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The prevalence of many urban phenomena changes systematically with population size1. We

propose a theory that unifies models of economic complexity2, 3 and cultural evolution4 to

derive urban scaling. The theory accounts for the difference in scaling exponents and average

prevalence across phenomena, as well as the difference in the variance within phenomena

across cities of similar size. The central ideas are that a number of necessary complementary

factors must be simultaneously present for a phenomenon to occur, and that the diversity of

factors is logarithmically related to population size. The model reveals that phenomena that

require more factors will be less prevalent, scale more superlinearly and show larger variance

across cities of similar size. The theory applies to data on education, employment, innovation,

disease and crime, and it entails the ability to predict the prevalence of a phenomenon across

cities, given information about the prevalence in a single city.

Scaling is ubiquitous across many phenomena5, including physical6 and biological7 systems,

plus a wide range of human8, 9 and urban activities1, 10. Figure 1 shows, for US Metropolitan Statis-

tical Areas, ten different phenomena classified in five broad types: employment, innovation, crime,

educational attainment, and infectious disease. We observe scaling in the sense that the counts of

people in each phenomenon scale as a power of population size. This relation takes the form

E{Y |N} = Y0 N
β , where E{·|N} is the expectation operator conditional on population size N , Y

is the random variable representing the output of a phenomenon in a city, Y0 is a measure of gen-

eral prevalence of the activity in the country, and β is the scaling exponent, i.e., the relative rate of

change of Y with respect to N . From Fig. 1 we can also observe notable differences in the average

prevalence, the slopes of the regression lines and the variance across all ten phenomena. Hence, we
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Admin. services: b̂ = 1.08(0.02), ln(Y0)

^  = -3.61(0.23)
Wholesale brokers: b̂ = 1.29(0.03), ln(Y0)

^  = -8.91(0.39)
Creatives: b̂ = 1.11(0.01), ln(Y0)

^  = -3.23(0.14)
Inventors: b̂ = 1.47(0.06), ln(Y0)

^  = -14.09(0.74)
Burglary: b̂ = 1.01(0.02), ln(Y0)

^  = -5.16(0.24)
Robbery: b̂ = 1.35(0.03), ln(Y0)

^  = -11.65(0.34)
High school: b̂ = 1(0), ln(Y0)

^  = -0.15(0.04)
Graduate: b̂ = 1.11(0.02), ln(Y0)

^  = -3.82(0.21)
Chlamydia: b̂ = 1.06(0.02), ln(Y0)

^  = -6.37(0.29)
Syphilis: b̂ = 1.46(0.05), ln(Y0)

^  = -16.91(0.65)

Figure 1: Four facts across ten different urban phenomena we seek to explain. Prevalence follows a power-law

scaling with population size, different phenomena have different general prevalence, different scaling exponents, and

variance for cities of similar size. Cross-sections for (a) employment in two industries, (b) two types of innovative

activities, (c) two types of violent crime, (d) people with a given educational level, and (e) two sexually transmitted

diseases (see Methods section for data sources). The lines represent the best fit of the model E{Y |N} = Y0N
β (see

Methods section for additional information).

seek to explain four empirical facts: Prevalence follows a power-law scaling with population size,

different phenomena have different general prevalence, different scaling exponents, and variance

for cities of similar size. Remarkably, these observations appear to be pervasive across phenomena

as we find them to be present in more than forty different urban activities. In this paper we propose

a mechanism to explain them simultaneously.

Scaling laws are important in science because they constrain the development of new theo-

ries: any theory that attempts to explain a phenomenon should be compatible with the empirical
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scaling relationships that the data exhibit. A number of mechanisms have been proposed to explain

the origins of scaling. Most theories are based on a network description of the underlying phenom-

ena and derive the scaling properties from the way the number of links grow with the number of

nodes in the network, under some energy or budget constraints11–13, 15–17. Other scaling relation-

ships are the result of how lines relate to surfaces, and surfaces to volumes14, 18–20. We propose

a different mechanism that improves on previous explanations in that it not only generates scal-

ing, but also accounts for the value of the scaling exponent, the average relative prevalence across

different phenomena, and the variance within phenomena across cities of similar size.

The central assumption of our framework is that any phenomenon depends on a number of

complementary factors that must come together for it to occur. More complex phenomena are

those that require, on average, more complementary factors to be simultaneously present. This

assumption is the conceptual basis for the theory of economic complexity2, 3, 21, 22.

In addition, as with models of cultural evolution, we posit that the number of factors in the en-

vironment is a function of population size4, 23, 24. Anthropological studies have shown this to be true

about the diversity of skills, behaviors, beliefs, vocabulary and tools25–30. More recent evidence

of this relationship has been found in cities31–33. These models assume that cultural accumulation

is a Darwinian process, in the sense that it involves inheritance, differential fitness and selection.

The prediction is a logarithmic function of population size4. Our approach is not dependent on the

precise justification for the logarithmic function, since logarithms typically emerge from the fact

that selection implies transforming initial distributions into extreme value distributions (such as a
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Gumbel distribution4) whose means grow logarithmically with sample size. For example, we can

assume each factor has a different probability of appearance, and cities randomly sample from this

distribution according to their size. If there is a process of selection, an extreme value distribution

will emerge. In this setting, the diversity of factors will accumulate logarithmically with popula-

tion size if the distribution of frequencies of the factors is Gumbel, meaning that the rarer factors

will only appear in larger cities (see Supplementary Information for more details).

These two assumptions about complementarity and diversity are enough to generate our re-

sults. A wide range of phenomena including industrial employment, innovation, crime, educational

attainment, and disease incidence are all statistically consistent with our theory. Moreover, we re-

veal an important empirical fact about the factors affecting different urban phenomena: that they

change in similar ways across phenomena, implying that all scaling parameters for an urban phe-

nomenon can be obtained from a single observation. This suggests that urban scaling is a highly

constrained phenomenon, which in turn allows us to test the theory via its ability to predict the

likely prevalence of a phenomenon across cities.

Our work is also related to the literature on production recipes34, which has been recently

applied to explaining performance curves in production processes9. The notion of complementar-

ity, which is central in our approach, also plays a role in the “Componential Theory of Creativity”

by T. Amabile35, the “violentization” model of criminality of L.H. Athens36, and of recombinant

growth models by S. Weitzman37. The closest approach to our framework, however, is the model

of Hausmann and Hidalgo3, which assumes that industries are present in a location when the el-
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Table 1: Parameters of the model. The parameters M , q and r are in principle phenomenon-dependent.

Parameter Meaning

N > 0 City population size susceptible of participating of a given phenomenon.

M > 0 Number of possible factors required for the given phenomenon.

q ∈ (0, 1) Probability that an individual needs any given factor from the environment.

r ∈ (0, 1) Probability that the city facilitates any one of the factors to the individual.

ements that are necessary for the industry are available in the location. They use a simple model

in which the number of elements in a location is a binomial random variable with probability r

and the elements required by each industry is another binomial random variable with probability

q. Assuming constant r for all countries and q for all industries they explain how ubiquitous in-

dustries are across countries, the inverse relationship between the diversity of countries and the

average ubiquity of their industries, and other relevant statistics. However, they limit the analysis

to industry presence and do not look at scaling phenomena. A novel conceptual component of

our model is also to allow the required factors specific to a given activity to be different for each

individual. That is, any two individuals in the population can require two different sets of factors

in order to be counted into a given activity.

