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ABSTRACT 

Behavioral beliefs – perceived usefulness and perceived ease of use – have been identified as the 

most influential antecedents of individuals’ information systems use intentions and behaviors 

within the technology acceptance model. However, little research has been aimed at investigating 

the implicit (automatic or unconscious) determinants of such cognitive beliefs, and more 

importantly, the potential nonlinear relationships of such antecedents with explicit (perceptual) 

ones. As such, this paper theorizes that implicit neurophysiological states – memory load and 

distraction - and explicit – engagement and frustration - antecedents interact in the formation of 

perceived usefulness and perceived ease of use. In order to test the study’s hypotheses, we 

conducted an experiment that measured neurophysiological states while individuals worked on 

instrumental and hedonic tasks using technology. The results show that, as theorized, implicit 

and explicit constructs interact together, and thus, have a nonlinear effect on behavioral beliefs. 

Specifically, when engagement is high, neurophysiological distraction does not affect perceived 

usefulness, whereas when engagement is low, neurophysiological distraction has a negative and 

significant effect on usefulness. The results also show that when frustration is high, 

neurophysiological memory load has a negative effect on perceived ease of use, whereas when it 

is low, neurophysiological memory load has a positive effect on perceived ease of use. This 

study makes several contributions, including the demonstration of the importance of emotional 

perceptions for moderating the effects of neurophysiological states on behavioral beliefs. 

 

Keywords: NeuroIS, IS acceptance, IS use, behavioral belief formation, cognitive beliefs, 
electroencephalography (EEG), non-linear effects, emotion, TAM. 
 
Note: All authors contributed equally to this paper. 
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“Beliefs are mental objects in the sense that they are embedded in the brain” 

Kathleen Taylor, neuroscientist at Oxford University [63] 

INTRODUCTION 

Understanding whether individuals decide to use a given technology is critical as 

companies invest significant resources in Information Systems (IS). Reflecting this, most 

research on IS has been aimed at explaining such acceptance decisions. For example, users’ 

intentions to use a given technology are influenced by how useful and easy to use they believe 

the technology to be [38]. Despite suspicions of common method bias on IS acceptance research 

[110, 119], these two behavioral beliefs – perceived usefulness (PU) and perceived ease of use 

(PEOU) - have become two of the most researched constructs in IS research [e.g., 16, 27, 28, 37, 

48, 59, 60, 68]. Thus, behavioral beliefs are valuable in general because they are able to give 

some insight into important questions [12] such as whether a given technology will be used.  

Given the criticality of behavioral beliefs for the IS field, researchers have argued that 

their antecedents need to be identified and investigated [12, 15] in order to understand how such 

beliefs are produced [10]. Further, scholars have recommended that in order to identify such 

antecedents, a fresh look at the original theories of reasoned action (TRA) and planned behavior 

(TPB) need to be taken [12]. As a result, since the late nineties, researchers have looked at these 

theories and identified a wide range of cognitive and emotional factors that influence such beliefs 

[3, 11, 66]. All of these factors have one thing in common: they are all explicit. In other words, 

they are perceptual factors of which individuals are aware of and can report.  

The common (or exclusive) focus on explicit antecedents has three major limitations that 

stem from the fundamental link between the theoretical meaning of a construct and its empirical 

observation [10]. First, because explicit antecedents are perceptual, past research has asked users 
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to reflect on use (via the self-reported measures) before or after the use experience, thus, omitting 

the potential influence that mental activities during actual IS use might exert on subsequent 

behavioral beliefs [83]. Second, the exclusive use of self-reported measures cannot capture 

automatic mental states that might occur outside individuals’ awareness [79, 83] and that might 

play a role in determining behavioral beliefs [45]. In fact, the TRA and TPB literatures explain 

that explicit antecedents can only provide an incomplete picture of the formation of behavioral 

beliefs [34] and that implicit (i.e., automatic or unconscious) antecedents need to be studied as 

well. With the introduction of neuroscientific tools to the IS field [e.g., 42, 99], researchers are 

being encouraged to utilize these tools to identify implicit antecedents of IS constructs [43], and 

as such, localize how implicit factors can affect such beliefs [45]. Finally, several researchers 

have pointed out that, due to the exclusive focus on self-reported measures, IS acceptance 

research is likely to suffer from common method bias [110, 119]. This results in the possibility 

that methodological artifacts bias the estimates of the relations between the different constructs 

[110, 119]. Thus, there is a need to combine structurally different methods - by measuring 

implicit antecedents via neuroscience tools along with explicit ones via self-report – in order to 

overcome common method bias concerns [82]. 

In order to address these three limitations, this study aims to investigate the following 

research questions: 1) what are the implicit antecedents of perceived usefulness (PU) and 

perceived ease of use (PEOU)? and 2) how do implicit (i.e., memory load and distraction) and 

explicit (i.e., engagement and frustration) constructs interact in determining behavioral beliefs? 

The rest of the paper is organized as follows. First, a succinct review of the theoretical 

underpinnings of the Technology Acceptance Model (TAM) is presented. Second, the theoretical 

justification for the interaction of implicit and explicit measures in determining behavioral 
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beliefs is developed. Third, we explain the methodology – an experiment – as well as its results. 

Finally, we end the paper by providing insights for theory, research, and practice. 

BEHAVIORAL BELIEFS IN IS ACCEPTANCE RESEARCH 

Behavioral beliefs are key constructs of TAM, a model often used to explain or predict IS 

acceptance [15]. The original TAM [38, 39] was founded on the Theory of Reasoned Action 

(TRA) and the Theory of Planned Behavior (TPB). Behavioral beliefs are key constructs in these 

theories [6-8, 50], and have been replaced within TAM by PU, “the degree to which a person 

believes that using a particular system would enhance his or her job performance”, and PEOU, 

“the degree to which a person believes that using a particular system would be free from effort” 

[38, p. 320]. TAM advances that IS acceptance/use is determined by the behavioral intention to 

use a system. Intention, which is influenced by attitudes towards the behavior (a construct later 

excluded from the model), is influenced by the two core behavioral beliefs of PU and PEOU. 

PEOU also influences intentions indirectly through a positive relation to PEOU. Finally, both PU 

and PEOU are posited to be formed by external variables, which were not specified in the 

original model. The core of the TAM model is shown in Figure 1.  

--------- Insert Figure 1 here --------- 

Antecedents of Behavioral Beliefs 

While research based on TAM has advanced our understanding of how behavioral beliefs 

influence IT acceptance and is thought to have reached iconic status in IS acceptance [131], 

several researchers have expressed concerns about different aspects of this stream of research 

(e.g., falsifiability, treating behavioral beliefs as ‘black boxes’, and common method bias; please 

see [15, 110, 113, 119] for more details). All in all despite such concerns, the impression is that 

TAM does have some predictive power and with the objective of better understanding its 
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antecedents, the field needs to explore why users perceive a system to be useful or easy to use 

[15, 45].   

These calls for research on the antecedents of behavioral beliefs include 

recommendations to return to the original TRA and TPB, with the hope of discovering the 

building blocks of behavioral beliefs [15]. As a result, IS research has turned to the original TRA 

and TPB to investigate how behavioral beliefs are formed and thus, identify antecedents to the 

formation of such beliefs [66]. More specifically, IS research has identified a wide range of 

antecedents to behavioral beliefs. On the one hand, cognitive constructs such as social presence, 

social influence, perceived accessibility, and availability of user training and support have been 

proposed and studied as factors affecting cognitive beliefs [e.g., 66]. On the other hand, more 

emotional constructs such as those capturing states related to frustration, psychological 

ownership and engagement, have been linked to behavioral beliefs [e.g., 2, 11, 103, 129]. 

Furthermore, such states have been associated with particular design features of technologies or 

specific experiences occurring while using technologies [e.g., 26, 70, 133], thus suggesting a 

relation between these emotional states and beliefs about the technology.  

All these antecedents identified by the IS literature are explicit or perceptual: they 

represent phenomena that occur within individuals’ awareness and as such, individuals can 

report on them. However, the literature in TRA and TPB has also identified implicit determinants 

(i.e., unconscious or automatic) of behavioral beliefs [6, 8]. These implicit antecedents exist and 

have been observed in various non-IS contexts [e.g., 5, 46, 112]. Scholars note that implicit and 

explicit antecedents may not relate because people cannot report accurately on things about 

which they might be unaware [84]. In the specific case of IS research, research on implicit 

antecedents of behavioral beliefs is non-existent with the notable exception of Dimoka, Pavlou 



8 
 

and Davis’ paper [45] on the neural correlates of PU and PEOU.  Thus, as it will be shown next, 

complementing Dimoka et al.’s efforts is important because it is argued that by not studying both 

explicit (i.e., perceptual) and implicit (i.e., unconscious or automatic) antecedents of behavioral 

beliefs in IS research, we have a) only partially captured the formation of such beliefs [34], and 

b) built a research stream that is likely to suffer from common method bias [110, 119]. 

In sum, past research on IS acceptance is limited because it says little about 1) the 

relative effects of implicit vs. explicit antecedents of beliefs, and 2) the potential interaction 

between explicit and implicit constructs affecting behavioral beliefs. As such, uncovering the 

explicit and implicit antecedents of behavioral beliefs can provide finer grained knowledge about 

the determinants of individual IT acceptance and use.  

