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Abstract
Previous studies of different methods of testing mediation models have consistently found two
anomalous results. The first result is elevated Type I error rates for the bias-corrected and
accelerated bias-corrected bootstrap tests not found in nonresampling tests or in resampling tests
that did not include a bias correction. This is of special concern as the bias-corrected bootstrap is
often recommended and used due to its higher statistical power compared with other tests. The
second result is statistical power reaching an asymptote far below 1.0 and in some conditions even
declining slightly as the size of the relationship between X and M, a, increased. Two computer
simulations were conducted to examine these findings in greater detail. Results from the first
simulation found that the increased Type I error rates for the bias-corrected and accelerated bias-
corrected bootstrap are a function of an interaction between the size of the individual paths making
up the mediated effect and the sample size, such that elevated Type I error rates occur when the
sample size is small and the effect size of the nonzero path is medium or larger. Results from the
second simulation found that stagnation and decreases in statistical power as a function of the
effect size of the a path occurred primarily when the path between M and Y, b, was small. Two
empirical mediation examples are provided using data from a steroid prevention and health
promotion program aimed at high school football players (Athletes Training and Learning to
Avoid Steroids; Goldberg et al., 1996), one to illustrate a possible Type I error for the bias-
corrected bootstrap test and a second to illustrate a loss in power related to the size of a.
Implications of these findings are discussed.

Statistical mediation analysis is used to determine whether the effect of one variable on a
second variable is transmitted through a third variable. Mediation analysis is widely used in
the social sciences in order to probe how changes in outcome variables occur (MacKinnon,
2008). With the popularity of mediation analysis, numerous statistical tests to determine the
presence of mediation have been developed. MacKinnon, Lockwood, Hoffman, West, and
Sheets (2002) described 14 different single sample tests of mediation, whereas MacKinnon,
Lockwood, and Williams (2004) described an additional 6 resampling tests of mediation.
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Several studies have examined the statistical properties of these different tests of mediation
for specific situations, including their statistical power, Type I error rates, and coverage of
confidence intervals (e.g., Cheung, 2007, 2009; Fritz & MacKinnon, 2007; MacKinnon et
al., 2004; MacKinnon, Lockwood et al., 2002; Preacher & Hayes, 2008; Williams &
MacKinnon, 2008). Although these studies have been successful in providing advice to
researchers as to the accuracy and power of the various tests, they have also produced
anomalous findings that are of concern, especially for studies testing mediation with small
sample sizes.

In this study, two important anomalous findings are examined. The first is the finding of
elevated Type I error rates for two widely recommended resampling tests of mediation: the
bias-corrected and accelerated bias-corrected bootstrap tests. The second is the finding that
the statistical power for some tests of mediation asymptote at a value below 1.0 and can
even decrease as the size of one of the paths increases. The goal of this study is to determine
under what conditions these two results occur as well as to estimate their magnitude in order
to provide researchers with recommendations on how to avoid inflated Type I error and
flattening or declining power when estimating mediational models. Both of these results are
then illustrated in empirical examples by estimating mediation models using data from a
steroid prevention and health promotion program for high school football players (Athletes
Training and Learning to Avoid Steroids; Goldberg et al., 1996), which were selected
because of the large sample size and the presence of numerous significant mediation effects
(MacKinnon et al., 2001).

STUDY 1
Simulation studies that have investigated the statistical power of the bootstrap methods and
the asymmetric confidence interval test using numerical integration with the PRODCLIN
program (MacKinnon, Fritz, Williams, & Lockwood, 2007) have found these methods to be
more powerful than normal theory tests in many circumstances (Fritz & MacKinnon, 2007;
MacKinnon et al., 2004). Specifically, the percentile bootstrap and the numerical integration
tests have greater power than normal theory tests in many circumstances while maintaining
Type I error near its nominal level. The bias-corrected and accelerated bias-corrected
bootstrap tests typically have even greater power than the percentile bootstrap or the
numerical integration test. Due to their greater statistical power and the fact that they do not
rely on normal theory, many authors have recommended bootstrap methods as the preferred
tests of mediation (e.g., MacKinnon et al., 2004; Mallinckrodt, Abraham, Wei, & Russell,
2006; Pituch, Stapleton, & Kang, 2006; Preacher & Hayes, 2008; Shrout & Bolger, 2002).

Given the choice of the different methods available to perform bootstrap tests of mediation,
many researchers have naturally chosen to use the bias-corrected bootstrap due to its
relatively higher statistical power (e.g., Baker, Pankhurst, & Robinson, 2007; Cerin &
Leslie, 2008; Lundgren, Dahl, & Hayes, 2008; Napolitano et al., 2008; Prelow, Weaver, &
Swenson, 2006; Tallman, Altmaier, & Garcia, 2007). Furthermore, as cited by Shrout and
Bolger (2002), Efron and Tibshirani (1993) suggest that the bias-corrected bootstrap will
produce more accurate confidence intervals for small samples. However, in addition to
having greater statistical power, the bias-corrected and accelerated bias-corrected bootstrap
have both been found to have greatly elevated Type I error rates in some conditions,
particularly when the sample size is small (Fritz & MacKinnon, 2007; MacKinnon et al.,
2004). This is especially problematic given the possibility that researchers may turn to one
of these methods after failing to find significance with another method (e.g., the percentile
bootstrap). The conditions under which the bias-corrected and accelerated bias-corrected
bootstrap tests of mediation produce elevated Type I error rates have not been explored
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systematically but need to be examined given these tests' widespread recommendation and
frequent usage.

