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Abstract. Cooperation as problem-solving and algorithm-design strategy is widely used to 

build methods addressing complex discrete optimization problems. In most cooperative-

search algorithms, the explicit cooperation scheme yields a dynamic process not 

deliberately controlled by the algorithm design but inflecting the global behaviour of the 

cooperative solution strategy. The paper presents an overview of explicit cooperation 

mechanisms and describes issues related to the associated dynamic processes and the 

emergent computation they often generate. It also identifies a number of research 

directions into cooperation mechanisms, strategies for dynamic learning, automatic 

guidance, and self-adjustment, and the associated emergent computation processes. 
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1 Introduction

Cooperation as problem-solving and algorithm-design strategy is widely used in many
fields, including but not restricted to ad hoc wireless networks, swarm robotics, multi-
agent systems, constraint programming, and exact and meta-heuristic methods address-
ing complex discrete optimization problems. While the cooperation paradigm may take
different forms, they all share two features: a set of highly autonomous programs (APs),
each implementing a particular solution method, and a cooperation scheme combining
these APs into a single problem-solving strategy. This strategy is different from the “co-
operation” found in distributed algorithms, which is predetermined by the decomposition
of an algorithm into concurrent processes. Cooperative-search algorithms combine inde-
pendent problem-solving strategies, that is, each element of the cooperation is a stand-
alone method able, in most cases, to address, “solve”, the problem instance considered.
Consequently, cooperation mechanisms must be designed explicitly, which constitutes the
core of writing a cooperative algorithm.

In most cooperative-search algorithms, the explicit, deliberately designed, cooperation
scheme yields an associated stream of correlated interactions, i.e., reactive actions with
a potential for emergent computation and, eventually, cooperation. This dynamic pro-
cess, active simultaneously with the deliberate, optimization-oriented cooperative-search
algorithm, is neither controlled by the algorithm design, nor spontaneously oriented to-
ward the optimization of the problem at hand, but contributes to determine the global
behaviour of the cooperative solution strategy.

Correlated and indirect interactions are similar to ripple (or side) effects in computing
systems, defined as coherent processing activities partly independent of algorithmic rules.
In distributed computation, for example, a delay to execute some instructions (due to
workload variations of shared resources such as CPUs) can generate a ripple effect on the
ordering of the execution of several other concurrent operations. Distributed algorithms
are, in fact, notoriously difficult to debug because ripple effects make faulty behaviour
almost impossible to reproduce. Ripple effects are a form of adaptive response of the
processing activities to events not explicitly accounted for in the algorithm design.

In the context of cooperative-search methods, correlated asynchronous interactions
occur according to system conditions, as well as the internal state of the cooperating
APs and the information exchanged. Though they escape the direct control of coop-
eration schemes, indirect interactions influence the subsequent logical steps of the APs
whether they interact with the computing environment or with other search programs.
Now the question is: could indirect interactions, which are inevitable in cooperative
search, be harnessed to yield a better performing method? Under which conditions could
this behaviour be obtained? Could we understand and eventually “design” an implicit
cooperation strategy emerging out of these interactions?
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We believe two important research issues stand out in this context: On the one
hand, the development of good cooperation mechanisms, including strategies for dynamic
learning, automatic guidance, and self-adjustment; On the other hand, the study of the
associated dynamic processes focusing on the possible emergence of a second, implicit,
layer of cooperation among the APs and on how to harness it to obtain a “better” search
method for the problem at hand.

The goal of this paper is to contribute to address these issues. We give an overview
of the main explicit cooperation mechanisms encountered in the literature and describe
issues related to the associated dynamic processes and possible emergent computation.
We also identify a research agenda focused on these issues that we believe important
and timely given the current interest not only in the parallelization of exact and meta-
heuristic solution methods, but also in novel algorithmic schemes (e.g., the so-called
swarm methods).

The paper is organized as follows. Section 2 briefly recalls the main cooperative
parallel meta-heuristics mechanisms. Section 3 discusses the reactive component of
cooperative-search algorithms and its potential for emergent cooperation. Section 4
revisits cooperative parallel meta-heuristics mechanisms focusing on dynamic learning,
automatic guidance, and self-adjustment strategies as a partial response to emergent
computation issues. Research avenues are summarized in Section 5 and we conclude in
Section 6.

