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Abstract

In this paper we propose a novel method that provides contrastive explanations
justifying the classification of an input by a black box classifier such as a deep
neural network. Given an input we find what should be minimally and sufficiently
present (viz. important object pixels in an image) to justify its classification
and analogously what should be minimally and necessarily absent (viz. certain
background pixels). We argue that such explanations are natural for humans and are
used commonly in domains such as health care and criminology. What is minimally
but critically absent is an important part of an explanation, which to the best of
our knowledge, has not been explicitly identified by current explanation methods
that explain predictions of neural networks. We validate our approach on three
real datasets obtained from diverse domains; namely, a handwritten digits dataset
MNIST, a large procurement fraud dataset and a brain activity strength dataset.
In all three cases, we witness the power of our approach in generating precise
explanations that are also easy for human experts to understand and evaluate.

1 Introduction

Steve is the tall guy with long hair who does not wear glasses. Explanations as such are used frequently
by people to identify other people or items of interest. We see in this case that characteristics such
as being tall and having long hair help describe the person, although incompletely. The absence of
glasses is important to complete the identification and help distinguish him from, for instance, Bob
who is tall, has long hair and wears glasses. It is common for us humans to state such contrastive
facts when we want to accurately explain something. These contrastive facts are by no means a list of
all possible characteristics that should be absent in an input to distinguish it from all other classes
that it does not belong to, but rather a minimal set of characteristics/features that help distinguish it
from the "closest" class that it does not belong to.
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In this paper we want to generate such explanations for neural networks, in which, besides highlighting
what is minimally sufficient (e.g. tall and long hair) in an input to justify its classification, we also
want to identify contrastive characteristics or features that should be minimally and critically absent
(e.g. glasses), so as to maintain the current classification and to distinguish it from another input that
is "closest" to it but would be classified differently (e.g. Bob). We thus want to generate explanations
of the form, "An input x is classified in class y because features fi, · · · , fk are present and because
features fm, · · · , fp are absent." The need for such an aspect as what constitutes a good explanation
has been stressed on recently [12]. It may seem that such crisp explanations are only possible for
binary data. However, they are also applicable to continuous data with no explicit discretization or
binarization required. For example, in Figure 1, where we see hand-written digits from MNIST [40]
dataset, the black background represents no signal or absence of those specific features, which in this
case are pixels with a value of zero. Any non-zero value then would indicate the presence of those
features/pixels. This idea also applies to colored images where the most prominent pixel value (say
median/mode of all pixel values) can be considered as no signal and moving away from this value
can be considered as adding signal. One may also argue that there is some information loss in our
form of explanation, however we believe that such explanations are lucid and easily understandable
by humans who can always further delve into the details of our generated explanations such as
the precise feature values, which are readily available. Moreover, the need for such simple, clear
explanations over unnecessarily complex and detailed ones is emphasized in the recent General Data
Protection Regulation (GDPR) passed in Europe [41].

Figure 1: CEM versus LRP and LIME on MNIST.
PP/PN are highlighted in cyan/pink respectively.
For LRP, green is neutral, red/yellow is positive rel-
evance, and blue is negative relevance. For LIME,
red is positive relevance and white is neutral.

In fact, there is another strong motivation to have
such form of explanations due to their presence
in certain human-critical domains. In medicine
and criminology there is the notion of pertinent
positives and pertinent negatives [15], which
together constitute a complete explanation. A
pertinent positive (PP) is a factor whose pres-
ence is minimally sufficient in justifying the final
classification. On the other hand, a pertinent
negative (PN) is a factor whose absence is nec-
essary in asserting the final classification. For
example in medicine, a patient showing symp-
toms of cough, cold and fever, but no sputum or
chills, will most likely be diagnosed as having
flu rather than having pneumonia. Cough, cold
and fever could imply both flu or pneumonia,
however, the absence of sputum and chills leads to the diagnosis of flu. Thus, sputum and chills are
pertinent negatives, which along with the pertinent positives are critical and in some sense sufficient
for an accurate diagnosis.

