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Abstract The claim defended in the paper is that the mechanistic account of expla-
nation can easily embrace idealization in big-scale brain simulations, and that only
causally relevant detail should be present in explanatory models. The claim is illus-
trated with two methodologically different models: (1) Blue Brain, used for particular
simulations of the cortical column in hybrid models, and (2) Eliasmith’s SPAUN
model that is both biologically realistic and able to explain eight different tasks. By
drawing on the mechanistic theory of computational explanation, I argue that large-
scale simulations require that the explanandum phenomenon is identified; otherwise,
the explanatory value of such explanations is difficult to establish, and testing the
model empirically by comparing its behavior with the explanandum remains practi-
cally impossible. The completeness of the explanation, and hence of the explanatory
value of the explanatory model, is to be assessed vis-à-vis the explanandum phenom-
enon, which is not to be conflated with raw observational data and may be idealized.
I argue that idealizations, which include building models of a single phenomenon
displayed by multi-functional mechanisms, lumping together multiple factors in a
single causal variable, simplifying the causal structure of the mechanisms, and multi-
model integration, are indispensable for complex systems such as brains; otherwise,
the model may be as complex as the explanandum phenomenon, which would make it
prone to so-called Bonini paradox. I conclude by enumerating dimensions of empirical
validation of explanatory models according to new mechanism, which are given in a
form of a “checklist” for a modeler.

B Marcin Miłkowski
marcin.milkowski@gmail.com

1 Institute of Philosophy and Sociology, Polish Academy of Sciences, ul. Nowy Świat 72,
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1 Introduction

Computer simulation is an essential tool in neuroscience and serves various purposes.
In this paper, I focus on the explanatory uses of computer simulations in neuroscience
and argue that they are explanatory insofar as they are models of brain mechanisms.
To do so, I assume a neo-mechanistic1 approach to explanation (Bechtel 1994; Craver
2007; Kaplan 2011; Machamer et al. 2000; Miłkowski 2013) and briefly account for
computer simulations of the brain in mechanistic terms. The account suggests that to
serve their explanatory purposes, brain models in general, and computer simulations
in particular, may and indeed should be idealized. Complex mechanisms are best
elucidated by idealized explanatory models.

Several large-scale brain simulations exist (De Garis et al. 2010) but only some
of them aim at biological realism. They also vary with respect to the number of
spatiotemporal scales included in the model. For example, the Blue Brain project
offers an unprecedented level of detail, describing a part of the somatosensory cortex
in 14-day-old rat, and Markram claims that the Blue Brain simulations are meant to
“aid our understanding of brain function and dysfunction” (Markram 2006, p. 153).
Just like the Blue Brain, most other extant large-scale brain simulations do not aim at
modeling intelligent behaviors, which occur at temporal scales ofminutes to hours—in
part because we do not yet know the intermediate-scale structure of the brain, sowe are
unable to encode it into simulations (De Garis et al. 2010). Some, however, are trying
to fill the gap. For example, Semantic pointer architecture unified network (Spaun),
built in the lab of Chris Eliasmith (Eliasmith et al. 2012), is a recent 2.5-million spiking
neuron simulation of the brain, and is the largest simulation of this kind. The purpose
of the model is to find out how functional capacities arise in biological brains, but
the level of biological detail is much lower than in Markram’s Blue Brain. The Blue
Brain excludes the psychological evidence; Spaun abstracts away from molecular
detail.

Correctmechanistic explanations need to satisfy several norms, completeness being
one of the most important: the causal model of the mechanism that displays an
explanandum phenomenon needs to be complete in order to qualify the explanation
as complete. Complete explanatory texts “represent all and only the relevant portions
of the causal structure of the world” (Craver 2007, p. 27). It might therefore seem that
mechanists need to defend Markram’s quest for accuracy, and that they would view
Eliasmith’smodels as essentially incomplete; arguably, somemight even criticize both
models for excluding some temporal scales. Indeed, one may read mechanists saying

1 Throughout the paper, I speak of “mechanists” (and “the mechanistic framework”) to refer to theorists
who are committed to (some versions of) the framework defended in the seminal paper of Machamer
et al. (2000) and its later improvements. The neo-mechanistic framework does not assume, as the old-style
mechanical philosophy of the 17th century did, a limited number of admissible interactions produced by
the shape, motion, and contact between the parts of the mechanism.
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that the principle in computational neuroscience is “themore detail, the better” (Kaplan
2011, p. 347). But the mechanistic norm of completeness should not be confused with
the attempt to include all possible detail. Could the exclusions in both simulations be
therefore justified?

Mechanists stress that there is a need to precisely specify the explanandum phe-
nomenon, which decides what is relevant to the explanation, so not just any detail
counts, and Kaplan naturally does not claim that causally irrelevant detail is explana-
tory. I do not agree with Kaplan and other mechanists, however, about the role of
idealization in neuroscience. While they allow idealization for practical reasons and
because of technological limitations, I think idealization is required in principle in
explanations of sufficiently complex mechanisms. Contrary to appearances, idealiza-
tion need not imply violation of the mechanistic norms of explanation, in particular
the completeness norm. Below, I defend the claim that mechanistic explanation via
idealized models is justified by relevance considerations, not only by technological
limitations such as tractability. Namely, the aim of most idealizations is to make the
essence of the phenomenon the focus of the model, and abstract away from irrelevant
detail. Idealizations involve building models of a single phenomenon displayed by
multi-functional mechanisms (mechanistic explanatory norms do not require a sin-
gle model to explain everything), lumping together multiple factors in a single causal
variable, simplifying the causal structure of the mechanisms, andmulti-model integra-
tion. Phenomena explained by mechanistic models are often also idealized and as long
mechanistic models represent all and only causal factors relevant to their phenomena,
they do not violate the completeness norm. Were the completeness norm incompati-
ble with idealization, the mechanistic framework would be descriptively inaccurate,
since idealized explanatory texts are prevalent in the fields of study that commonly
use mechanistic explanations.

The structure of the paper is as follows. In the first section, I sketch the mechanistic
account of the simulation-based explanation. Then I describe theBlueBrain and Spaun
in greater detail, and apply the mechanistic framework in order to analyze both, and
show that both are idealized in various ways. I stress that mechanistic models may
require further mathematical processing, and that hybrid mathematical–mechanistic
explanations can be accounted for in the mechanistic framework for explanation. I
conclude by enumerating dimensions of empirical validation of explanatory models
as a “checklist” for a modeler.