The parameters of the formal model are listed in Table 1. Each phenomenon has a number

of factors M on which it can depend. With probability q an individual requires any one of those

M factors, and with probability r a city provides any one of the factors. We model the random

variable representing the aggregate output of a given phenomenon as Y =
∑N

j=1 Xj , where Xj = 1

if individual j has access to all the required factors she needs in city c to be counted in a given
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activity, and Xj = 0 if she does not, with j ∈ {1, . . . , N}.

Given a city with some factors present in it (from a total of M possible factors), the prob-

ability that individual j generates an output (i.e., that Xj = 1), is the probability the individual

requires none of the factors the city does not have. Therefore, if an individual is exposed to m

factors, the individual cannot require any of the other M −m factors that are not present, if his or

her output is to be 1. Since the probability that an individual does not require a particular factor

is 1 − q, the probability that an individual is counted in the activity given a city with m factors is

Pr{Xj = 1|Mcity = m} = (1 − q)M−m, where Mcity is a binomially distributed random variable

Binom(M, r).

It follows that X1, . . . , XN are identically distributed random variables. The expected value

of Y is thus E{Y } = N
∑M

m=0 Pr{Xj = 1|Mcity = m} ∗ Pr{Mcity = m}. The variance of Y can

be calculated similarly. This yields (see Supplementary Information for the complete derivation):

E{Y } ≈ NP, (1)

and

Var{Y } ≈ E{Y }2
(

1

E{Y } − 1

N
+

1

P q
− 1

)

, (2)

where P ≡ e−Mq(1−r).

Since r is the fraction of factors an individual is expected to encounter in a city, r represents a

measure of urban diversity. This parameter captures the accumulation of factors in the population.

As we have argued, factors tend to accumulate logarithmically with population size when a process
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of selection is involved (see Supplementary Information for more details). Factors can be acquired

by individuals through a process of social learning as in models of cultural evolution, or by cities

as a whole as they integrate individuals with qualitatively new and different characteristics, skills,

behaviors, beliefs, occupations or tools.

We thus assume that r = a+b ln(N). Replacing r in Eq.1 yields the scaling function E{Y } =

Y0 N
β (see Eqs.3 and 4 below). Hence, the power-law scaling of phenomena with population size

across cities emerges from two relations that offset each other: the exponential relation between

the prevalence of a phenomenon in a city and diversity, and the logarithmic relation of diversity

with population size. We hypothesize that power-law scaling does not emerge if diversity does

not scale logarithmically with population size. In this way, our theory can potentially reconcile

observations in which power-law scaling breaks down (e.g., for small population sizes38), and can

also be consistent with other scale-dependent functions, such as E{Y } = Y0N ln(N/N0) (see

Refs. 39 and 40 ), which can arise if diversity scales more slowly than logarithmically (see Ref.

33 ). We thus provide theoretical support to a wide empirical literature on urban scaling1, 38, 41–43.

Furthermore, our model predicts that the logarithm of the general prevalence of a particular

phenomenon, its scaling exponent, and the average standard deviation across population sizes, all

change linearly according to the complexity of the phenomenon (see Supplementary Information

for the precise derivation). Since the parameter q is the fraction of factors an individual is expected

to require from the city in order to be counted into a phenomenon, q quantifies the complexity of
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that phenomenon. Specifically, we have

ln(Y0) = −M(1− a)q, (3)

β − 1 = Mbq, (4)

σ =
√

M(1− a− b〈lnN〉)q, (5)

where σ ≡
√

〈Var{lnY }〉, with 〈·〉 being the mean across population sizes, such that 〈ln(N)〉

is the mean of the logarithm of population sizes. In short, an increase in the complexity q of

a phenomenon (e.g., a decrease in transmissibility of a disease that makes it more difficult to

acquire) would simultaneously decrease the intercept, increase the scaling exponent, and increase

its variance in cities of same population size. In other words, complex phenomena are expected to

be rare, scale steeply with population size, and their prevalence will be subject to high stochastic

variability.

Conditioned on knowing β, ln(Y0), and σ, Eqs.3, 4 and 5 represent three equations with four

unknowns. The equations can then be solved for G = M(1− a), H = Mb, and q (leaving M , the

total possible number of factors that affect each phenomenon, undetermined).

We estimate β and ln(Y0) through Ordinary Least Squares (OLS), and estimate σ as the

square root of the mean squared error of the OLS regression, and then solve for G, H and q. In-

terestingly, even though G and H vary widely across phenomena, the ratio s1 = H/G remains

numerically stable, as manifested in panel (a) of Figure 2 where G and H feature a linear relation-

ship with no intercept. In this ratio the parameter M factors out of H and G and cancels, yielding

s1 = b/(1 − a). This suggests that the parameters for how diversity changes with population
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Figure 2: Relationship between inferred values of parameters G, H and
√

G−H〈ln(N)〉, across 43 different

urban phenomena. The theory does not constrain their values, so the figure shows in gray the contours of a kernel-

density estimate to reveal underlying patterns and relationships. A linear relationship is suggested by the estimated

density. The line is the estimated robust regression that excludes the top 5 outliers marked with a solid circle which are

phenomena with the least estimated density. In both panels the outliers are same: “Robbery”, “Aggravated Assault”,

“Burglary”, “Larceny-theft”, and “Chlamydia”. The linear trends in both panels are an empirical indication that the

coefficients s1 and s2 are mostly constant across phenomena. See Methods section for more details.

size (i.e., a and b) are related in the same way across all phenomena. Similarly, the fact that G is

almost two orders of magnitude larger than H signifies that the ratio s2 = H/
√

G−H〈ln(N)〉

also remains approximately stable (panel (b) in Fig. 2). This is because the ratio goes like c
√
G

with c → 0. These ratios are important because they connect the scaling parameters. Namely,

β = 1 − s1 ln(Y0) from Eqs. 3 and 4, and β = 1 + s2 σ from Eqs. 4 and 5. As a consequence,

the way β changes with a change in ln(Y0) and σ, respectively, is similar across activities. In other

words, the implication of Fig. 2 is that we can plot the estimated values of β vs. ln(Y0) and β

vs. σ for different activities in the same graph, and expect them to be linearly related. Figure 3

shows this is indeed the case. The implication is that these three scaling parameters are strongly
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Figure 3: The theory predicts a negative linear relationship between β and ln(Y0) (see panel a), and a positive

relationship between β and σ (see panel b), both with an intercept of 1. As a consequence, there is an implied

negative linear relationship between σ and ln(Y0) with no intercept. Both figures show the point estimates and the

corresponding standard errors of the parameters of the scaling laws for each of the 43 urban phenomena studied. See

Methods section for more details.

constrained in the parameter space and lie in a line.