We thus propose an explanation method called contrastive explanations method (CEM) for neural
networks that highlights not only the pertinent positives but also the pertinent negatives. This is seen
in Figure 1 where our explanation of the image being predicted as a 3 in the first row does not only
highlight the important pixels (which look like a 3) that should be present for it to be classified as a 3,
but also highlights a small horizontal line (the pertinent negative) at the top whose presence would
change the classification of the image to a 5 and thus should be absent for the classification to remain
a 3. Therefore, our explanation for the digit in row 1 of Figure 1 to be a 3 would be: The row 1 digit
is a 3 because the cyan pixels (shown in column 2) are present and the pink pixels (shown in column
3) are absent. This second part is critical for an accurate classification and is not highlighted by any
of the other state-of-the-art interpretability methods such as layerwise relevance propagation (LRP)
[1] or locally interpretable model-agnostic explanations (LIME) [30], for which the respective results
are shown in columns 4 and 5 of Figure 1. Moreover, given the original image, our pertinent positives
highlight what should be present that is necessary and sufficient for the example to be classified as
a 3. This is not the case for the other methods, which essentially highlight positively or negatively
relevant pixels that may not be necessary or sufficient to justify the classification.

Pertinent Negatives vs Negatively Relevant Features: Another important thing to note here is
the conceptual distinction between pertinent negatives that we identify and negatively correlated
or relevant features that other methods highlight. The question we are trying to answer is: why is
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input x classified in class y?. Ergo, any human asking this question wants all the evidence in support
of the hypothesis of x being classified as class y. Our pertinent positives as well as negatives are
evidences in support of this hypothesis. However, unlike the positively relevant features highlighted
by other methods that are also evidence supporting this hypothesis, the negatively relevant features
by definition do not. Hence, another motivation for our work is that we believe when a human
asks the above question, they are more interested in evidence supporting the hypothesis rather than
information that devalues it. This latter information is definitely interesting, but is of secondary
importance when it comes to understanding the human’s intent behind the question.

Given an input and its classification by a neural network, CEM creates explanations for it as follows:

(1) It finds a minimal amount of (viz. object/non-background) features in the input that are sufficient
in themselves to yield the same classification (i.e. PPs).

(2) It also finds a minimal amount of features that should be absent (i.e. remain background) in the
input to prevent the classification result from changing (i.e. PNs).

(3) It does (1) and (2) "close" to the data manifold using a state-of-the-art convolutional autoencoder
(CAE) [25] so as to obtain more "realistic" explanations.

We enhance our methods to do (3), so that the resulting explanations are more likely to be close to
the true data manifold and thus match human intuition rather than arbitrary perturbations that may
change the classification. Of course, learning a good representation using an autoencoder may not be
possible in all situations due to limitations such as insufficient data or bad data quality. It also may
not be necessary if all combinations of feature values have semantics in the domain or the data does
not lie on low dimensional manifold as is the case with images.

We validate our approaches on three real-world datasets. The first is MNIST [40], from which we
generate explanations with and without an autoencoder. The second is a procurement fraud dataset [9]
from a large corporation containing millions of invoices that have different risk levels. The third one
is a brain functional MRI (fMRI) imaging dataset from the publicly accessible Autism Brain Imaging
Data Exchange (ABIDE) I database [11], which comprises of resting-state fMRI acquisitions of
subjects diagnosed with autism spectrum disorder (ASD) and neurotypical individuals. For the latter
two cases, we do not consider using autoencoders. This is because the fMRI dataset is insufficiently
large especially given its high-dimensionality. For the procurement data, all combination of allowed
feature values are (intuitively) reasonable. In all three cases, we witness the power of our approach in
creating more precise explanations that also match human judgment.