THEORETICAL DEVELOPMENT 

 This section serves to establish the links between both implicit (neurophysiological, or 

neural) and explicit (perceptual) antecedents of behavioral beliefs and their potential interaction 

(see Figure 2). 

--------- Insert Figure 2 here --------- 

Implicit Antecedents of Behavioral Beliefs 

Implicit (or neural) approaches to the investigation of behavioral beliefs can complement 

current approaches because they address some of the limitations of IS acceptance research 

identified earlier. First, they allow for the capture of users’ reactions to technology as they occur 

in real time while users actually interact with the system [83]. This is important because beliefs 

are formed as experiences take place. Second, they can capture ‘unconscious’ or ‘automatic’ 

processes that occur outside individuals’ awareness [42, 45, 79] and thus, provide a more 

complete view of what actually takes place within the brain while behavioral beliefs are formed. 
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Third, because implicit antecedents need to be captured using different methods (e.g., 

neurophysiological tools) than those used for measuring explicit ones (e.g., self-reports), the 

combination of structurally different methods serves to reduce the common method bias often 

suspected in IS acceptance research [80, 119]. 

Research on the implicit antecedents of behavioral beliefs is non-existent except for a 

recent illustrative fMRI (functional magnetic resonance imaging) investigation by Dimoka and 

colleagues1 [45]. In their paper, Dimoka et al. although not looking for antecedents of behavioral 

beliefs but for their neural correlates, found that PU correlated with the activation of the caudate 

nucleus and the anterior cingulated cortex. The caudate nucleus and anterior cingulated cortex 

are activated by large rewards  [61, 76] and the anticipation of rewards [40] respectively. 

Dimoka and colleagues also found an association between PEOU and the prefrontal cortex [45], 

an area of the brain associated with memory load, such as cognitive effort and working memory 

[20].  

In the present research, we use EEG (electroencephalogram) to assess implicit 

antecedents of behavioral beliefs - the measures are explained in more detail in the Methodology 

section - and thus, complement previous efforts on the identification of neural correlates of IS 

behavioral beliefs [e.g., 45]. The use of EEG builds upon and complements Dimoka et al.’s [45] 

research in several meaningful ways. First, unlike studies using fMRI, EEG allows for the 

recording of electrical signals generated within the brain’s outer layer (the cerebral cortex) [92] 

while users actually interact with the system to work on a task. In contrast, the Dimoka et al. 

[45] study conducted the fMRI recording when the items of PU and PEOU were shown to  

participants, and thus, after participants’ interaction with the system. As such, this usefully 

                                                 
1 1 A related paper by Dimoka and colleagues was presented earlier at a major IS conference [44]. 
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complement fMRI studies by adding realism to the investigation and by capturing brain-related 

electrical signals as technology interactions take place. Second, because of the timing of fMRI 

measurement – when individuals where shown the PE and PEOU items – the objective of 

Dimoka et al. [45] was to look for implicit correlates of PE PEOU, and not for its implicit 

antecedents, which is the objective of our study. Third, EEGs produce finer temporal resolution 

than fMRI [87] which provides more detailed parameters of the electrical cerebral activity during 

actual IS interactions. Thus, the present study investigates the neural antecedents of PU and 

PEOU with the use of EEG. 

Implicit Distraction 

Because the literature on IS has argued for a relation between attention-related constructs 

(e.g., cognitive absorption) and usefulness [e.g., 3, 11], this study investigates distraction (D) as 

an antecedent of PU. Distraction can be considered as a state of “deploying attention away from 

the emotionally salient aspects of an emotion-eliciting event” [123, p. 84]. Within the EEG 

literature, this is measured with a combination of relative and absolute power spectra from 

several EEG sites (please see the Methodology section for a more detailed explanation of the 

distraction measure). Such a state is different from explicit (i.e., perceptual) attention-related 

constructs (e.g., cognitive absorption and engagement) found in the IS literature [e.g., 3, 103, 

133] in several ways: 1) it does not include a pleasurable component, 2) it is concerned with 

one’s capability to remain focused and effectively respond to stimuli rather than one’s mental 

immersed state, 3) it does not have a temporal dissociation component, and 4) it does not have an 

intrinsic interest or curiosity component.  

By building upon the neuroscience literature, we argue for a negative relation between 

distraction and PU for several reasons. When using a given technology, the system needs to 
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provide relevant and useful information so that the user remains focused and alert while 

interacting with the system, ensuring situation cognizance [95]. Situation cognizance refers to the 

intellectual grasp of a situation so that the technology supports the user’s informed action [95]. 

As such, if a system ensures situational cognizance by capturing the user’s attention and 

providing the required information for the accomplishment of the task, then the user will 

perceive the system as useful. That is, if a system is capable of diminishing the user’s distraction 

by providing relevant information [95] then the user will be able to better perform the task, 

eventually perceiving the system as more useful.  

It is important to note that attention decrements are normal in technology-related tasks as 

time goes by and are associated with repetitive observations [51]. Thus, if technology is capable 

of providing relevant information for the task being performed, the distraction will remain low 

over time, allowing the individual to focus his attention on the task [51]. If this is the case, the 

user will perceive the system as useful because it allows him to fully concentrate on the task for 

which the technology is being used.  

The literature has also found significant correlations between different EEG-based 

indices measuring distraction-related states (such as alertness and vigilance) and performance 

[19, 21, 73-75]. That is, this research indicates that the less the distraction, the more the 

performance in a given task. We expect this to relate to PU, as PU represents an instrumental 

belief entailing an evaluative process about the performance of a technology to reach an 

outcome. Because performance increases when distraction lowers, we can therefore expect that 

the less distracted a person, the better the performance, and the more useful s/he will perceive the 

technology. Thus: 

Hypothesis 1: Distraction (D) negatively relates to PU. 
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Implicit Memory load 

Taking Dimoka et al.’s [45] results as a starting point, we theorize that memory load 

(ML) will relate negatively with PEOU. We define ML as the demands placed on working 

memory while performing a given task [86]. ML is usually measured by the brain (electrical) 

activity occurring in the frontal midline (Fz) for the theta frequency (4-7Hz). This frontal midline 

activity has been consistently reported to be involved in human working memory [57, 62, 106] 

(see the Methodology section for details).  

By drawing upon the literature on neuroscience and IS, we posit that memory load will 

relate to PEOU for several reasons. First, memory load indicates cognitive strain. Cognitive 

strain is “affected by both the current level of effort and the presence of unmet demands” [65, p. 

59]. Thus, as memory load increases so does cognitive strain. Cognitive strain is in the opposite 

side of the spectrum of cognitive ease: a sign indicating that there is no need for the mobilization 

of effort [65]. The shift from cognitive ease to cognitive strain makes users switch to an analytic 

mode of effortful mental activities [65]. If, when interacting with a system, a user experiences 

memory load, this implies that cognitive strain has occurred and thus, that an effort is required 

for the use of the technology, hence perceiving the technology as less easy to use. 

Second, recent research has found that certain types of computer interfaces lead to better 

PEOU [104], suggesting that design features influence demands on working memory. That is, 

good design eases memory load [120]. As such, when memory load is low, PEOU increases, 

implying a negative relationship between memory load and PEOU.  

Finally, some view PEOU as the converse of complexity (when using a system) [39]. 

Interestingly, complexity is also related to the notion of intrinsic cognitive load [54] or the 

“amount of informational units a learner needs to hold in working memory to comprehend 
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information” [24, p. 54]. Thus some equate the complexity of a task with the memory load 

required to accomplish it [85]. As a result, one can deduce that memory load would relate 

negatively to PEOU. As such: 

Hypothesis 2: Memory load (ML) negatively relates to PEOU.  

Explicit Antecedents of Behavioral Beliefs 

In addition to the implicit antecedents of PU and PEOU, it is also important to consider 

their explicit (perceptual) antecedents. As argued above, including both implicit and explicit 

antecedents of behavioral beliefs provides a more complete picture of the formation of 

behavioral beliefs. Methodologically, including only one independent variable for each 

behavioral belief may inflate the relation between the independent and dependent variables due 

to a lack of competition with other potential independent variables in explaining the outcome. In 

order words, this is critical to rule out rival explanations that might threaten the internal validity 

of the findings2 [31]. As a result, we posit that explicit engagement (E) and frustration (F) will 

influence PU and PEOU, respectively. 

Engagement and PU 

Engagement (E), a flow-related construct capturing an individual’s state of pleasure and 

absorption while performing a task, has been found to influence performance and future 

intentions to use a given technology [133]. Related constructs, such as cognitive absorption, have 

also been found to influence PU beliefs [2, 103]. The notions of cognitive absorption and 

engagement have the same theoretical underpinnings3: both emphasize focus of attention, 

pleasure, and intrinsic interest and curiosity as dimensions of the constructs [4, 133].  

                                                 
2 We thank an anonymous reviewer for this insight. 
3 In line with Webster and Ahuja (2006, p. 665), the construct of engagement was included in our study for the main 
reason that our respondents were asked to perform directed tasks that lasted only 10 minutes, which is not enough 
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The argument for a relation between E and PU is based on self-perception theory [2, 14, 

103]. If a user is cognitively engaged in using a given technology, s/he experiences pleasure 

from that activity. Because such pleasurable experience is often at odds with an instrumental use 

of technology, the user experiences cognitive dissonance [2]. According to self-perception 

theory, such cognitive dissonance needs to be resolved by the individual [14]. The resolution 

occurs when the individual rationalizes the pleasurable experience as useful. As a result, this 

theoretical rationale would argue for a positive relation between E and PU. 