2 Mechanistic account of simulation-based explanation

According to the mechanistic account of explanation, to explain a phenomenon ϕ is to
elucidate the causal structure of the mechanism that gives rise to ϕ. While mechanisms
are defined variously, the core idea is that they are organized systems, comprising
causally relevant component parts and operations (or activities) thereof (for a recent
review, see, e.g., Illari and Williamson 2011). Component parts of the mechanism
interact, and their organized operation contributes to the capacity of the mechanism to
exhibit ϕ; in that, mechanistic explanation can be understood as closely related to (but

123



1460 Synthese (2016) 193:1457–1478

not reducible to) functional analysis (Cummins 1975, 2000).2 Mechanists recognize
the importance ofmechanistic explanations in sciences other than fundamental physics
(in particular, life sciences, neuroscience, and cognitive sciences). Many hope that an
adequate description of the principles implied in explanations, and generally accepted
as sound, will help clarify the distinction between good explanations and bad (Craver
2007). In other words, the aim of the mechanistic theory of explanation is to be both
descriptively and normatively adequate.

One of the critical requirements of themechanistic explanation is that the explanan-
dum phenomenon be specified. All mechanisms posited in explanations have an
explanatory purpose, and for this reason their specification is related to an epistemic
interest. For the same reason, the spatiotemporal boundaries of themechanism, though
not entirely arbitrary, can be carved in different ways depending on what one wishes
to explain (Craver 2009; Pöyhönen 2013). There are no mechanisms per se; there
are only mechanisms of phenomena: they display phenomena that can be explained
causally, by taking into account their organization. This principle is usually dubbed
“Glennan’s law”; Glennan (1996) strongly argued that mechanisms are individuated
functionally by their capacities, or by the ability to display phenomena. There need
not be one-to-one correspondence between phenomena and mechanisms. A single
mechanism may display multiple phenomena, as is usual in biological systems.

The explanandum phenomenon has to be specified for a given mechanistic model3;
otherwise the model’s use and value will be unclear. The specification of the phenom-
enon is not to be confused with raw, unrefined observation, or with common-sense
intuition about the capacity under consideration. The specification of the capacity may
be (and usually is) improved during the modeling process. An early hypothesis about
the capacity may well be misleading to the modeler, and only further research might
show that a phenomenon is not what it was initially supposed to be (Dennett 1998,
p. 314). For example, numerous explanations were offered for the results in the famous
Wason task in reasoning (Wason 1966). However, the phenomenon may just as well
be an artifact of averaging the results over subjects, and there is no single phenomenon
to be explained but a number of different phenomena resulting from the ambiguous
wording of the task (Stenning and Lambalgen 2001, 2008).

Hence, explananda are not raw observational data butmodels of data (Suppes 1962).
[Suppes’ point has been rediscovered independently in the distinction between data
and phenomena introduced by Bogen and Woodward (1988).] For example, models
of language production usually presuppose that a user’s productivity is the explanan-
dum phenomenon, even though it is impossible to empirically observe a language user
producing an infinite set of sentences. Because of excellent theoretical reasons for
believing that language users have this capacity, productivity will be described in a

2 There is an ongoing controversywhethermechanistic explanations are law-based or not (Andersen 2011);
the argument in this paper is logically independent from the answer to the latter question.
3 ForCraver, the explanans is themechanism, as he defends so-called ontic account of explanation; however,
withWright (2012), I adopt the representational account of explanation here: it is the models of mechanisms
that do the explanatory work. I will talk of models of mechanisms throughout this paper. Simulations,
analyzed later, are just one kind of models; I leave other kinds aside in this paper (for example, I do not
analyze animal models) but I believe that the points about idealization apply also for such models.
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model of data. This point is important in the context of computational neuroscience;
some computational descriptions of capacities of neural subsystems will fall out nat-
urally in this account as specifications of phenomena. For example, what Chirimuuta
(2014) calls “canonical neural computations” is a specification of the explanandum
phenomenon rather than an explanation per se. The very act of classifying of a phe-
nomenon this way or another may have an immense theoretical value, as Chomsky’s
stress on productivity, and in this sense, contributes to a better understanding of the
phenomenon. However, it seems more natural to see classifications as descriptions,
since merely saying that language is productive does not answer any why or how
questions about productivity.4 By the same token, a mere description of an effect in
psychology is not by itself explanatory (Cummins 2000).

Several general norms of mechanistic explanation are related to how one specifies
the capacity of themechanism; in short, the phenomenon should exist (so the specifica-
tion needs to be true), and it should be characterized correctly and fully (Craver 2007,
pp. 123–128). For example, if Stenning and Lambalgen are correct, many explanations
of the Wason task are spurious just because the specification of “the” phenomenon to
be explained is false; instead, many different phenomena, though all real, were lumped
together and there is no common underlying mechanism.

Craver (2007) distinguishes two kinds of incomplete mechanistic models: mech-
anism sketches and mechanism schemata. Sketches usually contain gaps and place-
holder terms (such as “processing”). Schemata contain placeholders (or black boxes)
to be filled when evidence is available. Only mechanistic explanations that do not con-
tain any gaps or placeholders are complete. By “completeness” here, notably, Craver
means completeness relative to the explanandum phenomenon: only components and
activities causally relevant to the phenomenon should be included, not just any spa-
tiotemporal parts. The completeness of the mechanistic model is to be understood as
specifying the whole causal model; to specify the causal model, one needs to know
all and only the relevant variables and their connections in the graph that describes
it. What’s important, the mechanistic account needs to appeal to a theory of causal
relevance that does not make causal relevance equivalent to explanatory relevance (on
pain of inducing a vicious circle)5; one such theory is the interventionist theory of cau-
sation that offers axioms and formal semantics for statements about causal relevance
(Galles and Pearl 1997). So for example, a mechanistic explanation of a mouse trap
does not need to specify the maker of the metal parts in the trap (unless it is somehow
relevant to the functioning of the trap). Changing the maker of such parts would not
affect the capacity of the trap to catch mice.

Adding more detail is not guaranteed to make the explanation better; only causally
relevant detail matters. Here, mechanistic explanation is similar to Cummins’s (1975)

4 One may still insist that what-questions can prompt explanatory answers; however, what-questions that
are not reducible to how- andwhy-questions yield different kind of answers. For example, Burge (2010) sees
one task of philosophy in deepening knowledge and understanding of constitutive conditions of something’s
being what it is; such conditions ground explanations of something’s nature. In this sense, models of data
would be explanatory as well, but that seems to be stretching the term “explanation” beyond its useful scope
in philosophy of science, as it would largely overlap with “description”.
5 This worry has been voiced by one of the anonymous referees of this paper.
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functional analysis in stressing that explanations of organized systems should include
only relevant components. At the same time, for mechanists, the notion of organi-
zation in Cummins’s account is underspecified: for Cummins, simple box-and-arrow
diagrams are enough to spell it out. The mechanism requires that organization is
anchored in spatiotemporal entities and processes (Craver 2007, p. 138). [For a more
detailed comparison ofmechanistic and functional explanation, seeMiłkowski (2013),
Chapter 3 and Piccinini and Craver (2011).]