2 Related Work

Researchers have put great efforts in devising algorithms for interpretable modeling. Examples
include establishment for rule/decision lists [39, 36], prototype exploration [19, 13], developing
methods inspired by psychometrics [17] and learning human-consumable models [6]. Moreover,
there is also some interesting work which tries to formalize and quantify interpretability [10].

A recent survey [24] looks primarily at two methods for understanding neural networks: a) Methods
[26, 27] that produce a prototype for a given class, b) Explaining a neural network’s decision on
an input by highlighting relevant parts [1, 20, 30, 33]. Other works also investigate methods of the
type (b) for vision [34, 35, 29] and NLP applications [22]. Most of the these explanation methods,
however, focus on features that are present, even if they may highlight negatively contributing
features to the final classification. As such, they do not identify features that should be necessarily
and sufficiently present or absent to justify for an individual example its classification by the model.
There are methods which perturb the input and remove features [32], however these are more from an
evaluation standpoint where a given explanation is quantitatively evaluated based on such procedures.

Recently, there has been a piece of work [31] that tries to find sufficient conditions to justify
classification decisions. As such, this work tries to find feature values whose presence conclusively
implies a class. Hence, these are global rules (called anchors) that are sufficient in predicting a class.
Our PPs and PNs on the other hand are customized for each input. Moreover, a dataset may not
always possess such anchors, although one can almost always find PPs and PNs. There is also work
[43] that tries to find stable insight that can be conveyed to the user in a (asymmetric) binary setting
for smallish neural networks.
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It is also important to note that our method is related to methods that generate adversarial examples
[5, 7]. However, there are certain key differences. Firstly, the (untargeted) attack methods are largely
unconstrained where additions and deletions are performed simultaneously, while in our case for PPs
and PNs we only allow deletions and additions respectively. Secondly, our optimization objective
for PPs is itself distinct as we are searching for features that are minimally sufficient in themselves
to maintain the original classification. As such, our work demonstrates how attack methods can be
adapted to create effective explanation methods.

3 Contrastive Explanations Method

This section details the proposed contrastive explanations method. Let X denote the feasible data
space and let (x0, t0) denote an example x0 ∈ X and its inferred class label t0 obtained from a neural
network model. The modified example x ∈ X based on x0 is defined as x = x0 + δ, where δ is a
perturbation applied to x0. Our method of finding pertinent positives/negatives is formulated as an
optimization problem over the perturbation variable δ that is used to explain the model’s prediction
results. We denote the prediction of the model on the example x by Pred(x), where Pred(·) is any
function that outputs a vector of prediction scores for all classes, such as prediction probabilities and
logits (unnormalized probabilities) that are widely used in neural networks, among others.

To ensure the modified example x is still close to the data manifold of natural examples, we propose
to use an autoencoder to evaluate the closeness of x to the data manifold. We denote by AE(x) the
reconstructed example of x using the autoencoder AE(·).

3.1 Finding Pertinent Negatives (PN)

For pertinent negative analysis, one is interested in what is missing in the model prediction. For any
natural example x0, we use the notation X/x0 to denote the space of missing parts with respect to
x0. We aim to find an interpretable perturbation δ ∈ X/x0 to study the difference between the most
probable class predictions in argmaxi[Pred(x0)]i and argmaxi[Pred(x0 + δ)]i. Given (x0, t0), our
method finds a pertinent negative by solving the following optimization problem:

min
δ∈X/x0

c · f neg
κ (x0, δ) + β‖δ‖1 + ‖δ‖

2
2 + γ‖x0 + δ − AE(x0 + δ)‖22. (1)