Hypothesis 3: Engagement (E) positively relates to PU. 
 

Frustration and PEOU 

Researchers have argued that PEOU is influenced by several emotion-related constructs 

such as computer anxiety [129]. The idea behind these links is that emotional experiences with a 

given technology play a role in determining its PEOU. Based on this research, we posit that 

frustration while using a given technology will influence PEOU. Frustration can be defined as an 

emotional response to situational opposition [23]. That is, frustration arises when individuals 

perceive a situational opposition, beyond their control, that prevents them from accomplishing 

their goals [23]. General theories of anxiety would suggest a negative link between frustration 

and PEOU4 [e.g., 91]. Such theories state that frustration produces cognitive reactions that are 

likely to impact expectancies of a given situation [91]. That is, if a person is frustrated while 

using a given technology because it does not allow him/her to easily complete the task, it is 

likely that s/he will not perceive the technology as easy to use.  

                                                                                                                                                             
time to experience the user “control” dimension which would have allowed us to use the construct of cognitive 
absorption (please see Agarwal and Karahanna 2000, p. 672). 
4 Please see Riedl [97] for an exhaustive review on the biology of technostress. 
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Furthermore, researchers have argued that ease of use reduces users’ frustration [32, 70], 

and that usability of a website reduces frustration which increases ease of use [96]. Furthermore, 

the literature on computer education has pointed out that students often become frustrated when 

they cannot understand a given technology [132]. Thus, frustration is important in determining 

the PEOU about a certain technology. As such: 

Hypothesis 4: Frustration (F) negatively relates to PEOU. 
 

Interactions between Explicit and Implicit Antecedents of Behavioral Beliefs 

 Until now we have considered the ‘main effects’ of each explicit and implicit construct 

on behavioral beliefs. However, when we have two independent variables (e.g., ML and F) 

influencing a dependent one (e.g., PEOU), there is more to consider than main effects [84]. Two 

independent variables can also influence the dependent variable in combination, suggesting an 

interaction effect [49]. This represents a possibility in the case of implicit and explicit 

antecedents of behavioral beliefs. As described earlier, explicit measures may be unrelated to 

implicit measures of the same phenomenon because the latter also includes automatic processing 

outside individuals’ awareness. For example, people tend to underestimate stress; that is, their 

perception of stress does not correlate with actual elevations of stress hormones [128]. Thus, to 

the extent that implicit measures (e.g., D and ML) can capture states of which the individual 

might be unaware, and given that behavioral beliefs (PU and POU) are judgment calls of a given 

experience, we posit that individuals’ perceptions of their experiences with technologies will 

moderate the relation between implicit measures and behavioral beliefs. As a result, we propose 

that engagement and frustration will moderate the relationships between D and PU and ML and 

PEOU, respectively. 

Interaction between Engagement and Distraction on PU 
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 Because we argued that distraction should relate negatively to PU, it is logical to think 

that other perceptual constructs that include pleasurable dimensions (e.g., engagement) might 

moderate the relation between D and PU. Because engagement captures the perception of the 

experience with a given technology and thus represents a description of what the user 

consciously experiences, it should moderate the relation between the distraction construct and 

PU. That is, if the user perceives that s/he was engaged while using the technology, the negative 

relation between D and PU is attenuated. In contrast, if the user perceives that s/he was not 

engaged while using the technology, the negative relation between D and PU is strengthened. As 

a result: 

Hypothesis 5: Engagement (E) moderates the negative relation between distraction (D) 
and PU. More specifically, the negative influence of D on PU weakens as engagement 
(E) increases. 

 

Interaction between Frustration and Memory Load on PEOU 

We posit that frustration will moderate the relation between ML and PEOU. Because ML 

is an implicit measure that can also capture memory load of which the user might be unaware, 

we propose that perceptions of frustration will serve to moderate the relation of implicit ML and 

PEOU. More specifically, when frustration is high, the relation between ML and PEOU will be 

negative, whereas when frustration is low, the relation between ML and PEOU will be positive.  

Under low frustration, ML will positively influence PEOU. Indeed, mediofrontal theta 

oscillations have been shown to increase in the context of positive behavioral adaptation [25]. In 

other words, when behavioral adaptation is facilitated through positive feedback – or absence of 

negative events leading to frustration – an individual will feel that s/he is making good progress 

and thus perceive the system as easy to use. In contrast, high frustration will impede positive 

behavioral adaptation and thus ML will have a negative effect on perceptions of ease of use. 
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This relationship is also consistent with cognitive load theory [33] which posits that 

learning occurs when the capacity of the working memory does not exceed the requirements of 

the task. That is, when learning is not detracted by task- or technology-related factors that would 

overwhelm memory load, an individual will pursue his learning process and thus perceive the 

system as easy to use. Alternatively, high frustration is likely to affect memory load and hence 

cause ML to have a negative effect on ease of use perceptions. As such:  

Hypothesis 6: Frustration (F) moderates the relation between memory load (ML) and 
PEOU. More specifically, when F is high the relation between ML and PEOU is negative 
whereas when F is low the relation between ML and PEOU is positive.  

 

RESEARCH METHODOLOGY 

A double-blind experiment5 was conducted in order to investigate the effects of implicit 

and explicit antecedents of PU and PEOU. Twenty-four upper-year undergraduate students took 

part in the experiment. The students were between 20 and 25 years old and were recruited from a 

homogenous student population at a university business school. Participants were screened for 

neurological and psychiatric disorders, as well as for attention deficit disorder. Participants were 

also asked not to use any attention enhancing substances prior to the experiment. This sample 

size is comparable with sample sizes in other NeuroIS research [45, 98, 100] and in leading 

neuroscience journals [72].  

Participants were asked to perform two experimental tasks of ten minutes each: an 

instrumental one using Access, and a hedonic one using educational gaming software. There 

were two main reasons for two different tasks. First, there are theoretical grounds for differences 

between hedonic and instrumental tasks when using technologies [78, 126]. For instance, recent 

research has found different brain areas associated with PU when using a real (instrumental) 

                                                 
5 The experimental administrator and participants were unaware of the hypotheses of the study. 
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website and when using a fictitious one [45]. Second, the experimental design is stronger 

methodologically with the addition of a second task. If participants performed only one task, the 

variables of interest, PU and PEU, might not have a lot of variance, resulting in a too narrow a 

range [108]. This possibility poses a threat to internal validity by both lowering the power of the 

tests and weakening the relations in which these variables participate [108]. 

Protocol 

Participants arrived at the laboratory and were greeted by the experimental administrator. 

While participants read the information letter and consent form, the experimental administrator 

ensured that the neurophysiological equipment (EEG headset, etc.) was ready for utilization. 

After the consent form was signed, the experimental administrator placed the EEG sensors and 

the wireless headset on the participant’s head. The B-Alert headset uses silver-silver chloride 

sensor sites interfaced with 100 ppi foam. As suggested by the manufacturer, we used a highly 

conductive electrode cream (Synapse). Impedance levels were tested at the beginning and at the 

end of the recording. The B-alert software automatically highlights impedance values that are 

higher than the recommended levels [1]. On average initial impedance checks took between 5 to 

10 minutes. While the B-Alert is designed for 7 to 9 hours of continuous use, in our experiment 

the recording did not last more than ten minutes per task. 

After the impedance tests, participants completed a standard 15-minute baseline test 

developed and validated by the manufacturer of the EEG headset [18]. This baseline test is 

important because it allows the data captured by the EGG sensors to be adjusted by the software 

to accommodate for individual differences in EEG recordings [1]. After this, participants were 

asked to complete the experimental tasks.  
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As it will be explained next, the neurophysiological measures (D and ML) were recorded 

while participants used a given IT to accomplish the experimental tasks. In contrast, the 

measures of PU, PEOU, E, F, and Intention were captured via a questionnaire administered after 

each experimental task was completed.  

Measures 

Description of explicit measures 

Self-reported measures of engagement, frustration, PU, PEOU and intention that have 

been used in past IS research and that are well established in the field were adopted for this 

study. Engagement was captured by the engagement scale developed by Webster et al. [135], 

which has been consistently used in the IS literature [e.g., 133, 134]. Frustration was measured 

via the original scale developed by Peters et al. [88]. PU, PEOU and intention (I) were adopted 

from Venkatesh and Davis [130]. All measures are reported in the Appendix. 

Description of implicit measures 

 We used EEG to measure distraction and memory load for two main reasons. First, as 

described earlier, EEG complements fMRI approaches used in previous IS research by allowing 

for the recording of brain electrical activity while the user interacts with a technology. Second, 

due to good temporal resolution, changes in the oscillation of EEG signals can “accurately reflect 

subtle shifts in alertness, attention, and workload that can be identified and quantified on a 

second-by-second time-frame” [17, p. B232].  

