05. It is worth noting

Dellicour et al. BMC Bioinformatics  (2016) 17:82 Page 4 of 12



that the statistical significance of our test is derived

from a randomisation distribution, not from a distribu-

tion derived from the regression model. Hence the co-

efficients of determination R2
env and R2

null are treated

only as data statistics, and therefore our test is not

dependent on regression model assumptions (such as

homoscedasticity).

Application to rabies in North America

The raccoon rabies virus data set comprises 47 se-

quences with known sampling dates and locations.

The sequences are ~2800 nt long and span the viral

nucleoprotein N gene and the 5' end of the phospho-

protein P gene; see Biek et al. [25] for further details).

We extracted the spatial-temporal information con-

tained in 100 spatiotemporally-referenced trees sam-

pled from the posterior distribution of trees inferred

for this data set by Lemey et al. [15]. We first calcu-

lated three epidemiological statistics from these 100

input trees: mean lineage dispersal velocity, mean lineage

diffusion coefficient and a plot of the maximal wavefront

distance. For ease of explanation, we initially show how

our analytical framework works on a single input phyl-

ogeny. Subsequently we show how the method is

extended to incorporate phylogenetic uncertainty by

analysing multiple input trees.

We investigated six environmental variables to deter-

mine if they were associated with the dispersal rate of

raccoon rabies lineages. These included the three most

important IGBP (International Geosphere Biosphere

Programme) land cover variables for the study area (i.e.

“croplands”, “forests” and “savannas”), as well as eleva-

tion, human population density and “inaccessibility”

(measured as travel time to major cities of > 50,000

people [30]). The “forests” and “savannas” layers combine

several IGBP land cover layers (evergreen needleleaf, ever-

green broadleaf, deciduous needleleaf, deciduous broadleaf

and mixed forest layers for the “forests” layer; savannas

and woody savannas for the “savannas” layer). The envir-

onmental rasters are shown in Fig. 2. The sources of the

original raster files are given in Table 1. The original data

presented a resolution of 0.5 arcmin, corresponding to

cells ~1 km square. We generated distinct land cover ras-

ters from the original data by creating lower resolution

inaccessibility

1,000

0

pop. density

human

300,000

0

1,500

0

3
4

4
5

3
4

4
5

croplands forests

1

0

1

0

−84 −70 −84 −70 −84 −70

elevation

savannas

1

0

Fig. 2 The six environmental variables that were tested in the analysis of the raccoon rabies virus data set. The region shown corresponds to the

northeast of the USA, centered approximately on Harrisburg, PA. Details of the construction and source data for these rasters is provided in the main text
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rasters (10 arcmin) whose cell values equalled the number

of occurrences of each land cover category within the 10

arcmin cells. The resolution of the three other original

rasters was also decreased to 10 arcmin for tractability.

For each selected raster and path model combination, we

performed 100 randomisations using the randomisation

procedure outlined in step 5 above.

Performance on simulated data sets

We used artificial data sets to measure the potential

type I error rate of the randomisation procedure imple-

mented to assess the significance of observed D values.

Artificial data sets were generated using four different

approaches: (i) the duration of each movement event

was randomly permuted among branches, (ii) the dur-

ation of each movement event was equal to the spatial

distance along the path between its start and end loca-

tions, (iii) the duration of each movement event was

equal to the environmental “weight” assigned to the

path between the locations, and (iv) the duration is

equal to a value randomly and uniformly chosen be-

tween the values defined in cases (ii) and (iii). Case (iv)

thus corresponds to case (iii) but with the addition of

random noise. Simulation approaches (i) and (ii) gener-

ate data sets under the null hypothesis (i.e. branch dur-

ation is independent of the environmental raster),

whereas approaches (iii) and (iv) generate data sets

under the alternate hypothesis (i.e. branch duration is

determined or influenced by the environmental raster).

We generated 100 artificial data sets for each of these

three simulation approaches. The artificial data sets used

the empirical phylogenies from the raccoon rabies data

set (see above), but replaced the empirical branch dura-

tions with new durations as specified above. For ap-

proach (iii), environmental “weights” were calculated

using the “elevation” raster treated as a resistance factor.