The Single Mediator Model
Mediation occurs when the effect of one variable, the antecedent, on a second variable, the
consequent or outcome, is transmitted through a third intervening or mediating variable.
Mediation differs from other third variable models such as moderation or suppression in that
it explicitly assumes that the variables form a causal chain. That is, changes in the
antecedent cause changes in the mediator, which in turn cause changes in the consequent.
The single mediator model is the simplest mediation model and is illustrated in Figure 1,
where the antecedent is labeled X, the mediator is labeled M, and the outcome is labeled Y.
The single mediator model can be represented using three regression equations:

(1)

(2)

(3)

where i1, i2, and i3 are intercepts, and ei are the residuals. The total effect of X on Y is
represented by c, whereas the effect of X on Y after controlling for the mediator M, called
the direct effect, is represented by c′. The effect of X on M, called the action theory when X
is directly manipulated, is represented by a and the effect of M on Y after controlling for X,
called the conceptual theory (Chen, 1990; MacKinnon, Taborga, & Morgan-Lopez, 2002), is
represented by b. Under the assumption that the mediation model is the correct population
model, the mediated effect of X on Y through M is then equal to the indirect path through
M, ab. Sample estimates of c, c′, a, and b are , , , and , respectively.

Tests of Mediation
There are three different categories of tests for examining the single mediator model
(MacKinnon, Lockwood et al., 2002). The first category consists of the causal steps
approaches first described by Judd and Kenny (1981). In the most widely used version of the
causal steps tests, each of the steps in the causal chain is tested in sequence (Baron &
Kenny, 1986). First the estimate of the overall effect of X on Y, , is tested for significance,
followed by the effect of X on M, , then the effect of M on Y controlling for X, . Finally,
the comparison  is made. Although the causal steps test makes sense logically, the
causal steps methods do not provide an estimate of the mediated effect and simulation
studies have shown the causal steps methods to be underpowered in many situations (Fritz &
MacKinnon, 2007; MacKinnon, Lockwood et al., 2002).

The second category of tests is the difference-in-coefficients tests, which assess mediation
by dividing  by its standard error and comparing the result with a t-distribution
(MacKinnon, Lockwood et al., 2002). The third category of tests is the product-of-
coefficients tests, where the estimate of the indirect effect, , is divided by its standard
error and compared with a normal distribution. MacKinnon, Warsi, and Dwyer (1995)
showed that the product-of-coefficients estimator of the mediated effect is equivalent to the
difference-in-coefficients estimator: . Although both of these approaches provide
an estimate of the mediated effect and have greater power than the causal steps approaches
in many situations, the product-of-coefficients tests are generally preferred in psychology
because they generalize more easily to models with multiple mediators. In such models,
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 is an estimate of the total mediated effect, but it cannot be parsed into individual
mediated effects passing through the separate mediators. By contrast, if a product-of-
coefficients approach is used,  can easily be calculated and tested for significance
separately for each mediator and the estimates of the individual mediated effects can then be
summed to form an estimate of the total mediated effect.

The product-of-coefficients tests are not without problems, however. The most concerning
issue is their use of an inappropriate sampling distribution. When  is divided by an
estimate of its standard error, for instance the first-order standard error derived by Sobel
(1982),

(4)

the resulting statistic is compared with a normal distribution to test for significance, but the
distribution of the product of two normally distributed random variables is not itself
normally distributed in most situations (Lomnicki, 1967; Springer & Thompson, 1966). In
fact, the distribution of the product takes on different shapes for different values of a, b, and
their respective standard errors. Because of this, the assumption of normality is violated and
the results of the z tests are inaccurate, as are the symmetric confidence intervals around 
using critical values from the normal distribution.

Two methods have been proposed to deal with the nonnormality of the distribution of the
product. The first is a program called PRODCLIN (MacKinnon, et al., 2007), which uses

numerical integration to estimate the distribution of the product, given values of , and
their standard errors, to find critical values that bound the middle 95% of the distribution
(assuming a nominal Type I error rate of α = .05). These critical values are then used to
form an asymmetric confidence interval around the mediated effect and significance is
tested by determining whether or not zero is included within the confidence interval.

The second method is to use bootstrapping, a nonparametric method that does not assume
the distribution of ab is normal. Bootstrapping creates an empirical sampling distribution of
ab by resampling many times from the original sample (Bollen & Stine, 1990; Efron &
Tibshirani, 1993; MacKinnon et al., 2004; Shrout & Bolger, 2002). Bootstrap samples are
the same size as the original sample and they are taken with replacement, meaning that the
same case can be selected more than once. For each of the bootstrap samples,  and  are
found and then multiplied to form an estimate of the mediated effect. These  values for
each bootstrap sample collectively make up the bootstrap sampling distribution. The
observations corresponding to the α/2 and 1 − α/2 percentiles are the (1 − α)×100%
confidence limits. Testing the null hypothesis that ab = 0 using these confidence limits is the
percentile bootstrap test.

The accelerated bias-corrected bootstrap (Efron & Tibshirani, 1993) is a variation on the
percentile bootstrap that contains a correction, z0, for bias in  and a correction, ν, for
changes in the standard deviation of  as ab varies (i.e., acceleration), such that

(5)

where Φ−1 is the inverse function of the normal cumulative distribution function (e.g., Φ−1(.
975) = 1.96) and π is the proportion of bootstrap estimates of ab that are less than  from
the original data, and
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(6)

where  is the estimate of ab with case i deleted from the original data set, also called

the i th jackknife estimate of ab, and  is the mean of all of the jackknife estimates of ab.
The resulting upper and lower confidence limits are then the bootstrapped estimates of ab
equal to the percentiles:

(7)

(8)

where Φ is the normal cumulative density function (e.g., Φ(1:96) = .975), zα/2 = Φ−1(α/2),
and z(1−α/2) = Φ−1(1 − α/2). The bias-corrected bootstrap is defined in the same way as the
accelerated bias-corrected bootstrap but with . Note that when both  and , the
accelerated bias-corrected and bias-corrected bootstraps are equal to the percentile bootstrap.