We elaborate on the role of each term in the objective function (1) as follows. The first term f neg
κ (x0, δ)

is a designed loss function that encourages the modified example x = x0 + δ to be predicted as a
different class than t0 = argmaxi[Pred(x0)]i. The loss function is defined as:

f neg
κ (x0, δ) = max{[Pred(x0 + δ)]t0 −max

i 6=t0
[Pred(x0 + δ)]i,−κ} (2)

where [Pred(x0 + δ)]i is the i-th class prediction score of x0 + δ. The hinge-like loss function favors
the modified example x to have a top-1 prediction class different from that of the original example x0.
The parameter κ ≥ 0 is a confidence parameter that controls the separation between [Pred(x0 + δ)]t0
and maxi 6=t0 [Pred(x0 + δ)]i. The second and the third terms β‖δ‖1 + ‖δ‖

2
2 in (1) are jointly called

the elastic net regularizer, which is used for efficient feature selection in high-dimensional learning
problems [44]. The last term ‖x0 + δ − AE(x0 + δ)‖22 is an L2 reconstruction error of x evaluated
by the autoencoder. This is relevant provided that a well-trained autoencoder for the domain is
obtainable. The parameters c, β, γ,≥ 0 are the associated regularization coefficients.

3.2 Finding Pertinent Positives (PP)

For pertinent positive analysis, we are interested in the critical features that are readily present in
the input. Given a natural example x0, we denote the space of its existing components by X ∩ x0.
Here we aim at finding an interpretable perturbation δ ∈ X ∩ x0 such that after removing it from x0,
argmaxi[Pred(x0)]i = argmaxi[Pred(δ)]i. That is, x0 and δ will have the same top-1 prediction
class t0, indicating that the removed perturbation δ is representative of the model prediction on
x0. Similar to finding pertinent negatives, we formulate finding pertinent positives as the following
optimization problem:

min
δ∈X∩x0

c · f pos
κ (x0, δ) + β‖δ‖1 + ‖δ‖

2
2 + γ‖δ − AE(δ)‖22, (3)
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Algorithm 1 Contrastive Explanations Method (CEM)

Input: example (x0, t0), neural network model N and (optionally (γ > 0)) an autoencoder AE
1) Solve (1) and obtain,
δ

neg ← argminδ∈X/x0
c · f neg

κ (x0, δ) + β‖δ‖1 + ‖δ‖
2
2 + γ‖x0 + δ − AE(x0 + δ)‖22.

2) Solve (3) and obtain,
δ

pos ← argminδ∈X∩x0
c · f pos

κ (x0, δ) + β‖δ‖1 + ‖δ‖
2
2 + γ‖δ − AE(δ)‖22.

return δ
pos and δ

neg. {Our Explanation: Input x0 is classified as class t0 because features
δ

pos are present and because features δ
neg are absent. Code at https://github.com/IBM/

Contrastive-Explanation-Method }

where the loss function f pos
κ (x0, δ) is defined as

f pos
κ (x0, δ) = max{max

i 6=t0
[Pred(δ)]i − [Pred(δ)]t0 ,−κ}. (4)

In other words, for any given confidence κ ≥ 0, the loss function f pos
κ is minimized when [Pred(δ)]t0

is greater than maxi 6=t0 [Pred(δ)]i by at least κ.

3.3 Algorithmic Details

We apply a projected fast iterative shrinkage-thresholding algorithm (FISTA) [2] to solve problems
(1) and (3). FISTA is an efficient solver for optimization problems involving L1 regularization.
Take pertinent negative as an example, assume X = [−1, 1]p, X/x0 = [0, 1]p and let g(δ) =
f neg
κ (x0, δ) + ‖δ‖

