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Explaining the unique nature of 
individual gait patterns with deep 
learning
Fabian Horst  1, Sebastian Lapuschkin  2, Wojciech Samek  2, Klaus-Robert Müller3,4,5 & 

Wolfgang I. Schöllhorn1

Machine learning (ML) techniques such as (deep) artificial neural networks (DNN) are solving very 
successfully a plethora of tasks and provide new predictive models for complex physical, chemical, 
biological and social systems. However, in most cases this comes with the disadvantage of acting 
as a black box, rarely providing information about what made them arrive at a particular prediction. 
This black box aspect of ML techniques can be problematic especially in medical diagnoses, so far 
hampering a clinical acceptance. The present paper studies the uniqueness of individual gait patterns 

in clinical biomechanics using DNNs. By attributing portions of the model predictions back to the input 
variables (ground reaction forces and full-body joint angles), the Layer-Wise Relevance Propagation 
(LRP) technique reliably demonstrates which variables at what time windows of the gait cycle are 
most relevant for the characterisation of gait patterns from a certain individual. By measuring the 
time-resolved contribution of each input variable to the prediction of ML techniques such as DNNs, our 
method describes the first general framework that enables to understand and interpret non-linear ML 
methods in (biomechanical) gait analysis and thereby supplies a powerful tool for analysis, diagnosis 
and treatment of human gait.

�e ability to walk is crucial for human mobility and enables to predict quality of life, morbidity and mortality1–10. 
Its importance is underlined by the fear of losing the ability to walk, which is frequently considered to be the �rst 
and most signi�cant concern from individuals that sustain diagnoses like stroke11,12 or Parkinson disease3,13. 
However, gait and balance are no longer regarded as purely motor tasks, but are considered as complex sensori-
motor behaviours that are heavily a�ected by cognitive and a�ective aspects14. �is may partially explain the sen-
sitivity to subtle neuronal dysfunction, and why gait and postural control can predict the development of disease 
such as diabetes, dementia or Parkinson even years before they are diagnosed clinically14–18.

In order to prevent, diagnose, or rehabilitate a loss of independence due to (gait) impairments, gait analysis 
is common practice to support and standardise researchers’, clinicians’ and therapists’ decisions when assess-
ing gait abnormalities and/or identifying changes due to orthopaedic or physiotherapeutic interventions19. But 
although becoming gradually established over the past decades, most biomechanical gait analyses have exam-
ined the in�uence of single time-discrete gait variables, like gait velocity, step length or range of motion, as risk 
factor or predictor for (gait) disease in isolation20,21. While conventional approaches have addressed successfully 
many important clinical and scienti�c questions related to human gait (impairments), they exhibit some inherent 
limitations: When single time-discrete variables (e.g. the range of motion in the knee joint) are extracted from 
time-continuous variables (e.g. knee joint angle-gait stride curve), a large amount of data are discarded. In many 
cases it remains unclear, if and to what degree single pre-selected variables are capable to represent a su�cient 
description of a whole body movement like human gait22–26. �e a priori selection of single gait variables relies 
mostly on the experience and/or subjective opinion of the analyst, which may lead to a certain risk of investigator 
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bias. Furthermore, single pre-selected variables might miss potentially meaningful information that are repre-
sented by – or in combination with – other (not selected) variables. In this context, it seems questionable if the 
multi-dimensional interactions between gait characteristics and gait disease or disease that impair gait can be 
entirely represented by a subjective selection of single time-discrete variables22,23,27.

In response to these shortcomings, multivariate statistical analysis25,26,28 and machine learning techniques 
such as arti�cial neural networks (ANN)29 and support vector machines (SVM)30–33 have been used to examine 
human locomotion based on time-continuous gait patterns27. Signi�cant advances in motion capture equipment 
and data analysis techniques have enabled a plethora of studies that have advanced our understanding about 
human gait. Due to extensive new datasets34, the application of machine learning techniques is becoming increas-
ingly popular in the area of clinical biomechanics27,35,36 and provided new insights into the nature of human gait 
control. �e application of ANNs and SVMs highlighted for example that gait patterns are unique to an individual 
person22,37, exhibited natural changes within di�erent time-scales38,39 and identi�ed that emotional states40 and 
grades of fatigue41 can be di�erentiated from human gait patterns. Furthermore, gender and age-speci�c gait 
patterns could be di�erentiated24,42. In the context of clinical gait analysis, several approaches based on machine 
learning have been published in recent years in order to support clinicians in identifying and categorizing speci�c 
gait patterns into clinically relevant groups25–27,36. Previous studies were able to di�erentiate gait patterns from 
healthy individuals and individuals with (neurological) disorders like Parkinson’s disease43, cerebral palsy44, mul-
tiples scleroses44 or traumatic brain injuries45 and pathological gait conditions like lower-limb fractures36 or acute 
anterior cruciate ligament injury46.

Although machine learning techniques are solving very successfully a variety of classi�cation tasks and pro-
vide new insights from complex physical, chemical, biological, or social systems, in most cases they go along with 
the disadvantage of acting as a black box, rarely providing information about what made them arrive at a par-
ticular decision47,48. �is non-transparent operating and decision-making of most non-linear machine learning 
methods leads to the problem that their predictions are not straightforward understandable and interpretable. 
�is black box manner can be problematic especially in applications of machine learning in medical diagnosis like 
gait analyses and so far strongly hamper their clinical acceptance28. �e lack of understanding and interpreting 
the decision process of machine learning techniques is a clear drawback and recently attracted attention in the 
�eld of machine learning47–58. In this context, the so called Layer-wise Relevance Propagation (LRP) technique 
has been proposed as general technique for explaining classi�er’s decisions by decomposition, i.e. by measuring 
the contribution of each input variable to the overall prediction52. LRP has been successfully applied to a number 
of technical and scienti�c tasks such as image classi�cation59,60 and text document classi�cation61. Also, interpret-
ing linear and non-linear models have helped to gain interesting insights in neuroscience62,63, bioinformatics64–66 
and physics67.