EEG is a technique for recording the oscillations of brain electrical potential related to 

cortical activity [77]. By placing electrodes on the scalp of a research participant, the EEG 

sensors amplify and acquire the electrical activity that originates in the cerebral cortex. Spectral 

analyses are used to estimate the contribution of various sinusoidal waves (with different 
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frequencies and amplitudes) in the waveform of the EEG signals. Using a Fast Fourier 

Transformation, the strength of the signal is quantified by the power of the signal (i.e., the root-

mean-square of the average amplitude) at the given frequency or range of frequency. The most 

common range of frequencies of bands utilized in EEG research are delta (1-4Hz), theta (4-8), 

alpha (8-13Hz), beta (13-30Hz) and gamma (36-44Hz) [92]. 

 D and ML were obtained via the B-Alert® X10 device from Advance Brain Monitoring 

[1]. This wireless device does not restrict participants’ movements; thus, it allows for the 

recording of high quality and real time EEG data while participants use technologies in a relative 

realistic manner. The B-Alert uses a headset with 9 sites (F3, F4, Fz, C3, C4, Cz, P3, P4, and 

POz).  

 D was measured via an index that calculates the probability of the individual being 

distracted, based on previous literature on attention, vigilance, and alertness [e.g., 51, 95]. This 

literature has calculated distraction related measures by combining frequency bins in the theta, 

alpha and beta bands. The overall assumption is that a direct relationship exists between beta and 

distraction (or alertness), while alpha and theta are inversely related [107]. Building upon this 

literature, Berka et al. [17] developed a four-class ‘alertness’ index. Using a quadratic 

discriminant functional analyses, the index is calculated using absolute and relative power 

spectra from channels FzPOz and CzPOz of the theta, alpha, and beta frequencies (the specific 

Hz bins used in the DFA are explained in more detail in [17, 19, 64]). The index reflects 

information-gathering, visual processing and allocation of attention [17]. As a result, we took the 

‘distracted’ component of the four-level ‘alertness’ index in order to measure D. It is important 

to note that these measures have been validated empirically [17, 64] and used in several 

neuroscience studies [e.g., 93, 116].  
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 ML was measured by the brain electrical activity occurring in the frontal midline (Fz) for 

the theta frequency (4-7Hz). Research has consistently shown that frontal midline (Fz) activity in 

the theta frequency is involved in memory load [56, 62, 106]. Thus, changes in the theta-band at 

Fz are associated with working memory tasks: the theta band at the site increases in power from 

tasks involving low memory load to tasks involving high memory load [57]. As memory load 

increases, there is an increase in frontal theta activity [62]. Evidence from 

magnetoencephalology also confirms the modulation in frontal theta activity with memory load 

demands [122].  

 Finally, it is important to note that EEG recordings often include signal distortions called 

artifacts. These artifacts occur as a result of eye movements and muscular contractions and need 

to be identified and removed from the data [121]. The B-Alert software uses a patented artifact 

identification and decontamination algorithm [71] which identifies and removes 5 types of 

artifacts: tonic muscle artifacts, eye blinks, excursions, saturations, and spikes [125]. EEG data is 

automatically rejected when movement level data, captured by the accelerometer, exceeds 

unacceptable thresholds. Accordingly, one-second periods including artifacts were removed 

automatically from the data by the B-Alert wireless headset before D and ML calculations.  

RESULTS 

The results are reported in the following two sections. First, we report the psychometric 

properties of the measures capturing the constructs of interest. Second, the results with respect to 

the hypotheses are presented.  

Properties of the Measures 

 Before testing the hypotheses, the psychometric properties of the measures were 

evaluated. First, as shown in Table 1, all loadings were above the recommended threshold of .6 
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[53] except for three items of Engagement (E1, E2 and E3) that were dropped from the scale6. 

The loadings of all construct were also higher than their cross-loadings on all other constructs 

hence demonstrating good discriminant validity between the study’s constructs. Furthermore, the 

correlations among all the measures (self-reported and neurophysiological) were below .50, and 

the square roots of all AVEs were larger than inter-construct correlations providing further 

evidence for discriminant validity among all measures  [29]. Additionally, as shown in Table 2 , 

the self-reported measures of PU, PEOU, I, F, and E had good reliability, above the .80 cutoff 

recommended for management research [69]. Finally, in order to assess multicollinearity, 

variance inflation factors (VIFs) were estimated and were all below the recommended threshold 

of 3.3 [41] thus showing that multicollinearity is not likely to have affected the results (see Table 

2). 

--------- Insert Tables 1 and 2 here --------- 

 Besides the impedance tests performed before the recording of the EEG data ensuring the 

reliability of the data, we also established the construct validity of these measures through 

nomological validity as indicated by Straub et al. [118]. Because EEG measures related to 

distraction and memory load have been consistently linked to performance [19, 21, 22, 55, 56, 

74, 75, 115, 136], we ran a model specifying both D and ML as antecedents of participants’ 

performance in the experimental tasks. This test ensured that the D and ML supported the same 

results as those reported in the neuroscience literature. Our tests indicated that both D and ML 

were significantly related to performance in both the instrumental and hedonic tasks, consistent 

with the EEG literature. Thus, our findings, convergent with those of the neuroscience literature, 

ensure the construct validity of the EEG measures [118]. 

                                                 
6 In order to mitigate the risk of model over-specification [53], we ran all analyses with and without the deleted 
items E1, E2 and E3, and found no change in the significance of the path coefficients.  
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Test of the Research Model 

Consistent with recent IS research [e.g., 67, 114, 127], SmartPLS 2.0 [102] was used for 

the analysis of the research model. PLS was chosen as the structural equation modeling method 

of this paper because of the study’s exploratory nature - i.e., for the reason that it is the first study 

that hypothesizes and tests the main and interaction effects of explicit and implicit antecedents of 

behavioral beliefs. With respect to our main effects model and as shown in Figure 3, our results 

support the majority of the study’s hypotheses7. First, the path coefficient from D to PU was 

negative and significant (γ = - 0.51, p < 0.001) supporting H1. Similarly, the path coefficient 

from ML to PEOU was negative and significant (γ = - 0.42, p < 0.001) supporting H2. However, 

H3 was not supported as shown by the non significant coefficient from PE to PU (γ = 0.009, 

p>.05). Finally, the path coefficient from F to PEOU was negative and significant (γ = - 0.41, p < 

0.001) supporting H4. The implicit (D) and explicit (E) measures explained 31% of the variance 

in PU, while the implicit (ML) and explicit (F) measures explained 38% of the variance in PEOU 

(see Figure 3). 

--------- Insert Figure 3 here --------- 

With respect to the interaction or nonlinear effects – the main focus of this paper -, all the 

hypotheses were supported. As shown in Figures 4 and 5, the interaction coefficient between D 

and E was positive and significant (γ = 1.48, p < 0.001) supporting H5 and indicating that the 

negative influence of D on PU weakens as engagement increases. Moreover, the interaction 

coefficient between ML and F was negative and significant (γ = -1.38, p < 0.001) supporting H6 

and indicating that when frustration is high the relation between ML and PEOU is negative 

                                                 
7 Given that the paper’s main objective was to evaluate the implicit and explicit determinants of PU and PEOU, we 
did not formally hypothesize the effects of PU- PEOU on intention as well as the effect of PEOU on PU. The 
estimates of such relationships are however shown in Figures 3 and 4. 
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whereas when frustration is low the relation between ML and PEOU is positive (see Figures 4 

and 6). This model including interaction effects explained 37% of the variance in PU and 39% of 

the variance in PEOU; this represents a significant increase in the explained variance in PU (ΔR² 

= 5%) and a slight increase in the explained variance in PEOU (ΔR² = 1%) when compared to 

the ‘main effects’ model. 

--------- Insert Figures 4, 5 and 6 here --------- 

 In order to get a deeper understanding of the interactions between D and E, and between 

ML and F, we conducted a partial derivative analysis [94, 124] as shown in Tables 3 and 4.  

--------- Insert Tables 3 and 4 here --------- 

The coefficient of D shows the relationship between distraction and PU holding 

engagement constant, and represents the partial derivative of PU with respect to E. As can be 

seen in Table 3, when engagement is high, D has no statistically significant effect on PU, 

whereas when E is low, D has a negative and significant effect on PU.  

In the same vein, the coefficient of ML shows the relationship between memory load and 

PEOU holding frustration constant, and represents the partial derivative of PEOU with respect to 

F. As can be seen in Table 4, ML has a significant effect on PEOU only at very high or very low 

levels of frustration; that is, it has no statistically significant effect at mid-range levels of 

frustration. In other words, when frustration is very high, ML has a statistically significant 

negative effect on PEOU, whereas when frustration is very low, ML has a statistically significant 

positive effect on PEOU.  

Finally, given the relatively low sample size of the study, we computed the effect sizes of 

PU and PEOU’s antecedents, as well as the cross-validated redundancy measures Q² of E, D, F, 

ML, PU, PEOU and I to assess the model’s predictive relevance [53, 101]. Effect sizes are 
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important because they provide an indication of the strength of the relation between a given (or a 

set of) independent variable(s) and a dependent one [111]. Thus, effect sizes provide 

complementary information to that of significance tests [30]. As shown in Table 5, Cohen’s 

effect size (f2) estimates show large and medium effects of the implicit (neurophysiological) 

antecedents, D and ML, on PU and PEOU respectively, as well as small effects of the interaction 

between implicit and explicit measures on PU and PEOU. Lastly, the cross-validated redundancy 

measures Q² of E, D, F, ML, PU, PEOU provided by the SmartPLS 2.0 blindfolding report were 

all significantly above zero and were respectively 0.49, 1.0, 0.75, 1, 0.34, 0.30 and 0.30 hence 

providing support for the model’s predictive relevance [58]. 

