
Explanation Based Program Transformation. 

Maurice Bruynooghe Luc De Raedt Danny De Schreye 
Department of Computer Science 
Katholieke Universiteit Leuven 

Celestijnenlaan 200A 
B-3030 Heverlee, Belgium 

Abstract 
Fold-unfold is a well known program transfor­
mation technique. Its major drawback is that 
folding requires an Eureka step to invent new 
procedures. 
In the context of logic programming, we pre­
sent a technique where the folding is driven by 
an example. The transformation is aimed at pro­
grams suffering from inefficiencies due to the 
repetition of identical subcomputations. The exe­
cution of an example is analysed to locate 
repeated subcomputations. Then the structure of 
the example is used to control a fold-unfold-
transformation of the program. The transforma-
tion can be automated. The method can be regard­
ed as an extension of explanation based learning. 

1 Introduct ion. 

In [Clocksin 88], a technique is presented for translating 
clausal specifications of numerical methods into efficient 
programs. The Horn clause program started from does 
not compute the result but constructs a term which, 
after evaluation, yields the result (e.g. (0 + 1) + 1 repre­
sents the second fibonacci number). Executing the pro­
gram for a specific input (n) yields a specific term. 
Clocksin analyses this term to find common subterms 
and folds the term into a graph structure where each sub-
term occurs only once. This graph structure can be con­
sidered as a program for a hypothetical dataflow comput­
er. Fixing the input is unpractical for fibonacci, but less 
harmful for more complex cases (e.g. the number of 
terms in an approximation of a series, the dimension of a 
matrix equation, the number of points in an n-point dis­
crete Fourier transform). 

The regularity of the resulting graph structures is 
striking. For a human, it is easy to extend them to a 
larger n, and it is not so hard to come up with a recur­
sive procedure where n is a parameter computing the 
same value with the same efficiency. The purpose of this 
paper is to describe a method, suited for automation, 
deriving such recursive procedures. 

Some general techniques are known to address the 
inefficiencies due to repeated subcomputations e.g. lem­

ma generation [Kowalski 79] and tabulation techniques 
[Bird 80]. Such techniques give some improvement but do 
not yield the optimal algorithmic behavior looked for. 
The fold-unfold transformation technique [Burstall & 
Darlington 77] could be used, but the fold step requires 
a Eureka step, the invention of new procedures. 

In the area of machine learning, explanation based 
learning [Mitchel et al. 86] [De Jong & Mooney 86] has 
been developed to improve the problem solving 
behaviour of programs. The similarity between explana­
tion based learning and partial evaluation has been point­
ed out [Van Harmelen & Bundy 89]. However, the point 
of explanation based learning is that the example is used 
to control the partial evaluation process. 

Our method extends this idea, an example w i l l be 
used to control the fold-unfold transformation process. 
We argue that the method is suited for automation. Also 
extensions to cases where subcomputations in the origi­
nal program are not identical but similar seem to be fea­
sible. 

In the next section we give some examples; the 
third section discusses the automation of the method and 
we finish with a discussion of possible extensions and of 
related work. 

2 Examples. 

Our first example is about the well known and simple 
problem of computing fibonacci numbers. The program:. 

Executing a query, e.g. fib (5,F5) yields a proof tree 
with common subgoals, the relevant part is shown in 
F ig . l . A subtree for the goal fib (3,2) appears twice. An 
efficient computation should avoid this repetition. This 
can be achieved by adding 2, the third fibonacci number 
as extra output argument to the subgoal fib(4,3). This 
can be realised by a fold-unfold program transformation. 
By unfolding fib(4,3) we obtain both occurrences of 
fib(3,2) in the same goal statement and we can use fac­
toring to eliminate the undesired one. 

Bruynooghe, De Raedt and De Schreye 407 



408 Automated Deduction 



Bruynooghe, De Raedt and De Schreye 409 



410 Automated Deduction 



4 Discussion. 

[Clocksin 88] shows a technique to derive an efficient 
dataflow graph from clausal programs exhibiting redun­
dancy by recomputing identical subgoals several times. 
The graph is derived for a constant value of one of the 
inputs. In this paper, we go substantially further, we 
have shown a technique to obtain an efficient clausal pro­
gram for the above class of programs. Moreover, the pro­
gram can be executed for any value of the input which is 
frozen by Clocksin. The idea underlying the method is to 
use an example to control an unfold-factoring-fold 
transformation of the program. 