This raster was chosen because elevation appears to

impede the movement of raccoon rabies virus lineages

(see Results). For each path model and simulation

method, we report the percentage of artificial data sets

for which the randomisation null hypothesis test p-

value was < 0.05. For simulation approaches (i) and (ii),

these percentages correspond to estimates of the type I

error rate of the test. For approaches (iii) and (iv), these

percentages indicate statistical power.

Results and Discussion

We use the methods outlined above to analyse previ-

ously published virus gene sequences sampled from an

epidemic of rabies virus in raccoons in North America

[25]. Spatio-temporal phylogenies were estimated from

these sequences using the continuous phylogeographic

model implemented in BEAST [15]. The analyses below

were performed on 100 phylogenies sampled regularly

from the post burn-in posterior tree distribution gener-

ated by BEAST.

Estimation of spatio-temporal statistics

We used our framework to calculate several statistics

that summarise the spatio-temporal information inher-

ent in the rabies virus phylogenies (see Step 2 of

Methods for details). These statistics include the epi-

demic wavefront and patristic distances through time

(Figs. 3a and b), and parameters that describe dispersal

velocities and diffusion coefficients (Figs. 3c and d).

The epidemic wavefront plot (Fig. 3a) shows that the

spatial extent of the raccoon rabies epidemic increased

at a relatively constant rate until around 1990. The pa-

tristic distance (i.e. the distance summed along tree

branches) at this time is greater (> 1,000 km) than the

spatial distance (750–800 km). The difference between

these two measures is to be expected, because the pa-

tristic distance includes movements in all directions, in-

cluding those back towards the epidemic origin

(Fig. 3b). Hence dispersal was diffusive in nature and

did not always follow the shortest or most direct path

from epidemic origin to epidemic wavefront. Kernel

density graphs of the mean lineage velocity (Fig. 3c)

and phylogenetic diffusion coefficient (Fig. 3d) indicate

significant variation in these parameters among line-

ages. The estimated mean lineage velocity was ~37 km/

year (Fig. 3c), similar to that reported for dengue virus

in Vietnam (6–38 km/year [17]) but substantially

smaller than that of the West Nile virus epidemic in

North America (1,500 km/year [18]). These statistics

are helpful in quantifying the spatial dynamics of an

epidemic and can also be used to compare different

outbreaks. Some, but not all, of them are implemented

in the software package SPREAD [31]. We hope that

future work will lead to the development and imple-

mentation of further summary statistics.

Table 1 Source of data for each environmental raster

Original raster Source URL

Land cover IGBP (International Geosphere Biosphere Programme) www.igbp.net

Elevation SRTM (Shuttle Radar Topography Mission) near-global DEMs (Digital Elevation Models) webmap.ornl.gov

Human density GRUMP (Global Rural–Urban Mapping Project), MAP (Malaria Atlas Project) www.map.ox.ac.uk

Inaccessibility Global Environment Monitoring Unit, Joint Research Centre of the European Commission bioval.jr.ec.europea.eu
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Impact of environmental variables

Next, we used our framework to measure and test the

correlation of various environmental variables with the

movement of rabies virus lineages (see Steps 3–5 in

Methods). We explored rasters that represent six differ-

ent environmental variables, specifically (i) cropland land

cover, (ii) forest land cover, (iii) savanna land cover, (iv)

elevation, (v) human population density and (vi) in-

accessibility to major cities. For illustrative purposes, we

first present the results based on only one tree (from the

posterior phylogeny distribution estimated by BEAST).

We later show how the framework can be extended to

incorporate phylogenetic uncertainty, by analysing mul-

tiple input trees.

The purpose of the analysis is to calculate a test stat-

istic, D, for each environmental variable, E. The statistic

D represents the degree to which the correlation be-

tween the duration and “weight” of each lineage is

strengthened when spatial heterogeneity in E is taken

into account (see Steps 3–4 in Methods for details).

Formally, D = R2
env - R2

null, where R2
env is the coefficient

of determination obtained when branch durations are

regressed against branch weights calculated using raster

E, and R2
null is the coefficient of determination obtained

when branch durations are regressed against branch

weights defined by a null raster with no spatial vari-

ation (i.e. a raster whose cells all have value 1). If D ≤ 0,

then the environmental variable E does not explain

variation in branch duration better than geographic dis-

tance alone. However, if D is strongly positive, then the

values of E are strongly associated with branches that

move more rapidly or more slowly than average.