2
2 + γ‖x0 + δ − AE(x0 + δ)‖22 denote the objective function of (1) without the

L1 regularization term. Given the initial iterate δ
(0) = 0, projected FISTA iteratively updates the

perturbation I times by

δ
(k+1) = Π[0,1]p{Sβ(y

(k) − αk∇g(y
(k)))}; (5)

y(k+1) = Π[0,1]p{δ
(k+1) +

k

k + 3
(δ(k+1) − δ

(k))}, (6)

where Π[0,1]p denotes the vector projection onto the set X/x0 = [0, 1]p, αk is the step size, y(k) is

a slack variable accounting for momentum acceleration with y(0) = δ
(0), and Sβ : Rp 7→ R

p is an
element-wise shrinkage-thresholding function defined as

[Sβ(z)]i =

{

zi − β, if zi > β;
0, if |zi| ≤ β;
zi + β, if zi < −β,

(7)

for any i ∈ {1, . . . , p}. The final perturbation δ
(k∗) for pertinent negative analysis is selected from the

set {δ(k)}Ik=1 such that f neg
κ (x0, δ

(k∗)) = 0 and k∗ = argmink∈{1,...,I} β‖δ‖1 + ‖δ‖
2
2. A similar

projected FISTA optimization approach is applied to pertinent positive analysis.

Eventually, as seen in Algorithm 1, we use both the pertinent negative δ
neg and the pertinent positive

δ
pos obtained from our optimization methods to explain the model prediction. The last term in both

(1) and (3) will be included only when an accurate autoencoder is available, else γ is set to zero.

4 Experiments

This section provides experimental results on three representative datasets, including the handwritten
digits dataset MNIST, a procurement fraud dataset obtained from a large corporation having millions
of invoices and tens of thousands of vendors, and a brain imaging fMRI dataset containing brain
activity patterns for both normal and autistic individuals. We compare our approach with previous
state-of-the-art methods and demonstrate our superiority in being able to generate more accurate and
intuitive explanations. Implementation details of projected FISTA are given in the supplement.

4.1 Handwritten Digits

We first report results on the handwritten digits MNIST dataset. In this case, we provide examples of
explanations for our method with and without an autoencoder.
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4.1.1 Setup

The handwritten digits are classified using a feed-forward convolutional neural network (CNN)
trained on 60,000 training images from the MNIST benchmark dataset. The CNN has two sets of
convolution-convolution-pooling layers, followed by three fully-connected layers. Further details
about the CNN whose test accuracy was 99.4% and a detailed description of the CAE which consists
of an encoder and a decoder component are given in the supplement.

4.1.2 Results

Figure 2: CEM versus LRP and LIME on MNIST.
PP/PN are highlighted in cyan/pink respectively.
For LRP, green is neutral, red/yellow is positive rel-
evance, and blue is negative relevance. For LIME,
red is positive relevance and white is neutral.

Our CEM method is applied to MNIST with
a variety of examples illustrated in Figure 2.
In addition to what was shown in Figure 1 in
the introduction, results using a convolutional
autoencoder (CAE) to learn the pertinent posi-
tives and negatives are displayed. While results
without an CAE are quite convincing, the CAE
clearly improves the pertinent positives and neg-
atives in many cases. Regarding pertinent pos-
itives, the cyan highlighted pixels in the column
with CAE (CAE CEM PP) are a superset to
the cyan-highlighted pixels in column without
(CEM PP). While these explanations are at the
same level of confidence regarding the classifier,
explanations using an AE are visually more in-
terpretable. Take for instance the digit classified
as a 2 in row 2. A small part of the tail of a 2
is used to explain the classifier without a CAE,
while the explanation using a CAE has a much
thicker tail and larger part of the vertical curve.
In row 3, the explanation of the 3 is quite clear,
but the CAE highlights the same explanation
but much thicker with more pixels. The same
pattern holds for pertinent negatives. The hor-
izontal line in row 4 that makes a 4 into a 9 is
much more pronounced when using a CAE. The
change of a predicted 7 into a 9 in row 5 using a
CAE is much more pronounced. The other rows
exhibit similar patterns, and further examples
can be found in the supplement.

