Explanation Based Program Transformation.

Maurice Bruynooghe Luc De Raedt

Danny De Schreye

Department of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan 200A
B-3030 Heverlee, Belgium

Abstract

Fold-unfold is a well known program transfor-
mation technique. Its major drawback is that
folding requires an Eureka step to invent new
procedures.

In the context of logic programming, we pre-
sent a technique where the folding is driven by
an example. The transformation is aimed at pro-
grams suffering from inefficiencies due to the
repetition of identical subcomputations. The exe-
cution of an example is analysed to Ilocate
repeated subcomputations. Then the structure of
the example is used to control a fold-unfold-
transformation of the program. The transforma-
tion can be automated. The method can be regard-
ed as an extension of explanation based learning.

1 Introduction.

In [Clocksin 88], a technique is presented for translating
clausal specifications of numerical methods into efficient
programs. The Horn clause program started from does
not compute the result but constructs a term which,
after evaluation, yields the result (e.g. (0 + 1) + 1 repre-
sents the second fibonacci number). Executing the pro-
gram for a specific input (n) yields a specific term.
Clocksin analyses this term to find common subterms
and folds the term into a graph structure where each sub-
term occurs only once. This graph structure can be con-
sidered as a program for a hypothetical dataflow comput-
er. Fixing the input is unpractical for fibonacci, but less
harmful for more complex cases (e.g. the number of
terms in an approximation of a series, the dimension of a
matrix equation, the number of points in an n-point dis-
crete Fourier transform).

The regularity of the resulting graph structures is
striking. For a human, it is easy to extend them to a
larger n, and it is not so hard to come up with a recur-
sive procedure where n is a parameter computing the
same value with the same efficiency. The purpose of this
paper is to describe a method, suited for automation,
deriving such recursive procedures.

Some general techniques are known to address the
inefficiencies due to repeated subcomputations e.g. lem-

ma generation [Kowalski 79] and tabulation techniques
[Bird 80]. Such techniques give some improvement but do
not yield the optimal algorithmic behavior looked for.
The fold-unfold transformation technique [Burstall &
Darlington 77] could be used, but the fold step requires
a Eureka step, the invention of new procedures.

In the area of machine learning, explanation based
learning [Mitchel et al. 86] [De Jong & Mooney 86] has
been developed to improve the problem solving
behaviour of programs. The similarity between explana-
tion based learning and partial evaluation has been point-
ed out [Van Harmelen & Bundy 89]. However, the point
of explanation based learning is that the example is used
to control the partial evaluation process.

Our method extends this idea, an example will be
used to control the fold-unfold transformation process.
We argue that the method is suited for automation. Also
extensions to cases where subcomputations in the origi-
nal program are not identical but similar seem to be fea-
sible.

In the next section we give some examples; the
third section discusses the automation of the method and
we finish with a discussion of possible extensions and of
relatedwork.

2 Examples.

Our first example is about the well known and simple
problem of computing fibonacci numbers. The program:.
(C1) fib (0,0).

(C2) fib (1,1).

(C3)y ib (NNF) - N 22, Nl is N -1, N2isN-2
fib(NI F1), fib (N2,F2), Fis FI + F2.

Executing a query, e.g. fib (5,F5) yields a proof tree
with common subgoals, the relevant part is shown in
Fig.l. A subtree for the goal fib (3,2) appears twice. An
efficient computation should avoid this repetition. This
can be achieved by adding 2, the third fibonacci number
as extra output argument to the subgoal fib(4,3). This
can be realised by a fold-unfold program transformation.
By unfolding fib(4,3) we obtain both occurrences of
fib(3,2) in the same goal statement and we can use fac-
toring to eliminate the undesired one.

Bruynooghe, De Raedt and De Schreye 407

fib(5,5)

522,4is5-1,3is 5-2, fib(4,3), fib(3,2), 5 is 342

422,3i54-1,2is 4-2, ib(3,2), fib(2,1), 3 is 2+1

Fig. 1 Pant of the proofiree for the query fib(5,F).