Methods
In order to investigate what factors affect the Type I error rate of the bias-corrected and
accelerated bias-corrected bootstrap tests of mediation, a Monte Carlo simulation was
performed using R (R Core Development Team, 2011). Five factors were varied, the first of
which was the test of mediation used. In addition to the bias-corrected and accelerated bias-
corrected bootstrap tests, the percentile bootstrap and numerical integration tests were used
in order to replicate the results from previous simulation studies (MacKinnon et al., 2004)
and to examine situations that may increase the Type I error rate for all of these tests.

The second and third factors varied were the sizes of a and b. Because Type I error rates
were being examined, the true mediated effect was 0 in all conditions, requiring that either a,
b, or both be equal to 0. There were seven conditions defined by the combination of the a
and b factors. In three conditions, b was set to 0 and a was set to 0.14, 0.39, or 0.59; in three
other conditions, a was set to 0 and b was set to 0.14, 0.39, or 0.59; and in one final
condition, a and b were both set to 0. The coefficient sizes of 0.14, 0.39, and 0.59 were
chosen to represent small, medium, and large effects (Cohen, 1988). For simplicity, c′ was
set equal to 0 in all conditions, as Fritz and MacKinnon (2007) found that the size of c′ did
not have an effect on tests of . The fourth factor varied was sample size: five sample sizes
were selected to cover the range of sample sizes used in the social sciences: 50, 100, 500,
1,000, and 2,500. The final factor varied was the number of bootstrap samples. Although
approximately 1,000 bootstrap samples are sufficient for many applications, given the
possibility that increasing the number of bootstrap samples would correct for the elevated
Type I error rates, the number of bootstrap samples was set at 1,001, 5,001, and 10,001 in
different conditions.

The simulation was conducted by first selecting values for a, b, the sample size, and the
number of bootstrap samples. Next, data for X was generated from a normal distribution
using the RNORM function in R, and data for M and Y were generated using the selected
values for a and b, and Equations 2 and 3, with residuals added to M and Y using the
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RNORM function. The PRODCLIN program was used to find 95% confidence limits for the
numerical integration test (95% confidence limits were used for all four tests because the
Type I error level was set at .05). Then, the original sample was bootstrapped the specified
number of times and confidence intervals were created using the percentile, bias-corrected,
and accelerated bias-corrected bootstrapping methods. Mediation was tested for by
examining whether or not each of the confidence intervals contained zero. This process was
repeated 1,000 times and the proportion of replications where significant mediation was
found by a specific test was that test's Type I error rate. The entire process was repeated for
all four tests of mediation within all conditions defined by parameter combinations of a, b,
sample size, and number of bootstrap samples. In total, there were 105 conditions of 1,000
replications each.

The results from the simulation were analyzed using PROC GLM (SAS Institute, 2011). The
effects of a and b were tested using separate ANOVAs because the a and b factors were not
combined factorially in the study due to the requirement that at least one of a and b must be
equal to zero for every condition. Had both effects been estimated in the same ANOVA, the
marginal means for levels of a and b would have been misleading. For example, if a and b
were both entered in the ANOVA, the mean Type I error rate for a = 0 would be estimated
after collapsing across all four levels of b, whereas the mean Type I error rate for the other
three values of a (i.e., 0.14, 0.39, and 0.59) would only be collapsed across one level of b
(i.e., b = 0). The final two ANOVA models reported here contained all four main effects, all
six two-way interactions, and three three-way interactions: type of test by number of
bootstrap samples by sample size, type of test by number of bootstrap samples by effect size,
and type of test by sample size by effect size. Due to the exploratory nature of the analyses
and the potential to test a large number of contrasts to examine the main effects and
interactions more thoroughly, elevated Type I error rates were a concern. Hence, an effect
size threshold of η2 ≥ .01 was chosen for interpreting effects and null hypotheses
corresponding to all η2 values reaching this threshold were rejected at p < .001.

Results
The results showed that for b = 0 there were significant main effects of the effect size of a,
F(3, 24) = 164.34, η2 = .677, and test, F(3, 72) = 420.24, η2 = .050; note that all reported
effect sizes are semi-partial η2 values. When a = 0, there were also main effects of the effect
size of b, F(3, 24) = 443.35, η2 = .675, and test, F(3, 72) = 508.22, η2 = .055. No main
effects of number of number of bootstrap samples or sample size were found for either
model. The significant main effects for test and effect size were further investigated using
contrasts. For the main effect of test, the bias-corrected and accelerated bias-corrected
bootstrap tests together had higher Type I error rates than the numerical integration and
percentile bootstrap tests together when b = 0 and when a = 0, F(1, 24) = 710.89, η2 = .049
and F(1,24) = 1678.74, η2 = .054, respectively. However, the Type I error rate did not
significantly differ between the bias-corrected and the accelerated bias-corrected bootstrap
or between the percentile bootstrap and the numerical integration test for either model. The
main effect of effect size was tested for linear and quadratic trends, which were found to be
significant, F(1, 24) = 408.04, η2 = .560 and F(1, 24) = 84.82, η2 = .117, respectively, for a
and F(1, 24) = 1127.17, η2 = .572, F(1, 24) = 183.87, η2 = .093, respectively, for b. As
shown in Figure 2, for both a and b, moving from 0 to 0.14 and then to 0.39 greatly
increased the Type I error, but moving from 0.39 to 0.59 only marginally increased the Type
I error.