Due to bene�ts of machine learning methods in comparison to conventional approaches in gait analysis27,35, 
LRP appears highly promising to increase their transparency and therefore make them applicable and reliable 
for clinical diagnoses25,26,28. In the context of personalised medicine, the aim of the present study was to examine 
individual gait patterns by:

 1. Demonstrating the uniqueness of gait patterns to the individual by using (deep) arti�cial neural networks 
for predicting identities based on gait;

 2. Verifying that non-linear machine learning methods such as (deep) arti�cial neural networks use compre-
hensible prediction strategies and learn meaningful gait characteristics by using the Layer-Wise Relevance 
Propagation; and

 3. Analysing the unique gait signature from an individual by highlighting which variables at what time win-
dows of the gait cycle are used by the model to identify an individual.

�e presented approach investigates the suitability of understanding and interpreting the classi�cation of 
gait patterns using state-of-the-art machine learning methods. �is paper therefore presents a �rst step towards 
establishing a powerful tool that can be used as the basis for future application of machine learning in (biome-
chanical) gait analysis and thus enabling automatic classi�cations of (neurological) disorders and pathological 
gait conditions applicable in clinical diagnoses.

Results
The uniqueness of human walking to the individual was examined based on time-continuous kinematic 
(full-body joint angles) and kinetic (ground reaction forces) gait patterns (see Methods section for a description 
of the data). From a biomechanical gait analysis (Fig. 1 I: Record gait data), conducted on 57 healthy subjects, 
lower-body joint angles (LBJA) and ground reaction forces (GRF) have been measured as input vectors x for the 
prediction of subjects y using deep arti�cial neural networks (DNN) (Fig. 1 II: Predict with DNN). LRP decom-
poses the prediction f(x) of a learned function f given an input sample x into into time-resolved input relevance 
values Ri for each time-discrete input xi, which enables to explain the prediction of DNNs as partial contributions 
from individual input components (Fig. 1 III: Explain prediction using LRP). LRP indicates based on which infor-
mation a model predicts and thereby enables to interpret the input relevance values and their dynamics as rep-
resentation for a certain class (individual). Hence, the input relevance values point out which gait characteristics 
were most relevant for the identi�cation of a certain individual. In the following, input relevance values are visual-
ised by colour coding, using a diverging and symmetric high contrast colour scheme as shown in Fig. 1 (III: 
Explain prediction using LRP). Here, input elements neutral to the predictor (Ri ≈ 0) will be shown in black colour, 
while warm and hot hues indicate input components supporting the prediction ( R 0i ) of the analysed class and 
cold hues identify contradictory inputs ( R 0i ).
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As an example, Fig. 1 illustrates the unique gait signature from subject 6 by decomposing the input relevance 
values using LRP (see Fig. 2 and Supplementary Figs SF1 to SF4 for additional subject speci�c examples). From 
the gait feature relevance, we can observe that the extension of the ankle during the terminal stance phase of the 
right and le� leg and the �exion of the knee and hip during the initial contact of the right leg is unique to subject 
6. �e kinetic data supports this �nding, showing the highest input relevance values for the prediction of subject 
6 for the vertical GRF during the terminal time window of the right and le� stance phase. On these grounds, LRP 
enables to discover the trial-individual gait signature from a certain individual. �is individual signature can 
serve as indicator in clinical diagnoses and starting point for therapeutic interventions. In our example (Fig. 1), 
the terminal stance phase is unique to subject 6. While this uniqueness might be interpreted as a re�ection of a 
highly coordinated individual system, it could also indicate �rst relevant information about (forthcoming) com-
plaints or impairments. Clinicians and researchers are therefore capable to pick up the unique peculiarity during 
the terminal stance phase for an individualisation of therapeutic interventions, e.g. by changing the strength of 

Figure 1. Overview of data acquisition and data analysis, showing the example of subject 6. (I) �e 
biomechanical gait analysis compromised the recording of 20 times walking barefoot a distance of 10 m at a 
self-selected walking speed. Two force plates and ten infrared cameras recorded the three-dimensional full-
body joint angles and ground reaction forces during a double step. (II) Lower-body joint angles in the sagittal 
plane (�exion-extension) (LBJAX) and ground reaction forces (GRF) compromising the fore-a� shear force 
(fore-a�), medial-lateral shear force (med-lat) and vertical force (vert) have been used as time-normalised 
and concatenated input vectors x for the prediction of subjects y using deep arti�cial neural networks (DNN). 
Shaded areas for the LBJAX highlight the time where the respective (le� or right) foot is in contact with the 
ground. (III) Decomposition of input relevance values using the Layer-Wise Relevance Propagation (LRP). 
Colour Spectrum for the visualisation of input relevance values of the model predictions. �roughout this 
manuscript, we use LRP to exclusively analyse the prediction for the true class of a sample. �ereby, black 
line segments are irrelevant to the model’s prediction. Red and hot colours identify input segments causing a 
prediction corresponding to the subject label, while blue and cold hues are features contradicting the subject 
label. For subject 6, the predicting model (CNN-A) achieves true positive rates (TP) of 100% for LBJAX and 
95.23% for GRF.

Figure 2. Le�: Mean Ground Reaction Force as a line plot, colour coded via input relevance values for the 
actual class for subject 21, 28, 39, 42, 55 and 57 using convolutional neural network CNN-A. �e highest input 
relevance values per body side are highlighted by a red circle. Right: Mean Lower-Body Joint Angles in the 
sagittal plane (�exion-extension) as line plot, colour coded via input relevance values for the actual class for 
subject 6, 23, 32, 37, 47 and 55 using convolutional neural network CNN-A. �e highest input relevance values 
per body side are highlighted by a red circle. Shaded areas for the LBJAX highlight the time where the respective 
(le� or right) foot is in contact with the ground.
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the responsible muscles for the extension of the ankle joint or reducing forces during the terminal stance phase 
during walking by shoes or insoles.