So, we take (C3) (the clause used 1o solve fib (5,F)) and
we unfold the call fib(N1,F1) (the call corresponding to
fib(4,3)). This yields :

(C31) iKNJF} - N2 2, Nl is N -1, N2 is N - 2,
{NI 2 2, N11l is N1 - 1, NI12 is NI - 2, fib(NI1L,FIl),

fH(NIi2,F12), Fl1 is Fl1 + FI12 |}, fib(N2JF2),
Fis F1 + F2.
Braces "{", "}" sumround the subgoals originating

from the unfold step. Comparing (C31) with the exam-
pie, we have that fib(N11 Fl1) and fib(N2,F2) corre-
spond to fib(3,2) while Ab(N12,F12) comespords to
fit(2,1). So, we apply factoring on £b(N1L,FI1} and
fib(N2,F2): we replace everywhere N2 by Nil, F2 by
F11 and we remove fin(N2 F2).

(C32) fib(NF):- N 2 2, N1 is N -1, NIt is N - 2,
(N1 2 2, N1I is N1 - I, N12 is NI - 2, fiKN11,F11),
fib(N12,F12), F1 is F11 + F12), Fis F1 + Fl11.

Now, we fold the subgoals between braces imto a
new predicate fibl, the argumenis are the variables
shared with the remainder of (C32), mamely N1, FI,
N11 and F11. This yields
(C4) ib(NJF):- N 2 2 Nl is N - I, N1l is N - 2,
fbI(NLFINt1FIl), FisFl +Fl1,
and, with a bit of renaming:

(C5) GbI(NJFNLFIY- N 22 Nlis N- 1, N2is N -2,
fib(N1,F1), ib(N2 F2), Fis F1 + F2.

Notice that a more elegant formulation would be
obtained by simplifying (C32). Indeed, obviously N11 is
N - 2 succeeds iff N1 is N - 1, N1l is N1 - 1 succeed
and it could be dropped. As such simplifications in gener-
al require a certain reasoning capability, we prefer not to
perform them to illustrate that our method does not
depend upon such a reasoning capability.

Instead of (C5), we would like to have a recursive
clause defining fibl. To obtain such a clause, we observe
that we have derived (C5) by unfolding, factoring and
folding on the pair fi{N1,F1), fib(N2,F2) in (C3), a
pair which can be considered as being obtained by unfold-
ing (using (C3)) a call fib(N,F). Now, (C5) contains an
equivalent pair, obtained by unfolding (using (C3)) an
equivalent call fib(N1,F1). So, we perform the same
unfold and factoring operation on the body of (C5).

408 Automated Deduction

Unfolding fib (N1,F1) with (C3) yields

(C51) fbI(NFNIFI):- N 2 2, Nl is N - 1,
N2 is N -2, (N1 2 2, N11 is NI - 1, N12 is N1 - 2,
fib(N11,Fi1), fib(N12,F12), Fl1 is Fl1 + Fi2 1},
fib(N2,F2), Fis F1 + F2.

Factoring fib(N11, F11) and fib(N2,F2) yields

(C52) fbI(NFNI1Fl):- N 2 2, Nl is N - |,
NIl is N -2, { NI 2 2, NIl is N1 - 1, NI2 is NI - 2,
fibk(N11, FIl), A6NI2F12), Fl1 is Fll + FIi2},
FisFl1 + Fl11,

Because we started from an equivalent pair and per-
formed the same steps, the set of goals between braces in
(C52) is necessarily the same as in (C32) {(up to renam-
ing). That means we can fold by using {(C5) and we
obtain the desired recursive clause :

(C6) HLI(NFNLFl- N 2 2 NI is N - 1,
N11is N -2, fibl(NL,FI,N11F11} Fis Fl1 +Fll.

In the realm of explanation based learning, the claus-
es (C4), (C5) and (C6) are useful clauses which can be
added to the program to improve its problem solving
behaviour. From a program transformation point of
view, the question arises whether the clause (C3) which
caused the inefficiencies can be dropped altogether with-
out changing the meaning of fib, or, which other clauses
have to be added to allow for the elimination of (C3)
(and (C5)).

Given a query fib(N,F) one can originally use the
clauses (C1), (C2) and (C3) to solve it. We have manipu-
lated (C3) to obtain new clauses. Obviously, the clauses
(C1) and (C2) must be retained.

In manipulating (C3), we have unfolded fib(N1FI)
using (C3) (yielding (C31)). To be able to drop (C3),
we have the unfold fib(N1,F1) also with (Cl) and
{C2).Using (C1), we obtain :
fb(NF- N 22, 0is N -1, N2 is N - 2, fib(N2 F2),
Fis 0 +F2.