Provided the coefficients s1 and s2 are constants and are known in advance, the theory there-

fore establishes that knowing the value of one of the scaling parameters of a phenomenon of interest

(exponent, general prevalence, or variance) determines the value of the others. If unknown, how-

ever, this one degree of freedom, in turn, can be fixed if we know the population N = nc and

prevalence Y = yc in a single city c. This is possible if we assume the city is an average city, and

the prevalence of the phenomenon is what is expected from its population size, yc = Y0 n
β
c . Thus,

we can test the theory according to its ability to predict the prevalence of a phenomenon in other

cities having knowledge of only one random data point (the prevalence of the phenomenon in a

single city). Figure 4 explains the step-by-step procedure to determine bands between which the

prevalence of a phenomenon is predicted to lie. To empirically test this, we use as an approxima-
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tion the median of s1 and s2 across phenomena in our dataset, s1 ≈ 0.03045 and s2 ≈ 0.33450. We

pick bands that are z0.95 ≈ 1.645 standard deviations from the mean, so that if the theory is correct,

90% of cities are expected to fall within the bands. For each of the 43 activities in our dataset,

we simulated the procedure 50 times, picking a city at random each time (with replacement). The

histogram of Fig. 4 shows the distribution of the fraction of cities f that fell within the bands as a

result of the 43× 50 = 2150 simulations.
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What the Theory Predicts

Given coefficients s1 and s2 and the populations

of all cities n1, n2, ...

For a phenomenon of interest:

Pick a random city c with known population size  and 

prevalence:

Apply the equations:

Use the populations n1, n2, ..., to predict the 

prevalence of the phenomenon in the rest of

cities within some prediction bands:

With the prevalence of a phenomenon in a single city,

the theory predicts what the prevalence in the rest of cities

is likely to be.

Procedure:

To test the predictions, we simulated the Procedure  

50 times for each phenomenon, for a total of 2150 

simulations.

Results of Simulations

For all phenomena:

ƒ

1

2

Apply the Procedure

Compute the fraction    of cities within the

predicted bands

city c

...

...=ƒ ...+

(nc,yc)

β(pred.) =
1− s1 ln(yc)

1− s1 ln(nc)

ln(Y0)
(pred.) =

1−β(pred.)

s1

σ(pred.) =
β(pred.) −1

s2

y±
i = exp ln(Y0)

(pred.) +β(pred.) ln(ni )± zασ(pred.) , for all i = 1,2,...{

{

Figure 4: Testing the theory via its predictions. Knowledge of the prevalence and population size of a city determines

the values of all the scaling parameters. The histogram comes from simulating the prediction procedure 50 times for

each of the 43 urban phenomena in our database and computing the fraction of cities that fall within our predictions.

Here, we are using the proposed prediction framework to test the validity and scope of the
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theory. However, using this framework as an actual tool for predicting the prevalence of a phe-

nomenon in cities where data is unreliable or unavailable is still premature. Further investigations

and more data are needed to improve our theory and its practical utility. Moreover, it is important

to keep in mind that our results so far imply that more complex phenomena have a higher variabil-

ity. So even if the theory stands correct, 90% prediction bands for complex phenomena can be as

wide as two orders of magnitude and this intrinsic variability impacts on the practical use of such

predictions.

There are two main reasons why some phenomena may deviate from our predictions. First,

some of the counts for Y are actually counts over a time period, which may shift arbitrarily the

values that ln(Y0) takes depending on the length of the period. For example, there is no reason why

output must be computed as counts per year, as opposed to per month, or something else depending

on the activity. And second, the scaling of output, according to the theory, is with respect to the

potential population N which is “susceptible” of engaging in the activity or phenomenon (e.g.,

women, adults, or the working age population). Hence, N is not necessarily the whole population

of the city, and our estimations of ln(Y0) carry that error from measuring incorrectly the size of the

adequate population group. In spite of these effects the results in Fig. 3 are broadly consistent with

the model.

The theory we present is unabashedly simplified, avoiding issues about supply or demand,

equilibrium, or the structure of social networks. We have assumed, for example, that people in-

teract with the city as a whole, abstracting away interactions between individuals. We modeled
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each city as a set of factors, but we did not actually specify how factors appear. We introduced the

notion of the complexity of a phenomenon, representing an average measure of how many inputs

individuals need from the city to be able to be counted, or engage, in the given phenomenon. In

the context of epidemiology, we have assumed the diversity of factors necessary for disease trans-

mission to be mostly affected by socio-economic aspects, themselves subject to cultural evolution.

Similarly with crime. Disease and crime, however, are the subject of strong public policy interven-

tions aimed at reducing their influencing factors. How our model applies to these phenomena is a

question that needs to be further analyzed as more data is collected.

We have also abstracted away important aspects of cities. First and foremost, we have pre-

sented a static view of cities. Also, we have bypassed the interdependencies between cities, and

between activities, that arise from people migrating in and out of them44. Labor migration and

the sharing of resources among cities in a region can affect the diversity of factors a city is ex-

posed, and has access, to. Hence, factors imported from a wider region can affect the prevalence

of urban phenomena. Further work is needed regarding the inclusion of these interactions into the

model and their consequence on scaling. We have also left out the dynamic component involved

when economic actors act according to complex decision rules. Finally, we have not taken into

account the fact that economic and social actors exist not only at the level of individuals, but also

at intermediate levels of organization such as families, neighborhoods, firms, and so on.

Accordingly, we do not expect predictions of this model to be numerically accurate, and yet

they are quite reasonable. It is surprising that such a simple model can explain scaling, prevalence,
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and variance of such heterogeneous phenomena in an integrated framework. This indicates that the

theory has captured something fundamental about social systems: namely, that they are complex,

stochastic processes that involve many complementary factors accumulating through evolutionary

processes. Thus, models that incorporate these elements can have broad applications in social

science.

Methods

Regression analysis. While our response variables Y are conceptually counts, in practice, some

of our data represent time averages or estimates from statistical offices. Still, we are trying to

analyze under a unified framework our data which include both continuous and count variables.

For count variables, the use of negative binomial, poisson, or zero-inflated regression analyses are

preferred over ordinary least squares (OLS), given that the latter assumes a continuous normal

conditional distribution of the response and does not allow for the use of zero counts when the

regression is done over the logarithm of Y . All these methods should in principle yield similar

coefficient estimates, and are rather intended to get better estimates of their standard errors.

Since our analysis depends on comparing the estimated regression parameters across several

urban phenomena, we have opted for the use of OLS regression for all phenomena throughout our

analysis. The use of different regression models do not change dramatically our estimations, as

expected.
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Kernel density estimation. In Figure 2 of the main text we show the values of G, H and
√

G−H〈ln(N)〉,

across 43 different urban phenomena. To reveal patterns in the distributions of these values we ap-

plied a 2-dimensional kernel density estimation separately for G and H , and
√

G−H〈ln(N)〉 and

H . See the Supplementary Information for an analysis of the outliers and how they affect the linear

relationship.

We used the R package “ks”, freely available on the web 45, which uses standard normal

kernels with a conventional plug-in selector for the matrix bandwidth estimation. A useful feature

of this package is that it allows non-zero values for the non-diagonal elements in the matrix.