The results showed that no interactions that contained number of bootstrap samples were
significant. The interaction between effect size and sample size was significant F(12, 24) =
10.74, η2 = .177, for a and F(12, 24) = 30.17, η2 = .184, for b, and was quite large in
comparison to all of the other effects in the model except the main effect of effect size,
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indicating that the effect of effect size on the Type I error rate differed depending on the
sample size. The interactions between test and effect size, and test and sample size were
either significant or approaching significance for both models, so a three-way interaction
between test, sample size, and effect size was added to the model. The three-way interaction
was significant for both models, F(36, 72) = 13.81, η2 = .020, for a and F(36, 72) = 13.19, η2

= .017, for b. The three-way interaction for a is illustrated in Figure 3 which shows the Type
I error for the four tests averaged across the number of bootstrap samples when b = 0. As
indicated by the interaction, the effect of sample size on the Type I error differed depending
on the effect size of the non-zero path, and this differential effect differed depending on the
test used. As shown by the figure, the conditions where a and b were both equal to zero had
very low Type I error for all tests. For the bias-corrected and accelerated bias-corrected
bootstrap, when a was 0.39 or 0.59. and the sample size was smaller than 500, the Type I
error rate was elevated, approaching or even exceeding .09, but as the sample size
approached 2500, the Type I error rate returned to .05. This effect was much less
pronounced for the percentile bootstrap and numerical integration tests, with the Type I error
rate never exceeding .062. When a = 0.14, elevated Type I errors occurred for sample sizes
of 500 and 1000 for the bias-corrected and accelerated bias-corrected bootstraps, but not for
the other two tests. A second figure is not provided for the effect of b as it was very similar
to Figure 3.

In addition to the Type I error rate, the number of times that the confidence interval failed to
the left or right for each test (i.e., how often the upper confidence limit was less than the true
value of zero and how often the lower confidence limit was greater than the true value) was
also recorded to determine if any of the tests failed more in a specific direction. No
significant main effects were found in the balance of the failure rates for any of the four
tests. As a result, no moderating effects of sample size or effect size were tested.

Discussion
As found in simulations conducted by MacKinnon et al. (2004) and Cheung (2007), the
bias-corrected and accelerated bias-corrected bootstrap tests of mediation were found to
have elevated Type I error rates for certain conditions, whereas the percentile bootstrap and
numerical integration tests were found to have Type I error rates closer to .05 for those
conditions. The number of bootstrap samples did not have an effect on the Type I error rate
for any of the tests in this study, indicating that simply increasing the number of bootstrap
samples will not correct the elevated Type I error rates.

The size of the nonzero path did have a significant effect on the Type I error rate for all of
the tests. This is not surprising because we are calculating the Type I error rate of the
product . In the situation where b = 0 and a > 0, it is likely that even though b = 0,  will
not be exactly equal to zero, meaning that  will not be exactly equal to zero either. As a
increases, the probability that  will be significant increases. Looking at Figure 2, the
curvilinear relationship shows that this effect is quite strong as a ranges from 0 to 0.39 but
weakens for larger effects, indicating that there are only a few instances where  would be
significant when a = 0.59 that would not also be significant if a = 0.39 for the same value of

 This same pattern holds true when a = 0 and b > 0.

The most interesting result from the simulation is the significant interaction between test,
sample size, and effect size. As illustrated in Figure 3, when a > 0.14, the bias-corrected and
accelerated bias-corrected bootstrap had elevated Type I error rates for sample sizes less
than 500, but these approached .05 as the sample size increased beyond 500. The percentile
bootstrap and numerical integration tests also had elevated Type I error rates for sample
sizes less than 500, but the effect was much less pronounced and the Type I error never
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exceeded .062 for either test. When a = 0.14, the Type I error rates for the bias-corrected and
accelerated bias-corrected bootstrap tests were conservative for sample sizes less than 500,
elevated for samples sizes between 500 and 1,000, and approached .05 as the sample size
approached 2,500. In contrast, the percentile bootstrap and numerical integration tests had
Type I error rates that were conservative for sample sizes of 500 or less. When b > 0, the
same pattern was produced.

The results suggest that when a study uses a sample of less than 500 from a population
where either a or b is small, the other effect is zero, Type I errors are rare, regardless of the
test used. If either a or b is small, the other effect is zero, and the sample size is in the range
of 500 to 1,000, then using the bias-corrected or the accelerated bias-corrected bootstrap
results in an elevated number of Type I errors compared with the percentile bootstrap and
the numerical integration tests. This is due to these tests becoming adequately powered to
find small mediated effects as the sample size approaches 500 as found by Fritz and
MacKinnon (2007). If either a or b is medium or large, the other effect is zero, and the
sample size is less than 500, using the bias-corrected or accelerated bias-corrected bootstrap
results in elevated Type I errors, in some cases almost twice as high as the nominal level.
The percentile bootstrap and numerical integration tests also have elevated Type I errors for
these conditions but less so than the other two tests.

In general, once the sample size reaches 2,500, Type I error rates for all of the tests
approach .05, regardless of the effect size of the nonzero path. This would indicate that the
bias-corrected and accelerated bias-corrected bootstrap tests are overcorrecting for small
sample sizes, which is likely due to problems with estimating the bias correction term, z0,
for small samples. As Efron and Tibshirani (1993, p. 327) noted, not only is z0 an estimate
of the median bias, not the mean bias, but also it is actually easier to find a good estimate of
ν than z0. Because of this, it may be that  is inflated for small samples and a better
estimate of bias is needed. However, a different estimator of bias may reduce the gain in
statistical power of the bias-corrected bootstrap tests over the uncorrected percentile
bootstrap test.