2 Explicit cooperation schemes in meta-heuristics

Providing a full-length literature review of contributions to cooperation and meta-heuristics
is beyond the scope of this paper. Our objective is to synthesize the state-of-knowledge
of the field as we see it. The interested reader may consult a number of survey papers on
parallel meta-heuristics that dedicate (under various forms and names) significant space
to cooperative methods, including two recent books [1, 30] that collect chapters on many
issues in parallel computing for combinatorial optimization and [7, 8, 14, 17].

Parallelism in general, and cooperative strategies in particular, imply that both the
individual APs and the resulting global search proceed most of the time with incomplete
knowledge regarding the status of the search. The design of the information exchange
mechanisms is thus a key element to the good performance of cooperative methods.
Important cooperation design issues include its content (what information to exchange),
timing (when to exchange it), connectivity (the logical inter-processor structure), mode
(synchronous or asynchronous communications), exploitation (what each AP does with
the received information), as well as its scope, that is whether new information and
knowledge is to be extracted from the exchanged data to guide the search.
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The importance of these issues is reflected in most parallel meta-heuristic taxonomies.
To illustrate, consider the classification of Crainic and Nourredine [13], which generalizes
that of [16, 7]; [33, 17] present classifications that proceed of the same spirit), where two
of the three dimensions relate to cooperation issues. Thus, the Search Control Cardinal-
ity dimension examines how the global search is controlled: either by a single process or
collegially by several processes that may collaborate or not. Cooperative methods belong
to the second category denoted p-control (pC). The Search Control and Communications
dimension then addresses the issue of information exchanges according to four classes
to reflect the quantity and quality of the information shared, as well as the additional
knowledge derived from these exchanges (if any): Rigid (RS) and Knowledge Synchro-
nization (KS) and, symmetrically, Collegial (C) and Knowledge Collegial (KC). As for
the third dimension, Search Differentiation, it reflects the diversity of the initial solu-
tions and search strategies: SPSS, Same initial Point/Population, Same search Strategy ;
SPDS, Same initial Point/Population, Different search Strategies ; MPSS, Multiple initial
Points/Populations, Same search Strategies ; MPDS, Multiple initial Points/Populations,
Different search Strategies (where “point” is used for neighbourhood-based methods).

The most crude form of cooperation involves (almost) no cooperation at all and is
identified as pC-RS with any of the previous search differentiation strategies. Such
independent multi-search methods start several processes, using the same or different
solution strategies, from different initial configurations. No attempt is made to take
advantage of the multiple APs running in parallel, other than to identify the best overall
solution once all processes stop. This parallelization of the classic sequential multi-
start heuristic is easy to implement and may offer satisfactory results in terms of search
acceleration.

pC-KS strategies obtain cooperation by adopting the same general approach as in
the independent search case but taking advantage of the parallel exploration by syn-
chronizing the APs at pre-determined intervals. An information exchange mechanism
then determines the best current overall solution and the search is restarted from that
point. The mechanism may use a designated process to gather information, extract the
best solution, and broadcast it to all search processes. Alternatively, each AP may be
empowered to initiate synchronization (e.g., using a broadcast) of all or a pre-specified
subset of processes (e.g., processes that run on neighbouring processors). Here, as in the
more advanced cooperation mechanisms indicated bellow, migration is the term used to
identify information exchanges in population-based parallel algorithms.

Synchronization was seen as a means to re-create a state of complete knowledge to
share among all participating individual methods, and it was hopped that performances,
in terms of computing efficiency and solution quality, would be improved. This did not
materialize, however. In fact, compared to independent and most asynchronous strate-
gies, synchronous cooperative methods display larger computational overheads, appear
less reactive to the evolution of the global parallel search, and conduct to the premature
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convergence of the associated dynamic process. It has been shown, for example, that
frequent broadcasting of new solutions that stop individual methods from continuing to
explore improving sequences leads to either a random search or premature convergence.