Since N=[, the test N 2 2 always fails, so this
clause can be dropped.

Using (C2), we obtain :
fib(NJF);- N 22, 1 is N - 1, N2 is N - 2, it(N2.F2),
Fis 1 +F2.

This simplifies to :

(C7) fib (2,1}

The clause (C3) can be replaced by the set (C3),
(C7). By factoring we derived (C32) from (C31). Can
we drop (C31) without losing solutions? This is only
the case if, in every proof of fib(N,F) using (C31), it is
the case that the instances of fib(N11,F1l) and
fib(N2,F2} are identical.

Proving this requires the reasoming capability which
is typical for program transformation systems. In (C31)
we have N1 is N - | and N11 is N1 ~ | on the one hand
ad N2 is N - 2 on the other hand, so obviously
N11=N2. Algo it is easy to check that fib (N,F) is func-
tional for a given N [Debray & Warren 86], so both
instances are always identical and (C32) replaces (C31).

From (C32) to the pair (C4), (C5) is simply a prob-
lem reformulation. So, the set of clauses (Cl), (C2),

(C7), (C4), (C5) is aiso a complete definition of fib.

To replace (C5) in this set, we follow the same pat-
tem of reasoning, we unfold fiy(N1,F1) in (C5) using
the complete definition consisting of the set (C1), (C2),
(C3). With (Cl), we again obtain (after simplification)
atest 1 2 2 which always fails.

With (C2), we obtain :
fibI(NF1L1):- N 2 2, 1 is N - 1, N2 is N - 2,
fib(N2,F2), Fis1+F2.

This simplifies to :

(C8) fib1(2,1,1,1).

Thus, (C5) can be replaced by the pair (C51), (C8).
Again we can show that the factoring used to derive
(C52) from (C51) does not cause loss of solutions
while (C6) is a reformulation of (C52).

S0, we conclude that the pair (C6), (C8) can replace
(C5) and the new program is :

(C1) : £ib (0,0).

(C2) : fib (1,1).

(C7): fib(2,1).

{(C4) : fib(NFy:- N 2 2 Nl is N -1, NIl is N - 2,
fib1(N1,F1,N11,Fi1),FisFl + Fl11,

(C8) : fib1(2,1,1,1).

(C6) ALI(INNENLFl)- N 2 2, NI is N . 1,
N11is N -2, fib1(N1,F1,N11,F11), Fis Fl1 + F11.

Finally, using the reasoming capability of a transfor-
mational system, we can observe that (C4) and (C6) nec-
essarily fail for N=2, so, a test N 2 3 would be more
appropriate. Also, using (C6) to fold the body of (C4),
one could obtain fib (N,F) :- fibl(N,F,N1,Fl1).

3 Automation.

In the proof tree of the example, one looks for a pair of
calls PP’ for the same predicate such that P’ descends
immediately from P, the clause used to solve P’ is the
same as used to solve P and the subtree rooted at P’ con-
tains parts also occurring elsewhere in the tree rooted at
P (ie. there is redundancy). (In case of indirect recur-
sion, P’ is not an immediate descendant of P, by unfold-
ing one can obtain direct recursive clauses and one can
restructure the example prooftree accordingly). The
clause used to solve P is of the form :

(CYP <o, P, f where o and [are lists of subgoals.

As dictated by the example, the clause (C1) is
unfolded such that the identical calls appear side by side
in the unfolded body. This yields
(CI1) P <- al , { v }, Bl where yis either P’ or the list
of goals originating from unfolding P’.

Applying the factoring as dictated by the example
yields:

(CI2) P <- o2, { v }, B2. (v is left untouched, the redun-
dant calls are removed from «l and f1). This allows to
introduce a new predicate P1 and to derive :
(C)P<-«,Pl,p2.

(CHPL< {7}

In C3, y originates from unfolding a call P using

{(C1) so0, y is necessarily a renaming of o P' B or of an
unfolding of « P’ B. By further unfolding, one can obtain
Pl<-o2’ {v} 82

with 02’ renaming of o2, ¥ of y and B2’ of B2. So, we
can use (C3) to fold ', this yields :

(C4)P1 <- 02", P1, B2’

which is the recursive clause for P1.