Empirical Example
In order to illustrate how the increased Type I error rates found for the bias-corrected
bootstrap in Study 1 could affect the results from a mediation analysis, we present an
empirical example. The data for the empirical example comes from the Athletes Training
and Learning to Avoid Steroids (ATLAS; Goldberg et al., 1996) study, which is a program
designed to reduce high school football players' use of anabolic steroids by presenting
healthy nutrition behaviors and strength training as direct alternatives to steroid use.
MacKinnon et al. (2001) investigated 12 possible mediators of the ATLAS program on the
three outcome variables of interest: intentions to use anabolic steroids, nutrition behaviors,
and strength training self-efficacy. In the current example, the model tested whether a
student's perceived susceptibility to the adverse effects of steroid use, measured immediately
after completion of the ATLAS program, was a mediator of the relationship between
participation in the ATLAS program and the student's intentions to use anabolic steroids
measured 9 months after completion of the ATLAS program.

A random sample of 700 freshman and junior students was selected from Cohort 1 of the
ATLAS study for the analysis. Ninety-nine students were removed due to missing values on
both the mediator and the outcome, leaving a final sample of 601 students. When the data
were analyzed using Mplus (Muthen & Muthen, 2011), the bias-corrected bootstrap 95%
confidence interval (CI) was [−0.085, −0.001], indicating that perceived susceptibility was a
significant mediator of the ATLAS program and intentions to use steroids. However, the
percentile bootstrap 95% CI was [−0.079, 0.002] and the normal theory 95% CI was
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[−0.067, 0.010], indicating that susceptibility was not a significant mediator. In addition, the
PRODCLIN 95% CI was [−0.07461, 0.00026], also nonsignificant. These results indicate
that using the bias-corrected bootstrap to test mediation in this example could result in a
Type I error. It is also possible that the bias-corrected bootstrap is correct whereas the other
tests are underpowered, meaning that using tests other than the bias-corrected bootstrap
would result in a Type II error. However, Fritz and MacKinnon (2007) found that the power
differences are not that large and for a sample size of 601, all of these tests should be
adequately powered to find even small effects. Of course, given that these are real data, the
true presence or absence of mediation remains unknown. In this circumstance, when
multiple tests of the same effect return conflicting results, unless there is a specific reason
one test should be chosen over another, it would seem the safest course of action would be
to take the conservative approach and report a nonsignificant finding.

STUDY 2
A second anomalous result that arises for tests of mediation is that the power to detect the
mediated effect can asymptote at a value far below 1.0 or even decline as effect size
increases (Taylor, MacKinnon, & Fritz, 2007; similar results were found but unreported by
Fritz & MacKinnon, 2007). Specifically, this stagnation or reduction in power occurs when
a increases. The reason is most clearly seen when considering testing mediation using a
causal steps approach. In the model in which the outcome variable is regressed on the
antecedent and the mediator (i.e., Equation 3), a no longer represents an effect of interest but
instead is the correlation between the antecedent and the mediator. As a increases, and
therefore the correlation between X and M increases, , which is the effect of interest in this
model, has its standard error increase (Hoyle & Kenny, 1999; Shrout & Bolger, 2002). It is
therefore possible to have a net loss of statistical power to detect the mediated effect if the
increase in the standard error of  reduces the power to reject H0 for b more than the
increase in a increases power to reject H0 for a. This is the standard error formula for  in
the case where the antecedent, the mediator, and the outcome are all standardized (modified
from Cohen, Cohen, West, & Aiken, 2003, Equation 3.6.2).

(9)

Note that  appears in the denominator, so an increase in  will reduce the denominator and
therefore increase the standard error, reducing power to reject H0 for b. There is no
corresponding effect of the size of  on the standard error of  because  is estimated using
a model including only the antecedent and the mediator (i.e., Equation 2).

The problem of power stagnation and decline is unexpected because other statistical
methods typically have power that increases monotonically as effect size increases and
asymptotes at 1.0 rather than at a lower value. This study investigates under what
circumstances this power stagnation and decline occurs. A second purpose of this study is to
assess whether the stagnation and decline in statistical power occur for methods not using
the causal steps approach. As bootstrap approaches do not require calculation of the standard
error of , whereas the numerical integration test does, it is an open question whether they
are susceptible to the power stagnation and decline problem.

Method
A Monte Carlo simulation was performed to discover under what conditions increases in the
size of a are associated with power stagnation and decline and for which tests of mediation
this occurs. Data were simulated and analyzed using SAS (SAS Institute, 2011). All three
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variables, the antecedent, the mediator, and the outcome, were simulated to be normally
distributed and standardized in the population. Four between-conditions factors were
manipulated in the study: sizes of a, b, and c′, and sample size, n. The true values of a and b
were each varied from .02 to .60 in increments of .02. (True values of 0 were not studied
because rejections of the null hypothesis when ab = 0 would constitute a Type I error rather
than a correct rejection.) The true value of c′ was set to either 0 or .50. These values were
chosen to bracket the range of likely effects; previous research (Fritz & MacKinnon, 2007;
MacKinnon, Lockwood et al., 2002) has shown that tests of mediation, other than the causal
steps tests, are largely unaffected by the size of c′. The upper limits of the sizes of these
three coefficients were constrained by the standardization of the variables. Because all
variables were standardized, the values of a, b, and c′ are not only regression coefficients but
also correlation coefficients. If they had taken on any larger sizes, this would have resulted

in impossible patterns of correlations (i.e., ). The final between-conditions factor was
sample size, which ranged from 20 to 500 in increments of 20. Six different tests of
mediation constituted a within-condition factor: Baron and Kenny's (1986) test, a test using
the first-order standard error (Sobel, 1982), the joint significance test (James & Brett, 1984;
MacKinnon et al., 2002), the numerical integration test (MacKinnon, Lockwood et al.,
2007), the percentile bootstrap, and the bias-corrected bootstrap (Efron & Tibshirani, 1993).
One thousand replications were used for each condition.