Controlled, parsimonious, and timely exchanges of meaningful information are thus
characteristic of successful cooperative strategies. Asynchronous methods belong to this
group and may be characterized according to the quantity and quality of the information
exchanged and, eventually, the “new” knowledge inferred based on these exchanges. pC-
C asynchronous cooperative methods exchange “good” solutions only or, when a memory
mechanism exists, implement simple strategies to extract solutions from memory to pass
to APs. More advanced designs, denoted pC-KC, add procedures to create new informa-
tion and solutions based on the solutions exchanged, and implement guiding mechanisms
based on this information.

Search
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Search
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(a) Many-to-Many

Search
i

Search
k

Search
j

Search
l

Memory, Pool
Reference Set
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Data Warehouse

(b) Memory Based

Figure 1: Direct Communication Schemes

Communications may be undertaken either directly or indirectly. Strategies based
on the evolutionary paradigm generally use direct communications. The population is
divided into subsets, each assigned to a processor (alternatively, relatively small pop-
ulations are generated for each processor), and a genetic algorithm runs on each. An
individual population and a genetic algorithm form a so-called island. Each island may
potentially communicate with any of the other islands, as illustrated in Figure 1a. Then,
according to an exchange protocol (e.g., on demand from an island with low popula-
tion diversity), a migration operator sends a “good” individual to another island. This
parallel cooperative strategy is known as coarse grained. Islands (processors) may also
be allowed to communicate with a limited number of other islands (processors) only, as
illustrated in Figure 2a. Such limitations are generally the result of particular topologies
of the processor network, e.g., the 2-D torus of Figure 2a. Communications then take
place only among adjacent processors according to a so-called diffusion mechanism. No-
tice that, islands tend to have very small populations in this case and the strategy to
be denoted fine grained. When populations are down to single individuals, the genetic
operators are applied to individuals on adjacent islands.
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Figure 2: Diffusion Communication Schemes

Many cooperative developments outside the evolutionary community are based on
indirect communications and, currently, the largest number use some form of memory
for inter-process communications (the terms pool and solution warehouse are also used;
due to the role assigned to the elements it contains, the terms “reference” and “elite set”
are also sometimes used, while the artificial intelligence community uses a similar concept
under the name “blackboard”). The individual heuristic or exact methods are generally
assigned each to a processor, as illustrated in Figure 1b. In the literature, so-called
adaptive-memory methods [29] store partial elements of good solutions and combine them
to create new complete solutions that are then improved by the cooperating programs,
while central-memory approaches [15] exchange complete elite solutions that are then
used to steer the search and, eventually, create new information.

Cooperation is achieved through asynchronous exchanges of information through the
pool (which may share a processor with an AP or be assigned a particular one). Whenever
a program desires to send out information (e.g., when a new local optimum is identified),
it sends it to the pool. Similarly, when a program needs to access outside information
(e.g., to diversify the search), it reaches out and takes it from the pool. Communications
are initiated exclusively by the APs, irrespective of their role as senders or receivers of
information. No broadcasting is taking place and there is no need for complex mech-
anisms to select the programs that will receive or send information and to control the
co-operation. The pool is thus an efficient implementation device that allows for a strict
asynchronous mode of exchange, with no predetermined connection pattern, where no
process is interrupted by another for communication purposes, but where any AP may
access at all times the data previously sent out by any other AP.

Multi-level cooperative search [32] offers a different pC-KC cooperation approach
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based on controlled diffusion of information principles (Figure 2b). Each AP works
at a different level of aggregation of the original problem (one AP works on the orig-
inal problem) and communicates exclusively with the APs working on the immediate
higher and lower aggregation levels. Improved solutions are exchanged asynchronously
at moments dynamically determined by each AP according to its own logic, status, and
search history. Received solutions are used to modify the search at the receiving level.
An incoming solution will not be transmitted further until a number of iterations have
been performed, thus avoiding the uncontrolled diffusion of information.

Strict and knowledge-synchronous mechanisms yield a rather strict control of the
global search, the trajectory of each AP in the cooperation changing according to the
state of all other APs, resulting in no or little emergent behaviour being observed. On
the other hand, however, these approaches have been shown experimentally to gener-
ally yield inferior results to those of collegial and knowledge-collegial strategies. The
behaviour of APs in the latter contexts depends on the information exchanged and, in
the case of memory-based cooperation, on the information stored and its management.
Moreover, the evolution of pC-KS cooperative systems creates new knowledge, new so-
lutions, targets, and statistics, based on the information stored in the memory structure
and uses this new knowledge to influence the trajectory of each AP in the cooperation
and, thus, the trajectory of the global search. The information propagation inherent
to these asynchronous cooperation mechanisms yields significant emergent behaviour as
discussed in the next section.