To illustrate the automation, we show some more
examples. The first one js also taken from [Clocksin 88)
and is about the series expansion of the exponential func-
tion. The program :

(CD) exp(_,0.1).
(C2) exp(XNR:- N 2 1, powerX,NXP),
factN,NF), NI s N - 1, expXNILPI),
R is XP/NF + R1.
(C3) power(X.,0,1).

(C4) power(XNXP):- N 2 1, N1 is N - I, pow-
er(X,N1,P1), XPis X * P1.
(C5) fact(0,1).

exp{1,5.R)

521,
power(1,5,1},

fact(5,120),
4 is 5-1,
exp l'4|R1);
Ris 1/120+R1

521,4is 5-1, power(1,4,1),1 is [*1

5 2 L4 is 5-1, fact(4,24), 120 is 5%24

421,
power(1,4,1},
fact(4,24),
}is 4-1,
exp(1,3,R1}1),
R1is 124+R11l

Fig.2 Part of the prooftree for exp(l.5R).

{C6) fact™NNF):- N = 1, Nl is N - 1, facNLFD),
NFis N * Fl,

Part of the proof wee for a query exp(l,5R) is
shown in Fig.2. The shown pan exhibits two occur-
rences of power(1,5,1}, two of fact(4,2,4), three of 4 is
5 - 1 and three of 5 > 1. We identify exp(l,5,R} and
exp(1,4,R1) as the pair of calls PP’, so we stant from
C2, the clause used to solve P (and P’). As dictated by
the example, we unfold power, fact and exp and obtain:

Bruynooghe, De Raedt and De Schreye 409

(C21) exp(XNR) - N2, N2 1, NI’ is N - 1, pow-
efXNI'P1), XP is X *PL, N2 1, NI” is N - 1,
fact(N1""F1), NFis N * F1, Nl is N - L.{N 2 1, pow-

er(X,N1, XP1), fact(NLNFI), NIl is NI - 1,
exp(X,N11,R11), Rl is XPI/NFI + Rll1},
Ris XP/NF + R1.

As dictated by the example, we apply factoring between
fact(N1'', Fl) and fact(N1, NFl), between pow-
er(X,N1', PI) and power(X,NI XPIl), between NI’ is
N-1,NI"”is N.1axd Nl is N - I, and between the
occurrences of N 2 1. We obtain :

(C22) exp(XNR)- N 2 1, XP is X * XPl,
NF is N * NF1l, NI is N - L{NI 2 1, pow-
er(XNLXP1), fact(NINFl), NII is NI - 1,
exp(X,N11,R11), RiI is XPI/NFI + RIl},
Ris XP/NF + R11.

We restructure this in the following two clauses :

(Ch exp (XNR):- N 2 [, XP is X * XPI,
NF is N * NF1, N1 is N - Lexpl(X,N1,R1 XP1NFl},
Ris XP/F +R1.
(C8) expXNRXPNFy- N 2 1, powenX,N.XP),
facNNNF), NI is N - 1, exp(XNLRD),
R is XP/NF + R1.

The body of (C8) is the y part, which is, up to
renaming, identical to the body of (C2). Again, we
unfold and factor and obtain:

(C82) expl(XNRXPNF):- N 2 1, XP is X * XPI,
NF is N * NFI, NI is N - 1, {Nl 2 I, pow-

e(X, N1, XP1), fact(NINFl), NIl is NI - 1,
exp(X,N1I,R11), Rl is XPINFI + RIl},
R is XP/NF + R11.

With (C8), it can be folded into :

(20.F)

20 23,
18 is 20 - 2,
17is 20 - 3,

f(18,F18),f(17,F17),F is F18+F17

18 23,
16 is 20 - 2,
15is 18 - 3,
f(16,F16).f(15,F15),

F18 is F16+F15

1723,
15 is 17-2,
14 is 17-3,
f(15,F15),
f(14,F14),

F17 is F15+F14

16 23,
14 is 16 - 2,
13is 16 - 3,
f(14,F14), F(13,F13),F16 is F14+F13

Fig.3 Part of the prooftree for the query f(20,F).

(C9) explXNRXPNFy- N 2 1, XP is X * PPl,
NF is N * NFI, Nl is N - 1, expl(X,N1,R1 Xpl,NFl),

410 Automated Deduction

R is XP/NF + R11.