Figure 4 displays the linear regressions between branch

durations and branch weights for a rabies virus phyl-

ogeny randomly chosen from the posterior tree distribu-

tion. Regressions are shown for “weights” calculated

using the null raster (Fig. 4a) and for “weights” calcu-

lated using the elevation raster, when elevation is treated

as a factor that impedes movement (Fig. 4b). Results are

shown for each of the three path models (straight-line,

least-cost, and random walk models). In this example,

there is comparatively little difference among path

1
5

0
0

1
0

0
0

5
0

0
0

distance from 

epidemic origin 

(km)

A B

year year

1970 1980 1990 2000 1970 1980 1990 2000

4
2

0

4.03.53.02.22.01.81.61.41.2

2
4

6

log
10

(mean dispersal velocity [km/year]) log
10

(mean diffusion coefficient [km2/year])

dispersal velocity variation

among lineages (CV)

diffusion coefficient variation

among lineages (CV)
C D

Fig. 3 Epidemiological statistics estimated from the raccoon rabies virus data set. a Time-series of the spatial distance between epidemic origin

and maximal epidemic wavefront, and b evolution of the patristic distance between epidemic origin and maximal epidemic wavefront, c kernel

density estimates of lineage velocity parameters and d kernel density estimates of lineage diffusion coefficient parameters (coefficient of variation “CV”

against mean values). In parts a and b the grey area corresponds to the 95 % credible region of the estimated wavefront position. In parts

c and d the three contours show, in shades of decreasing darkness, the 25 %, 50 %, and 75 % highest posterior density regions via kernel

density estimation
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models in the strength of the relationship between

branch durations and branch weights. For all three path

models, R2
env is approximately twice as great as R2

null, so

the corresponding D values are positive (0.132 for the

straight-line model; 0.151 for the least-cost model; 0.138

for the random walk model). Thus while geographic dis-

tance alone explains a small part of among-lineage vari-

ation in velocity (i.e. R2
null), this variation is better

explained when the geographic elevation of the path

taken by each lineage is taken into account (i.e. R2
env).

Table 2 reports D values for other environmental vari-

ables when applied to the same single phylogeny as that

used in Fig. 4.

The statistical significance of each D value can be

assessed by comparing it to a null distribution generated

by randomising the empirical node positions (see Step 5

in Methods). [Validation of this randomisation proced-

ure on simulated data sets is provided in the next sec-

tion.] In each case, 100 randomisation replicates were

performed. Table 2 reports the p-values obtained when

this randomisation procedure is applied to the rabies

virus phylogeny introduced above. For this data set only

some of the D values are statistically significant. Specific-

ally, significant positive D values were obtained for the

“elevation” and “inaccessibility” rasters (when treated as re-

sistance factors) under the least-cost path model (Table 2).

Although these results are interesting they are based

on only one tree and therefore do not take in account

the statistical uncertainty arising from phylogenetic in-

ference. We will now demonstrate how the null hypoth-

esis test is performed on 100 phylogenies sampled from

the posterior distribution of trees. First, we estimated D

values for each of the 100 trees. This generates, for each

combination of environmental variable and path model,

a distribution of 100 D values. The randomisation pro-

cedure is then applied to each D value, precisely as out-

lined above. This results in 100 p-values for each raster/

path model combination. We therefore report the per-

centage of trees which give rise to p-values < 0.05

(Table 2); this can be interpreted as the posterior prob-

ability of observing a significant correlation between

lineage movements and the environmental variable.
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We illustrate this procedure in Fig. 5, which compares

the empirical distribution of D (grey) with five replicates

of the null distribution of D generated by the randomisa-

tion procedure (red lines). In Fig. 5a the distributions

were calculated using the “elevation” raster (as a resist-

ance factor) and in Fig. 5b they were calculated using

the “forests” raster (as a conductance factor). In both

cases the least-cost path model was used. In Fig. 5a, the

empirical distribution is greater than the randomisation

replicates, indicating that the environmental variable in

question explains viral lineage movement, whereas in

Fig. 5b there is no noticeable difference between the em-

pirical and null D values.