The practice of modeling of complex systems shows also that modelers strategi-
cally specify their explananda to exclude causal interactions of certain subsystems and
external factors. The resulting omissions are not considered to be explanatory parts of
models (if a model does not reflect some factors, it need not mean that the model is
inaccurate); and it’s best to consider them as idealizations of explananda. This point
is compatible with the claim that mechanistic models aim at explaining phenomena,
or models of empirical data. Phenomena occurring in complex systems are usually
idealized, and idealizations are introduced not just for tractability but for explanatory
purposes. Simply, complexity of causal interactions in a complex physical mechanism
cannot be fully reflected in a model on pain of making the model totally explanatorily
obscure. Yet a model of an idealized phenomenon need not violate the mechanistic
norm of completeness, as long as it does include all and only causal interactions rele-
vant to the phenomenon. I will return to this point, after introducing the methodology
of both simulations studied in Sect. 3.

Computer simulations can be understood as mechanistic models specifying the
functioning of a given mechanism (Miłkowski 2013). A special case of computer
simulation is a simulation of computational processes, for example a simulation that
explains how a given physical computer works. Obviously, one can also model a
mouse trap on a computer without assuming that the trap is a computer at all. For
my purposes here, however, it is irrelevant whether computational neuroscience treats
brain computation realistically or not, as it makes no difference for questions of how
to assess accuracy and relevance of detail in the model.

Even if the simulation can be run on a computer, this need not mean that the
explanatory model of phenomenon is mechanistically complete. Completeness is to
be assessed vis-à-vis the explanandum phenomenon, and computer simulations usu-
ally contain ad hoc additions needed to run them: these are the decisions made by
the modeler without any empirical evidence (Frijda 1967). It is notoriously hard to
disentangle such ad hoc additions from the rest of the model. If we were to assess
completeness simply by checking whether, say, the software can be run without prob-
lems, then including a number of ad hoc parts in the model would be enough to make
it complete. Yet this would not be explanatory completeness.

There are two ways in which mechanistic computer simulations may correspond
to their targets. First, they may be weakly equivalent to the target, in that they only
describe the initial and termination conditions (in the case of cyclical mechanisms,
initial and termination conditions may pertain to a single cycle or to a series of cycles).
Second, theymay be strongly equivalent, when they also correspond to the process that
generates the termination condition. These notions have been used in methodology
of computer simulation since 1960s (Fodor 1968, Chapter 4). Similar notions have
been introduced by Bernard Zeigler (1976) in his theory of modeling and simulation:
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a model is said to be replicatively valid if it can generate output data from known
input data; it is predictively valid when its output corresponds to the new data, and
structurally valid when the structure of the model corresponds to the operations of the
real system being modeled. Zeigler’s predictive validity is equivalent to Fodor’s weak
equivalence, and his structural validity to Fodor’s strong equivalence [Weisberg (2013)
makes the same distinction but uses somewhat confusing terminology, by talking
about dynamical and representational fidelity.]. Only strongly equivalent models are
explanatory, according to the mechanistic account.

One particularly important kind of mechanistic explanation, constitutive explana-
tion, requires multi-level investigation of the organization. Mechanistic levels are not
levels of abstraction; they are levels of composition or organization (Craver 2007).6

Such levels are constituted by whole–part relationships. This means that a lower level
in a mechanism is a proper part of its higher level. Constitutive explanation includes
at least three such levels: the bottom (−1) level, which is the lowest level in the
given analysis and describes the internals of mechanism parts and their interactions;
an isolated (0) level, at which the parts of the mechanism are specified along with
their interactions (activities or operations); and the contextual (+1) level, at which
the function of the mechanism is seen in a broader context. Depending on the shared
scientific practice, the bottom and the uppermost level in the explanation will vary
(Machamer et al. 2000). One can easily introduce a further level if needed. Let’s take
an explanation that accounts for reproduction of bacteria. The reproduction of bacteria
in a given environment (contextual level) is explained in terms of division (isolated
level that ignores the environment), and division in terms of cellular mechanisms (the
bottom level). The cellular-level mechanism can be further explained by its molecu-
lar parts, which would introduce a fourth level in this explanation. The possibility of
adding further levels is essential in computational neuroscience, which needs to draw
evidence from biophysical observation and from behavioral studies. In addition, there
is no consensus regarding the bottom level in computational neuroscience, which is
particularly salient in the cases considered in Sect. 3 of this paper. The mechanistic
framework can help decide some of such questions by showing that some levels are
relevant to explanations, while others are not. If they are relevant, the completeness
norm requires them.

Mechanistic models need to specify causally relevant variables at all and only
levels of organization considered relevant to the explanation. This applies also to
mechanistically understood computer simulations, which need to conform to general
modeling principles at the same time. Hence, the empirical adequacy of the simula-
tion can be tested by checking whether it is strongly equivalent to the explanandum
phenomenon. In neuroscience, usual structural validation methods apply, including
chronometry (Posner 2005), various kinds of experimental and natural interventions
(Craver 2007), brain slicing microscopy (Seung 2012), optogenetics (Deisseroth et al.
2006), brain imaging—though with usual caveats (Trout 2008)—and task decompo-
sition (Newell and Simon 1972). All in all, the more independent observables are
tested, the more robust the model. Mere phenomenological validation modeled after

6 I set Craver’s account of levels of realization aside here, as it is not relevant to the issue of completeness
and idealization.
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the Turing test (Turing 1950) cannot establish the model’s empirical adequacy. On the
contrary, what is important is simply evidence about component parts, operations, and
overall organization at all levels of the mechanism. Chronometry relates to psycho-
logical time-reaction studies, which are usually located at higher levels with respect
to neuronal mechanism; optogenetics usually to bottom levels of the mechanism, and
various interventions are used at different levels, if possible. Therefore, one of the
norms of the constitutive mechanistic explanation is to build a tightly coordinated
model at all levels of organization (which is implied by the completeness norm), and
to make it possible to integrate it with higher and lower levels, if possible. For this
reason, the neo-mechanistic framework is particularly sensitive to interfield research
(Darden and Maull 1977).