Notice, in this case, as well as in the case of fibonac-
ci, the second unfold-factor-fold can easily be avoided,
the body of (C9) is the body of (C7), the head is the
head of (C8).

We finish this section with a more complex variant
on fibonacci :

(C1) K0,0).

(C2y£(1,1).

(C3) £(2,1).

(C4 fINF- N 2 3, N2is N -2 N3 is N - 3,
fiN2, F2), f{N3,F3), Fis F2 + F3.

An example computation is shown in Fig.3. The sub-

goals f(15,F15) and f(14,F14) of f(17,F17) also occur in
the subtree of f(18,F18). So, we designate the calls
f(20,F) and f(18,F18) as the pair P, P'. As dictated by
the example, we unfold f{N2,F2) and f(N3,F3), while
the first call to f created by f(N2JF2) is also unfolded.
This yields :
(C41) NF):- N 2 3, N2 is N - 2, N3 is N - 3,
(N2 2 3, N22 is N2 - 2, N23 is N2 - 3, (N22 2 3,
N222 is N22 - 2, N223 is N22 - 3, f(N222,F222),
fIN223F223), F22 is F222 + F223}, f(N23,F3),
F2 is F22 + F23 }, N3 2 3, N32 is N3 - 2
N33 s N3 - 3, f(N32F32), {(N33,F33),
F3is F32 + F33, FisF2 +F3,

Applying factoring between f(N222,F222) and
fiN33 F33), between f(N23,F23) and f(N32,F32) yields:
(C42) fNJF:- N 2 3, N2 s N - 2, N3 is N - 3,
{N2 2 3, N22 is N2 - 2, N23 s N2 - 3, (N2 = 3,
N222 is N22 - 2, N223 is N22 - 3, f(N222, F222),
fiN223, F22%), F22 15 F222 + F223, f(N23,F2),
F2 is F22 + F23}, N3 > 3, N23 s N3 . 2
N222isN3 -3, F3is F23+ 222, Fis F2 + F3.

Restructuring yields :

(C5) fINF):- N 2 3, N2 is N - 2, N1 is N - 3,
fI(N2,F2,N23 F23,N222,F222), N3 2 3, N23 is N3 - 2,
N222isN3-3,Flis F231+ F222, Fis F2 + F3.

(C6) fI{NJFN3F3N22F22):- N 2 3, N2 is N - 2,
N3is N -3, | N2 23, N22 is N2 - 2, N23 is N2 - 3,
fiN22,F22), f(N23,F23), F2 is F22 + F23}, f(N3,F3),
FisF2 + F3.

Now, the body of (C6) is not the body of (C4), but
that body with f(N2,F2) unfolded. Further unfolding of
f(N22,F22) and f(N3,F3) yields again a renaming of the
body of (C41), we can apply factoring and can use (C6)
to fold, this yields :
€N INFN3IFIN22F22)- N 2 3, N2 is N - 2,
N3 is N - 3, fI(N2F2N23 F23,N222,F222), N3 2 3,
N23 ig N3 . 2, N222 is N3 - 3, F3 is F23 + F222,
Fis F2 + F3.
which is the recursive clause looked for.

To obtain a completely transformed program, one
has to analyse alternative solution paths (using other
clauses to unfold) as we did for fibonacci. Due to space
constraints, we omit this in this section, as this is in the
realm of classic program transformation work.

4 Discussion.

[Clocksin 88] shows a technique to derive an efficient
dataflow graph from clausal programs exhibiting redun-
dancy by recomputing identical subgoals several times.
The graph is derived for a constant value of one of the
inputs. In this paper, we go substantially further, we
have shown a technique to obtain an efficient clausal pro-
gram for the above class of programs. Moreover, the pro-
gram can be executed for any value of the input which is
frozen by Clocksin. The idea underlying the method is to
use an example to control an unfold-factoring-fold
transformation of the program.

The method as presented requires that subcomputa-
tions are identical in the example computation. We are
currently investigating whether this condition can be
relaxed. A simple example is the towers of hanoi prob-
lem. In an example computation one gets subgoals of the
form hanoi (5, peg A, peg C, peg B, [..moves]) and
hanoi (5, peg C, peg B, peg A, [... moves]), where proofs
are structurally identical, only the names of pegs are dif-
ferent. The least general generalisation hanoi
(5,X,Y,Z,[...]) still yields the same proof structure, so
one can execute that call, take two copies of its success-
full instance and unify the first copy with the first call,
the second copy with the second call.