As discussed earlier, linear classification models have often been used for the classification of gait pat-
terns27,35,36. However, other domains in machine learning have shown that highly non-linear DNNs are capable 
to outperform linear and kernel based methods68–73. In this study, we therefore investigate the applicability of 
state-of-the-art non-linear machine learning models such as DNNs for gait analysis and additionally compare 
di�erent linear and non-linear machine learning methods in terms of prediction accuracy, model robustness and 
decomposition of input relevance values using the LRP technique (see Methods for detailed description).

Prediction Accuracy and Model Robustness. �e mean prediction accuracy for the subject-classi�cation 
(on an out of sample set also denoted as test set) are summarised in Table 1 (and Supplementary Table ST1). �e 
most striking result to emerge from this table is that most of the tested models were able to predict the correct 
class (subject) with a high accuracy above 95.4% (ground reaction forces), 99.9% (full-body joint angles) and 
99.9% (lower-body joint angles).

�e results in Table 1 (and Supplementary Table ST1) are quite revealing in several aspects. First, the highest 
prediction accuracy can be observed throughout the kinetic and kinematic variables for the linear support vector 
machines (Linear (SVM)). Second, the linear one-layer fully-connected neural network using Stochastic Gradient 
Descent (Linear (SGD)), fully-connected neural network (multi layer perceptron (MLP)) using higher number 
of neurons (MLP (3, 256) and MLP (3, 1024)) and deep (convolutional) neural network architectures (CNN-A 
and CNN-C3) result in similar and throughout high prediction accuracies, while the prediction accuracy of 
fully-connected networks using a lower number of neurons (MLP (3, 64)) is decreased. �ird, surprisingly, even 
the linear neural network model architecture (Linear (SGD)) was able to predict the correct individual by quite 
high mean accuracies of 95.4% (ground reaction forces), 100.0% (full-body joint angles) or 100.0% (lower-body 
joint angles).

While the prediction accuracy of the linear neural network model (Linear (SGD)) is comparable to the 
fully-connected and convolutional neural network architectures, the robustness of their predictions against noise 
on the testing data exhibits considerable di�erences. As an example, Fig. 3 shows the progression of the mean 
prediction accuracy of the subject-classi�cation for the stepwise increase of random noise perturbation on the test 
data. �at is, for a given input, we compute a random order by which the components of said input are perturbed, 
e.g. with the addition of random gaussian noise to the current input component. A�er each perturbation step 

Model

Ground
Reaction
Forces [%]

Joint Angles
Full-Body [%]

Joint Angles
Full-Body
(�ex.-ext.) [%]

Joint Angles
Lower-Body 
[%]

Joint Angles
Lower-Body
(�ex.-ext.) [%]

Linear (SGD) 95.4 (1.7) 100.0 (0.0) 96.3 (1.8) 100.0 (0.0) 91.5 (2.2)

Linear (SVM) 100.0 (0.0) 100.0 (0.0) 99.7 (0.4) 100.0 (0.0) 99.8 (0.6)

MLP (3, 64) 88.3 (3.7) 99.9 (0.3) 84.3 (3.3) 99.9 (0.3) 68.5 (8.3)

MLP (3, 256) 96.6 (0.8) 100.0 (0.0) 95.6 (2.6) 100.0 (0.0) 89.4 (4.3)

MLP (3, 1024) 98.8 (1.3) 100.0 (0.0) 97.8 (1.0) 100.0 (0.0) 96.5 (1.2)

CNN-A 99.1 (0.8) 100.0 (0.0) 95.6 (1.7) 99.9 (0.3) 92.0 (3.9)

CNN-C3 99.2 (0.6) 100.0 (0.0) 97.7 (1.5) 100.0 (0.0) 97.0 (1.3)

Table 1. �e prediction accuracy of the subject-classi�cation task, reported as pairs of mean (standard 
deviation) in percent.

Figure 3. Progression of the mean prediction accuracy of the subject-classi�cation of ground reaction forces 
for stepwise random perturbation using gaussian noise with σ = 1.
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(and executing the n-th perturbation for all test samples simultaneously), the prediction performance of a model 
is re-evaluated. If a model is sensitive to random noise in the data it will react strongly to the ongoing perturba-
tions. Figure 3 shows for each model the average test set prediction accuracy over 50 consecutive perturbation 
steps, averaged over 10 repetitions of the experiment. It is apparent that the prediction accuracy of the Linear 
(SGD) model decreases rapidly a�er only a few perturbation steps, indicating low robustness and reliability of 
the model. Variability is an inherent feature of human movements that occurs not only between but also within 
individuals. �erefore robust and reliable model predictions are a mandatory prerequisite for the development of 
automatic classi�cation tools in clinical gait analysis.

Table 2 (and Supplementary Table ST2) summarises the robustness of the model predictions and presents the 
mean area over perturbation curve (AOPC)59 of the stepwise increase of random noise perturbation over multiple 
repetitions of the perturbation runs on the test data. High AOPC values computed with above strategy of random 
perturbations corresponds to high sensitivity to noise. From the results presented in Table 2 (and Supplementary 
Table ST2), it is apparent that the stepwise increase of noise on the test data lead to an abrupt decrease in the pre-
diction accuracy of the linear neural network. Furthermore, closer inspection shows that fully-connected models 
based on a higher number of neurons are more robust against noise perturbations on the test data than models 
based on lower numbers of neurons. Even though the prediction problem at hand seems simple enough such that 
linear predictors perform excellently (i.e. the relationship between the input variables and the prediction target 
is linearly separable) and the performance-wise gain from non-linear and networks is minimal, the deeper archi-
tectures bring to the table considerably more robust predictors, which is especially valuable in application settings 
like gait analysis, where variability is an important factor to consider.