Another ideal of mechanistic explanation is producing how-actually explanations.
A how-actually causal explanation elucidates how the actual explananda are caused
in contrast to a how-possibly explanation that elucidates possible ways of causing
the explananda; a how-plausibly explanation is “more or less consistent with the
known constraints on the components, their activities, and their organization” (Craver
2007, pp. 112–113). How-possibly explanations risk positing entities that are not
actual causal factors, hence they may violate the completeness norm. The mechanistic
framework ranks how-possibly explanations with their possibly causally irrelevant
variables lower than how-plausibly explanations, as the latter ones include only enti-
ties and activities that seem plausible in light of our current theories, so they are less
likely to be causally irrelevant. Because of mere complexity of neural systems and
ethical, technological, and theoretical difficulties in brain research we simply lack
necessary evidence to fully validate mechanistic models. Thus, we can only hope for
how-plausible explanations in contemporary computational neuroscience.

To return to the constitutive account of mechanistic explanation that I introduced
on the previous page, I will illustrate it with a cash register in a supermarket. The
explanandum phenomenon is the capacity to add prices of individual items and deter-
mine the overall sum to be paid by a customer. At the contextual level, one describes the
cash register as playing a certain role in the supermarket, by allowing easy calculation
of the sum to be paid. This includes a bar-code scanner, a conveyor belt, etc. At the iso-
lated level, a dedicated computer using special software is described. The constraints
such as commutativity or associativity of addition are included in the description of
the software. Yet without describing the machine that can run the software, this level
of description is incomplete. Some failures of the cash register can be explained not
only in terms of the software bugs but also as hardware failures. Also, the particular
display configuration, which can be related to user preferences at the contextual level,
is usually not described fully in the software specification. It is the isolated level where
one describes the physical machine that can display the product name for the cashier
clerk and, more fundamentally, can run code by reading it from external memory.
The formal description, usually in terms of the programming language or diagrams,
is put into correspondence with the machine.7 At the bottom level, the operations

7 In this paper, I abstract away from a complex issue of the structure of computational mechanistic models.
They usually contain both a formal computational model and a mechanistic model, which are put into
correspondence. For more detail, see Miłkowski (2011, 2014).
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of the electronic parts of the machine are explained by reference to their properties,
relationships, and organization. Just because vast differences between different types
of registers are possible, exact explanations will differ. Also, self-checkout machines
will have the capacity to collect cash automatically, which needs to be explained as
well (the explanandum will be different), and so forth.

The completeness norm itself requires the multi-leveled structure of explanation,
as the capacity of the cash register can be fully explained only in the context of the
supermarket. A cash register in an art gallery may as well function as a work of art, and
its capacity to add prices would not make any difference if the cash register is just on
display there. In addition, the activities of a user of the cash register are causally relevant
for its performing the function of addition. This is why the contextual level is relevant
for this explanation. Moreover, one needs to introduce the bottom level to understand
how the function of addition is realized; depending on how exactly one conceives the
capacity of the cash register, the level of detail on the bottom detail will vary. In other
words, the bottom level is related to our epistemic interest and specification of the
explanandum phenomenon. For example, a service engineer could want to explain
and predict the breakdown patterns in the cash register. This is impossible without
knowing how exactly the cash register performs the calculation, and that requires
the detail on the isolated and the bottom level where wear and tear can occur. But a
philosopher may be interested only in a capacity framed solely in mathematical terms,
ignoring the need to fix broken cash registers (although the explanans needs to include
spatiotemporal entities and activities).

3 Blue Brain meets Spaun

The Blue Brain is one of the most detailed simulations of the brain available, and cer-
tainly one of the most widely-known. It promises a “quantum leap” in computational
neuroscience by building accurate models of the mammalian brain from the first prin-
ciples. The bottom level of the model is cellular rather than the genetic or molecular
(or, indeed, quantum!). The phenomenonmodeled is a “2-week-old rat somatosensory
neocortex corresponding to the dimensions of a neocortical column (NCC) as defined
by the dendritic arborizations of the layer 5 pyramidal neurons” (Markram 2006,
p. 155). There is a vast amount of quantitative data for the model from around 15,000
experiments (including recordings of multi-neuron patch-clamps and microscopy on
brain slices). These allow systematic quantification of molecular, morphological, and
electrical properties of the neurons and synaptic pathways.

The modelers justify their choice of the young sensory column by claiming that it
is evolutionarily one of the simplest available for experimental research. This means
that it may serve as a simplified model of more complex mammalian brains. The
significance of the NCC is, according to Markram, immense: the NCC is a 10,000
neuron microcircuit that is repeated numerous times in the cortex of mammalian
brains. According to him, the only effective difference between the human cortex and
the rat’s is the number of NCCs involved. If we had a working simulation of the NCC,
we might build bigger cortical simulations. At the same time, it is unclear whether
the NCC has any well-defined biological function (Horton and Adams 2005); for this
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reason, NCC might not be a mechanism at all, as that would mean that there is no
phenomenon that it stably displays. Similarly, an arbitrarily chosen spatiotemporal
part of the digestive tract is not a mechanism as such, even if it can be anatomically
delineated, unless there is a well-defined capacity it is responsible for.

Around 10,000 neurons are modeled using the computational template called the
Blue Column. This includes different types of neurons in layer 1, multiple subtypes
of pyramidal neurons in layers 2–5, spiny stellate neurons in layer 4, and more than
30 anatomical–electrical types of interneuron with variations in each of layers 2–6.
To run the simulation, care is taken to include statistically-plausible variations in the
model. The plausible variations include also the pattern of the neural connectivity (the
“connectome”). The Blue Brain follows the so-called Peters’ Rule, which states that
connectivity is random (Seung 2012), as a connectome has not yet been discovered for
the rat. This, however, means that the organization of the mechanism is also random,
and even if it is plausible that the creation and elimination of neural connections
is to some extent stochastic, violations of Peters’ Rule are known. For this reason,
the accuracy of the simulation is limited to component parts and operations of the
mechanism; it is stipulated that its orchestrated operation should be based on random
connectivity. Seung stresses that themodel might therefore follow the known principle
of computer science: Garbage In, Garbage Out. On the other hand, the random pattern
of connectivity used in the Blue Brain is estimated to be around 74 % accurate (Hill
et al. 2012). For this reason, Seung’s claim may be overstated. But the randomly
established connectivity is definitely a placeholder that can be replaced by the proper
connectome, which makes the Blue Brain an incomplete model. In other words, it
is a schema in the sense defined earlier in the paper, and is poised to provide only
how-plausibly explanations.

What is crucial in understanding the purpose of any computer simulation is the way
it is tested, or validated, to use the technical term adopted by the modeling community.
The standard way of proving that the model is valid at this level is to quantify its
divergence from the phenomenon with respect either to the input and the output of the
model for weakly equivalent models, or to the underlying process and the input/output
for strongly equivalent ones.