The effect of interest was to be found not simply in statistical power, or the proportion of
replications in a condition in which the null hypothesis was rejected, but in a power curve,
or the changes in power across conditions representing different values of a. Results of the
study for each test were therefore aggregated first into power values in each condition and
then combined across values of a into power curves showing power at levels of a in each
condition defined by the other design factors (b, c′, sample size, and test). For each power
curve, stagnation was measured as a single variable that also encompassed decline. It was
found by comparing the observed power curve with an ideal power curve for that condition.
Ideal power curves were constructed using logistic regression because the ogive shape of
predicted probabilities it produces matches well the often-seen ogive shape of power curves.
The ideal logistic curve was found by first locating the point of maximum slope in the
observed power curve for any three consecutive points and then fitting a logistic regression
model to the power values to the left of that point (i.e., for smaller values of a). In a logistic
model, the two halves of the curve divided at the point of maximum slope are mirror images
of each other. This means that the ideal curve's standard of comparison for the upper half of
the power curve was a mirror image of the observed lower half of the power curve. Figure 4
shows the observed and ideal power curves for the numerical integration test for b = .20, c′
= .50, and n = 160. The maximum slope in the actual power curve occurs at a = .16. A
logistic regression model was fit to the actual power curve for values of a up to .16 and was
then extended to make the ideal curve. Stagnation was taken as the sum of the differences
between the ideal and the actual power curve at all points (values of a) to the right of the
point of maximum slope. (Negative differences, where the actual power curve was higher
than the ideal power curve, were rare and small and were therefore ignored.) Stagnation
values were scaled to be proportions of the area of the entire figure (with a ranging from 0
to .60 and power ranging from 0 to 1). In Figure 4, stagnation = .104. This can be interpreted
as the average amount that the actual power curve falls short of the ideal power curve across
the entire range of a.

Results
Power stagnation values were analyzed using a test × sample size × b × c′ ANCOVA.
Although a was manipulated in the study, it was not included in the models because
calculating power stagnation required first aggregating power levels across levels of a to get
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a power curve. Additionally, b was treated as a continuous predictor in the ANCOVA
because its 30 levels were too many to allow the model to be estimated with all possible
interactions when it was entered as a categorical predictor. This approach traded the multiple
degree of freedom test of any possible form of association between b and power stagnation
for a single degree of freedom test for a linear association. Because the sample size was so
large—9,000 conditions even after aggregating replications within conditions to find
estimated power values and aggregating conditions across values of a to make power curves
—effect sizes were used in place of significance tests to determine which effects were large
enough to be interpretable. As in Study 1, a threshold of η2 ≥ .01 was chosen for interpreting
effects and null hypotheses corresponding to all η2 values reaching this threshold were
rejected at p < .001.

In the ANCOVA, the largest effect by far was for b (η2 = .463). Smaller values of b were
associated with more power stagnation (see Figure 5). The sample size effect also reached
the threshold (η2 = .066): power stagnation was lowest in the smallest samples, increased
with increasing sample size to about n = 300, and then declined slightly. The interaction of
these two factors also reached the threshold (η2 = .051). As shown in Figure 5, for the
smallest samples (≤ 100), power stagnation was fairly low and constant, declining only
gradually as b increased. As sample size increased, power stagnation increased for smaller
values of b, and the drop-off in stagnation with increasing b became more dramatic. The
main effect of test also reached the threshold (η2 = .014). Power stagnation was greatest for
the joint significance test, the numerical integration test, and the percentile bootstrap (see
Figure 6). The test × b interaction also reached the threshold (η2 = .012). As shown in Figure
6, power stagnation was greatest for the numerical integration test (as well as the joint
significance and percentile bootstrap tests, which are not shown in the figure because their
results were very similar to those for the numerical integration test) followed by the bias-
corrected bootstrap and the first-order standard error. The tests generally had a peak of
power stagnation at a value of b less than .10 and declining power stagnation with increasing
b. The Baron and Kenny (1986) test performed quite differently depending on the value of c
′. When c′ = .5, the Baron and Kenny test had the highest peak stagnation and the steepest
decline of any test. When c′ = 0, on the other hand, it had very little power stagnation, and
its stagnation declined slowly with increasing values of b. This difference in performance by
value of c′ resulted in two interactions involving c′ reaching the threshold: test × c′ (η2 = .
024) and test × b × c′ (η2 = .019). When the ANCOVA was reestimated with the Baron and
Kenny test excluded, no effects involving c′ reached the interpretation threshold.

Visual inspection of the power curves being analyzed suggested that overall power might
mediate the effects of the design factors on power stagnation. In conditions where power
was generally quite low, power curves did not increase to anywhere near 1.0 even with the
largest values of a, and power stagnation was near zero. These power curves simply did not
reach high enough values for stagnation to occur. At the other extreme, in conditions where
power was high, power curves increased quickly as a increased, to asymptote at 1.0, closely
matching the corresponding ideal power curves and declining little if at all. Power
stagnation appeared most prevalent in conditions of moderate power, where power increased
with a, but not too steeply.