Interpreting and Understanding Model Predictions using Layer-Wise Relevance 
Propagation. As an example Fig. 2 shows relevance attributions for predictions based on ground reaction 
force (Fig. 2 (le�)) and the lower-body joint angles (Fig. 2 (right)) of a certain individual based on his or her gait 
patterns.

�e input relevance contributions point out which gait characteristics were most relevant for the identi�ca-
tion of an individual and thereby reveal the unique gait signature of a certain subject. �e comparison of input 
relevance values from di�erent subjects indicates that individuals were classi�ed by both, di�erent gait character-
istics and di�ering magnitudes or shapes of the same gait characteristic. For example, the highest input relevance 
values for the prediction of subject 21 (Fig. 2 (le�)) can be observed in the medial/lateral ground reaction force at 
approximately 10% of the gait stride and subject 28 (Fig. 2 (le�)) in the vertical ground reaction force at approx-
imately 90% of the gait stride. While the highest input relevance values for the prediction of subject 55 (Fig. 2 
(le�)) and subject 57 (Fig. 2 (le�)) can be both observed in the vertical ground reaction force at approximately 
10% of the stance phase. It is further interesting that among all predicted LBJAX curves shown in Fig. 2 (right), 
subject 37 is the only one that is identi�ed dominantly by gait characteristics during the swing phase (and not the 
stance phase). �e model has associated the pronounced �exion of the right (le�) ankle joint during the swing 
phase unique to subject 37.

In the vast majority of cases, the input relevance values for a certain class (individual) are comparable between 
the di�erent model architectures (Fig. 4 (le�)), i.e. all models pick up on similar features, which are characteristic 
to the individual subject in general. It is rather apparent from the results that most arti�cial neural networks and 
the linear SVM are using a number of di�erent gait characteristics for their predictions, albeit the vast majority 
of the inputs seems to be irrelevant to the model’s decision (see Fig. 1; the tight interval (R ≈ 0) projected onto 
black), which are largely based on individual details in a subject’s movement patterns. �is explanatory relevance 
feedback indicates that (non-linear) machine learning methods such as (deep) arti�cial neural networks are not 
arbitrarily picking up single randomly distributed input values, but rather learn certain dynamically meaningful 
features that can be related to functional gait characteristics and thus making them applicable in clinical gait 
analysis.

When comparing input relevance values from di�erent architectures of arti�cial neural networks and the 
SVM strikingly all model architectures (except the CNN-C3) show that not a single gait characteristic (certain 
variable at a certain time window of the gait cycle) is relevant for the identi�cation of a certain individual, but 
rather complex combinations thereof.

Model/Noise

Gaussian
Random
σ = 0.5

Gaussian
Random
σ = 1.0

Gaussian
Random
σ = 2.0

Salt−

Random
Pepper
Random

Salt+

Random
Shot
Random

Linear (SGD) 40.5 (6.0) 45.6 (3.0) 47.6 (1.8) 46.1 (2.7) 37.1 (7.0) 46.4 (3.1) 46.5 (2.9)

Linear (SVM) 4.0 (3.9) 18.6 (7.0) 35.4 (4.7) 31.3 (7.7) 2.5 (2.4) 32.8 (8.7) 32.4 (8.6)

MLP (3, 64) 16.2 (14.0) 27.6 (12.6) 37.8 (9.0) 43.5 (7.1) 14.4 (13.6) 43.3 (7.4) 43.3 (7.4)

MLP (3, 256) 8.9 (9.7) 20.8 (10.9) 34.9 (8.4) 41.7 (6.8) 7.7 (9.5) 41.2 (7.4) 41.1 (7.5)

MLP (3, 
1024)

5.4 (7.0) 16.7 (9.4) 32.4 (7.8) 40.0 (6.6) 4.3 (6.1) 39.4 (7.2) 39.4 (7.2)

CNN-A 6.1 (6.8) 18.2 (9.4) 33.1 (8.0) 36.9 (6.6) 8.8 (8.5) 37.4 (7.5) 37.4 (7.6)

CNN-C3 12.2 (8.6) 27.5 (9.4) 38.0 (7.0) 31.0 (8.5) 11.3 (8.6) 37.9 (8.2) 38.1 (8.1)

Table 2. �e area over perturbation curve of the subject-classi�cation of ground reaction forces for di�erent 
noise perturbation runs (AOPC)59. Values are reported as pairs of mean (standard deviation). Smaller values 
correspond to higher robustness.
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Even more interesting is the observation that input relevance value attributions appear to be similar between 
right and the le� body side variables (as an example take Fig. 4 (le�): Linear (SVM), MLP (3, 1024) and CNN-A). 
�is indicates the importance of symmetries/asymmetries between le� and right body side variables for the 
examination of human gait. Note however that the models all learned without any information about the physi-
ological meaning of the used variables. While the input relevance attributions are throughout comparable for all 
evaluated architectures – i.e. there is, given a subject, a non-empty set of features recognized as characteristic fea-
tures to the individual by all models – some models have learned to ground their predictions on supplementary 
gait characteristics (e.g. Fig. 4 (le�): CNN-C3 vs CNN-A).

We can further observe that the use of multiple gait characteristics for prediction can be associated with a 
model’s robustness to random perturbations of the input. �e observed robustness of the evaluated models is 
also re�ected by the reliability of the attributed input relevance values: Over the relevance values of each input 
component and subject (i.e. 20 relevance values each), the coe�cient of variation74 was computed in order to 
prove their consistency over several trials and cross validation splits. �e coe�cient of variation represents the 
(root mean square) normalised band of standard deviation around the relevance signal of an input variable, where 
low values correspond to high reliability/stability of relevance attributions to a observed feature between samples 
and data splits, and thus to the model’s ability to generalise. A high coe�cient of variation indicates that a model 
over�ts on its respective training split population. As an example, Fig. 4 (right) shows the input relevance values 
for the actual class prediction for the ground reaction forces. Qualitatively, the highest deviations of input rele-
vance values between trials appeared in the prediction of the linear neural network model (Linear (SGD)), which 
also is most sensitive to even minute noise added to the test data (Fig. 3 and Table 2). It becomes apparent from 
Fig. 4 (right) that the variance of input relevance is decreasing in fully-connected neural network architectures 
composed of increasing numbers of neurons. However, the lowest variance of the input relevance values can be 
observed in the relevance decomposition of the predictions from the Linear (SVM) and convolutional neural 
network architectures, which we attribute for the former to the complexity of the regularised training regime and 
complexity of the model itself for the latter.