3 Emergent computation and cooperation

All cooperation search mechanisms presented in the previous section involve explicit
exchanges of information among the APs. These exchanges are defined by the design
of the cooperation scheme, which details exactly what and when information is to be
shared, as well as how this information is to be used. This explicit design exists even
when exchanges are performed asynchronously and indirectly through a pool.

The information collected and communicated through an explicit exchange by one AP,
the sender, generally modifies information available to, and thus the search trajectory
of, at least one other program: the receiver. For example, the sender may communicate
its newly improved best solution x and the receiver may re-initialize its search from it.
In other words, the control and behaviour of the search performed by the receiver AP
is modified by the search and information sharing behaviour of the sender AP. This
phenomenon is denoted direct (explicit) AP interaction.

Explicit information exchanges are designed to improve the performance of the global
search performed by the APs involved in the cooperation compared to their individual
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Figure 3: Information Propagation Process

performances. This goal if often attained but not always or not always at the level hoped
for [31]. This is largely due to the fact that, in most cooperative search systems, APs
interact not only through explicit information exchanges, but also indirectly through
correlated cooperation actions. Information among cooperating APs is thus also shared
implicitly through a propagation (or diffusion) process not explicitly defined by their
design or that of the cooperation mechanism.

Figure 3 describes a simple propagation process. AP1 sends information x to AP2

via a direct interaction 1
x−→ 2. AP2 receives this information and uses it to guide

its exploration. Later, it sends information y = f2(x) to AP3 via a direct interaction

2
y−→ 3. The notation indicates that the information sent by AP2 to AP3, y, results, at

least partially, from an interaction between AP1 and AP2, which modified the trajectory
executed by the search heuristic f2 of AP2. There is implicit information propagation
because the second interaction is triggered by the modification to the search behaviour
of AP2 following an interaction with AP1. The second interaction is correlated to the
occurrence of the first one.

Correlated interactions propagate control actions of one program onto other programs.
In the example of Figure 3, the search activities of AP1 modify the search behaviour of
AP3, as indicated by the arrow between the two APs. We identify this control as indirect
(implicit) AP interaction.

When direct interactions occur asynchronously according to the internal state of the
interacting APs, chains of correlated interactions build up spontaneously among the
APs. Sequences of bold arrows in Figure 4 illustrate such occurrences of correlated
interactions under a 2-D torus interconnection network, while dashed arrows represent
some of the associated indirect control activities. Figure 4(a) pictures a chain of correlated
interactions generated by the sequence of direct interactions 5 → 6, 6 → 10, 10 → 14,
14 → 15, 15 → 3, 3 → 4, and 4 → 8, together with one of several associated indirect
interactions: 5 → 8. Figure 4(b) illustrates the case where two chains of correlated
interactions develop concurrently, while Figure 4(c) displays indirect interactions forming
loops inside a network of correlated interactions. These are only illustrative examples,
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of course. Yet, they help getting a sense of the complexity of the control activities
associated to indirect interactions, the spontaneity of this control, the inter-connectivity
of the programs in a cooperative search, and the dependence of the search performed by
each AP on these emerging control structures that are the correlated interactions. In a
central memory-based systems, where chains of correlated interactions are not restricted
by the logical topology of the interconnection network, this self-organization of the search
through correlated interactions is even more striking.

1 2

5 7

9 11 12

13 16

6 8

10

14 15

3 4

(a)

1 2

5 6 8

9 11 12

13 16

10

14 15

3 4

7

(b)

4

5 8

13 14 15 16

12

1 3

9 10

6 7

2

11

(c)

Figure 4: An Illustration of Indirect Information and Control Propagation

Chains of correlated interactions are the ripple effects of cooperative search and con-
stitute the means by which information propagates among APs, information different
from and in addition to that resulting from the interactions specified by the cooperation
scheme. It must be emphasized that, unlike explicit information exchanges, the sharing
of information through propagation is not specified in the cooperation scheme. Nor are
specified the search control activities that emerge spontaneously from these information-
propagation processes. Moreover, this spontaneous organization of the control activities
plays a more important role in the global exploration of the search space performed
by cooperation mechanisms implementing asynchronous pC-C and pC-KC strategies,
where the cooperation scheme is executed independently and asynchronously by each
cooperating AP.