Data availability. The data sources are explained below. They have been aggregated and separated

into different files which we provide in a ZIP file called “Supplementary Data.zip” that contains a

single file for each urban phenomenon we studied (except for Sexually Transmitted Diseases that

we kept in a single file), a README file, and a file “ListUrbanPhenomena.xlsx”, which lists the

different phenomena we used in our analysis with other parameters and field descriptions.

Employees by industry. Data was downloaded using the programming codes that have made

available by the Bureau of Labor Statistics through the website http://www.bls.gov/

cew/doc/access/data_access_examples.htm. The specific data for micropoli-

tan and metropolitan areas was selected using the guide in http://www.bls.gov/cew/

doc/titles/area/area_titles.htm.

The metropolitan codes, however, are from the 2004 definitions. In http://www.bls.

gov/cew/cewfaq.htm#Q18, it says
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QCEW data for Metropolitan Statistical Areas (MSAs) for the years 1990

to present are based on the March 2004 MSA definitions. Aside from a few

titling changes, there have been relatively few updates to those definitions since

the March 2004 release. The next major revision to MSA definitions is expected

in 2013. The QCEW program will release data for 2013 and forward based on

those definitions.

However, these definitions do not match completely. From http://www.bls.gov/

news.release/metro.nr0.htm,

The Metropolitan New England City and Town Areas (NECTAs) and NECTA

Divisions again are used for the six New England states, rather than the county-

based delineations, for purposes of this news release.

The list of industry codes can be found in http://www.bls.gov/cew/doc/titles/

industry/industry_titles.htm. We use employment numbers aggregated to 3-

digit level industries. From the 91 different industries, we pick only those industries that

have presence (at least 1 employee) in more than 250 metropolitan areas. This is to ensure

the statistical significance is comparable with the other urban phenomena. Since our theory

does not account for sublinear phenomena yet, we pick the industries that have scaling expo-

nents of employment with population size larger than 1. This reduces the sample of 3-digit

industries from 91 to 14. Our results, however, are robust to including more (superlinear)

industries with presence in less than 250 MSAs.
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Sexually transmitted diseases. The data on Sexually Transmitted Diseases (STDs) consist of

new cases of chlamydia and syphilis (primary, secondary and congenital). They represent

the 5-year cumulative incidence, from 2007 to 2011, in the counties of the 48 contiguous

states of the United States, as reported by the Centers for Disease Control and Prevention

(CDC) 46. In our analysis we used the average of counts over the years 2007-2011.

The surveillance information in this dataset is based on the following sources of data: (1)

notifiable disease reporting from state and local STD programs; (2) projects that monitor

STD positivity and prevalence in various settings, including the National Job Training Pro-

gram, the STD Surveillance Network, and the Gonococcal Isolate Surveillance Project; and

(3) other national surveys implemented by federal and private organizations. This dataset

does not include any individual-level information on reported cases.

Since the STD data was originally obtained at the county level, we constructed MSA-level

metrics using county-level data. See 43 for details. Of the 375 MSAs within the 48 contigu-

ous states, our dataset has information on 364.

Creative individuals. Here we use the definition of ‘creative occupations’ given by the U.S. De-

partment of Agriculture (USDA, http://www.ers.usda.gov/data-products/

creative-class-county-codes/documentation), as an improvement to the orig-

inally proposed by Richard Florida 47. The USDA defines these occupations:

O*NET, a Bureau of Labor Statistics data set that describes the skills generally

used in occupations, was used to identify occupations that involve a high level of

“thinking creatively.” This skill element is defined as “developing, designing, or
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creating new applications, ideas, relationships, systems, or products, including

artistic contributions.”

The data is available at the county level and have to be aggregated using the 2003 MSA defi-

nitions which can be found at http://www.census.gov/population/estimates/

metro-city/0312msa.txt. The number of MSAs according to this definition is 361

for the 48 contiguous states. To get the MSA populations we reconstruct it from Census

tracks data, aggregating the 2010 populations of counties available at https://www.

census.gov/population/metro/data/c2010sr-01patterns.html.

Inventors. Counts of inventors are publicly available through the U.S. Patent and Trademark

Office website at http://www.uspto.gov/web/offices/ac/ido/oeip/taf/

inv_countyall/usa_invcounty_gd.htm. According to the link (http://www.

uspto.gov/web/offices/ac/ido/oeip/taf/reports.htm) “[t]his report ap-

plies to U.S. resident inventors who have received a utility patent (i.e., “patent for invention”)

granted by USPTO since 2000. The report includes a series of tables that display U.S. states

and the regional components (e.g., counties) in which the inventors resided. Counts of the

inventors and their patents are provided for each of the regional components.”

The documentation can be found in http://www.uspto.gov/web/offices/ac/

ido/oeip/taf/inv_countyall/usa_invcounty_gd.htm. In Figure 2 and 3,

we plotted the years 2000 to 2013 using the 2013 definition of Metropolitan Statistical Areas

in terms of counties according to the U.S. Census Bureau (see https://www.census.

gov/popest/data/metro/totals/2013/CBSA-EST2013-alldata.html). We
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merged to this dataset the MSA populations, from 2000 to 2013, reported by the Bureau of

Economic Analysis.

Crime. Data for different types of crimes at the MSA level is collected by the Federal Bureau of

Investigation (FBI). These data is publicly available at official the website https://www.

fbi.gov/about-us/cjis/ucr/crime-in-the-u.s/ for different years. In our

study, we limited our analysis to the years 2010, 2011 and 2012.

Two important caveats about the crime statistics that we used in our analysis are in place.

On the one hand, we would ideally like to have the counts over some period of time of

unique individuals that were victims of different types of crimes (we would also like to

have counts of criminals in urban areas, but this is obviously data difficult to measure).

We have proxied the number of victims by the counts of crimes. On the other hand, our

model provides predictions for counts of people Y that engage in a given activity, and we

compare these counts with the population N that is susceptible to this activity. For most

activities N is easy to define and is typically the total population size of a city. For other

activities, N is not so easy to define. Hence, we have removed from our analysis (see Fig-

ure 2 and 3) “murder and nonnegligent manslaughter” and “forcible rape”. The relevant

population N that corresponds to these types of violent crimes is not the total population

size of a city, it represents a restricted part of the total population, and we think these

phenomena require analysis that is out of the scope of our model. For instance, forcible

rape, as defined by the FBI (see https://www.fbi.gov/about-us/cjis/ucr/

crime-in-the-u.s/2010/crime-in-the-u.s.-2010/violent-crime/rapemain)
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is “the carnal knowledge of a female forcibly and against her will”. Misspecifications of N in

our regressions produce a bias in the estimation of ln(Y0). We avoid such misspecifications

by removing these two types of crimes from our analysis.

Educational attainment. We have used the estimates of the population by the different types of

educational attainment from the 2009-2013, 5-Year American Community Survey (ACS)

from the U.S. Census Bureau. We have used as the base population N the population of 25

years and older.

This dataset is accessible through the website American FactFinder, at http://factfinder.

census.gov/. Selecting Advanced Search, entering “S1501” as the topic, corresponding

to Educational Attainment. We selected the 2009-2013, 5-Year ACS data, and in “Geogra-

phies” we selected data for all U.S. Metropolitan Statistical Areas.