Table 3 (Supplementary Table ST3) summarises the mean coe�cient of variation for the input relevance values 
for the subject-classi�cation over all subjects, expressing that decreasing variance (increasing reliability) goes 
along with increasing model complexity, and also model robustness when compared to Fig. 3 and Table 2. Hence, 
the lowest reliability is present for the Linear (SGD) model, while reliability is increasing in fully-connected 
model architectures composed of increasing numbers of layers and neurons and discloses the highest reliability 

Figure 4. Le�: Mean Ground Reaction Force as line plot, colour coded via input relevance for the actual class of 
di�erent models using arti�cial neural networks and the linear SVM model from subject 57. �e highest input 
relevance values per body side are highlighted by a red circle. Right: Input relevance as colour coded line plots 
for the predicted class of di�erent models using arti�cial neural networks and linear models of ground reaction 
force of the 20 gait trials from subject 28.

Model

Ground
Reaction
Forces

Joint Angles
Full-Body

Joint Angles
Full-Body
(�ex.-ext.)

Joint Angles
Lower-Body

Joint Angles
Lower-Body
(�ex.-ext.)

Linear (SGD) 4.31 (0.25) 4.27 (0.08) 3.93 (0.12) 4.16 (0.10) 3.86 (0.15)

Linear (SVM) 0.31 (0.08) 0.56 (0.10) 0.31 (0.07) 0.48 (0.09) 0.26 (0.05)

MLP (3, 64) 1.31 (0.34) 2.73 (0.15) 1.58 (0.17) 2.37 (0.16) 1.41 (0.23)

MLP (3, 256) 0.84 (0.18) 2.21 (0.13) 1.05 (0.10) 1.86 (0.13) 0.85 (0.12)

MLP (3, 1024) 0.63 (0.12) 1.85 (0.10) 0.77 (0.08) 1.50 (0.10) 0.61 (0.09)

CNN-A 0.30 (0.08) 0.56 (0.09) 0.35 (0.06) 0.49 (0.08) 0.32 (0.05)

CNN-C3 0.35 (0.08) 0.50 (0.08) 0.43 (0.08) 0.48 (0.08) 0.44 (0.08)

Table 3. �e coe�cient of variation of the input relevance values of the subject-classi�cation, reported in pairs 
of mean (standard deviation) over all subjects.
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for the convolutional neural networks (CNN-A and CNN-C3). Interestingly, the reliability of the input relevance 
values from linear support vector machines (Linear (SVM)) are as well on a high level and comparable to convo-
lutional neural networks.

Discussion
�e present results veri�ed the uniqueness of characteristics for individual gait patterns based on kinematic and 
kinetic variables. By decomposing the prediction of machine learning methods such as (deep) arti�cial neural 
networks back to the input variables (time-continuous ground reaction forces and full-body joint angles), the 
LRP technique demonstrated which gait variables were most relevant for the characterisation of gait patterns 
from a certain individual. By measuring the contribution of each input variable to the prediction of (deep) arti-
�cial neural networks, the present paper describes a procedure that enables to understand and interpret the pre-
dictions of non-linear machine learning methods in (biomechanical) gait analysis. LRP thereby outlines the �rst 
general framework that facilitates to overcome the inherent black box problem of non-linear machine learning 
methods and makes them applicable in clinical gait analysis. In the context of personalised medicine, the deter-
mination of characteristics that are speci�c for gait patterns of a certain individual facilitates to support clinicians 
and researchers in the individualisation of their analyses, diagnoses and interventions.

�e individual nature of human gait patterns was quanti�ed using di�erent linear and non-linear machine 
learning methods. �e present results support previous studies on the individuality of human movements22,37,40,41 
and provide evidence for gait characteristics that are unique to an individual and can be clearly di�erentiated 
from gait patterns of other individuals. Most of the arti�cial neural network architectures classi�ed gait patterns 
almost error-free to the corresponding individual and achieved very high prediction accuracies that are suitable 
for clinical applications. However, advantages for more sophisticated model architectures (like fully-connected 
model using a higher numbers of neurons or deep convolutional neural networks) can be observed in higher pre-
diction accuracies (Table 1 and Supplementary Table ST1) and even more signi�cant in the higher robustness of 
the model predictions against noise perturbations on the test data (Fig. 3, Table 2 and Supplementary Table ST2). 
Because variability within individuals38,39 as well as variability due to di�erences between individuals22,37, gen-
ders42 and ages24 is an inherent feature of human motor control, prediction accuracy and model robustness are 
both essential for the development of reliable clinical applications using machine learning. Consequently, the 
present results suggest high potential of state-of-the-art non-linear methods such as DNNs compared to linear 
methods.

One of the issues that emerges from the evidence that gait patterns are unique to an individual, is the demand 
to evaluate clinical approaches for diagnoses and therapy that consider individual needs22,37. However, previous 
studies could not address how an individualisation of diagnoses and therapy could be obtained. By measuring 
the contribution of each input variable to the prediction of machine learning methods, the LRP method enables 
one for the �rst time to describe qualitatively why a certain individual could be identi�ed based on his/her gait 
patterns. �e LRP technique provides the possibility to comprehend what a model has learned and to interpret 
the input relevance values as representation for a certain class (individual). In the context of personalised gait 
analysis (medicine) that means, the decomposition of input relevance values and their dynamics describe what 
input variables are most relevant for the identi�cation of a certain individual and thereby indicate which input 
variables are the most characteristic ones for the gait patterns of a certain individual (Fig. 1).