Interesting questions arise from the realization that emergent control behaviour oc-
curs in systems of cooperating APs and that the global exploration of the search space
performed by the cooperating APs is thus the result of the interplay between the two
types of AP interactions, the direct ones specified by the design of the cooperation and
the complex system of indirect interactions emerging from them. Could indirect interac-
tions act similarly to direct ones and, by modifying the search behaviour of the receiving
AP improve its performance? Could indirect interactions emerge as an implicit coopera-
tion scheme, that is, could indirect interactions support a global cooperative exploration
of the search space? Does or could this emergent control help improve the exploration of
the search space? In what circumstances could the answer to some of these questions by
“yes” ? Understanding how such global behaviour may emerge and how (if) it could be
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harnessed to support the search for good solutions to the problem in hand, could prove
important in enhancing the performance of cooperating search methods.

4 Advanced cooperation mechanisms and learning

Studies on emergent cooperation issues have been performed within a number of scientific
fields (Section 5) but, with the notable exception of the multi-level paradigm designed
to control the indirect diffusion of information among cooperating APs, few efforts were
dedicated to these issues within the operations research or parallel meta-heuristic commu-
nities. Most efforts were rather directed toward improving the cooperative meta-heuristic
mechanisms to enhance their optimization capabilities. Learning was and continues to
play a central role in these processes, particularly for memory-based mechanisms.

Consider the adaptive-memory approach where the pool contains solution components
(e.g., tours) of good solutions identified by APs (e.g., multi-tours for VRPTW found by
tabu searches) that are ranked according to attribute values, including the objective
values of their respective solutions.. Each APs then probabilistically selects components
in the memory, constructs a new initial solution (e.g., by solving a set-covering heuristic),
improves it, and returns the components of its best solution to the memory.. The learning
mechanism of adaptive-memory approaches is thus composed of the partial solutions kept
in the memory together with the continuously updated rank values, combined to a new-
solution creation feature.

Algorithms based on the central-memory approach keep full solutions and attributes
sent by the APs involved in cooperation. APs may construct new solutions, execute
a neighbourhood-based improving meta-heuristic, implement a population-based meta-
heuristic, or perform post-optimization procedures on solutions in the pool. Improving
meta-heuristics aggressively explore the search space, while population-based methods
(e.g., genetic algorithms [10, 21] and path relinking [9]) contribute toward increasing
the diversity of solutions exchanged among the co-operating methods. Exact solution
methods may participate to the cooperation either to build solutions or to seek out opti-
mal ones (on restricted versions of the problem, eventually). The information exchanged
among cooperating APs has to be meaningful, in the sense that it has to be useful for the
decision process of the receiving programs, the evolution of the shared data, and thus the
evolution of the global search, or both. Information indicative of the current status of the
global search or, at least, of some individual search program is, in this sense, meaningful.
The basic mechanisms thus only implement exchanges of local good solutions (local op-
tima) together with ranking procedures and probabilistic solution-extraction procedures
in the central memory, thus implementing the same learning mechanisms described pre-
viously.
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More advanced mechanisms may involve exchanges of good solution together with
their respective context (e.g., memories recording recent behaviour of solution attributes),
or a comprehensive history search. Memories recording the performance of individual
solutions or solution components may be added to the pool, as well as procedures to
generate new solutions or to compute various statistics on solutions, solution components,
individual AP performance, and the trajectory of the global search. This information may
then be used to build guidance mechanisms or even to feed external learning programs,
e.g., neural networks. Not all these ideas have been thoroughly developed and included
in the latest methods found in the literature. They constitute an active field of research,
however, as illustrated by the two following examples. First, Le Bouthiller, Crainic,
and Kropf proposed a dynamically-adaptive learning and guidance mechanism based on
atomic elements (e.g., the arcs present in the routes of VRPTW solutions in the pool
[22]). Patterns of arcs present in good or bad solutions in the pool are built and are
then sent to the individual APs to intensify or diversify the global search. The particular
pattern and guidance directive depends upon the stage of the search as measured by the
evolution of the elite population in the pool. The mechanism is general in the sense that,
being based on atomic elements, it is independent of any particular problem structure.
Second, Crainic et al. have shown for the first time the capability of memory-based
cooperative search to handle complex, multi-characteristic problems [9]. Their study
of the design of third-generation wireless networks aims to optimize the number and
configuration (location, power and number of antennas, plus the orientation and tilt of
each antenna) of base stations to guarantee level of service and minimize the impact of
the electromagnetic emissions of the system on human health. The cooperative system
involves several tabu search APs to explore particular parts of the solution space where
only a few of the configuration parameters are allowed to vary. A genetic algorithm and
a path relinking method are then used to combine partial solutions into complete ones
and generate new solutions for the pool.