The environmental variables in Table 2 can be grouped

into three categories: (i) rasters that have little or no as-

sociation with lineage movement (i.e. p < 0.05 for less

than 5 % of trees), (ii) rasters for which there is weak

evidence that they affect lineage movement (i.e. p < 0.05

for more than 5 % but less than 50 % of trees), and (iii)

rasters for which there relatively stronger evidence that

the environmental variable is associated with slower or

faster movements (i.e. p < 0.05 for more than 50 % of

trees). The “forests” and “savannas” rasters fall within

the first category, whilst “croplands” (as a resistance fac-

tor) and “human population density” (as a conductance

factor) belong to the second category. Only the

Table 2 Results of the randomisation tests on six environmental variables

Environmental variable Path model Treated as a resistance
or conductance factor

Single-tree analysis:
D value (p-value)

100 trees analysis: %
of trees with p < 0.05

Croplands straight-line not applicable −0.013 (0.43) 7 %

least-cost conductance −0.069 (0.67) 0 %

least-cost resistance 0.014 (0.39) 28 %

random walk conductance −0.061 (0.35) 1 %

random walk resistance 0.012 (0.28) 27 %

Forests straight-line path not applicable 0.001 (0.42) 0 %

least-cost path conductance −0.046 (0.84) 0 %

least-cost path resistance 0.013 (0.49) 2 %

random walk path conductance −0.064 (0.72) 3 %

random walk path resistance −0.035 (0.91) 0 %

Savannas straight-line path not applicable −0.075 (0.89) 0 %

least-cost path conductance 0.018 (0.17) 1 %

least-cost path resistance −0.059 (0.75) 0 %

random walk path conductance −0.003 (0.81) 4 %

random walk path resistance −0.072 (0.96) 0 %

Elevation straight-line path not applicable 0.055 (0.02*) 52 %

least-cost path conductance −0.072 (0.86) 0 %

least-cost path resistance 0.078 (0.00*) 81 %

random walk path conductance −0.061 (0.44) 0 %

random walk path resistance 0.067 (0.10) 72 %

Human density straight-line path not applicable −0.076 (0.94) 0 %

least-cost path conductance 0.063 (0.04) 17 %

least-cost path resistance −0.069 (0.90) 0 %

random walk path conductance −0.072 (0.99) 12 %

random walk path resistance −0.070 (0.78) 0 %

Inaccessibility straight-line path not applicable 0.070 (0.00*) 18 %

least-cost path conductance −0.047 (0.84) 0 %

least-cost path resistance 0.089 (0.00*) 51 %

random walk path conductance −0.060 (0.66) 0 %

random walk path resistance 0.077 (0.18) 35 %

For each combination of environmental variable and path model, the test is applied to a single phylogeny, and to a set of 100 trees. For the former, the D statistic

and p-value of the test are shown. For the latter, we report the percentage of trees for which p < 0.05

(*) p-value < 0.05

Dellicour et al. BMC Bioinformatics  (2016) 17:82 Page 9 of 12



“elevation” raster (as a resistance factor) clearly belongs

to the third category. The importance of the “inaccess-

ibility” raster (as a resistance factor) is less clear and is

sensitive to the path model chosen. For both the “eleva-

tion” and “inaccessibility” rasters, the fraction of trees

with p < 0.05 is smaller under the straight-line path

model than under the other two path models. This may

reflect the over-simplified nature of the straight-line

model, which permits biologically unrealistic scenarios,

such as paths that traverse large water bodies.

Performance on simulated data sets

Table 3 shows the results of null hypothesis tests per-

formed on artificial data sets. These data sets were sim-

ulated using three different approaches. Simulation

approaches (i) and (ii) generate artificial data sets under

the null hypothesis (such that branch duration is inde-

pendent of the environmental variable in question).

Therefore for these two approaches the fraction of sig-

nificant results should equal the critical value of the

test. This is indeed the case, as only 0–7 % of tests on

artificial data produce a p-value < 0.05 and hence the

type I error of the test appears to be appropriate. Simu-

lation approaches (iii) and (iv) generates data sets under

the alternate hypothesis, i.e. branch duration is equal or

influenced by the environmental raster. The null hy-

pothesis was almost always rejected (at p < 0.05) when

the test was applied to data generated using approaches

(iii) or (iv), indicating that the test has reasonable stat-

istical power in the context of this data set. Note that

very similar results were also obtained on data sets

whose simulations were based on alternative environ-

mental rasters (e.g. croplands, inaccessibility; results

not shown).

Conclusion
In this study we show that it is possible to integrate gen-

omic and environmental data in order to test hypotheses

concerning the mode and tempo of virus dispersal dur-

ing emerging epidemics. The raccoon rabies data set ex-

plored here was chosen for illustrative purposes and our

results strongly support the notion that increasing eleva-

tion is associated with slower movements of this virus.