On these grounds, the input relevance values enable clinicians and researchers to determine the unique gait 
signature of a certain individual based on single trials and adjust their analyses, diagnoses and interventions to 
the speci�c needs of this individual (Figs 1 and 2).

In addition, explaining the model predictions provides interesting insights into the analysis of gait patterns. 
�e input relevance values highlight that in most cases not a single gait characteristic (speci�c value or shape 
of a certain variable at a certain time of the gait cycle) is relevant for the identi�cation of a certain individual. It 
is rather apparent that most arti�cial neural networks architectures look for the shape of di�erent variables as 
well as their interaction at the same time window or at di�erent time windows of the gait cycle. Similar results 
have been found on photographic image data52,60. Interestingly, the prediction of most arti�cial neural network 
architectures (except CNN-C3) trace to input relevance values that are similar between right and le� body side 
variables at the same time. �at means a certain variable at a certain time window of the gait cycle of the right and 
the le� body side is relevant for the prediction of the models (Fig. 4 (le�)), indicating importance of symmetries 
and asymmetries between right and le� body movements for the identi�cation of individuals and probably the 
examination of human gait in general.

�e input relevance values support that machine learning approaches like arti�cial neural networks are able to 
consider several variables at various time points of the gait cycle for their predictions. In comparison to most con-
ventional approaches of gait analysis that are based on single pre-selected variables, machine learning approaches 
seem to be promising to represent the multi-dimensional associations of human locomotion and their connec-
tions to functional and neurological disease22,23,27.

The present results demonstrate in the vast majority of cases that the input relevance values are similar 
between di�erent model architectures (Fig. 4). �at means all models pick up similar features for the classi�cation 
of gait patterns, which are characteristic to the individual subject in general. However, the LRP technique enables 
to identify the strategy of a certain model to classify a class (individual gait patterns) and to compare strategies 
between di�erent model architectures60. For an implementation of machine learning in clinical diagnoses and 
therapeutic interventions, for example in terms of an automatic classi�cation of gait disorders or (neurological) 
disease36,43,44, the understanding about their decisions and decision-making seems to be inevitable. Since the lack 
of transparency has so far been a major drawback of preceding applications of machine learning, e.g. in medical 
applications (like gait analysis), further research on explaining, understanding and interpreting machine learning 
predictions should get attention.
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Here, the decomposition of input variable relevance values using the LRP was consistent over multiple test 
trials and cross-validation splits. Taken together, the results demonstrate the suitability of the proposed method 
for the explanation of machine learning predictions in clinical (biomechanical) gait analysis. However, higher 
reliability of input relevance values between test trials and cross-validation splits indicate advantages for deep 
(convolutional) neural networks architectures. �ese �ndings are in agreement with those observed in earlier 
studies on text61 or image75 classi�cation that indicated more robust and traceable class representations in deep 
(convolutional) neural networks.

In conclusion, the present �ndings underline that methods enabling to understand and interpret the predic-
tions of machine learning, like the LRP, are highly promising for the application and implementation of machine 
learning in gait analysis. Due to the above discussed advantages of non-linear machine learning methods such as 
DNNs for the analysis of human gait25–27,35, the understanding and interpreting of machine learning predictions 
is essential in order to overcome one of their major drawbacks (the lack of transparency)25,26,28. Using the testbed 
of uniqueness of individual gait patterns, the present study proposed a general framework for the understanding 
and interpretation of non-linear machine learning methods in gait analysis thus providing a solid basis for future 
studies in biomechanical analysis and clinical diagnosis.

Methods
Subjects and ethics statement. Fi�y-seven physically active subjects (29 female, 28 male; 23.1 ± 2.7 
years; 1.74 ± 0.10 m; 67.9 ± 11.3 kg) without gait pathology and free of lower extremity injuries participated in the 
study. �e study was carried out according to the Declaration of Helsinki at the Johannes Gutenberg-University 
in Mainz (Germany). All subjects were informed about the experimental protocol and provided their informed 
written consent to participate in the study. Subjects appearing in the �gures provided informed written consent 
to the publication of identifying images and videos in an online open-access publication. �e approval from the 
ethical committee of the medical association Rhineland-Palatinate in Mainz (Germany) was received.

Experimental protocol and data acquisition. �e subjects performed 20 gait trials in a single assess-
ment session, while they did not undergo any intervention. For each trial upper- and lower-body joint angles 
as well as ground reaction forces were measured, while the subjects walked on a 10 m path. �e subjects were 
instructed to walk barefoot at a self-selected speed. Kinematic data were recorded using a full-body marker set 
consisting of 62 retro re�ective markers placed on anatomical landmarks (Fig. 5). Ten Oqus 310 infrared cameras 
(Qualisys AB, Sweden) captured the three-dimensional marker trajectories at a sampling frequency of 250 Hz.

�e three-dimensional ground reaction forces were recorded by two Kistler force plates (Type 9287CA) 
(Kistler, Switzerland) at a frequency of 1000 Hz. �e recording was managed in time-synchronization by the 
Qualisys Track Manager 2.7 (Qualisys AB, Sweden). Two experienced assessors attached the markers and con-
ducted the analysis. Every subject was analysed by the same assessor only. �e laboratory environment was kept 
constant during the investigation.

Before the data acquisition, each subject performed 20 test trials to get accustomed to the experimental setup 
and to assign a starting point for a walk over the force plates. �is procedure is described to minimize the impact 
of targeting on the force plates on the observed gait variables76,77. Additionally, the participants were instructed 
to watch a neutral symbol (smiley) on the opposing wall of the laboratory to direct their attention away from 
targeting on the force plates and ensure a natural walk with an upright body position.