Many interesting research challenges may be identified in relation to these issues. A
first group continues the work in designing intelligent cooperation and learning mecha-
nisms to enhance the optimization capabilities of cooperative meta-heuristics. Promising
avenues include, but are not limited to, the integration of adaptive and central mem-
ory principles, the enhancement of atomic-based guidance, the integration of memory
and multi-level search concepts, and the development of advanced learning mechanisms
that 1) build a dynamic image of the performance of each AP to, eventually, modify its
search parameters or principles, 2) combine statistics (memories) and artificial intelli-
gence methods (e.g., neural networks), and 3) integrate the distributed, i.e., the APs’,
memories to the global search knowledge and guidance. A second direction aims to build
on the capabilities of such intelligent cooperation and learning mechanisms to build char-
acterizations of the solution space already visited and the dynamic performance of the
search. This could then be used to steer the global search accordingly as well as to study
the linkages between explicit cooperation and emergent computation. Last but not least,
it would be very interesting to develop a theory of learning within the context of multi-
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AP cooperation. This would provide the means to go beyond the limits of experimental
settings in designing effective parallel cooperation search methods for difficult problems.
The next section identifies some of these latter possibilities in more detail.

5 Research directions in emergent computation and

cooperative search

We believe that research directions on the dynamics and emergent computation behaviour
of cooperative search should be inspired by research conducted in other fields, as well as
build on the learning mechanisms described in the previous section and on experimental
and empirical validation processes for particular problems.

The programming of dynamics in computing systems could offer a first direction.
As indicated earlier, the performance of the global exploration of the search space by
cooperating APs is obtained from the interplay of a complex system of direct and in-
direct interactions. So far, however, the design of cooperative algorithms has focused
on the components of such systems, e.g., the APs, the cooperation scheme, and the in-
terconnection network, taken individually. Little effort, if any, has been dedicated to
developing design strategies of cooperative algorithms by considering, “programming”,
the system as a whole. This is a bit surprising since dynamic interactions among au-
tonomous computing elements and their potential for emergent computation have been
investigated for several computing system contexts. Thus, recurrent neural networks
with emergent search behaviour are programmed as a whole by directly adjusting their
parameters (e.g., the logical interconnection network, the weights on the interconnection
links, and the transition functions on the nodes) based on learning algorithms and ad-
justment procedures built from the problem optimization model. For cooperative search,
this translates into working directly on the logical interconnection network, the cooper-
ation mechanism, the APs, and the asynchronous mode of information exchange, that is
work directly on the optimization logic of the cooperation. The methods to perform this
global design are an important research topic per se, which, for us, is strongly related to
the learning issues identified previously.