--------- Insert Table 5 here --------- 

DISCUSSION 

Understanding how individuals decide to use (or not) a technology is a crucial question in 

IS research. Behavioral beliefs are well-established antecedents of individuals’ use intentions 

(and behaviors) with a given technology. However, an important gap in this research stream is its 

silence with respect to the implicit determinants of behavioral beliefs and their interaction with 

explicit ones. Thus, the main objective of this study was to investigate the role of implicit and 

explicit constructs in the formation of behavioral beliefs. Our revision of the theoretical 

underpinnings of TAM, TRA and TPB, suggests that both implicit and explicit constructs should 

play an important role in determining IS behavioral beliefs. Our results are consistent with this 

suggestion and support the proposed interaction hypotheses, thus, making several theoretical 

contributions. 

First, this paper represents a first effort in identifying how two important behavioral 

beliefs (i.e., PU and PEOU) are implicitly formed during the accomplishment of a task using a 
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given technology. Indeed, identifying the implicit antecedents of behavioral beliefs during IS use 

is important for two main reasons. First, it allows tapping into the content of such beliefs and 

hence provides a deeper understanding of the mechanisms leading to IS use behaviors [9]. 

Second, it allows unraveling the mechanisms by which specific ‘external variables’ (to TAM) 

experienced during technology use influence behavioral beliefs and thus, provides valuable 

information into how to ‘manipulate’ such behavioral beliefs [15], as it is explained later in the 

practical implications. 

Second, our study demonstrates that explicit (i.e., perceptual) and implicit (i.e., 

neurophysiological) measures influence behavioral beliefs in a nonlinear and complex way. 

Conceptualizing nonlinear relationships is important because it provides a more accurate 

explanation of complex phenomena [124]. This is particularly relevant in the context of 

TRA/TPB based IS acceptance models given that theory grounded operationalization of 

nonlinear effects between antecedents of behavioral beliefs represents a strong avenue to 

extending the explanatory power of such models [9]. In fact, “the problems with most tests of 

moderating effects to date are that little theoretical insight is provided into the mechanism, or 

“the why”, behind proposed interaction effects […] making such broadenings of TAM both 

unwieldy and conceptually impoverished” [9, p. 244]. As such, an important contribution of this 

study is that it provides new conceptual insights into the complex moderating effects of explicit 

measures on the relationships between implicit ones and behavioral beliefs. 

Third, the hypothesized and supported interaction between perceived frustration and 

memory load provides an additional theoretical insight into the theoretical dangers of 

overlooking non linearities. Simply by hypothesizing and testing exclusive linear effects (see 

Figure 3), one could have mistakenly concluded that the effect of ML on PEOU is always 
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negative. However, by theorizing upon adaptive learning [25, 33] and modeling the interaction 

between ML and perceived frustration (see Figures 4 and 6, and Table 4) we observe that this is 

not the case. In fact, the direction of the relation between ML changes depending on the values 

of perceived frustration. More specifically, the relation between ML and PEOU is negative when 

frustration is very high; it becomes non-significant for the middle range values of frustration; and 

it becomes positive when frustration is low. As such, the effect of ML on PEOU exhibits three 

different patterns which could not have been detected via an additive linear model. Therefore, 

such result points to the fact that the users’ perceptions of experience with a given technology 

can change the direction in which neurophysiological states affect evaluative judgments about 

the technology. 

Fourth, the interaction between engagement and distraction also contributes to theory: 

perceptions of engagement during a computer task moderate the effect of distraction on PU. 

More specifically, as engagement increases in value the relation between D and PU weakens, 

eventually becoming statistically non-significant. As such, perceptions of use experiences with 

technology are capable of moderating the effects of measures that can capture unconscious or 

‘hidden processes’ of the same experience. This is important because it points out to the 

necessity of including both explicit (perceptual) and implicit (neurophysiological) constructs in 

order to have a more complete theoretical view of how evaluations of technology are formed.  

Fifth, our results also contribute to the emerging field of NeuroIS. Within this emerging 

field, calls have been made to look for the neurophysiological antecedents of IS related 

constructs [45]. Our results show that such efforts should be combined with traditional 

approaches capturing explicit constructs to better explain such IS related constructs. To the 

extent that behavioral beliefs are evaluative judgments about a given technology, and taking into 
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consideration individuals’ tendency to be consistent about the world [105], behavioral beliefs 

will always, to a certain extent, be influenced by explicit (perceptual) evaluations of the 

experience with the technology.  

Finally, our results point to the often overlooked theoretical importance of emotional 

experience in models explaining deliberative decision-making derived from TRA and TPB, such 

as TAM. Both frustration and engagement are emotional constructs, and our results are 

consistent with neuroscience and psychological research emphasizing the criticality of emotions 

for behavioral beliefs, everyday decision making, and rational choice [e.g., 35, 36, 47, 52, 90]. 

The influence of emotions on behavioral beliefs is an instance of the broader role that emotions 

play in human life by prioritizing between needs and directing actions [52]. Our results suggest 

that emotional experiences during use are capable of moderating the effects of 

neurophysiological measures on behavioral beliefs, by attenuating the strength of such relations 

or by changing their direction altogether. Thus, if we want to fully understand the reasons by 

which people believe a given technology is useful and easy to use, we need to also include and 

explore the emotional reactions that such technology triggers [13]. 

Methodologically, our study also contributes to the IS field in several ways. First, the use 

of EEG complements fMRI approaches to the neural investigation of behavioral beliefs [e.g., 45] 

as, unlike fMRI, it allows for a more unobtrusive capture of the mental processes that occur 

during the IS use experience in a realistic way [83]. While the EEG measurement takes place, the 

individual is able to use a given technology in a more realistic manner. Second, because EEG is 

capable of also capturing ‘hidden’ processes, it provides a more reliable and global picture of 

evaluative processes during belief formation, thus reducing the inherent biases associated with 

the exclusive employment of explicit (i.e., perceptual) measures [89]. In sum, the use of EEG 
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together with perceptual measures to assess the formation of behavioral beliefs constructs 

increases the validity of the results by reducing the likelihood of method biases [81, 83] which 

represents a critical component of construct and instrument validity in IS research [109, 117, 

119]. 

Practical Implications 

This research also has implications for practice. First, our results suggest that memory 

load is not always detrimental. In fact, when memory load occurs in the absence of frustration it 

is beneficial for the cognitive evaluation of the technology because adaptation and learning 

processes are not hampered by negative factors, but rather reinforced by positive feedback 

leading to positive evaluations of the technology [25, 33]. This suggests that technology does not 

need to be simple to be perceived as easy to use. In fact, if technology is complex but well 

designed and provides timely relevant information and features so that the user pursues its task 

while maintaining low frustration levels, it will be perceived as easy to use. Second, attentional 

processes also play a beneficial role in the positive evaluation of a technology. Indeed, because 

engagement includes a pleasurable dimension of the experience with a given technology, it 

weakens the negative relationship between distraction measures capable of also capturing 

‘unconscious’ distraction states and the perceived usefulness of a technology. On practical 

grounds, this insight indicates that information or technology features that have the ability to 

trigger a sustained engagement of the user are likely to produce positive evaluations of the 

technology. 

Limitations and Future Research 

As with any research, this study is not free of limitations. For example, the size of the 

sample, although comparable to accepted sizes for NeuroIS, is small. Thus, future research could 
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be aimed at replicating this study with larger sample sizes. Furthermore, our study only 

investigated two explicit (perceptual) and two implicit (neurophysiological) antecedents of PU 

and PEOU. Although the variance explained by these antecedents is high, future research should 

study other explicit and implicit antecedents of behavioral beliefs, and their interactions. This 

would complement the explicit and implicit antecedents identified herein. For example, a 

potentially interesting avenue of future research would be to include the construct of cognitive 

absorption for longer and/or non directed tasks where users could experience the ‘control’ 

dimension of the construct. Finally, and though we made every effort to control for all potential 

biases inherent to the use of EEG, we believe that future research is needed to more 

systematically control for potential momentary biases of attention (e.g., fatigue)8.  

 Besides the opportunities for future research derived from the limitations of this study, 

other possibilities for research exist. For example, a second normal step in this domain would be 

to link the IS artifact with specific implicit and explicit measures of the use experience, in order 

to provide more specific design guidelines into how to ameliorate the technology use experience, 

and thus, the overall acceptance of technology. Additionally, future studies could be aimed at 

investigating not only the interplay of explicit and implicit measures on behavioral beliefs, but 

also on how these measures contribute to individuals’ ability to effectively perform a given 

computer task. This would shift the focus from acceptance to a more meaningful view of the 

effective use of technology at work, and provide relevant practical implications. Furthermore, 

because of the importance of instrument validity in IS research, future research could investigate 

the temporal correlations of neurophysiological measures and perceptual ones. This would 

contribute to the IS field by identifying which temporal markers in the use experience matter the 

                                                 
8 We thank an anonymous reviewer for this insight. 
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most when users evaluate a given technology. Finally, given the temporal resolution of EEG 

recordings, research could be aimed at studying users’ neurophysiological reactions to 

technological interruptions or new IS features and their relation to performance in a given task. 