A joint significance approach was used to test the hypothesis that overall power mediated
the relationship between the design factors and power stagnation. As in the previous
ANCOVAs, η2 was used in place of significance tests for interpretation. The first step was
an ANCOVA predicting overall power using test, sample size, b, and c′; b was again entered
as a continuous predictor to make the design matrix manageable. Overall power was defined
as the proportion of the total area in the figure falling under the power curve, which means it
may also be interpreted as average power collapsing across values of a. This ANCOVA
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accounted for the majority of the variance in average power (η2 = .797), confirming the
association between the design factors and average power. The second step was to conduct
another ANCOVA predicting power stagnation from the study design factors and average
power. Average power was entered only as a main effect because the question of interest
was whether it would have an effect on power stagnation over and above the effects of the
study design factors rather than whether it would interact with them. Because the effect of
average power was expected to be nonmonotonic—low stagnation at both low and high
average power and greater stagnation at moderate average power—it was entered as a
categorical predictor. This allowed the modeling of different shapes of association with
power stagnation rather than looking for only a linear effect. Average power was entered
using 10 categories in increments of .10 (power ≤ .10, .10 < power ≤ .20, etc.). In the
ANCOVA for power stagnation, average power accounted for the most variance of any
effect (η2 = .339; overall η2 = .930). As expected, power stagnation increased with
increasing average power up to about .25 and then decreased to near zero (see Figure 7). The
association between average power and power stagnation suggests that average power did in
fact mediate the relation between the study factors and power stagnation.

Discussion
The purpose of this study was to discover under what circumstances increasing a is
associated with stagnating and declining power to detect the mediated effect. The size of b
was found to be by far the largest single predictor. Power stagnation reached its maximum
for b values no larger than .10 and diminished with increasing b. This effect of b was
qualified by interactions with sample size and test, indicating that peak stagnation varied
with other study factors, but the overall pattern of diminishing power stagnation with
increasing b remained. Further analyses showed that this association was mediated by
overall power. In combinations of study design factors that led to low average power (lower
power tests, smaller sample sizes, etc.), power stagnation was low. In conditions in which
average power was moderate, power stagnation increased, but as average power increased,
power stagnation diminished to near zero.

The finding that increasing a does not always increase power (and occasionally even reduces
it) has important implications for detecting mediated effects. In the common situation where
X is an intervention, Y is an outcome, and M is a mediator targeted by the intervention,
these results suggest that it may be more important to focus on the association between the
mediator and the outcome (conceptual theory) than on the association between the
intervention and the mediator (action theory). If the conceptual theory is strong enough, in
other words if b is large enough, then power stagnation is near zero. If the conceptual theory
is weaker (if b is smaller), then strengthening the action theory (attempting to increase a) by
refocusing the intervention to more precisely target the mediator may not improve power or
may even be counterproductive. In the process of choosing potential mediators of an
intervention, then, it seems wisest to focus first on the expected causal link between the
mediator and the outcome and only later on the ease with which they can be modified by the
intervention. This would be particularly important in circumstances where expected power
to detect the mediated effect is not high (e.g., limited sample size).

Empirical Example
As for Study 1, we now present an empirical example for Study 2 using data from the
ATLAS program (Goldberg et al., 1996) to illustrate the potential impact that the size of 
can have on a mediation analysis when the size of  remains constant. The mechanism of
interest for this example is whether a student's knowledge of the adverse effects of anabolic
steroid use mediates the relationship between participation in the ATLAS program and
intentions to use anabolic steroids. Two models were estimated for this example. In Model

Fritz et al. Page 12

Multivariate Behav Res. Author manuscript; available in PMC 2013 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



1, knowledge was measured immediately after completion of the ATLAS program and
intentions were measured 9 months after completion of the program. In Model 2, knowledge
was measured 9 months after completion of the ATLAS program and intentions were
measured 12 months after completion of the program. The reason these two models were
selected is that the effect of the ATLAS program on knowledge was expected to diminish
with time (i.e., the a path should be smaller in Model 2) whereas the relationship between
knowledge and intentions was not expected to diminish over time (i.e., the b paths should be
approximately the same in Model 1 and Model 2).

Equations 2 and 3 were estimated for Models 1 and 2 using PROC REG (SAS Institute,
2011) with a random sample of 279 students who had complete data for the five variables of
interest. As expected,  for Model 1 was larger than for Model 2, as shown in Table 1,
whereas the  paths for both models were approximately the same size. What is important to
note, however, is that even though these models were estimated using the same number of
cases, the size of the  paths were equivalent, and the squared multiple correlation for
Equation 3 for Model 1 was larger than the squared multiple correlation for Equation 3 for
Model 2, the standard error for the  path in Model 2 was smaller than for Model 1. This
means that the power to detect the b effect was greater in Model 2, where  was smaller.
One could argue that this effect is negligible because  was significant for both models.
However, as the difference in the magnitude of the a paths between the two models
increases, the stagnation of power will continue to increase as well, increasing the
probability of making a Type II error.

GENERAL DISCUSSION
The results from the two studies presented here provide a wider insight into the testing of
mediational relationships by systematically examining two anomalous findings from
previous studies of tests of mediation that have hereto been unexplored. The issue of
elevated Type I error rates is informative because although it is already well known that tests
of mediation which take into account the nonnormality of the indirect effect are more
accurate and more powerful than methods that do not, these results suggest, at least in part,
why the bias-corrected and the accelerated bias-corrected bootstrap tests are more powerful
than the percentile bootstrap and numerical integration tests. The results of this study
indicate that these tests' increased power may simply be a result of their generally higher
rejection rate, which also leads to their increased Type I error. If the increases in statistical
power are due solely to an elevation in the Type I error, then introducing a Type I error
correction to the bias-corrected bootstrap methods would result in the loss of the power gain
over the percentile bootstrap. There are other factors that come into play regarding the
increased power and elevated Type I error of the bias-corrected methods, however, such as
sample size and the size of the nonzero path, so a simple Type I error correction does not
appear to be a cure-all solution.