This result is biologically plausible and the impact of ele-

vation on the dissemination of raccoon rabies was previ-

ously addressed by Biek et al. [25]. Their analysis used

spatial kriging to compute annual contours from the

date of the first reported case of each county and the

contours were coloured according to temporal periods

identified by phylogenetic molecular clock analysis.

Table 3 Investigating the performance of the null hypothesis randomisation test. Sets of artificial data sets were created using four

different approaches

Path model

Approach for creating artificial data sets: straight-line least-cost random walk

(i) branch durations randomly permutated among branches 6 % 3 % 3 %

(ii) branch durations equal to spatial distance 0 % 0 % 5 %

(iii) branch durations equal to environmental “weight” 100 % 100 % 100 %

(iv) branch durations equal to a value between (ii) and (iii) 95 % 100 % 100 %

In each case, artificial data sets were applied to the “elevation” raster treated as a resistance factor. Values equal the percentage of 100 artificial data sets for

which the p-value of the null hypothesis test was < 0.05
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Fig. 5 Empirical distributions of the D statistic (in grey), calculated from 100 trees sampled using Bayesian MCMC inference. These are compared

with five replicates of the null distribution of D generated by the randomisation procedure (red lines). In (a) the distributions were calculated

using the “elevation” raster (as a resistance factor) and in (b) they were calculated using the “forests” raster (as a conductance factor). In both

cases the least-cost path model was used. For visual clarity, discrete histograms were converted into density curves using a Gaussian smoothing kernel
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They then visually compared the resulting contours

overlaid on an elevation map, enabling them to posit

that mountain ranges likely formed a barrier to raccoon

movement. We intend to explore the application of our

new method to other viral outbreaks in future work.

We have implemented three path models in our ana-

lytical framework. Although the straight-line path model

is perhaps overly simplistic, the appropriateness of one

model over another will depend on the locomotive be-

haviour of the pathogen’s host species (and of its insect

vector, if it has one). In the case of the raccoon rabies

epidemic, we had no prior assumption about which path

model might be most appropriate and therefore we de-

cided to test them all. In other instances, there may be

good reasons to choose a priori one path model over an-

other. For instance, one might chose the least-cost path

model over random walk path model in some cases, for

example viruses carried by migratory birds; i.e. the least-

cost model may be more appropriate when host-species

intentionally reach specific locations by avoiding non-

suitable landscape areas.

Simulations indicate that the randomisation procedure

used to test the null hypothesis (i.e. no association be-

tween lineage movement and an environmental variable)

has appropriate type I error rates and acceptable statis-

tical power (Table 2). However, it is important to note

that a significant result represents evidence only for a

correlation between virus dispersal and an aspect of the

geographic landscape. In future work we intend to ex-

plore whether generalized linear models can be applied

to this framework in order to account for possible corre-

lations among the environmental variables in question.

In the meantime, the broader ecology and epidemiology

of the pathogen, host, and habitat concerned should be

taken into account when interpreting results.

Currently, our analytical framework does not allow

for the analysis of environmental variables, such as

temperature or humidity, that vary notably over the

course of the epidemic under investigation. The as-

sumption of constant values is unlikely to be unrealistic

for the environmental variables investigated here, al-

though some variation has undoubtedly occurred in hu-

man population density. The extension of our approach

to time-varying environments is theoretically feasible,

but poses significant technical and practical problems,

specifically (i) the acquisition of a series of environmental

rasters that represents change in the variable concerned at

a sufficiently precise temporal resolution, and (ii) general-

isation of the least-cost and random-walk path models to

three rather than two dimensions, with the third dimen-

sion corresponding to rasters that represent different

points in time. A second improvement for future work

would be to allow the co-analysis of several environmental

factors in a multivariate framework. Such a framework

would require correlation statistics, for example those

based on a generalised linear model (GLM), as in [22].

Implementation

The methods introduced here are implemented in R (R

Core Team 2015 [32]) and the scripts are freely available

from http://evolve.zoo.ox.ac.uk/Evolve/Software.html. Ex-

ample files and a tutorial are available as Additional file 1.

Additional file

Additional file 1: Example files and tutorial related to the present

study. (ZIP 36167 kb)
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