Conclusion 

After more than thirty years of research on behavioral beliefs and their influence on 

technology acceptance, we know little about how behavioral beliefs (e.g., perceived usefulness 

and perceived ease of use) of technology are formed. This study presents a first effort in 

understanding how implicit (neurophysiological) and explicit (perceptual) states interact during 

technology use to determine such behavioral beliefs. Fundamentally, our results point to the 

importance of theorizing and testing for interactions between implicit and explicit measures to 

get an accurate and more complete picture of how users decide whether a technology is useful 

and easy to use. Future research can be aimed at replicating this study with a larger sample size, 

investigating other implicit and explicit antecedents of behavioral beliefs, identifying the implicit 

and explicit antecedents of effective technology use, testing users’ neurophysiological reactions 

to technological interruptions, and studying the potential temporal correlations between 

neurophysiological measures and perceptual ones during IS use .  

ACKNOWLEDGMENTS 

We gratefully acknowledge the helpful and constructive comments of Henri Barki, Fred 

Davis, Jane Webster, and the review team. We are also indebted to the participants of the 

Gmunden Retreat on NeuroIS 2012 in Gmunden (Austria) and the Groupe de Recherche en 

Systèmes d’Information (GReSI) of HEC Montréal for their suggestions and comments. This 

research was partially funded by a grant from the Social Sciences and Humanities Research 

Council of Canada (SSHRC) to Ana Ortiz de Guinea, Ryad Titah, and Pierre-Majorique Léger; 



32 
 

by a grant from the Fonds Québécois pour la Recherche sur la Société et la Culture (FQRSC) to 

Ana Ortiz de Guinea; and by a grant from the Fonds Québécois pour la Recherche sur la Société 

et la Culture (FQRSC) to Ryad Titah.  

REFERENCES 

1. B-Alert X10: User Manual. Carlsbad, CA: Advanced Brain Monitoring, 2010. 
2. Agarwal, R. Individual Acceptance of Information Technologies. In, Zmud, R.W., (ed.), 
Framing the Domains of IT Management: Projecting the Future...Through the Past, Ann Arbor, 
MI: Pinnaflex Educational Resources, Inc., 2000, pp. 85-105. 
3. Agarwal, R., and Karahanna, E. Time Flies When You're Having Fun: Cognitive 
Absorption and Beliefs About Information Technology Usage. MIS Quarterly, 24, 2 (2000), 665-
694. 
4. Agarwal, R., Sambamurthy, V., and Stair, M.R. Research report: The evolving 
relationchip between general and specific computer self-efficacy. Information Systems Research, 
11, 4 (2000), 418-430. 
5. Amodio, D.M., Harmon-Jones, E., Devine, P.G., Curtin, J.J., Hartley, S.L., and Covert, 
A.E. Neural signals for the detection of unintentional race bias. Psychological Science, 15 
(2004), 88-93. 
6. Azjen, I. The theory of planned behavior. Organizational Behavior and Human Decision 

Processes, 5, 2 (1991), 179-211. 
7. Azjen, I. Attitudes and persuasion. In, Deaux, K., and Snyder, M., (eds.), The Oxford 

Handbook of Personality and Social Psychology, New York, NY: Oxford University Press, 
2012. 
8. Azjen, I., and Fishbein, M. Understanding attitudes and predicting social behavior. 
Englewood Cliffs, NJ: Prentice-Hall, 1980. 
9. Bagozzi, R.P. The Legacy of the Technology Acceptance Model and a Proposal for a 
Paradigm Shift. Journal of the Association for Information Systems, 8, 4 (2007), 244-254. 
10. Bagozzi, R.P. Measurement and meaning in information systems and organizational 
research: Methodological and philosophical foundations. MIS Quarterly, 35, 2 (2011), 261-292. 
11. Barki, H., Paré, G., and Sicotte, C. Linking IT implementation and acceptance via the 
construct of psychological ownership of information technology. Journal of Information 

Technology, 23, 4 (2008), 269-280. 
12. Barki, H., Titah, R., and Boffo, C. Information System Use-Related Activity: An 
Expanded Behavioral Conceptualization of Individual-Level Information System Use. 
Information Systems Research, 18, 2 (2007), 173-192. 
13. Beaudry, A., and Pinsonneault, A. The other side of acceptance: Studying the direct and 
indirect effects of emotions on Information Technology use. MIS Quarterly, 34, 4 (2010), 689-
710. 
14. Bem, D.J. Self-perception theory. In, Berkowitz, L., (ed.), Advances in Experimental 

Social Psychology, New York: NY: Academic Press, 1972, pp. 1 -62. 
15. Benbasat, I., and Barki, H. Quo vadis, TAM? Journal of the Association for Information 

Systems, 8, 4 (2007), 211-218. 



33 
 

16. Benlian, A., Titah, R., and Hess, T. Differential effects of provider recommendations and 
consumer reviews in e-commerce transactions: An experimental study. Journal of Management 

Information Systems, 29, 1 (2012), 237-272. 
17. Berka. EEG correlates of task engagement and mental workload in vigilance, learning, 
and memory tasks. Aviation, Space, and Environmental Medicine, 78, 5 (2007), B231-B244. 
18. Berka, C., Levendowski, D.J., Cvetinovic, M.M., Petrovic, M.M., Davis, G., Lumicao, 
M.N., Zivkovic, V.T., Popovic, M.V., and Olmstead, R. Real-time analysis of EEG indexes of 
alertness, cognition, and memory acquired with a wireless EEG headset. International Journal of 

Human-Computer Interaction, 17, 2 (2004), 151-170. 
19. Berka, C., Levendowski, D.J., Cvetinovic, M.M., Petrovic, M.M., Davis, G., Lumicao, 
M.N., Zivkovic, V.T., Popovic, M.V., and Olmstead, R. Real-time analysis of EEG indices of 
alertness, cognition, and memory with a wierless EEG headset. international Journal of Human 

Computer Interaction, 17 (2004), 151-170. 
20. Braver, T.S., Cohen, J.D., Jonides, J., Smith, E.E., and Noll, D.C. A parametric study of 
prefontal cortex involvement in human working memory. Neuroimage, 5, 1 (1997), 49-62. 
21. Brookhuis, K.A., and Waard, D. The use of psychophysiology to assess driver status. 
Ergonomics, 36 (1993), 1099-1110. 
22. Brookings, J.B., Wilson, G.F., and Swain, C.R. Psychophysiologilogical responses to 
changes in workload during simulated air traffic control. Biological Psychology, 42 (1996), 361-
377. 
23. Brown, J.A.C. The social psychology of industry. Baltimore, MD: Penguin, 1954. 
24. Brünken, R., Plass, J.L., and Leutner, D. Direct measurement of cognitive load in 
multimedia learning. Educational Psychologist, 38, 1 (2003), 53-61. 
25. Cavanagh, J.F., Frank, M.J., Klein, T.J., and Allen, J.J.B. Frontal theta links prediction 
errors to behavioral adaptation in reinforcement learning. Neuroimage, 49, 4 (2010), 3198-3209. 
26. Ceaparu, I., Lazar, J., Bessiere, K., Robinson, J., and Shneiderman, B. Determining 
causes and severity of end-user frustration. International Journal of Human-Computer 

Interaction, 17, 3 (2004), 333-356. 
27. Chau, P.Y.K. An empirical assessment of a modified technology acceptance model. 
Journal of Management Information Systems, 13, 2 (1996), 185-204. 
28. Chau, P.Y.K., and Hu, P.J. Examining a model of information technology acceptance by 
individual profesionals: An exploratory study. Journal of Management Information Systems, 
2002, 18 (2002), 4. 
29. Chin, W.W. The partial least squares approach to structural equation modeling. In, 
Marcoulides, G.A., (ed.), Modern Methods for Business Research, Mahwah, NJ: Lawrence 
Erlbaum Associates, 1998, pp. 295-336. 
30. Cohen, J. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence 
Erlbaum Associates, 1988. 
31. Cook, T.C., and Campbell, D.T. Quasi-Experimentation: Design and Analysis Issues for 

Field Settings. Chicago, IL: Rand McNally, 1979. 
32. Cox, J., and Dale, B.G. Key quality factors in web site design and use: An examination. 
The International Journal of Quality & Reliability Management, 19, 6/7 (2002), 862-888. 
33. Coyne, J.T., Baldwin, C., Cole, A., Sibley, C., and Roberts, D.M. Applying Real Time 
Physiological Measures of Cognitive Load to Improve Training. In, al., S.D.D.e., (ed.), HCII 

2009, San Diego, CA: Springer-Verlag Berlin Heidelberg 2009, pp. 469-478. 