The two state-of-the-art methods we use for ex-
plaining the classifier in Figure 2 are LRP and
LIME. LRP experiments used the toolbox from
[21] and LIME code was adapted from https://github.com/marcotcr/lime. LRP has a vi-
sually appealing explanation at the pixel level. Most pixels are deemed irrelevant (green) to the
classification (note the black background of LRP results was actually neutral). Positively relevant
pixels (yellow/red) are mostly consistent with our pertinent positives, though the pertinent positives
do highlight more pixels for easier visualization. The most obvious such examples are row 3 where
the yellow in LRP outlines a similar 3 to the pertinent positive and row 6 where the yellow outlines
most of what the pertinent positive provably deems necessary for the given prediction. There is little
negative relevance in these examples, though we point out two interesting cases. In row 4, LRP shows
that the little curve extending the upper left of the 4 slightly to the right has negative relevance (also
shown by CEM as not being positively pertinent). Similarly, in row 3, the blue pixels in LRP are a
part of the image that must obviously be deleted to see a clear 3. LIME is also visually appealing.
However, the results are based on superpixels - the images were first segmented and relevant segments
were discovered. This explains why most of the pixels forming the digits are found relevant. While
both methods give important intuitions, neither illustrate what is necessary and sufficient about the
classifier results as does our contrastive explanations method.
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ID Risk Events PP PN Expert Feedback

1 Low 1, 2, 9 2, 9 7 ... vendor being registered and having a DUNs number makes
the invoice low risk. However, if it came from a low CPI country
then the risk would be uplifted given that the invoice amount is
already high.

2 Medium 2, 4, 7 2, 4 6 ... the vendor being registered with the company keeps the risk
manageable given that it is a risky commodity code. Nonethe-
less, if he was part of any of the FPL lists the invoice would
most definitely be blocked.

3 High 1, 4, 5,
11

1, 4, 11 2,
9

... the high invoice amount, the risky commodity code and no
physical address makes this invoice high risk. The risk level
would definitely have been somewhat lesser if the vendor was
registered in VMF and DUNs.

Table 2: Above we see 3 example invoices (IDs anonymized), one at low risk, one at medium and
one at high risk level. The corresponding events that triggered and the PPs and PNs identified by
our method are shown. We also report human expert feedback, which validates the quality of our
explanations. The numbers that the events correspond to are given in Section 4.2.1.

4.2 Procurement Fraud

In this experiment, we evaluated our methods on a real procurement dataset obtained from a large
corporation. This nicely complements our other experiments on image datasets.

4.2.1 Setup

The data spans a one-year period and consists of millions of invoices submitted by over tens
of thousands vendors across 150 countries. The invoices were labeled as being either low
risk, medium risk, or high risk based on a large team that approves these invoices. To
make such an assessment, besides just the invoice data, we and the team had access to mul-
tiple public and private data sources such as vendor master file (VMF), risky vendors list
(RVL), risky commodity list (RCL), financial index (FI), forbidden parties list (FPL) [4, 37],
country perceptions index (CPI) [18], tax havens list (THL) and Dun & Bradstreet num-
bers (DUNs) [3]. Details describing each of these data sources are given in the supplement.

Method PP % Match PN % Match

CEM 90.3 94.7

LIME 86.6 N/A

LRP 88.2 N/A

Table 1: Above we see the percentage of invoices
on which the explanations were deemed accept-
able by experts. For LIME and LRP we picked
positively relevant features as proxies for PPs.

Based on the above data sources, there are tens
of features and events whose occurrence hints
at the riskiness of an invoice. Here are some
representative ones. 1) if the spend with a par-
ticular vendor is significantly higher than with
other vendors in the same country, 2) if a vendor
is registered with a large corporation and thus
its name appears in VMF, 3) if a vendor belongs
to RVL, 4) if the commodity on the invoice be-
longs to RCL, 5) if the maturity based on FI is
low, 6) if vendor belongs to FPL, 7) if a vendor
is in a high risk country (i.e. CPI < 25), 8) if a vendor or its bank account is located in a tax haven,
9) if a vendor has a DUNs number, 10) if a vendor and the employee bank account numbers match,
11) if a vendor only possesses a PO box with no street address.