We adjusted the educational attainment categories to reflect increases in complexity. Hence,

from least to most complex, we defined six activities: (1) 9th grade, or higher, (2) High

school graduate, or higher, (3) Some college, or higher, (4) Associate’s degree, or higher, (5)

Bachelor’s degree, or higher, and (6) Graduate or professional degree.
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Supplementary Discussion

Toy Example for How Complementarity Works

We introduce our model with a simplified example.1 To get a patent, one must (i) have a technological
problem, (ii) have a solution, (iii) present the idea clearly, (iv) apply for a patent, (v) include subsequent
corrections from examiners, and (vi) satisfy all the legal requirements. Supplementary Figure 1 is a
schematic representation of this example. Analogous schemes apply to getting sick, a job, a degree,
committing a crime, and other many activities. The complementarity principle (one could also refer to it
as the Anna Karenina’s Principle) establishes that if one or more of the requirements (i)-(vi) is missing,
the person fails to do the activity. In this example there are 26 total possibilities, only one leads to
successful output.

Supplementary Figure 1. Toy example of how the model works. A given activity, in this case
inventive activity or patenting, requires a set of substeps to be counted in. Some of the substeps may be
facilitated by the individual and some by the city. Only when all the substeps are satisfied the person is
counted in the activity.

In principle, the larger the number of conditions, namely M , that must be met to get an outcome from
any given activity (in the patent example before, M = 6), the more difficult it is that the outcome will
occur. In practice, however, rather than the number of conditions, the difficulty of an activity depends

1The scheme we present is inspired by (1).



more on how easily are these conditions facilitated by the person involved in the given activity or by her
environment. In the patent example, for instance, one person may be a lawyer and thus readily fulfill
condition number (vi), while another may require it from an external source (by hiring a lawyer, for
instance). It is then up to the environment whether the second person will be able to file the patent
successfully or not (assuming both have satisfied substeps (i)-(v)).

Figure 1 gives the example of three individuals that live in a city. This particular city facilitates three
of the six substeps required to become an inventor (marked with an X ). The first individual possesses all
the elements to become an inventor (also marked with an X ). As a consequence, this person can become
an inventor regardless of what city she finds herself in. The second person is missing the substeps (ii)
and (vi). At the end, this person does not patent because he is unable to fulfill substep (ii), because he
lacks it and the city he lives in does not help him with it. The third person, in contrast, is able to get a
patent because she fulfills all the requirements, even though she relies more on her environment than the
second person.

Solving the Model

Before we start solving the model, let us recall our question of interest. Given that urban phenomena
in general require the coordination of several factors, we want to understand how the inherent difficulty
of a given urban activity interacts with the city population size, such that we observe the stylized facts
discussed in the main text.

The total output of the city is the sum of the output across all individuals in the city. Given the
two sources of randomness in our model (the list of factors of the city and the diversity of requirements
across individuals), we want to know the statistical characteristics of total output. The random variable
representing the total output in a city is expressed as

Y =

N∑

j=1

Xj , (1)

and we thus need to understand the statistics of individual output, Xj .

The Probability of Being Counted in an Urban Phenomenon

Given a city c with m factors present in it (from a total of M), the probability that individual j generates
an output (i.e., that Xj = 1), is the probability the individual requires any number of the m factors that
the city has (from 0 to m), but none of the ones that the city does not have. Therefore, if the city has m
factors, the individual cannot require any of the other M −m factors if his or her output is to be 1. The
probability that the individual does not require a single factor is 1− q. Hence,

Pr{Xj = 1|Mcity = m} = (1− q)M−m, (2)

where Mcity is binomial random variable with parameters M and r.
Using Eq.2 we can now answer what is the expected value of Y , conditioned on the city having m

factors, since E [Xj |Mcity = m] = Pr{Xj = 1|Mcity = m} = e(M−m) ln(1−q) ≈ e−(M−m)q (for small q). To
get the expectation for the aggregate count we multiply by the total population. Using the approximation
ln(1− ǫ) ≈ −ǫ for ǫ ≪ 1, we get

E [Y |Mcity = m] ≈ Ne−(M−m)q. (3)

Hence, the number of factors m that an individual encounters, and the complexity of the activity q, have
opposing effects on the probability of engaging in the activity: the former increases the probability while
the latter reduces it.



Mean, Variance and Covariance of Binary Random Variable of Person

Now, individuals are exposed to different numbers of factors in a city, but they are exposed on average to
Mr factors. Hence, we will use the law of total probabilities to sum over all possible m. One could expand
the model further to include heterogeneity within the city. Hence, the number of factors an individual is
exposed to would be modeled as Binom(M, r(x, y)), where r(x, y) can vary within the city as a function of
geographical coordinates (x, y). In addition, each factor would be sampled differently, so that the sampled
random factors individuals are exposed to, and/or require in their activities, are interdependent depending
on the geographical (and cultural, professional, or ethnic) proximity (2). In what follows, however, we
will assume r is a constant throughout the city.

Since the variableXj is binary, there are simplifications that are possible when calculating expectations
and variances. Hence,

E [Xj ] = Pr{Xj = 1}, (4)

and

Var [Xj ] = Pr{Xj = 1} − Pr{Xj = 1}2. (5)

One can also calculate the covariance, such that:

Cov [Xi, Xj ] = E [XiXj ]− E [Xi] E [Xj ] ,

= Pr{Xi = 1, Xj = 1} − Pr{Xi = 1}Pr{Xj = 1},

= Pr{Xi = 1, Xj = 1} − Pr{Xj = 1}2. (6)

To compute E [Xj ], Var [Xj ], and Cov [Xi, Xj ], we need to calculate Pr{Xj = 1} and Pr{Xi = 1, Xj = 1}.
We will present two different ways of computing these probabilities. We present both ways for illus-

trative purposes, but also to check our results are correct.
To calculate Pr{Xj = 1} we first condition on the person requiring m factors, we calculate the

probability that the city has those m factors, and sum over all possible m:

Pr{Xj = 1} =

M∑

m=0

Pr{Xj =1|Mperson = m}Pr{Mperson = m},

=

M∑

m=0

rm
(
M

m

)
qm(1− q)M−m,

= [rq + 1− q]
M

,

= [(1− r)(1− q) + r]
M

. (7)

To calculate the joint probability, we use a similar method. We assume that the city has m factors,
and we use Eq.2, to add over all values of m. The main advantage of this second way of calculating
probabilities is that by conditioning on the city having m factors, we can use the fact that Xi and Xj

become conditionally independent:

Pr{Xi = 1, Xj = 1} =

M∑

m=0

Pr{Xi = 1, Xj = 1|Mcity = m}Pr{Mcity = m},

=
M∑

m=0

(1− q)M−m(1− q)M−m

(
M

m

)
rm(1− r)M−m,

=
[
(1− r)(1− q)2 + r

]M
. (8)



Using Eqs.7 and 8 to calculate the covariance given by Eq.6:

Cov [Xi, Xj ] =
[
(1− r)(1− q)2 + r

]M

− [(1− r)(1− q) + r]
2M

. (9)

Using the approximation whereby ln(1− ǫ) ≈ −ǫ, for ǫ ≪ 1, we can write Eq.7 and Eq.8 as

Pr{Xj = 1} ≈ e−Mq(1−r), (10)

and

Pr{Xi = 1, Xj = 1} ≈ e−Mq(2−q)(1−r),

= Pr{Xj = 1}2−q. (11)

To simplify notation, from this point forward, let P ≡ Pr{Xj = 1} be the marginal probability that
Xj = 1, which is independent of the person j, as shown by Eq.7.