34 
 

34. Cunningham, W.A., Packer, D.J., Kesek, A., and Bavel, J.V. Implicit Measurement of 
Attitudes: A Physiological Approach. In, Petty, R.E., Fazio, R.H., and Brińol, P., (eds.), 
Attitudes: Insights from the Implicit Measures, New York Hove: Psychology Press, Taylor & 
Francis Group, 2010, pp. 485-512. 
35. Damasio, A.R., Tranel, D., and Damasio, H. Individuals with Sociopathic Behavior 
Caused by Frontal Damage Fail to Respond Automatically to Social Stimuli. Behavioral Brain 

Research, 41 (1991), 81-94. 
36. Damasion, A. Descartes' Error. London, United Kingdom: Vintage, 2006. 
37. Dang, Y., Zhang, Y., Chen, H., Brown, S.A., Hu, P.J., and Nunamaker, J.F. Theory-
informed design and evaluation of an advanced search and knowledge mapping system in 
nanotechnology. Journal of Management Information Systems, 28, 4 (2012), 99-128. 
38. Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of 
information technology. MIS Quarterly, 13, 3 (1989), 319-340. 
39. Davis, F.D., Bagozzi, R.P., and Warshaw, P.R. User Acceptance of Computer 
Technology: A Comparison of Two Theoretical Models. Management Science, 35, 8 (1989), 
982-1003. 
40. Delgado, M.R., Miller, M.M., Inati, S., and Phelps, E.A. An fMRI study of reward-
related probability of learning. Neuroimage, 24, 3 (2005), 862-873. 
41. Diamantopoulos, A., and Siguaw, J.A. Formative vs. Reflective Indicators in 
Measure Development: Does the Choice of Indicators Matter? British Journal of Management, 
17, 263-282 (2006). 
42. Dimoka, A. What Does the Brain Tell Us About Trust and Distrust? Evidence from a 
Functional Neuroimaging Study. MIS Quarterly, 34, 2 (2010), 373-396. 
43. Dimoka, A., Banjer, R.D., Benbasat, I., Davis, F.D., Dennis, A.R., Gefen, D., Gupta, A., 
Ischebeck, A., Kenning, P., Pavlou, P.A., Müller-Putz, G., Riedl, R., vom Brocke, J., and Weber, 
B. On the use of neurophysiological tools in IS research: Developing a research agenda for 
NeuroIS. MIS Quarterly, 36, 3 (2012), 679-702. 
44. Dimoka, A., and Davis, F. Where does TAM reside in the brain? The neural mechanisms 
underlying technology adoption. 29th ICIS, Paris, France, 2008, pp. 1-18. 
45. Dimoka, A., Pavlou, P.A., and Davis, F.D. NeuroIS: The Potential of Cognitive 
Neuroscience for Information Systems Research. Information Systems Research, 22, 4 (2011), 
687-702. 
46. Draine, S.C., and Greenwald, A.G. Replicable Unconscious Semantic Priming. Journal of 

Experimental Psychology: General, 127 (1998), 286-303. 
47. Eslinger, P.J., and Damasio, A.R. Severe Disturbance of Higher Cognition After Bilateral 
Frontal Lobe Ablation: Patient EVR. Neurology, 35 (1985), 1731-1741. 
48. Fang, X., Chan, S., Brzezinski, J., and Xu, S. Moderating effects of task type of wireless 
technology acceptance. Journal of Management Information Systems, 22, 3 (2006), 123-157. 
49. Field, A. Discovering Statistics Using SPSS. London, United Kingdom: SAGE 
Publications Ltd, 2005. 
50. Fishbein, M., and Ajzen, I. Belief, Attitude, Intention, and Behavior: An Introduction to 

Theory and Research. Reading, MA: Addison-Wesley, 1975. 
51. Freeman, F.G., Mikulka, P.J., Scerbo, M.W., and Scott, L. An evaluation of an adaptive 
automation system using a cognitive vigilance task. Biological Psychology, 67 (2004), 283-297. 
52. Frijda, N.H., Mastead, A.S.R., and Bem, S. Emotions and beliefs: How feelings influence 

thoughts. Cambridge, United Kingdom: Cambridge University Press, 2000. 



35 
 

53. Gefen, D., Straub, D.W., and Rigdon, E.E. An Update and Extension to SEM Guidelines 
for Admnistrative and Social Science Research. MIS Quarterly, 35, 2 (2011), iii-xiv. 
54. Gerjets, P., and Scheiter, K. Goal configurations and processing strategies as moderators 
between instructional design and cognitive load: Evidence from hypertext-based instruction. 
Educational Psychologist, 38, 1 (2003), 33-41. 
55. Gevins, A., Smith, M.E., Leong, H., McEvoy, L., Whitfield, S., Du, R., and Rush, G. 
Monitoring working memory load during comptuer-based tasks with EEG pattern recognition 
methods. Human Factors, 40 (1998), 79-91. 
56. Gevins, A., Smith, M.E., McEvoy, L., and Yu, D. High-resolution EEG mapping of 
cortical activation related to working memory: Effects of task difficulty, type of processing, and 
practice. Cerebral cortex, 7 (1997), 374-385. 
57. Gevins, A., Smith, M.E., McEvoy, L., and Yu, D. High-resolution EEG mapping of 
cortical activation related to working memory: effects of task difficulty, type of processing, and 
practice. Cerebral cortex, 7 (1997), 374–385. 
58. Hair, J.F., Ringle, C.M., and Sarstedt, M. PLS-SEM: Indeed a Silver Bullet. Journal of 

Marketing Theory and Practice, 19, 2 (2011), 139-151. 
59. Hong, W., Thong, J.Y.L., Chasalow, L.C., and Dhillon, G. User acceptance of agile 
information systems: A model and empirical test. Journal of Management Information Systems, 
28, 1 (2011), 235-272. 
60. Hong, W., Thong, J.Y.L., Wong, W.M., and Tam, K.Y. Determinants of user acceptance 
of digital libraries: An empirical examination of individual differences and system 
characteristics. Journal of Management Information Systems, 18, 3 (2002), 97-124. 
61. Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., and Camerer, C.F. Neural systems 
responding to degrees of uncertainty in human decision-making. Science, 310, 5754 (2005), 
1680-1683. 
62. Jensen, O., and Tesche, C.D. Frontal theta activity in humans increases with memory 
load in a working memory task. European Journal of Neuroscience, 15 (2002), 1395-1399. 
63. Jha, A. Where belief is born. The Guardian, 2005. 
64. Johnson, R.R., Popovic, D.P., Olmstead, R.E., Stikic, M., Levendowski, D.J., and Berka, 
C. Drowsiness/Alertness algorithm development and validation using synchronized EEG and 
cognitive performance to individualize a generalized model. Biological Psychology, 87, 2 
(2011), 241-250. 
65. Kahneman, D. Thinking, fast and slow. New York, NY: Farrar, Straus and Giroux, 
20011. 
66. Karahanna, E., and Straub, D.W. The psychological origins of perceived usefulness and 
ease-of-use. Information & Management, 35 (1999), 237-250. 
67. Kim, D., and Benbasat, I. Trust-Assuring Arguments in B2C E-commerce: Impact of 
Content, Source, and Price on Trust. Journal of Management Information Systems, 26, 3 (2009), 
175-206. 
68. Kulkarni, U.R., Ravindran, S., and Freeze, R. A knowledge management success model: 
Theoretical development and empirical validation. Journal of Management Information Systems, 
23, 3 (2007), 309-347. 
69. Lance, C.E., Butts, M.M., and Michels, L.C. The Sources of Four Commonly Reported 
Cutoff Criteria: What Did They Really Say? Organizational Research Methods, 9, 2 (2005), 202-
220. 



36 
 

70. Lazar, J., Jones, A., and Shneiderman, B. Workplace user frustration with computers: An 
exploratory investigation of the causes and severity. Behaviour & Information Technology, 25, 3 
(2006), 239-251. 
71. Levendowski, D.J., Berka, C., and Konstantinovic, Z.R. Portable EEG electrode locator 
headgear. In, Patent, U.S., (ed.), 2002. 
72. Lieberman, M.D., Berkman, E.T., and Wager, T.D. Correlations in social neuroscience 
aren’t voodoo. Perspectives on Psychological Science 4, 3 (2009), 299-307. 
73. Lin, C.T. An EEG-based subject- and session-independent drowsiness detection. IEEE 

World Congress on Computational Intelligence, Hong Kong, 2008, pp. 3448-3454. 
74. Makeig, S., and Jung, T.P. Changes in alertness are a principal componeent of variance in 
the EEG spectrum. Neuroreport, 7 (1995), 213-216. 
75. Makeig, S., and Jung, T.P. Tonic, phasic, and transient EEG correlates of auditory 
awareness in drowsiness. Cognitive Brain Research, 4 (1996), 15-25. 
76. McClure, S.M., York, M.K., and Montague, P.R. The neural substrates of reward 
processing in humans: The modern role of fMRI. Neuroscientist, 10, 3 (2004), 260-268. 
77. Nuñez, P.L., and Srinivasan, R. Electric fields of tbe brain: The neurophysics of EEG. 
New Yor, NY: Oxford University Press, 2006. 
78. O'Brien, H.L. The influence of hedonic and utilitarian motivations on user engagement: 
The case of online shopping experiences. Interacting with Computers, 22, 4 (2010), 344-352. 
79. Ortiz de Guinea, A., and Markus, M.L. Why Break the Habit of a Lifetime? Rethinking 
the Roles of Intention, Habit, and Emotion in Continuing Information Technology Use. MIS 