The method as presented requires that subcomputa-
tions are identical in the example computation. We are 
currently investigating whether this condition can be 
relaxed. A simple example is the towers of hanoi prob­
lem. In an example computation one gets subgoals of the 
form hanoi (5, peg A, peg C, peg B, [...moves]) and 
hanoi (5, peg C, peg B, peg A, [... moves]), where proofs 
are structurally identical, only the names of pegs are dif­
ferent. The least general generalisation hanoi 
(5,X,Y,Z,[...]) stil l yields the same proof structure, so 
one can execute that call, take two copies of its success-
ful l instance and unify the first copy with the first call, 
the second copy with the second call. 

Our Explanation Based Program Transformation 
(EBPT) borrows ideas from Explanation Based Learning 
(EBL) [Mitchell et al. 86] [De Jong & Mooney 86] 
[Kedan-Cabelli & Mc Carthy 87] as it is also a form of 
example guided unfolding. The relationship between par­
tial evaluation and EBL has been studied in [Van Harme-
len & Bundy 88]. Our EBPT not only applies example 
guided unfolding but realises also example guided fold­
ing and can introduce new predicates. Consequently, it 
can modify the structure of the prooftree. Also [Shavlik 
& De Jong 87 a,b] have developed a method which 
restructures the prooftree in case of repeated application 
of the same rule. 

It is interesting to observe that restructuring the 
prooftree is essential to obtain truly operational predi­
cates for the examples we have shown. 

We have also borrowed ideas from the area of pro­
gram transformation. An interesting aspect is the prob­
lem of maintaining completeness. Traditional EBL sys­
tems derive new rules and add them to the knowledge 
base but never remove old rules. For certain queries, the 
new rules may allow to quickly find a first solution, 
but the amount of redundancy and the total size of the 
search space increases. Techniques from the area of pro­
gram transformation allow to prove the equivalence 
between sets of rules. In EBL this could be used to 
remove old rules with a bad performance. 

The problem we address has also been studied in the 
area of program transformation. The unfold/fold trans­
formation method of Darlington and Burstall [Burstall 
& Darlington 77] has served as a general framework for 
almost every source-level transformation technique pro­
posed for logic- or functional programs. The major 
advantage of the method is its wide range of applica­
tions. These include the introduction of tail-recursion 

(e.g. [Debray 86], [Pelhat 87]), loopmerging (e.g. 
[Gregory 80], [Debray 87], [Proietti & Pettorossi 88]), 
avoiding redundant computations (e.g. [Gregory 80].. 
[Fronhofer 87]), partial evaluation (e.g. [Komorowski 
81], [Venken 84]) and the compilation of control infor­
mation (e.g. [Gregory 80], [Bruynooghe et al. 86], [De 
Schreye & Bruynooghe 89]). Closely related to this 
advantage, is the major drawback of unfold/fold : the 
method is hard to automate. In general, the degree of 
automation obtained in any of the applications above is 
inversely proportional to the size of the class of 
unfold/fold transformations it can deal with. 

Systems designed to support a large class of trans­
formations, either depend o n : 

• user interaction (e.g. [Gregory 80]), 
• a user-provided control program (e.g. [Sato 84]), 
• a set of heuristics and global transformation strate­
gies (e.g. [Proietti & Pettorossi 88], 

mainly to guide the unfolding, to provide lemma's that 
can be applied and to generate the new predicates and 
their definitions (Eureka's) on which the folding can be 
performed. As such, the techniques described in these 
three papers can deal with the transformations described 
in this paper as well, but only under the assumption that 
the user has supplied the proper directives, control pro­
gram or heuristics. In contrast with the above, the tech­
nique proposed here focuses on a more specific class of 
transformations. In exchange, we obtain full automation. 

[Fronhofer 87] has also studied the problem of elimi­
nating the inefficiencies due to the occurrence of similar 
subcomputations. The prooftree of an example computa­
tion is scanned bottom up for identical subcomputations. 
At points where the subcomputations start to diverge, 
an attempt is made to generalise the two observed sub-
computations. This generalisation requires an Eureka ; 
possible automation is not discussed. 
A classic approach to avoid redundancy due to identical 
subcomputations is the use of tabulation (see [Bird 80] 
for a survey) or lemma generation [Kowalski 79]. The 
idea is to build a table with answers computed so far. 
When a new call in encountered, the table is consulted 
and the stored answer is used when already present. 
However, it is more a programming technique than a 
method for program transformation. Also, in logic pro­
gramming, building the table requires the use of assert 
which is very time consuming. 

Acknowledgements. 

M.Bruynooghe is supported by the Belgian National 
Fund for Scientific Research. D.De Schreye is supported 
by the Belgian IWONL-IRSIA under contract No. 5203. 

References. 