The issue of stagnating statistical power for the b effect as the size of the a effect increases is
also informative as it differs from the more common situation where statistical power always
increases as the effect size increases. As described earlier, the effect on power of a large a
effect was generally seen only when the b effect is 0.10 or smaller or overall power of the
test was low. One possible explanation for this finding is that for tests of mediation that
examine the indirect effect rather than the individual paths, when b ≥ 0.10 the power to find
the a effect is driving the power of the test, but when b ≤ 0.10, the b effect is limiting the
power of the test. Regardless, the redundancy of X and M needs to be taken into account
when determining the statistical power for the b path.
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Together, the results from the two studies described here present a more complete picture of
the relationship between statistical power, Type I error rate, effect size, and sample size for
tests of mediation than what has previously been presented in studies of the performance of
statistical tests of mediation. Perhaps the most important message is that the idea that as one
of these quantities is increased while the other two are held constant, the fourth quantity
must increase is not always as straightforward as it appears because it is not always easy to
hold the other two quantities constant. The increases in power for the bias-corrected
bootstrap methods come with an increase in Type I error and the increased power that
should accompany an increased effect size is tempered by the increased redundancy between
X and M, which in turn increases the standard error of the b path.

RECOMMENDATIONS
The findings in this study have two major implications for researchers testing for mediation.
The first implication is that although the bias-corrected and accelerated bias-corrected
bootstrap have repeatedly been found to have the highest statistical power of the common
tests of mediation, and thus are often described as the “best” tests of mediation, we caution
researchers about equating “most powerful” with “best” or “most accurate.” Indeed, as
shown in Figure 3, the percentile bootstrap and numerical integration tests are more accurate
in terms of Type I error than either of the bias-corrected bootstrap tests when sample sizes
are small. The decision as to which test to use then becomes one of which is more desirous
for a specific research question: minimizing the probability of making a Type I error or
minimizing the probability of making a Type II error (i.e., maximizing power). In general,
we recommend that researchers choose a single statistical test a priori to test a particular
indirect effect, based on whether avoiding Type I or Type II error is of greater concern. We
do not recommend that researchers use multiple statistical tests to test the same indirect
effect because if the tests disagree, as in the empirical example for Study 1, it is impossible
with real data to tell which one is correct, and the obvious temptation will be to simply
report whichever test supports the researcher's hypothesis. Instead, in addition to the chosen
test of the indirect effect, we recommend examining the significance of  and 
individually. The significance tests of these coefficients are unaffected by the nonnormality
of the indirect effect. If these effects are both significant, it lends credence to the
significance of the test of the indirect effect and vice versa.

The second implication is given that increasing the association between the antecedent and
the mediator may fail to improve power to detect the mediated effect for small sample sizes,
we recommend that, if forced to choose, researchers with smaller samples should focus on
selecting mediators that have a stronger possible relationship with the outcome than with the
antecedent. This finding is especially relevant in the case of an intervention that has been
specifically designed to change the mediator because most researchers design interventions
to have maximal effects on the mediator in order to have maximal effects on the outcome
variables. If the intervention is successful and results in a large a path, whereas the b path,
which is not directly manipulated, is a medium or small effect, then the success of the
intervention in changing the mediator may have actually decreased the researcher's ability to
find this effect by decreasing the statistical power. If the mediator is measured with error,
the power to detect the b effect is even further reduced, exacerbating the issue (Hoyle &
Kenny, 1999). This is not to suggest that researchers should not consider mediators which
have large a paths. Instead, if mediators with large a paths are likely to occur, be certain that
the study is powered adequately to counteract the power stagnation that may occur.

In summary, the results of the studies reported in this article suggest that when a is a large
effect, the statistical power for tests of mediation may be less than is expected, so when a is
expected to be large, researchers may need to overpower their studies (in terms of increasing
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sample size, for example) in order to counteract this effect. The results also suggest that for
sample sizes less than 2,500, the percentile bootstrap and numerical integration tests have
more accurate Type I error rates compared with the bias-corrected and accelerated bias-
corrected bootstrap tests. Based upon the results from Fritz and MacKinnon (2007), the
increased probability of making a Type I error may not be worth the increase in statistical
power, especially as the difference in power between the different tests of mediation
decreases as the effect sizes of a and b increase.
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FIGURE 1.
The single mediator model.
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FIGURE 2.
Type I error rate as a function of effect size of a and b, when the other parameter is equal to
zero, collapsing across test and sample size.
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FIGURE 3.
Type I error rate as a function of sample size and effect size of a, collapsed across number of
bootstrap samples. Note. b = 0.
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FIGURE 4.
Actual and ideal power curves for the numerical integration test as a function of a for
condition in which b = .20, c′ = .50, and n = 160.
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FIGURE 5.
Power stagnation as a function of b and sample size. The figure is truncated at b = .40
because power stagnation was very near zero for all methods beyond this value.
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FIGURE 6.
Power stagnation as a function of b and test of mediation. The Baron and Kenny (1986) test
has results separated by size of c′ because it was the only test affected by size of c′. The joint
significance test and percentile bootstrap are omitted because their power stagnation values
were nearly identical to those of the numerical integration test. The figure is truncated at b
= .40 because power stagnation was very near zero for all methods beyond this value.
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FIGURE 7.
Power stagnation as a function of average power. Average power is the proportion of the
area in a power curve figure falling below the power curve, which is also the average level
of power across the power curve.
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TABLE 1

Results for the Empirical Example for Study 2

Mediation Model 1 Mediation Model 2

Value Beta (SE) sr2 Beta (SE) sr2

a path 0.216 (0.0587)** 0.0466 0.130 (0.0595)* 0.0168

0.0466 0.0168

b path −0.321 (0.0585)** 0.0984 −0.309 (0.0579)** 0.0940

c′ path 0.075 (0.0586) 0.0053 0.038 (0.0577) 0.0014

0.0984 0.0940

Note. Beta is a standardized regression coefficient; SE is the standard error for the standardized regression coefficient; sr2 is the squared Type II

semipartial correlation;  and  are the squared multiple correlations for the regression models for the a path and the b and c′

paths, respectively.

*
p < .05.

**
p < .01.
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