Mean and Variance of Total Output

We now calculate the mean and variance of Y =
∑N

j=1 Xj . For the mean we get

E [Y ] =

N∑

j=1

E [Xj ] ,

= N [(1− r)(1− q) + r]
M

,

≈ Ne−Mq(1−r), (12)

where we have used the approximation P ≈ e−Mq(1−r), for q(1 − r) ≪ 1, in the last step. And for the
variance we get

Var [Y ] =

N∑

j=1

Var [Xj ] +
∑

i 6=j

Cov [Xi, Xj ] ,

= N
[
[(1− r)(1− q) + r]

M

− [(1− r)(1− q) + r]
2M

]

+N(N − 1)
[[
(1− r)(1− q)2 + r

]M

− [(1− r)(1− q) + r]
2M

]
. (13)

Equation 13 can be simplified by writing it in terms of P :

Var [Y ] ≈ NP (1− P ) +N2
(
P 2−q − P 2

)
, (14)

where we have used the approximation of Eq.11, and assumed N is large enough so that N − 1 ≈ N .
Expanding and factoring out N2P 2 yields

Var [Y ] ≈ (NP )2
(

1

NP
−

1

N
+

1

P q
− 1

)
,

= E [Y ]
2

(
1

E [Y ]
−

1

N
+

1

P q
− 1

)
. (15)



Probability Distribution of Total Output

We can also compute the probability distribution of Y in a similar way as we did for the calculation of
the joint probability Pr{Xi, Xj}. That is, we first condition on the city having m factors, and sum over
the values of m:

Pr{Y = k} =

M∑

m=0

Pr{Y = k|Mcity = m}Pr{Mcity = m},

=

M∑

m=0

(
N

k

)
Pr{X1 = 1, . . . , Xk = 1,

Xk+1 = 0, . . . , XN = 0|Mcity = m}Pr{Mcity = m}, (16)

where we are using the fact that the Xi’s are exchangeable (e.g., Pr{X1 = 1, X2 = 1, X3 = 0} = Pr{X1 =
1, X2 = 0, X3 = 1} = Pr{X1 = 0, X2 = 1, X3 = 1}), and thus we are counting all the ways in which k,
out of the N citizens, generate an output.

Recalling Eq.2, and the fact that individuals are conditionally independent, we get that

Pr{Y = k} =

M∑

m=0

(
N

k

)[
(1− q)M−m

]k [
1− (1− q)M−m

]N−k
(
M

m

)
rm(1− r)M−m. (17)

Depending on the values of the parameters, Eq.17 is a probability function that can generate skewed
random variables.

Since the output of individuals is positively correlated according to Eq.9, the condition of independence
in the Central Limit Theorem is violated. Hence, it is not surprising that Pr{Y = k} does not approximate
a normal distribution (or a binomial, if we keep Y discrete). This is consistent with the fact that total
output in cities has been found to be lognormally distributed (3–8).

How Complexity Affects Variance

As explained above, the variance of Y is given by

Var [Y ] = E [Y ]
2

(
1

E [Y ]
−

1

N
+

1

P q
− 1

)
. (18)

Notice that Var [Y ] and E [Y ] are functions of population size N that can also be though of as a random
variable. This is important, since in the text we assume the parameter σ to be a measure of (root square)
variance averaged over population sizes.

Let us write Eq.18 as

Var [Y ] = E [Y ]
2
(
eσ

2(N) − 1
)
, (19)

where we have defined the function σ2(N) as

σ2(N) = ln

(
1

E [Y ]
−

1

N
+

1

P q

)
. (20)

Since the probability function of Y is approximately a lognormal distribution, the function σ2(N)
represents the average variance of the logarithm of Y :

σ2(N) ≈ Var [ln(Y )] . (21)

Therefore, σ2(N) represents the variance in the vertical direction (for a given N) in any of the cross
sections shown in Figure 1 of main text. This is because the plots are logarithmic scales, such that what
we see is not the spread of Y , but the spread of ln(Y ).



Assuming N ≫ 1, then

σ2(N) = ln

(
1

E [Y ]
−

1

N
+

1

P q

)

≈ ln

(
1

E [Y ]
+

Nq

E [Y ]
q

)

= ln

(
Nq

E [Y ]
q

)
+ ln

(
P q−1

N
+ 1

)

≈ ln

(
Nq

E [Y ]
q

)
+

P q−1

N
for P q−1/N ≪ 1

≈ q2 ln
(
eM(1−r)

)
+

P q−1

N

= q2M(1− r) +
e−M(1−r)q(q−1)

N
. (22)

Our model therefore predicts σ(N) to be an approximately linear function of q, for a wide range of
parameter values (see Fig.2). Specifically,

σ(N) ≈
√

M(1− r)q2 + e−(1−r)M(q2−q)/N ,

≈
√

M(1− r) q for P q−1/N ≪ 1. (23)

To simplify matters, we average across population size, and we denote this measure of variance as
σ2 ≡ 〈σ2(N)〉:

σ2 ≈ 〈M(1− r)q2〉,

≈ M(1− a− b〈lnN〉)q2, (24)

where we have already made use of the assumption that diversity is a logarithmic function of population
size, r = a+ b ln(N).

Figure 2 plots curves of Eq. 23 on top of simulations for three values ofN (and their three corresponding
values of r).

Why Does Diversity Scale Logarithmically with Size?

In the main text, based on models of cultural evolution, we have assumed that diversity, M r(N) = D(N),
scales approximately as a logarithmic function of N , D(N) ≈ A+B ln(N).

The question of why diversity grows in the way it does is a question about the mechanisms that drive
the appearance of novel activities in cities, and in a social group more generally. There is an extensive
body of research about the origins of innovation (see (9–13)). We do not aim to engage too deeply into
this question since our theory does not depend on the precise underlying mechanisms behind the growth
of diversity. This is a research question that requires further investigation, and we provide below some
reasonable mechanisms to explain why factors accumulate logarithmically with population size.

The two mechanisms we present are (i) skill-biased social-learning with incomplete inference, and
(ii) random sampling from an extreme value distribution. They differ mainly in that the first analyzes
cultural accumulation as a process that occurs within individuals (i.e., individuals learn from each other),
whereas the second analyzes cultural accumulation as a process that occurs at the systemic level (i.e.,
cities accumulate different factors as population size grows). Fundamentally, this is a difference between
intensive and extensive growth; the first is a statement about how much, on average, individuals know
(their individual stock of skills), while the second is a statement about how much the city knows collectively
(how many skills, which differ qualitatively among them, there are in the population).