Our Explanation Based Program Transformation
(EBPT) borrows ideas from Explanation Based Learning
(EBL) [Mitchell et al. 86] [De Jong & Mooney 86]
[Kedan-Cabelli & Mc Carthy 87] as it is also a form of
example guided unfolding. The relationship between par-
tial evaluation and EBL has been studied in [Van Harme-
len & Bundy 88]. Our EBPT not only applies example
guided unfolding but realises also example guided fold-
ing and can introduce new predicates. Consequently, it
can modify the structure of the prooftree. Also [Shavlik
& De Jong 87 a,b] have developed a method which
restructures the prooftree in case of repeated application
of the same rule.

It is interesting to observe that restructuring the
prooftree is essential to obtain truly operational predi-
cates for the examples we have shown.

We have also borrowed ideas from the area of pro-
gram transformation. An interesting aspect is the prob-
lem of maintaining completeness. Traditional EBL sys-
tems derive new rules and add them to the knowledge
base but never remove old rules. For certain queries, the
new rules may allow to quickly find a first solution,
but the amount of redundancy and the total size of the
search space increases. Techniques from the area of pro-
gram transformation allow to prove the equivalence
between sets of rules. In EBL this could be used to
remove old rules with a bad performance.

The problem we address has also been studied in the
area of program transformation. The unfold/fold trans-
formation method of Darlington and Burstall [Burstall
& Darlington 77] has served as a general framework for
almost every source-level transformation technique pro-
posed for logic- or functional programs. The major
advantage of the method is its wide range of applica-
tions. These include the introduction of tail-recursion

(e.g. [Debray 86], [Pelhat 87]), loopmerging (e.g.
[Gregory 80], [Debray 87], [Proietti & Pettorossi 88]),
avoiding redundant computations (e.g. [Gregory 80]..
[Fronhofer 87]), partial evaluation (e.g. [Komorowski
81], [Venken 84]) and the compilation of control infor-
mation (e.g. [Gregory 80], [Bruynooghe et al. 86], [De
Schreye & Bruynooghe 89]). Closely related to this
advantage, is the major drawback of unfold/fold : the
method is hard to automate. In general, the degree of
automation obtained in any of the applications above is
inversely proportional to the size of the class of
unfold/fold transformations it can deal with.

Systems designed to support a large class of trans-
formations, either depend on:

* user interaction (e.g. [Gregory 80]),

» a user-provided control program (e.g. [Sato 84]),

+ a set of heuristics and global transformation strate-

gies (e.g. [Proietti & Pettorossi 88],
mainly to guide the unfolding, to provide lemma's that
can be applied and to generate the new predicates and
their definitions (Eureka's) on which the folding can be
performed. As such, the techniques described in these
three papers can deal with the transformations described
in this paper as well, but only under the assumption that
the user has supplied the proper directives, control pro-
gram or heuristics. In contrast with the above, the tech-
nique proposed here focuses on a more specific class of
transformations. In exchange, we obtain full automation.

[Fronhofer 87] has also studied the problem of elimi-
nating the inefficiencies due to the occurrence of similar
subcomputations. The prooftree of an example computa-
tion is scanned bottom up for identical subcomputations.
At points where the subcomputations start to diverge,
an attempt is made to generalise the two observed sub-
computations. This generalisation requires an Eureka ;
possible automation is not discussed.
A classic approach to avoid redundancy due to identical
subcomputations is the use of tabulation (see [Bird 80]
for a survey) or lemma generation [Kowalski 79]. The
idea is to build a table with answers computed so far.
When a new call in encountered, the table is consulted
and the stored answer is used when already present.
However, it is more a programming technique than a
method for program transformation. Also, in logic pro-
gramming, building the table requires the use of assert
which is very time consuming.

Acknowledgements.

M.Bruynooghe is supported by the Belgian National
Fund for Scientific Research. D.De Schreye is supported
by the Belgian IWONL-IRSIA under contract No. 5203.

References.

[Bird 80] Bird R.S., Tabulation techniques for recursive
programs, ACM Computing Surveys, Vol.12, No.4,
1980,pp.:403-417.