[Bird 80] Bird R.S., Tabulation techniques for recursive 
programs, A C M Computing Surveys, Vol.12, No.4, 
1980,pp.:403-417. 

[Bruynooghe et al 86] Bruynooghe M., De Schreye D. and 
Krekels B., Compiling Control, Proc.Third Interna­
tional Symposium on Logic Programming, 1986, pp. 

Bruynooghe, De Raedt and De Schreye 411 



70-78, revised version Journal Logic Programming 
1989, pp: 135-162. 

.[Bmstall & Darlington 77] Burstall R.M. and Darling­
ton J., A transformation system for developing recur­
sive programs, JACM, 24,1977, pp. 44-67. 

[Clocksin 88] Clocksin, W.F., A technique for translat­
ing clausal specifications of numerical methods into 
efficient programs, Journal of Logic Programming, 
Vol. 5. No. 3,1988, pp231-242. 

[Debray & Warren 86] Debray, S.K., Warren, D.S., Detec­
tion and optimisation of functional computations in 
Prolog, Proceedings Third International Logic Pro­
gramming Conference, Springer Verlag, LNCS, Vol. 
225,1986, pp. 490-504. 

[Debray 86] Debray S.K., Global optimisation of Logic 
Programs, Ph.D. dissertation, Stony Brook, 1986. 

[Debray 87] Debray S.K., Unfold/fold transformations 
and loop optimisation of Logic Programs, report of 
Dept. Computer Science, University of Arizona, 1987. 

[De Jong & Mooney 86] DeJong, G., Mooney, R., Expla­
nation-based learning : an alternative view, Machine 
Learning, Vol. 1, No. 2,1986, pp. 145-176. 

[De Schreye & Bruynooghe 89] De Schreye D., 
Bruynooghe M. On the transformation of logic pro­
grams with instantiation based computation rules, 
J.Symbolic Computation, 1989, pp:125-154.. 

[Fronhofer 87] Fronhofer B., Double work as a reason 
for inefficiency of programs, Technical report 
T.U.M. Munchen, 1987. 

[Gregory 80] Gregory S., Towards the compilation of 
annotated logic programs, Res.Report DOC80/16, 
June 1980, Imperial College. 

[Kedar-Cabelli & McCarthy 87] Kedar-Cabelli, ST., 
McCarthy, L.T., Explanation based generalization as 
resolution theorem proving, in: Proceedings of the 
4th International Workshop on Machine Learning, 
Irvine, Morgan Kaufmann, 1987, pp. 383-389. 

[Komorowski 81] Komorowski H.J., A specification of 
an abstract Prolog machine and its applications to par­
tial evaluation, Linkoping Studies in Science and Tech­
nology, Dissertation No.69, Linkoping University, 
1981. 

[Kowalski 79] Kowalski, R.A., Logic for problem solv­
ing, North-Holland, 1979. 

[Mitchell et al. 86] Mitchell, T.M., Keller, R.M., 
Kedar-Cabelli, ST., Explanation-based generaliza­
tion : a unifying view, Machine Learning, Vol. 1, 
No. 1,1986, pp. 47-80. 

[Pelhat 87] Pelhat S., Analysis and control of recursivi-
ty in Prolog programs, Technical report CRIL, Uni-
versite de Paris-sud, 1987. 

[Proietti & Pettorossi 88] Proietti M., Pettorossi A., 
Some strategies for transforming logic programs, 
report Istituto di Analisi dei Sistemi ed Informatica, 
Rome, 1988. 

[Sato & Tamaki 84] Sato T., Tamaki H., Transformation­
al logic program synthesis, FGCS '84, Tokyo, 1984. 

[Shavlik & De Jong 87a] Shavlik, J., De Jong, G., BAG­
GER : an EBL system that extends and generalizes 

explanations. Proceedings of the Sixth National Con­
ference on Artificial Intelligence, 1987, pp. 516-520. 

[Shavlik & De Jong 87b] Shavlik, J., De Jong, G., An 
explanation-based approach to generalizing number. 
Proceedings of the tenth International Joint Confer­
ence on Artificial Intelligence, Morgan Kaufmann, 
Milano, 1987, pp. 236-238. 

[Van Harmelen & Bundy 89] Van Harmelen, F., Bundy, 
A., Explanation Based Generalization = Partial Eval­
uation, to appear in : Artificial Intelligence, 1989. 

[Venken 84] Venken R., A Prolog Meta-interpreter for 
partial evaluation and its applications to source to 
source transformation and query-optimisation, Proc. 
of the 6th. ECAI, 1984, pp.:91-100. 

412 Automated Deduction 