Supplementary Figure 2. The theory predicts an approximately linear relationship between the
standard deviation of ln(Y ) and q. The three colors represent the relation for different population size
levels. Interestingly, the fact that the curves are very close for most of the valid values of q (i.e.,
q ≤ qmax, where qmax is the maximum q for which E [Y |r, q,M,N ] ≥ 1, shown as dotted vertical lines)
means that σ is a weakly varying function of population size N , as was noted in (4). (The parameters
for these curves are M = 808, a = −1.4827 and b = 0.1456.

Both mechanisms that we present, however, share the essential feature that there is a selection process
among random variables. This selection transforms statistical distributions into one of three extreme
values distributions:

• If the underlying distribution (of trait values across individuals in the first case, or of the frequency
of different factors in the second case) is thin-tailed (e.g., normal, exponential, poisson, etc.), and
there is a selection for maximum values, the distribution will converge asymptotically to a Gumbel
distribution.

• If the underlying distribution has tails that fall as a power-law, through selection the distribution
will converge to a Fréchet distribution.

• If the underlying distribution has a finite right endpoint, the convergence is towards a Weibull
distribution.

Of these three limiting distributions, the Gumbel has the largest domain of attraction (14).

Cultural Evolution

The model proposed by Henrich (9, 10) assumes that cultural factors (e.g., tools, beliefs, behaviors,
skills, etc.) accumulate through an evolutionary process whereby individuals selectively imitate the most
successful individuals in the population (i.e., “prestige-biased transmission”). Copying the characteristics
of the most successful individual, however, is an inferential process that is incomplete. To model this,
Henrich and Boyd incorporate two essential features about human inference: first, that it is noisy (there
are copying errors), and second, that it is biased (the copy is on average worse). The effects of selective
imitation, under noisy and biased inferences, on the accumulation of factors at the population level, can
be statistically separated using Price Equation (15,16).

At an abstract level, let us assume that there is an inheritable characteristic z (the mode of transmission
does not need to be genetic), and that different values of z have different fitness w (i.e., number of
offspring). The average value of the characteristic across the population of individuals, i = 1, . . . , N ,
is z̄ =

∑
i zi/N . This average changes from generation to generation due to both selective and other



non-selective forces. The Price Equation is essentially a statistical decomposition of the change in the
average characteristic value from one generation to the next, ∆z̄ = z̄′ − z̄, into these two forces:

w̄∆z̄ = Cov [w, z] + E [w∆z] , (25)

where the first term in the right-hand side measures the selection force, and the second term measures
other forces.

If zi is the size of the cultural repertoire of factors that individual i carries in his or her social life, one
can assume z̄ changes through a process of evolution as described by Henrich’s model of prestige-biased
transmission and incomplete inference. If fi = wi/(Nw̄) is the probability that other members of the
population will copy the characteristics of individual i, then Price Equation yields

1

N
∆z̄ = Cov [f, z] + E [f∆z] . (26)

The specific assumptions are mathematically expressed as follows:

1. Prestige-biased transmission:

fi =

{
1, if i = h

0, if i 6= h,
(27)

where h is the most prestigious individual whose success comes from having the largest cultural
repertoire, zh = max{z1, . . . , zN}. This is a strong assumption that states that everyone attempts
to imitate the single most prestigious individual in the society (however, see the subsection below
about the speed of convergence).

2. Both f and z are random variables. The distribution of f is p = Pr{f = fh} and 1−p = Pr{f 6= fh}
(p = 1/N if there is only one single prestigious individual). The distribution of z is a Gumbel, z ∼
G(u,B). Hence, E [z] = u+ ǫB, where ǫ ≈ 0.5772 is the Euler-Mascheroni constant. The maximum
of a sample of random variables Gumbel distributed is also Gumbel, yielding zh ∼ G(u+B ln(N), B).

3. The incomplete inference is modeled by a random variable representing the errors in inference of
individual i, ∆zi, in his or her attempt to imitate h. The assumption is that ∆zi ∼ G(w,B).
The noisy aspect of inference is captured by the dispersion parameter B, and the downward bias is
captured by w, plust the fact that the mode of the Gumbel is less than its mean.

Assumptions 1 and 2 together imply that the first term in Price Equation is

Cov [f, z] = E [fz]− E [f ] E [z] ,

= (E [fz|f = fh] p+ E [fz|f 6= fh] (1− p))− E [f ] E [z] ,

= E [zh] p− pE [z] ,

= (u+B ln(N) + ǫB)p− p(u+ ǫB),

= pB ln(N). (28)

Assumption 1, 2, and 3 together imply that the second term in Price Equation is

E [f∆z] = E [f∆z|f = fh] p+ E [f∆z|f 6= fh] (1− p),

= E [∆zh] p,

= (w + ǫB)p. (29)

All assumptions together yield

1

N
∆z̄ =

1

N
(w +B(ǫ+ ln(N))) . (30)

Finally, assuming that the total size of the cultural repertoire in the society is proportional to the
cultural accumulation at the individual level, D ≈ ∆z̄, one arrives at the relation

D ≈ A+B ln(N), (31)

where A = w +Bǫ.



Supplementary Figure 3. Demonstration of accumulation of factors when factors have different
sampling probabilities. Gumbel distributions show a logarithmic accumulation with sample size N , in
which the slope corresponds to the shape parameter.

Sampling from extreme value distributions

We assume factors are sampled according to the population size of the city. Each factor k has a different
probability of being sampled, fk = Pr{K = k}, such that

∑
k fk = 1. Suppose a city of population N

samples from this distribution N times (imagine sampling from a bag of colors with replacement). The
number of different values of k that the city draws is a function of population size, D(N). Depending on
the distribution fk, the expected value E{D(N)} can take a different functional dependence on N .

One can think of the values that K can take as colors, and fk as the probability of sampling a given
color. The question is thus how do the number of colors accumulate with sample size.

Let us represent the event of getting a new factor in the Nth round of sampling, different from the
factors a city already has, by HN = 1. Hence, the number of different factors (colors) in a population of

N is D(N) =
∑N

i=1 Hi. In other words, is the number of times a different color was sampled.
The probability that in the Nth draw one samples a specific value k, new and different from the

N − 1 sampled before, is (1 − fk)
N−1fk. As a result, Pr{HN = 1} =

∑
k(1 − fk)

N−1fk. This can
also be interpreted as the probability of adding 1 to D(N − 1) in the Nth draw. Hence, E{D(N)} =∑N

i=1 E{Hi} =
∑N

i=1

∑
k(1− fk)

i−1fk.
From the numerical simulations shown in Fig.3 one can observe that if the distribution is Gumbel(u,B),

such that fk(u,B) ≈ 1
B exp

(
−k−u

B

)
exp

(
− exp

(
−k−u

B

))
(this is not a probability and it corresponds rather

to the Gumbel density, but since we are calculating the probability for small intervals of size ∆k = 1, we
make no distinction here), then E{DN} ≈ A+B ln(N), for some constant A.

As already explained, the distribution with which cities sample would converge to a Gumbel if there
is a selection process. Thus, for example, one can imagine that colors have an underlying (arbitrary)
distribution, and cities sample several times, but only pick the maximum after several tries. This would
amount to just sampling a single time from a Gumbel distribution.