The Blue Brain has not been tested to show how much it diverges from available
evidence from 15,000 experiments, so its validity is unclear; or at least the results of
such tests are not included in any publicly available publications. Papers describing the
results of the project talk, for example, about building models automatically from the
data and optimizing them using multiple objectives (Druckmann et al. 2007). Another
result of the project is a novel method of reliably linking the microscopic membrane
ion channels to the macroscopic electrical behavior of neurons (Druckmann et al.
2011). This method can be used to test different computational models of neurons
but was not applied to the whole model of the rat’s NCC. Of course, the method is
relatively new, while the project started a decade ago.

One of the goals in the Blue Brain project seems to be integrating multiple sources
of data in a single model; the data is usually partial and sometimes inconsistent, so
building large simulations is simply a way of creating a more reliable database about
the phenomenon. Creating a new process that simulates and calibrates as well as
systematically analyzes the biological accuracy and consistency of each modification
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of their NCC model was a milestone of the project. Two other milestones achieved
in 2007 were (a) developing a technique to automatically build microcircuits from
biological data, and (b) developing a cellular-level model of NCC, which was used to
“stimulate research into the simulation of neural micro-circuitry”.

As such, the Blue Brain does not seem to have a clear explanandum phenomenon
(even if theNCCwere to have a clear biological function). Themodelmerely describes
the rat’s NCC rather than explains some specific capacity mediated by the NCC.
However, it would be too quick to dismiss the model as non-explanatory, as “the Blue
Brain” is actually not a label for a particular model but for a family of models that can
be run using the data about the NCC. Rather, it should be considered an environment
for explanation rather than a single explanatory model. For this reason, it can be used
to produce explanatory models.

For example, a model was created (Reimann et al. 2013)8 to investigate the origin
of the local field potentials (LFPs), which are crucial to investigating the dynamical
properties of the information processing in the brain (for a current review, see Buzsáki
et al. 2012). The model was used to undermine the traditional assumption that LFPs
reflect synaptic and passive return currents, and to this purpose, single synapses and
single-neuron physiology were reproduced. In other words, the target phenomenon
of the simulation is not LFP but the physiology of a single neuron, which is then
used to infer system-wide properties such as LFPs. These properties are not directly
observable; one cannot directly measure the electrical activity of thousands of neurons
and the resulting brain waves. But using the computational simulation, the traditional
hypothesis that LFPs reflect synaptic and passive conductance was overthrown: It
is the active currents that dominate the generation of LFPs. The model created some
testable predictions aswell. For example, it predicts that 150Hzbandwidths are heavily
contaminated with spiking, which was already confirmed (Schomburg et al. 2012).

The high level of detail of thismodel does notmean that the simulation is necessarily
mechanistically complete: It does not include glial nor astrocytic processes, and the
nonmyelinated presynaptic axonal compartments, which probably only minimally
contribute to LFPs, were excluded as well (Reimann et al. 2013, p. 387). LFPs are
inferred from the output of the simulation, not generated directly in the model, and
that inference usually needs several approximations. In other words, they are not
immediately modeled, so the NCC is not completely reconstructed in the model, but
this was not the modelers’ intention.

The two-stepmodeling procedure is typical in LFPmodels (Lindén et al. 2013), and
it shows a particular hybrid nature of the model in question. First, morphologically
reconstructed neurons are simulated using NEURON software (Carnevale 2007) to
provide transmembrane currents; then extracellular potentials are calculated based
on these (Nunez and Srinivasan 2006). The Blue Brain LFP model provides the first
part, and LFP properties have to be computed separately. It is an interesting case of
model interoperability; the result from a computer simulation can be used for further
mathematical and discursive operations, which will create a hybridmodel, containing
a mechanistic model of the brain and the mathematical (completely formalized or

8 I owe the reference to this work to the anonymous referee of the previous version of the paper.
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not) model of the LFPs, based on relatively well-understood biophysics of the process
responsible for creating LFPs. There already exist software environments such as
LFPy (Lindén et al. 2013) that link mechanistic neural simulations with external
computations, or, simply, mechanisms with equations.

Although the modelers include low-level biophysical detail in the Blue Brain
framework, there is not enough focus on the orchestrated operation of the NCC as
a multi-level mechanism given the intended goals of the project. The overarching goal
of Blue Brain, according to the project website (The Blue Brain Project EFPL 2011), is
to “reverse engineer the mammalian brain”, and that includes building models at “dif-
ferent scales” and discovery of basic principles governing the structure and function
of the brain. Even more, it is to model the “complete human brain” (emphasis added).
Although one can run simulations useful for research on brain waves, it is unclear
whether the Blue Brain could include any high-level constraints, whether connectivity
patterns, lateralization, or neuropsychological results. Sporns notes:

Rather than designing an architecture that incorporates patterns from all scales
that are experimentally accessible, including the large scale of neural popula-
tions and brain regions, bottom-up approaches [such as the Blue Brain] attempt
to construct the brain by brute force, neuron by neuron and synapse and synapse.
What is lacking are the important constraints provided by empirical and theoret-
ical research on principles of brain organization and architecture (Sporns 2012,
p. 168).

The results of the Blue Brain modeling can be used to compute properties related
to LFPs but higher-level constraints and interventions are not included either in the
model directly or in the principles ofmodeling. From themechanistic point of view, the
contextual level considerations, in particular precipitating and inhibiting conditions,
are simply missing. In other words, there is a large gap between the official goals
of the project and the actual methodology of simulations; it remains unclear how the
architecture, structure and function of thewholemammalian brain could be uncovered
by running only models of the NCC.

In Spaun, neural populations are the bottom level of the model, unlike in the Blue
Brain. Spaun’s principles used to build the model are based on the neural engineer-
ing framework (Eliasmith and Anderson 2003). The neural network is composed of
biologically-plausible spiking neurons (though much simpler and less heterogeneous
than in the Blue Brain). Themain difference between the model of the NCC and Spaun
is that the latter is intended to model high-level behavioral capacities and is able to
perform eight diverse tasks (without modifying the model); the main purpose of the
model, however, is not to offer explanations for all these tasks but “to propose a unified
set of neural mechanisms able to perform them all” (Eliasmith et al. 2012, p. 1204). In
other words, Spaun is both a large-scale simulation and a cognitive architecture (for
an extended treatment of the architecture and approach to the modeling, see Eliasmith
2013). Spaun has five subcomponents, which deal with (1) information encoding; (2)
transformation calculation; (3) reward evaluation; (4) information decoding; and (5)
motor processing. Visual information is fed to the system, and it controls a physically
modeled arm.
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The central notion of the framework underlying Spaun is that of a semantic pointer;
it is used to create higher-level representations that efficiently encode (or compress)
lower-level neural information. Thanks to this, the model can be both biologically
realistic and able to perform cognitive tasks. Spaun integrates several approaches
to cognitive systems. First, the modelers use control theory to model dynamics of
control (such as involved in controlling the arm); second, it is computational as far as
it transforms information (though without implementing any Mentalese); third, it is
inspired by insights from systems neuroscience into the function of brain parts (the
building blocks of Spaun, omitted here for brevity, correspond to anatomically defined
brain areas).