[Bruynooghe et al 86] Bruynooghe M., De Schreye D. and
Krekels B., Compiling Control, Proc.Third Interna-
tional Symposium on Logic Programming, 1986, pp.

Bruynooghe, De Raedt and De Schreye 411

70-78, revised version Journal Logic Programming
1989, pp: 135-162.

[Bmstall & Darlington 77] Burstall R.M. and Darling-
ton J., A transformation system for developing recur-
sive programs, JACM, 24,1977, pp. 44-67.

[Clocksin 88] Clocksin, W.F., A technique for translat-
ing clausal specifications of numerical methods into
efficient programs, Journal of Logic Programming,
Vol. 5. No. 3,1988, pp231-242.

[Debray & Warren 86] Debray, S.K., Warren, D.S., Detec-
tion and optimisation of functional computations in
Prolog, Proceedings Third International Logic Pro-
gramming Conference, Springer Verlag, LNCS, Vol.
225,1986, pp. 490-504.

[Debray 86] Debray S.K., Global optimisation of Logic
Programs, Ph.D. dissertation, Stony Brook, 1986.

[Debray 87] Debray S.K., Unfold/fold transformations
and loop optimisation of Logic Programs, report of
Dept. Computer Science, University of Arizona, 1987.

[De Jong & Mooney 86] Dedong, G., Mooney, R., Expla-
nation-based learning : an alternative view, Machine
Learning, Vol. 1, No. 2,1986, pp. 145-176.

[De Schreye & Bruynooghe 89] De Schreye D,
Bruynooghe M. On the transformation of logic pro-
grams with instantiation based computation rules,
J.Symbolic Computation, 1989, pp:125-154..

[Fronhofer 87] Fronhofer B., Double work as a reason
for inefficiency of programs, Technical report
T.U.M. Munchen, 1987.

[Gregory 80] Gregory S., Towards the compilation of
annotated logic programs, Res.Report DOC80/16,
June 1980, Imperial College.

[Kedar-Cabelli & McCarthy 87] Kedar-Cabelli, ST.,
McCarthy, L.T., Explanation based generalization as
resolution theorem proving, in: Proceedings of the
4th International Workshop on Machine Learning,
Irvine, Morgan Kaufmann, 1987, pp. 383-389.

[Komorowski 81] Komorowski H.J., A specification of
an abstract Prolog machine and its applications to par-
tial evaluation, Linkoping Studies in Science and Tech-
nology, Dissertation No0.69, Linkoping University,
1981.

[Kowalski 79] Kowalski, R.A., Logic for problem solv-
ing, North-Holland, 1979.

[Mitchell et al. 86] Mitchell, T.M., Keller, R.M.,
Kedar-Cabelli, ST., Explanation-based generaliza-
tion : a unifying view, Machine Learning, Vol. 1,
No. 1,1986, pp. 47-80.

[Pelhat 87] Pelhat S., Analysis and control of recursivi-
ty in Prolog programs, Technical report CRIL, Uni-
versite de Paris-sud, 1987.

[Proietti & Pettorossi 88] Proietti M., Pettorossi A.,
Some strategies for transforming logic programs,
report Istituto di Analisi dei Sistemi ed Informatica,
Rome, 1988.

[Sato & Tamaki 84] Sato T., Tamaki H., Transformation-
al logic program synthesis, FGCS '84, Tokyo, 1984.

[Shavlik & De Jong 87a] Shavlik, J., De Jong, G., BAG-
GER : an EBL system that extends and generalizes

412 Automated Deduction

explanations. Proceedings of the Sixth National Con-
ference on Artificial Intelligence, 1987, pp. 516-520.

[Shavlik & De Jong 87b] Shavlik, J., De Jong, G., An
explanation-based approach to generalizing number.
Proceedings of the tenth International Joint Confer-
ence on Artificial Intelligence, Morgan Kaufmann,
Milano, 1987, pp. 236-238.

[Van Harmelen & Bundy 89] Van Harmelen, F., Bundy,
A., Explanation Based Generalization = Partial Eval-
uation, to appear in : Artificial Intelligence, 1989.

[Venken 84] Venken R., A Prolog Meta-interpreter for
partial evaluation and its applications to source to
source transformation and query-optimisation, Proc.
of the 6th. ECAI, 1984, pp.:91-100.