We thus turn to research areas such as multi-robot systems [2, 3, 6, 23], reactive
multi-agent systems [5, 27], artificial life [18, 25, 19] and ad hoc implementations of co-
operative algorithms in various computer science applications. Emergent cooperation
behaviour has been synthesized in the field of behaviour-based robotics [2, 3, 23] using
a methodology denoted behaviour-Based AI, derived from theories on the modular de-
composition of intelligence [4, 20]. Behaviour-decomposition methods are first used to
analyze observed emergent cooperation behaviours in natural social systems made up
of individuals displaying relatively simple behaviours (e.g., ants). Similar cooperative
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behaviours are then synthesized in societies of robots [24]. For example, the foraging be-
haviour of ants has been synthesized into an object-gathering behaviour in social robotics
by combining two basic forms of direct interactions among robots (APs), dispersion (in-
teract to diversify the exploration relative to the others) and homing (aim for the goal
by, for example, sharing the good solutions) [23]. These results could provide the the-
oretical foundations for cooperation mechanisms that include more than one form of
information sharing strategy among APs which, hopefully, will display global dynamics
that adequately approximate the desired emergent problem-solving strategy.

More ideas for research directions come from the field of computing systems where
ad hoc bottom-up and emergent computing strategies are increasingly being proposed
with significant success for various applications in telecommunication network routing,
reliability and power supply limitations in wireless networks, access security to computer
systems, and so on. For example, self-assembly in nanothechonology, a bottom-up nano-
fabrication process in which components self-assemble based on shape complementarity,
could provide the basic strategies to specify which interactions are allowed to occur at run
time and, thus, to specify the logical interconnection networks. Similarly, the research
efforts in autonomic computing, which aims to be able to tell a system what to do and
let it to find how to do it, could maybe inspire a new definition of problem solving for
cooperative meta-heuristics where it is the emergent behaviour of the system that finds
its way to how address a given problem.

Unlike cellular automata and artificial neural networks, logical interconnection net-
work topologies in cooperative algorithms tend to vary widely. So far, empirically, the
best cooperative search results have been obtained through interconnection networks
that are configured dynamically at run time, e.g., the memory-based approaches. This
suggests adaptive approaches to program system dynamics by adjusting dynamically the
network topology of cooperative algorithms to meet the desired attributes of global co-
operation. Turning to the learning mechanisms of the previous section, we believe that
these or similar learning schemes could be applied to system dynamics. Thus, for ex-
ample, learning could be used to identify system attractors (regions of the search space
to which the search returns often) and the path ways leading to them. The mechanism
could then be used to adjust dynamically the interconnection topology by blocking these
path ways, and thus prevent the occurrence of some chains of correlated interactions that
appear to attract the search is the same region of the search space. Learning could also
be used to develop interaction policies that favor those that can lead to the emergence
of cooperation and block those that are harmful to it. Intelligent control of the system
dynamics of cooperative search through learning mechanisms is certainly one of the most
promising research avenues in the effort to obtain a cooperative exploration of the search
space through spontaneous interactions among APs.

Research on self-organization often analyze natural systems with observed self-organized
behaviours to discover strategies for designing distributed systems with particular glob-
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ally emergent behaviours. However, it is well known that computing systems yield sponta-
neous activities, e.g., the ripple effects described earlier on. This raises the issue whether
we should study the dynamic behaviour of cooperative search systems per se, as a re-
search object, similarly to biological systems through comprehensive laboratory-based
simulations. An associated question is whether we should seek to understand the com-
plex behaviour of cooperative systems in order to sustain emergent cooperation or, rather,
should we seek to discover new search heuristics based on occasionally occurring coher-
ent search behaviour at the global level? A combination of these two methodological
approaches has proved to be successful. Thus, the study of locally emergent cooperation
has led to ideas to design a new cooperation mechanism, which yielded the highly suc-
cessful multi-level cooperative search method. The final challenge, obviously, is to bring
together the research on explicit and implicit cooperation mechanisms and behaviours
and apply the resulting methodology within the context of various solution methods.
Even though the research in this area is still at the very beginning, this challenge has
been met with some success, producing new methods out of the study of cooperative
search [28, 12, 26, 11, 22].

6 Conclusion

Cooperative algorithms as computerized problem-solving strategies are becoming ubiqui-
tous in several problem domains, in particular for addressing complex discrete optimiza-
tion problems. Cooperation has well-known advantages, short development cycle through
the re-utilization of existing exact or heuristic methods and high adaptability to different
problems and problem characteristics, in particular. Yet, these systems also generate
series of indirect interactions that may reduce their performance. We have described co-
operation mechanisms, discussed the relations between direct and indirect interactions,
and have identified a number of challenges and interesting research directions for the
development of the next generation of cooperative search methods.
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