The tasks performed by Spaun are:

1. Copy drawing Given a randomly chosen handwritten digit, Spaun produces the
same digit written in the same style as the handwriting.

2. Image recognition Given a randomly chosen handwritten digit, Spaun produces
the same digit written in its default writing.

3. Reinforcement learningSpaun performs a three-armed bandit task, inwhich itmust
determine which of three possible choices generates the greatest stochastically
generated reward. Reward contingencies can change from trial to trial.

4. Serial working memory Given a list of any length, Spaun reproduces it.
5. Counting Given a starting value and a count value, Spaun writes the final value

(i.e., the sum).
6. Question answering Given a list of numbers, Spaun answers either one of two

possible questions: (i) what is in a given position in the list? or (ii) given a kind of
number, at what position is this number in the list?

7. Rapid variable creation Given example syntactic input/output patterns (e.g.,
0074→74; 0024→24; etc.), Spaun completes a novel pattern given only the input
(e.g., 0014 → ?).

8. Fluid reasoning Spaun performs a syntactic or semantic reasoning task that is
isomorphic to the induction problems from the Raven’s Progressive Matrices test
for fluid intelligence (Raven 1993).

The list of tasks might be in itself impressive (the model’s predictive validity regarding
biological behavior is around 90 % in all of them), but the model’s main feature is to
flexibly switch between these tasks. The main phenomenon of the mechanism is rapid
behavioral flexibility. In addition, it is possible to extend Spaun by adding more tasks,
because the switching mechanism—which embodies a hypothesis about the function
of the basal ganglia—is scalable.

The difference between the Spaun and the Blue Brain is not only the amount of
biological detail; Spaun includes detailed hypotheses about the function of neural
populations localized in several brain regions (rather than about the function of micro-
circuitry, whose detailed operation is considered explanatorily irrelevant). For this
reason, it qualifies as a mechanistic model (and not a framework; the framework here
is the Neural Engineering Framework), with an explicit explanandum phenomenon.
Clearly, as long as themodel is empirically structurally validated, it fulfillsmechanistic
criteria for explanations. In some cases (question answering), the model has some
predictions that have yet to be tested. Obviously, there is no available neuroscientific
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data that would make it possible to directly test whether the overall architecture of
Spaun is correct or not.

That Spaun has less detail about individual neurons than Blue Brain does not make
it non-mechanistic. Mechanistic models may be quite abstract, and the level of detail
is to be decided by the modeler (Levy and Bechtel 2013). Including all kinds of
information in the model may be even detrimental to its purpose and is not required by
the completeness norm. Here, a law of diminishing returns applies: more is not always
better. Adding more detail may lead to so-called Bonini’s Paradox, i.e., to the result
that the model is as difficult to understand as the phenomenon under modeling, and
for complex artificial networks simulating the brain, the paradox looms large (Dawson
1998, p. 17). In addition, if there are parts of the mechanism that do not contribute
to the explanandum phenomenon, these do not qualify as component parts of the
mechanism. They are not relevant to explanation, and can be considered useless noise.
A similar point is true of introducing further (upper or lower) levels in the constitutive
explanation: if they don’t make predictions or explanations more precise and accurate,
they should be left out. For example, the hat left in the car, even if spatiotemporally
included in it, is not a component part of the car, as it does not contribute to its
transportation capacity in any way. The art of modeling is therefore one not only of
inclusion but also of exclusion.

Spaun may be considered an instance of Galilean idealization, which is the practice
of introducing distortions into theories with the goal of simplifying theories or focus-
ing only on essential features of the phenomenon (Nowak 2000; Weisberg 2007).9

According to most theories of idealization, the distortions have to be removed in order
to apply the theory or the model to actual phenomena. But such idealizations—contra
Weisberg (2013)—do not require that all possible detail be given, as that would lead to
Bonini’s paradox. Weisberg claims that the ultimate goal of the Galilean idealization
is complete representation (Weisberg 2013, p. 111). In his opinion, this means that
each property of the target “must be included in the model,” and “anything external to
the phenomenon that gives rise to its properties must also be included”. He continues:
“Finally, structural and causal relationships within the target phenomenon must be
reflected in the structure of the model (…) the best model is one that represents every
aspect of the target system and its exogenous causes with an arbitrarily high degree
of precision and accuracy” (Weisberg 2013, p. 106).

Yet for mechanism, removing distortions and approximating truth is not equivalent
to Weisberg’s ideal of complete representation, which is not, and indeed should never
be, fulfilled for any model on pain of Bonini’s paradox. The mechanistic completeness
norm requires only relevant detail. Nowak, one of the primary defenders of Galilean
idealization, claims that “it consists in focusing on what is essential in a phenomenon
and in separating the essence from the appearance of the phenomenon” (Nowak 2000,
p. 110).With complex systems such as brains, idealizationmay be the keyway to avoid
the Bonini’s paradox, and there is no reason why the mechanists should exorcise ide-
alization from computational neuroscience. On the contrary, idealizing is not dictated
merely by technological limitations but required for explanations of well-defined phe-

9 Weisberg, contra Nowak, does not see idealization as the focus on the essential features of the phenom-
enon.
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nomena in biological systems. These phenomena co-occur with multiple phenomena
at the same time (since biological systems are usually highlymulti-functional), so there
is a strong need to abstract away and sometimes strategically distort the organization
of the mechanism in its model. For that reason, Spaun only includes the architecture
relevant to the tasks executed by the model. Even the Blue Brain model of LFP, with
its stress on low-level detail, does not include the processes considered to be only
minimally relevant to the phenomenon of brain waves.

Mechanistic models, as with all models, may lump together many components and
operations for simplicity and tractability. Such models are called integrated by Zeigler
(1976). For example, two causal variables in a causalmodelmaybe replaced by a single
variable, and if there is no change in overall behavior at the input/output of the model,
this may be justified. But there is a price to pay: the integrated model will have a lower
ranking in terms of structural validity. There may, however, be additional ways to
make inferences about the underlying causal structure. For example, the two lumped
variables may be related in some regular fashion; in this way, the loss of validity is
relatively minor. All in all, all higher-level models qualify as integrated mechanistic
models in this sense; and so does Spaun.