With these data, we trained a three-layer neural network with fully connected layers, 512 rectified
linear units and a three-way softmax function. The 10-fold cross validation accuracy of the network
was high (91.6%).

4.2.2 Results

With the help of domain experts, we evaluated the different explanation methods. We randomly chose
15 invoices that were classified as low risk, 15 classified as medium risk and 15 classified as high
risk. We asked for feedback on these 45 invoices in terms of whether or not the pertinent positives
and pertinent negatives highlighted by each of the methods was suitable to produce the classification.
To evaluate each method, we computed the percentage of invoices with explanations agreed by the
experts based on this feedback.
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Figure 3: CEM versus LRP on pre-processed resting-state brain fMRI connectivity data from the
open-access ABIDE I database. (A) Seven networks of functionally coupled regions across the
cerebral cortex [8]. Color scheme: Purple: Visual (VIS), blue: Somatomotor (SMN), green: Dorsal
Attention (DAN), violet: Ventral Attention (VAN), cream; Limbic (LN), orange: Frontoparietal
(FPN), and red: default mode (DMN). (B) CEM PPs/PNs of a classified autistic brain are in the
upper/lower triangle respectively. (C) A network-level view of the ROIs (region of interest) involving
PP and PN functional connections (FCs) in the classified autistic (denoted as A) and neurotypical
(denoted as T) subjects. For both (B) and (C), bolder the color higher the strength of the PP and PN
FCs. (D) For LRP, positive relevance of FCs is depicted in a similar manner as in (C).

In Table 1, we see the percentage of times the pertinent positives matched with the experts judgment
for the different methods as well as additionally the pertinent negatives for ours. We observe that
in both cases our explanations closely match human judgment. We of course used proxies for the
competing methods as neither of them identify PPs or PNs. There were no really good proxies for
PNs as negatively relevant features are conceptually quite different as discussed in the supplement.

Table 2 shows 3 example invoices, one belonging to each class and the explanations produced by our
method along with the expert feedback. We see that the expert feedback validates our explanations
and showcases the power of pertinent negatives in making the explanations more complete as well
as intuitive to reason with. An interesting aspect here is that the medium risk invoice could have
been perturbed towards low risk or high risk. However, our method found that it is closer (minimum
perturbation) to being high risk and thus suggested a pertinent negative that takes it into that class.
Such informed decisions can be made by our method as it searches for the most "crisp" explanation,
arguably similar to those of humans.

4.3 Brain Functional Imaging

In this experiment we look at explaining why a certain individual was classified as autistic as opposed
to a normal/typical individual.

4.3.1 Setup

The brain imaging dataset employed in this study is the Autism Brain Imaging Data Exchange
(ABIDE) I [11], a large publicly available dataset consisting of resting-state fMRI acquisitions of
subjects diagnosed with autism spectrum disorder (ASD), as well as of neuro-typical individuals.
Precise details about standard ways in which this data was preprocessed is given in the supplement.
Eventually, we had a 200x200 connectivity matrix consisting of real valued correlations for each
subject. There were 147 ASD and 146 typical subjects.

We trained a single-layer neural network model on TensorFlow. The parameters of the model were
regularized by an elastic-net regularizer. The leave-one-out cross validation testing accuracy is around
61.17% that matches the state-of-the-art results [28, 14, 38]. The logits of this network are used as
model prediction scores, and we set X = [0, 1]p, X/x0 = [0, 1]p/x0 and X ∩ x0 = [0, 1]p ∩ x0 for
any natural example x0 ∈ X .