Data processing. �e gait analysis was conducted for one gait stride per trial. �e stride was de�ned from 
right foot heel strike to le� foot toe o� and was determined using a vertical ground reaction force threshold of 
10 N. �e three-dimensional marker trajectories and ground reaction forces were �ltered using a second order 
Butterworth bidirectional low-pass �lter at a cut o� frequency of 12 Hz and 50 Hz, respectively. �e ground reac-
tion force data were normalized to the body weight. �e computation of the upper- and lower-body joint angles 
was conducted by Visual3D Standard v4.86.0 (C-Motion, USA) for elbow, shoulder, spine, hip, knee and ankle in 
sagittal, transversal and coronal plane.

Further data processing was executed by a self-written script within the so�ware Matlab 2016a (MathWorks, 
USA). Each variable time course was normalized to 101 data points, z-transformed and scaled to a range of −1 
to 178. �e z-transformation was executed for kinematic variables for each trial separately and for kinetic varia-
bles for all trials. �e scaling was carried out in order to prevent numerical di�culties during the calculation of 
the arti�cial neural networks78 and to ensure an equal contribution of all variables to the classi�cation rates and 
thereby avoid that variables in greater numeric ranges dominate those in smaller numeric ranges78. Scaling is a 
common procedure for data processing in advance for the classi�cation of gait data22,36

Data Analysis. The data analysis was conducted within the software frameworks of Matlab 2016a 
(MathWorks, USA) and Python 2.7 (Python Software Foundation, USA). The ability to distinguish gait 
patterns of one subject from gait patterns of other subjects was investigated in a multi-class classifica-
tion (subject-classification) using the data from 57 subjects. The classification of gait patterns, based on 
time-continuous kinetic and kinematic data, was carried out by supervised machine learning models using sup-
port vector machines (SVM)30–33 and arti�cial neural networks (ANN)28,68,69. While fully-connected ANNs such 
as multi layer perceptions (MLP) and SVM represent established models for the classi�cation of gait patterns 
based on joined input vectors of time-continuous kinematic and kinetic data27, convolutional (deep) arti�cial 
neural networks (DNN) have not yet been applied for the biomechanical analysis of human movements. Because 
DNNs showed superior prediction accuracies in domains like image70–72 or speech recognition73, they seem to be 
promising for the given classi�cation of human gait patterns.
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In the present paper, an SVM and di�erent architectures of fully-connected and convolutional arti�cial neural 
networks were compared in terms of prediction accuracy, model robustness to noise on the test data and decom-
position of input relevance values.

As a simple baseline, two linear classi�cation models were implemented. A one-layer fully-connected neural 
network (Linear (SGD)) and a SVM using a linear kernel function (Linear (SVM)). Among the considered 
fully-connected arti�cial neural network architectures were all combinations L × H with ∈L [2, 3] describing the 
number of layers and ∈ …H [2 , , 2 ]6 10  describing the number of neurons per hidden layer. For the convolutional 
arti�cial neural network architectures, the number of convolutional layers is ∈C [1, 2, 3] with the number of 
hidden neurons depending on the number of channels in the data as well as the stride and shape of the learned 
convolutional �lters. All convolutional neural network architectures are topped o� with one linear layer, connect-
ing all neurons of the highest convolutional layer to the number of classes of the prediction problem. Major 
architectural di�erences between the evaluated convolutional neural network architectures were the sizes of the 
input layer �lters (3 × 3 and 6 × 6 as well as C × 3, C × 6 and C × C) spanning di�erent amounts of neighbouring 
channels and time windows in the input samples.

All arti�cial neural networks using hidden layers (i.e. all architectures except the linear classi�er Linear 
(SGD)) have ReLU-nonlinearities a�er each linear/convolutional layer as activation functions for the hidden 
neurons and a So�Max activation function for the output layer. Both linear and the fully-connected classi�ers 
receive as input the channel × time samples as row-concatenated channel · time dimensional vectors. �e convo-
lutional models directly operate on the channel × time shaped samples. For a detailed description of all evaluated 
model architectures, see the Supplement (Supplementary Tables ST4–ST9).

With the exception of the linear support vector machines predictor, all models have been trained as n-way 
classi�ers using Stochastic Gradient Descent (SGD) Optimization69 for up to ⋅3 104 iterations of mini batches of 
5 randomly selected training samples and an initial learning rate of 5e−3. �e learning rate is gradually lowered to 
1e−3 and then 5e−4 a�er every 104 training iterations. Model weights are initialized with random values drawn 

from normal distributions with µ = 0 and σ = −m
1
2 , where m is the number of inputs to each output neuron of the 

layer69. �e linear support vector machine model has been using regularized quadratic optimization.

Figure 5. Full body marker set in (A) anterior (B) right lateral (C) posterior view. �e markers were placed at 
os frontale glabella, 7th cervical vertebrae, sternum jugular notch, sacrum (mid-point between le� and right 
posterior superior iliac spine) and bilaterally at greater wing of sphenoid bone, acromion, scapula inferior angle, 
humerus lateral epicondyle, humerus medial epicondyle, forearm, radius styloid process, ulna styloid process, 
head of 3rd metacarpal, iliac crest tubercle, femur greater trochanter, femur lateral epicondyle, femur medial 
epicondyle, �bula apex of lateral malleolus, tibia apex of medial malleolus, posterior surface of calcaneus, head 
of 1st metatarsus, head of 5th metatarsus and clusters with four markers each at the thigh and shank and clusters 
of three markers each at the humerus.
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For SVM, the multi-class linear support vector classi�er of the scikit learn Toolbox for python79 was used with 
a regularisation parameter C = 0.1.