Convergence to the Gumbel

How valid is the assumption of the Gumbel? If the convergence to this extreme value distribution is slow,
our assumption about diversity being logarithmically related to population size may not be as general as
we suppose. This can occur, for example, if in Henrich’s model individuals learn from a few individuals



only, e.g., from the most prestigious individual out of K acquaintances instead of the whole population
N . Picking the maximum from a small number of random variables may not be a selective force strong
enough to drive the distribution to a Gumbel.

In the limit, however, the relation between diversity and population size would not change for K < N
in general. Results from Schläpfer et al. (2014) (17) show that the average number of acquaintances in
cities are well fitted by a nonlinear function of city size K = fNα, where α ≈ 0.12. Under the assumption
that individuals have K acquaintances to learn from, the process converges to the same result, since the
relation to diversity will be r = a′ + b′ ln(K) = a′ + b′ ln(fNα), which can be written as r = a+ b ln(N),
where a = a′ + b′ ln(f) and b = αb′.

Still, the question is what size n is large enough so that zh = maxi=1,...,n zi is approximately Gumbel
distributed. The convergence not only depends on n, but it also depends on the underlying distribution
zi ∼ D. Figure 4 shows the distance between the distribution of 1,000 Monte Carlo Simulations zh and
the Gumbel, measured by the Kolmogorov-Smirnov statistic, for different sample sizes n, and for three
different distributions D ∈ {Gamma,Normal, Lognormal,Gumbel}.

Supplementary Figure 4. Monte Carlo simulations for choosing the maximum from a sample of size
n ∈ [101, 107], and using 1000 simulations (i.e., 1000 i.i.d. maxima) to assess whether the distribution of
these maxima approximates a Gumbel. Convergence of the maximum zh(n) = max{X1, . . . , Xn} to a
Gumbel distributed random variable as n increases is depicted here as the Kolmogorov-Smirnov (KS)
distance. On the vertical axis is the KS statistic and the horizontal axis is the sample size n from which
the maximum of one of the distributions, Gamma, Normal and Lognormal, is chosen. Below the dashed
line (the critical value is computed using the formula

√
−0.5 ln(0.05/2)/numsims , where

numsims = 1, 000, see (18)) one cannot reject the hypothesis that the random variables are distributed
Gumbel, at a confidence level of 5%.

For the Gamma and Normal distributions, the convergence is fast and the distribution of their maxima
is indistinguishable from a Gumbel. For the Lognormal, however, the convergence is very slow, and only
maxima from populations above 10 million start to pass the KS test. The Lognormal distribution is
special in the sense it lies in the frontier of the domain of attraction of the Gumbel (14). Hence, it is
reasonable to assume that convergence is likely to be faster. Given that the Normal distribution also has
a slow convergence to the Gumbel (14), the assumption of the Gumbel is reasonable even if individuals
learn from a few number of acquantainces. However, further research is needed to discard the Lognormal



distribution as a reasonable underlying distribution of the frequency of cultural traits.

The pivot point of scaling

Notice that in the model we have assumed there is a maximum number of factors M into which a city can
diversify. That is why D(N)/M is a bounded number between 0 and 1 (where a ≡ A/M and b ≡ B/M),
which we treat as a probability r that the city offers a factor or not. Notice that the population N∗ in
which a city attains maximum diversification is such that 1 = a+ b ln(N∗). Thus, N∗ = e(1−a)/b = e1/s1 .
The population N∗ is therefore the exponential of the inverse of the coefficient s1 which relates the scaling
exponent with the general prevalence of a given phenomenon. As argued in the text, the data suggests
the coefficient s1 is the same across urban phenomena, suggesting the population for which cities attain
maximum diversification is, in some way, universal. According to our estimations, N∗ ≈ 1.8 × 1014, a
huge number.

Another way of understanding the meaning of N∗ is as a “pivot point”.
Suppose a given linear relationship y = mx+ b between variable y and x, and suppose this equation is

conditioned on always passing through a particular point (x∗, y∗). Let us call this point the “pivot point”.
It is easy to show, then, that the slope m and the intercept b are linearly related through the relation

m = (y∗/x∗)− (1/x∗)b. (32)

Let us re-write once again the relationship our model predicts between the exponent and the baseline
of urban scaling equations:

β = 1− s1 ln(Y0). (33)

By comparing both equations we conclude that the pivot point implied by our model are

x∗ = y∗ = 1/s1. (34)

Recall from the previous section that ln(N∗) = 1/s1. Hence, the scaling lines of urban phenomena,
represented by the relation y = Y0 nβ are lines that pivot around the point (ln(N∗), ln(N∗)), in the
log-log plane. In other words, urban scaling relationships across phenomena all pivot around the point of
maximum diversification.

It is worth recalling that random noise in the relation y = mx+ b will create an artificial correlation
between m̂ and b̂. If the noise is unbiased, then the regression lines should pass through the averages, and
thus, the pivot point is (x∗, y∗) = (x̄, ȳ). Hence, the farther an estimated pivot point is from the averages
(x̄, ȳ), the less likely it is that the relationship between m and b is not a statistical artifact arising from

the statistical correlation between m̂ and b̂.

Geometrical Explanation of the Prediction Procedure

There are an infinite number of lines that go through a single point. In the main text, however, we propose
a prediction procedure to estimate the scaling line which only requires knowledge of a single data point.
How is this possible?

The explanation is, of course, that we use two points. The first is the data point (ln(ncity), ln(ycity)),
and the second is the pivot point of diversification (ln(N∗), ln(N∗)) (see section above about the pivot
point).

What is interesting is that the pivot point can be estimated from observing only a single phenomenon.
First, one estimates β, ln(Y0), and σ. Second, one then solves for G H and q (although q is, in fact, not



necessary):

G =
(ln(Y0))

2 + (β − 1) ln(Y0)〈ln(N)〉

σ2
, (35)

H =
−(β − 1) ln(Y0)− (β − 1)2〈ln(N)〉

σ2
, (36)

q =
σ2

− ln(Y0)− (β − 1)〈ln(N)〉
. (37)

And third, one computes ln(N∗) = G/H. If this pivot point is the same for all urban phenomena, as our
data suggests, then knowing a single data point of a specific phenomenon in an average city allows one to
predict how this phenomenon will scale.

Supplementary Figures

Linear relations in Figure 2 of the main text for different number of outliers

We have implemented a kernel density estimation which allowed us to identify, in a principled way, outliers
from a linear trend. Here we sequentially leave out outliers (i.e., points with the lowest estimated density),
and we perform a linear regression over the rest of points. The aim of this exercise is to convince ourselves
that the linear relationships indicated in Figure 2 that we show in the main text are robust. The coefficients
of these regressions as reported here found to be reasonably stable. See below the Supplementary Figures
5-7.
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Supplementary Data

We provide a ZIP file with the data called “Supplementary Data.zip” that contains a single file for each
urban phenomenon we studied (except for Sexually Transmitted Diseases that we kept in a single file),
a README file, and a file “ListUrbanPhenomena.xlsx”, which lists the different phenomena we used in
our analysis with other parameters and field descriptions.
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