4.3.2 Results

With the help of domain experts, we evaluated the performance of CEM and LRP, which performed
the best. LIME was challenging to use in this case, since the brain activity patterns are spread over
the whole image and no reasonable segmentation of the images forming superpixels was achievable
here. Per pixel regression results were significantly worse than LRP.
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Ten subjects were randomly chosen, of which five were classified as autistic and the rest as neuro-
typical. Since the resting-state functional connectivity within and between large-scale brain functional
networks [42] (see Fig. 3A) are often found to be altered in brain disorders including autism, we
decided to compare the performance of CEM and LRP in terms of identifying those atypical patterns.
Fig. 3B shows the strong pertinent positive (upper triangle) and pertinent negative (lower triangle)
functional connections (FC) of a classified ASD subject produced by the CEM method. We further
group these connections with respect to the associated brain network (Fig. 3C). Interestingly, in four
out of five classified autistic subjects, pertinent positive FCs are mostly (with a probability > 0.26)
associated with the visual network (VIS, shown in purple in Fig 3A). On the other hand, pertinent
negative FCs in all five subjects classified as autistic preferably (with a probability > 0.42) involve the
default mode network (DMN, red regions in Fig. 3A). This trend appears to be reversed in subjects
classified as typical (Fig. 3C). In all five typical subjects, pertinent positive FCs involve DMN (with
probability > 0.25), while the pertinent negative FCs correspond to VIS. Taken together, these results
are consistent with earlier studies, suggesting atypical pattern of brain connectivity in autism [16].
The results obtained using CEM further suggest under-connectivity in DMN and over-connectivity
in visual network, in agreement with prior findings [16, 23]. LRP also identifies positively relevant
FCs that mainly involve DMN regions in all five typical subjects (Fig. 3D). However, LRP associates
positively relevant FCs from the visual network in only 40% of autistic subjects (Fig. 3D). These
findings imply superior performance of CEM compared to LRP in robust identification of pertinent
positive information from brain functional connectome data of different populations. The extraction
of pertinent positive and negative features by CEM can further help reduce error (false positives and
false negatives) in such diagnoses.

4.4 Quantitative Evaluation

In all the above experiments we also quantitatively evaluated our results by passing the PPs, and the
PNs added to the original input, as independent inputs to the corresponding classifiers. We wanted to
see here the percentage of times the PPs are classified into the same class as the original input and
analogously the percentage of times the addition of PNs produced a different classification than the
original input. This type of quantitative evaluation is similar to previous studies [32].

We found for both these cases and on all three datasets that our PPs and PNs are 100% effective
in maintaining or switching classes respectively. This means that our approach can be trusted in
producing highly informative and potentially sparse (or minimal) PPs and PNs that are also predictive
on diverse domains.

5 Discussion

In the previous sections, we showed how our method can be effectively used to create meaningful
explanations in different domains that are presumably easier to consume as well as more accurate.
It’s interesting that pertinent negatives play an essential role in many domains, where explanations
are important. As such, it seems though that they are most useful when inputs in different classes are
"close" to each other. For instance, they are more important when distinguishing a diagnosis of flu
or pneumonia, rather than say a microwave from an airplane. If the inputs are extremely different
then probably pertinent positives are sufficient to characterize the input, as there are likely to be many
pertinent negatives, which will presumably overwhelm the user.

We believe that our explanation method CEM can be useful for other applications where the end goal
may not be to just obtain explanations. For instance, we could use it to choose between models that
have the same test accuracy. A model with possibly better explanations may be more robust. We
could also use our method for model debugging, i.e., finding biases in the model in terms of the type
of errors it makes or even in extreme case for model improvement.

In summary, we have provided a novel explanation method called CEM, which finds not only what
should be minimally present in the input to justify its classification by black box classifiers such
as neural networks, but also finds contrastive perturbations, in particular, additions, that should be
necessarily absent to justify the classification. To the best of our knowledge this is the first explanation
method that achieves this goal. We have validated the efficacy of our approach on multiple datasets
from different domains, and shown the power of such explanations in terms of matching human
intuition, thus making for more complete and well-rounded explanations.
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