However, if the focus of the explanation is the whole human brain with all its cur-
rently known capacities related to the eight tasks in question, Spaun fails to answer
several important questions about its functioning. For example, it has a very mini-
mal long-term memory mechanism (i.e., only in the striatum) and only a minimal
procedural memory. In this respect, the model is incomplete for behaviors involving
long-term memory consolidation. Similarly, it has no flexible attention and the eye
position remains the same, which is definitely not the case for human vision (the eye
position is then an instance of Galilean idealization). For this reason, Spaun would be
incomplete as a general model of the human brain with all capacities related to the
eight cognitive tasks performed by Spaun—in such a case, it is a mechanism sketch
at best, as it heavily idealizes away from capacities that the brain has. If we take
Spaun to be a model of flexible task-switching in the brain, then its fidelity is higher,
as the evaluation is always relative to the model’s intended scope. Just because the
aim of the model is given in a slightly ambiguous manner—for validation purposes,
the data about eight different tasks is used, but in general descriptions it is stressed
that flexible task switching is the explanandum phenomenon—there are two ways of
assessing the completeness of the model. Also, for the overall task (fulfillment of the
eight individual tasks), no formal description is given. Hence, flexible task-switching
remains underspecified as a capacity. From the mechanistic perspective, this means
that we cannot precisely state the explanatory value relative to the phenomenon of
task switching.

Because of the lack of experimental data, building a how-actually model of task
switching is now impossible—there is simply not enough data on the explanandum
phenomenon. What Spaun might realistically achieve, given the current performance
limitations of standard computers (it is not executed on a supercomputer but on large
computer clusters), is only a highly idealized how-plausibly explanation. However,
there is already evidence about behavior that is not reproduced by Spaun; for example,
it is difficult for humans to switch from tasks that were strongly activated (Mayr
and Keele 2000). Of course, it is possible that Spaun was not supposed to answer
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questions about inhibitions related to moving between tasks, but given the general
underspecification, a critic of the model is justified in expecting that general properties
of human performance would be represented. To wit, idealizations in the specification
of the explanandum phenomenon need to be made explicit if one wants to evaluate
the completeness of the model.

One interesting feature of both models is that they idealize phenomena, and hence
restrict the amount of relevant detail to be included in their model. However, they
are also incremental, as they remain partially incomplete because of the lack of some
relevant empirical evidence; for example, the Blue Brain lacks the empirical evidence
about the connections, and Spaun has onlyminimal longer-termmemorymechanisms.
This means that some detail is simply lacking. Yet other detail is also strategically
excluded, not just for technological and practical reasons; in the Blue Brain, one can
hypothesize that it is the level of the cognitive architecture; in Spaun, it is themolecular
level. These levels can be causally relevant to the explananda, even if minimally so.

While the Blue Brain is supposed to become even more low-level as the molecular
level of the NCC is added (De Garis et al. 2010, p. 7), Spaun purportedly abstracts
from such detail and achieves correspondence with behavior. At the same time, the
Blue Brain tries to account for all available low-level evidence to link biophysics with
neuronal computation. One way of defending the latter approach would be to say
that the result of the project is a better understanding of extant experimental evidence
that has to be made consistent: the database of results will be reusable for other
projects. The modeling approach of the Blue Brain is definitely structural, typical for
life sciences, where detailed research into structure may precede function ascription
(Seung 2012). Knowing the structure of micro-circuitry will be useful in specifying
the exact explanandum phenomenon in all explanations of the brain cortex, and the
Blue Brain environment is poised to offer exact specifications of the NCC structure.
The structure of the model is designed to make it easy to automatically integrate
multiple sources of low-level information, though Blue Brain ignores higher levels of
organization of the brain. Nevertheless, evidence from higher levels of organization
is idealized away in the NCC model, which means that the model cannot be used to
generate new hypotheses about the higher-level capacities of the NCC, as they have
to be inferred by modelers from the output of the model by using external resources.
They are not reconstructed in the Blue Brain.

The Blue Brain, and similar simulations, such as those proposed under the forth-
coming Human Brain Project (Kandel et al. 2013), may help us better understand
the underlying organization of the NCC. At the same time, the Blue Brain does not
integrate higher-level constraints, and it is unclear whether the NCC is a mechanism
just because its biological function is not well-defined. For this reason, the Blue Brain
data need to be supplemented with additional assumptions, like in the LFP model, and
it can offer low-level constraints on the adequacy of the specification of the explanan-
dum phenomenon. The Blue Brain is a simulation environment and for this reason,
it is not explanatory in itself, in contrast to models such as Spaun, even if a precise
assessment of the explanatory power of the latter is difficult.

It is only to be hoped that the Human Brain Project (HBP), a large EU program
(total funding is to exceed C= 1190 million), which is a follow-up to the Blue Brain
project, will eventually include multiple scales in their framework, as higher-level
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data integration is also crucial in brain modeling at higher spatiotemporal scales. One
subproject is cognitive architectures, but Markram has already commented that Spaun
is not a model of the brain (Eliasmith and Trujillo 2014), so he seems to underestimate
the value of building cognitive architectures anyway; recently, this part of the project
has become the focus of a major controversy (The Lancet Neurology 2014). The stress
on biophysical detail in HBP is related to the intended use of the simulation in medical
research, which may indeed require accurate modeling of diverse conditions related to
neurodegenerative diseases. These simulations can be embraced bymechanists as long
as the detail given in the simulation turns out to be causally relevant to the phenomenon
displayed (or inhibited by a medical condition).

4 Conclusion: evaluating and integrating large-scale simulations

Large-scale simulations of the brain may serve various uses. Simulation allows testing
of interventions that would be otherwise unethical; interventions in simulations may
be much cleaner (even ideal), while experimental techniques in vivo are less precise;
it can be used to integrate data from many sources and to find inconsistencies or gaps;
it is often used to prove the feasibility or scalability of a certain framework; running
a computer explanation may show that a computer model explains capacities of the
brain, and so on.

An assumption that all simulations are supposed to be explanatory has led to spu-
rious controversies: Henry Markram of the Blue Brain project accused Dharmendra
Modha of scientific fraud (Adee 2010), claiming that Modha never simulated a cat
brain. Indeed, he did not; all Modha created was a cat-scale simulation, which was
an achievement from a computer science point of view, but not an achievement for
neuroscience. Modha’s aim is to produce hardware and software for running mas-
sive parallel computations on neurally-inspired computers, and biological fidelity has
almost no bearing on this project (his team has already managed to build a simula-
tion with 500 billion neurons, which is larger than a human brain; see Wong et al.
2012). Consequently, Modha’s non-explanatory models need not be models of real
brain mechanisms.