Prediction accuracies were reported over a ten-fold cross validation con�guration, where eight parts of the 
data are used for training, one part is used as a validation set and the remaining part is reserved for testing. With 
on average 912 samples per split being reserved for training, a (neural network) model passes the training set up 
to 164 (=30000 iterations · 5 samples per batch/912 training samples on average) times and each training stage 
tied to a given learning rate may be terminated prematurely if the model performance has converged on the vali-
dation hold out set to avoid over�tting on the training data. For subject-classi�cation, the 20 samples per subject 
are uniformly distributed across all data partitions at random.

Layer-wise Relevance Propagation. One of the main reasons for the wide-spread use of linear models 
in the (meta) sciences is the inherent transparency of the prediction function. Given a set of learned model 
parameters {w, b} where w is a weight vector matching the dimensionality of the input data and a bias term b, the 
(multi-class) prediction function for an arbitrary input x evaluates for class c as

∑= + = + .f b w x bx w x( )
(1)

c
T

c
i

ic i c

It is apparent, that component i of the given input x contributes to the evaluation of fc together with the learned 
parameters as the quantity wicxi. Each decision made by a linear model is therefore transparent, while complex 
non-linear models are generally considered black box classi�ers.

A technique called Layer-Wise Relevance Propagation (LRP)52 has generalized the explanation of linear mod-
els for non-linear models such as deep (convolutional) arti�cial neural networks and arbitrary pipelines of 
pre-processing steps and nonlinear predictions. As a principled and general approach, LRP decomposes the out-
put of a given decision function fc for an input x and attributes “relevance scores” Ri to all components i of x, such 
that = ∑f Rx( )

c i i. Similarly to how the prediction of a linear model can be “explained” LRP starts at the model 
output (a�er removing any terminating So�Max layer) by selecting a class output c of interest, initiating fc(x) = Rj 
(and selecting 0 for all other model outputs) as the initial output neuron relevance value. Note that for two-class 
problems, there is o�en one shared model output, with the predicted class being determined by the sign of the 
prediction. Here, f(x) = Rj initially.

�e method can best be described by considering a single output neuron j anywhere within the model. �at 
neuron receives a quantity of relevance Rj from upper layer neurons (or is initiated with that value in case of a 
model output neuron), and redistributes that quantity to its immediate input neurons i, in proportion to the con-
tribution of the inputs i to the activation of j in the forward pass:

= .←R
z

z
R

(2)
i j

ij

j
j

Here, zij is a quantity measuring the contribution of the input neuron i to the output neuron j and zj is the 
aggregation thereof. �is decomposition approach follows the semantic that the output neuron j holds a certain 
amount of relevance, due to its activation in the forward pass and its in�uence to consecutive layers and �nally 
the model output. �is relevance is then distributed across the neuron’s inputs in proportion of each input’s con-
tribution to the activation of neuron: If a neuron i contributes as zij towards the overall trend zj, it shall receive a 
positively weighted fraction of Rj. If it �res against the overall trend, e.g. the amount or relevance attributed to it 
will be weighted negatively.

Usually, the layers of an ANN model implement an a�ne transformation function = ∑ +x x w b( )j i i ij j or a 
(component-wise) non-linearity xj = σ(xi). In the former case, we then have zij = xiwij, for example, and zj is the 
output activation xj. In the latter case, zij = δijσ(xi) where δij is the Kronecker delta, since there is no mixing 
between inputs and outputs of di�erent subscripts.

�e relevance score Ri at input neuron i is then obtained by pooling all incoming relevance values 
←Ri j from 

the output neurons to which i contributes in the forward pass:

∑= .←R R
(3)

i
j

i j

Together, both above relevance decomposition and pooling steps ensure a local relevance conservation prop-
erty, i.e. ∑ = ∑R Ri i j j and thus ∑ =R f x( )i i  for all layers of the model. In case of a component-wise operating 

non-linear activation, e.g. a ReLU (∀ == xx: max(0, )i j j i ) or Tanh (∀ == x x: tanh( )i j j i ), then ∀ == R R:i j i j. 
since the top layer relevance values Rj only need to be attributed towards one single respective input i for each 
output neuron j.

A�er initiating the algorithm at the model output, it iterates over all the layers of the model towards the input, 
until relevance scores Ri for all input components xi are obtained. Assuming a (strong) positive model output 
represents the predicted presence of a class, then the input level relevance scores can be interpreted as follows: 
Values R 0i  indicate components xi of the input which, due to the models’ learned decision function, represent 
the presence of the “explained” class, while conversely R 0i  contradict the prediction of that class. Ri ≈ 0 iden-
tify inputs xi which have no or only little in�uence to the model’s decision.

Applying above decomposition rules to a linear classi�er = ∑ +f x w bx( ) i i i  with only a single output results 
in z ij =  x iw i and zbj =  b, since the bias b can be considered a constant always-on neuron, and 
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= ∑ + =z x w b f x( )j i i i . Initiating the (only) model output relevance as Rj = f(x) and substituting both zij and zj 
in above relevance decomposition and pooling rules in Equations (2) and (3) yields:

= =

= = .

←

←

R
x w

f
f x w

R
b

f
f b b

x
x x

x
x

( )
( ) ; for inputs depending on data

( )
( ) ; for the relevance quantities for the bias

(4)

i j
i i

i i

b j

Since the model only has one output, the pooling at each input xi (or the bias) becomes = ←R Ri i j (or 

= ←R Rb b j). In short, the application of LRP to a model consisting of only a single linear layer collapses to 
Ri = xiwi, the inherent explanation of the decision of a linear model in terms of input variables and the bias. For 
further details, please refer to52.

Data Availability
�e datasets generated and analysed during the current study are available in the Mendeley Data Repository80 
(https://doi.org/10.17632/svx74xcrjr.1). �e Layer-Wise Relevance Propagation Toolbox81 (https://github.com/
sebastian-lapuschkin/lrp_toolbox) and the experimental code derivation thereof is available on GitHub (https://
github.com/sebastian-lapuschkin/interpretable-deep-gait).
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