Some brain simulations are paradigmatic examples of the use of Big Data in sci-
ence, where results of thousands of experiments are integrated and analyzed to find
regularities and patterns. The Blue Brain project and the Human Brain Project belong
in this category, offering a way of creating data-driven, detailed simulations as based
on the Blue Brain environment. But sometimes it is individual simulations that explain
and predict highly complex phenomena. Such is the case with Spaun, and slightly less
so with the model of the LFP produced using the Blue Brain, as the model itself does
not represent LFPs directly, only data that can be used to compute them.

There are several dimensions of empirical validity of explanatory computer sim-
ulations used in neuroscience. I already mentioned that according to mechanism,
they need to be complete by covering the relevant causal factors. The completeness
norm requires both structural validity and how-actually explanations, or at least how-
plausibly explanations. It also requires that all levels of the mechanism are included,
which usually demands also a behavioral match if the capacities of the complete brain
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are to be modeled, so evidence from psychological experiments needs to be included
in the validation. Quite obviously, simulations should also have biological relevance,
and their relevance is greater if they are general.

In general, simulations are usually useful when they actually run. Running a com-
plex simulation may lead to results that are too difficult for the modelers to predict
without the use of a computer. Hence, implemented computational models are thought
to be of higher value, as within them unexpected properties of models are easier to
find (Farrell and Lewandowsky 2010). The evaluation of the goodness of fit for such
models is also straightforward, by contrast to evaluation of their verbal descriptions,
which always remain underspecified. If the modeler makes the model code generally
available, others can replicate the results and assess the fit to phenomena under simu-
lation. In addition, one may ‘probe’ the model by tweaking its properties and checking
the resultant behavior. This way, for example, onemight tweak the connectivity pattern
in neural networks to see how it affects their behavior.

Neither is higher fidelity of the model necessarily a virtue from the mechanistic
point of view, contrary to appearances. What is essential is whether the explanan-
dum phenomenon is elucidated by the overall functioning of the model and that all
components and operations relevant to the phenomenon are included in the model.
But the phenomenon may be idealized to avoid Bonini’s paradox and to include only
its essential features. Without a precise specification of the phenomenon, however, it
is not possible to determine the degree of structural validity of the model. This per-
tains to Spaun, with its slightly generic specification of the explanandum phenomenon
(task switching). It is difficult to say what exactly should be the result of the working
simulation. Should we see task inhibition between activated tasks, for example?

The NCC model, as many other models in computational neuroscience, draws data
from databases of experiments in vivo. As I stressed, the simulation used to hint at
the origin of the LFPs in the brain did not reconstruct LFPs in themselves; it was only
used to infer their properties. This means that multiple models need to be integrated
to build complete models of the brain, including also models of high-level behavior.
The mechanistic framework requires that the modeler looks down at the low-level
causes of phenomena, but also around and up, to use Bechtel’s (2009) phrase. High-
level constraints on organization are crucial in explaining neural mechanisms, as is
the influence of other mechanisms at the same level of organization. Looking down,
around and up can be achieved either by building interoperable models that share
assumptions and can be simply chained together, or by performing a special kind of
idealization, calledmultiple-models idealization (MMI). It consists in “the practice of
buildingmultiple related but incompatiblemodels, each ofwhichmakes distinct claims
about the nature and causal structure giving rise to a phenomenon” (Levins 1966;
Weisberg 2007, p. 645). In MMI, it is hoped that the truth is in the intersection of lies
inmultiplemodels. Lessmetaphorically, it means that independently built simulations,
all empirically validated, are compared to see their common predictions and structural
patterns, which are hypothesized to reflect robust components and operations in the
models (for more on the notion of robustness, see Wimsatt 2007).

However, creating a correct MMI meta-model is non-trivial, as common patterns
and predictions may stem from the same set of ad hoc assumptions made by modelers,
for example; in general, the more independent assumptions of models in MMI, the
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better, as they will be more statistically independent as a whole, so it will be less likely
that they produce the same results by coincidence. Automatically building different
models may also help compensate the confirmation bias, or the tendency to seek
evidence that confirms (rather than disconfirms) the modeler’s hypothesis (Farrell
and Lewandowsky 2010). At the same time, technological limitations make MMI
expensive: computational neuroscience requires time-consuming computations, and
creating multiple simulations with the same level of detail would simply need more
time (though the time complexitywill growbya constant factor k,where kis the number
of models plus overhead of comparing the results; constant factors are negligibly low
from the point of view of computational complexity theory).

These requirements can be summarized in the form of a simple checklist for a
modeler.

1. Is it clear what the explanandumphenomenon is? The phenomenon to be explained
should be clearly identified.

2. Is the explanandum phenomenon analyzed and well-understood? The dynamical
structure of a phenomenon (e.g., precipitating and inhibiting conditions onmultiple
time-scales) is needed for explanations to be complete.

3. Is explanation general and does it predict previously unobserved behavior? If not,
the simulation might just be an instance of overfitting.

4. Is the model implemented? Verbal descriptions or even formal specifications of
models are not as methodologically valuable as complete implementations.

5. Does the model fulfill the criteria of structural validity and is it empirically ade-
quate vis-à-vis actual phenomena? Are all components and operations completely
specified on multiple levels? Idealized explanations (mechanism sketches) are also
valuable, but it should be possible, in principle, to fill in the gaps in the sketch.

6. Is the model interoperable? In neuroscience, it is necessary to draw evidence from
different sources. Interoperable models that can be “plugged in” to other models as
their inputs are therefore more valuable. Alternatively, multiple different models
with different assumptions can be created to see which components and operations
are robust.

My goal in this paper was tomake clear that the completeness norm does not require
including all possible detail in simulations understood as mechanistic models, as well
as to showhowsimulations function as idealizedmodels ofmechanisms. Idealization is
not detrimental to mechanistic modeling; idealized models perform fine if they focus
on the essence of the phenomenon to be explained. Similarly, an idealized model
may explain a complex mechanism with multiple capacities accurately as long as it
represents the essential factors accurately. More is not always better; and sometimes
more is even worse. For this reason, idealization in models of complex mechanisms is
unavoidable not only for technological reasons, but primarily for explanatory reasons,
and it is explanatory relevance to the phenomenon at hand that justifies the use of
idealization. Moreover, models are representations, and as soon as they become too
complex for their users (be that human beings or other models that interface them),
they are no longer performing their explanatory function.

As the recent controversy over the Human Brain Project shows (The Lancet Neu-
rology 2014), the neuroscience community is not unanimous about the bottom-up
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approach to modeling and the exclusion of the higher-level spatiotemporal scales.
Given the ambitious goals of the project, it simply seems premature to promise huge
progress in modeling the complete mammalian brain or discovery of new therapies for
neurodegenerative diseases without a systematic methodology that would link multi-
ple levels of organization in a single framework. And this is exactly what the Human
Brain Project is currently lacking.
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