Quarterly, 33, 3 (2009), 433-444. 
80. Ortiz de Guinea, A., Titah, R., Léger, P.-M., and Micheneau, T. Neurophysiological 
correlates of Information Systems commonly used self-reported measures: A multitrait 
multimethod study. 45th Hawaii International Conference on System Sciences: IEEE, 2012, pp. 
562-571. 
81. Ortiz de Guinea, A., Titah, R., and Léger, P.M. Measure for Measure : A Two-study 
Multi-trait Multi-method Investigation of Construct Validity in Information Systems Research. 
Computers in Human Behavior, 29, 3 (2013), 833-844. 
82. Ortiz de Guinea, A., Titah, R., and Léger, P.M. Measure for measure: A two-study multi-
trait multi-method investigation of construct validity in IS research. Computers in Human 

Behavior, 29 (2013), 833-844. 
83. Ortiz de Guinea, A., and Webster, J. An investigation of Information Systems use 
patterns: Technological events as triggers, the effects of time, and consequences for 
performance. MIS Quarterly (forthcoming). 
84. Ouellette, J.A., and Wood, W. Habit and Intention in Everyday Life: The Multiple 
Processes by Which Past Behavior Predicts Future Behavior. Psychological Bulletin, 124, 1 
(1998), 54-74. 
85. Paas, F., Tuovinen, J.E., Tabbers, H., and Van Gerven, P.W.M. Cognitive load 
measurement as a means to advance cognitive load theory. Educational Psychologist, 38, 1 
(2003), 63-71. 
86. Paas, F.G.W.C., and van Merriënboer, J.J.G. Instructional Control of Cognitive Load in 
the Training of Complex Cognitive Tasks. Educational Psychology Review, 6, 4 (1994), 351-
371. 
87. Parasuraman, R., and Rizzo, M. Neuroergonomics: The brain at work. New York, NY: 
Oxford University Press, 2007. 



37 
 

88. Peters, L.H., and O'Connor, E.J. Situational constraints and work outcomes: the 
influences of a frequently overlooked construct. Academy of Management Review, 5, 3 (1980), 
392-398. 
89. Petty, R.E., Fazio, R.H., and Brińol, P. The New Implicit Measures: An Overview. In, 
Petty, R.E., Fazio, R.H., and Brińol, P., (eds.), Attitudes: Insights from the Implicit Measures, 
New York, NY: Psychology Press, Taylor & Francis Group, 2010, pp. 3-18. 
90. Phelps, E.A., and LeDoux, J.E. Contributions of the Amygdala to Emotion Processing: 
From Animal Models to Human Behavior. Neuron, 48 (2005), 175-187. 
91. Philipi, B.N., Martin, J., and Meyers, J. Interventions in relation to anxiety in school. 
New York, NY: Academic Press, 1972. 
92. Pizzagalli, D.A. Electroencephalography and high density electrophysiological source 
localization. In, Cacioppo, J.T., Tassinary, L.G., and Berntson, G.G., (eds.), Handbook of 

Psychophysiology, New York, NY: Cambridge University Press, 2007, pp. 56–84. 
93. Pojman, N., Johnson, R.J., Kintz, N., Behneman, A., Popovic, D.P., Davis, G., 
Westbrook, P., Levendowski, D.J., and Berka, C. Assessing Fatigue using EEG Classification 
Metrics during Neurocognitive Testing. 23rd Annual Meeting of the Associated Professional 

Sleep Societies, Seattle, WA, 2009, pp. A161-A161. 
94. Polites, G.L., and Karahanna, E. Shackled to the Status Quo: The Inhibiting Effects of 
Incumbent System Habit, Switching Costs, and Inertia on New System Acceptance. MIS 

Quarterly, 36, 1 (2012), pp. 21-42. 
95. Pope, A.T., Bogart, E.H., and Bartolome, D.S. Biocybernetic system evaluates of 
operator engagement in automated task. Biological Psychology, 40 (1995), 187-195. 
96. Pratt, J.A., Mills, R.J., and Kim, Y. The effects of navigational orientation and user 
experience on user task efficiency and frustration levels. The Journal of Computer Information 

Systems, 44, 4 (2004), 93-100. 
97. Riedl, R. On the biology of technostress: Literature review and research agenda. The 

Data Base for Advances in Information Systems, 44, 1 (2013), 18-55. 
98. Riedl, R., Banker, R.D., Benbasat, I., Davis, F.D., Dennis, A.R., Dimoka, A., Gefen, D., 
Gupta, A., Ischebeck, A., Kenning, P., Pavlou, P.A., Müller-Putz, G., Straub, D., vom Brocke, J., 
and Weber, B. On the foundations of NeuroIS: Reflections on the Gmundem retreat 2009. 
Communication of the Association for Information Systems, 27, 15 (2009), 243-264. 
99. Riedl, R., Hubert, M., and Kenning, P. Are There Neural Gender Differences in Online 
Trust? An Fmri Study on the Perceived Trustworthiness of Ebay Offers. MIS Quarterly, 34, 2 
(2010), 397-428. 
100. Riedl, R., Kindermann, H., Auinger, A., and Javor, A. Technostress From a 
Neurobiological Perspective: System Breakdown Increases the Stress Hormone Cortisol in 
Computer Users. Business & Information Systems Engineering (forthcoming). 
101. Ringle, C.M., Sarstedt, M., and Straub, D.W. Editor's Comments: A Critical Look at the 
Use of PLS-SEM in MIS Quarterly. MIS Quarterly, 36, 1 (2012), iii-xiv. 
102. Ringle, C.M., Wende, S., and Will, A. Smart PLS. . Hamburg, Germany: University of 
Hamburg, 2005. 
103. Saadé, R., and Bahli, B. The impact of cognitive absorption on perceived usefulness and 
perceived ease of use in on-line learning: An extensin of the technology acceptance model. 
Information & Management, 42, 2 (2005), 317-327. 
104. Saadé, R.G., and Otrakji, C.A. First impressions last a lifetime: effect of interface type on 
disorientation and cognitive load. Computers in Human Behavior, 23 (2007), 525-535. 



38 
 

105. Salancik, G.R. On Priming, Consistency, and Order Effects in Job Attitude Assessment : 
With a Note on Current Research. Journal of Management, 10, 2 (1984), 250-254. 
106. Sauseng, P., Griesmayr , B., Freunberger, R., and Klimesch, W. Control mechanisms in 
working memory: A possible function of EEG thetaoscillations. Neuroscience and Biobehavioral 

Reviews, 34 (2010), 1015–1022. 
107. Scerbo, M., Freeman, F., and Mikulka, P. A brain-based system for adaptive automation. 
Theoretical Issues in Ergonomic Science, 4, 1-2 (2003), 200-219. 
108. Shadish, W.R., Cook, T.D., and Campbell, D.T. Experimental and Quasi-Experimental 

Designs for Generalized Causal Inference. Boston, MA: Houghton Mifflin Company, 2002. 
109. Sharma, R., Yetton, P., and Crawford, J. Re-Evaluating Evidences from Technology 
Acceptance Model Research: Estimating the Effect of Common Method Bias On the Perceived 
Usefulness-Use Relationship". Diffusion of Innovations Group in Information Technology 

(DIGIT/SIGADIT), Washington, D.C., 2004. 
110. Sharma, R., Yetton, P., and Crawford, J. Estimating the effect of common method 
variance: The method-method pair technique with an illustration from TAM research. MIS 

Quarterly, 33, 3 (2009), 473-490. 
111. Shaver, J.P. Waht statistical significance is, and what it is not. The Journal of 

Experiemtnal Education, 61, 4 (1993), 293-316. 
112. Sherman, J.W. Controlled Influences on Implicit Measures: Confronting the Myth of 
Process-Purity and Taming the Cognitive Monster. In, Petty, R.E., Fazio, R.H., and Brińol, P., 
(eds.), Attitudes: Insights from the Implicit Measures, New York Hove: Psychology Press, Taylor 
& Francis Group, 2010, pp. 391-428. 
113. Silva, L. Post-Positivist Review of Technology Acceptance Model. Journal of the 

Association for Information Systems, 8, 4 (2007), 255-266. 
114. Siponen, M., and Vance, A. Neutralization: New Insights into the Problem of Employee 
Information Systems Security Policy Violations. MIS Quarterly, 34, 3 (2010), 487-512. 
115. Sterman, M.B., and Mann, C.A. Concepts and applications of EEG analysis in aviation 
performance evaluation. Biological Psychology, 40, 1-2 (1995), 115-130. 
116. Stikic, M., Johnson, R.R., Levendowski, D.J., Popovic, D.P., Olmstead, R.E., and Berka, 
C. EEG-derived estimators of present and future cognitive performance. Frontiers in Human 

Neuroscience, 5, article 70 (2011). 
117. Straub, D.W. Validating Instruments in MIS Research. MIS Quarterly, 13, 2 (1989), 147-
169. 
118. Straub, D.W., Boudreau, M.C., and Gefen, D. Validation guidelines for IS positivist 
research. Communication of the Association for Information Systems, 13, 1 (2004), 380-427. 
119. Straub, D.W., and Burton-Jones, A. Veni, Vidi, Vici: Breaking the TAM Logjam. 
Journal of the Association for Information Systems, 8, 4 (2007), 223-229. 
120. Szabo, M., and Kanuka, H. Effects of violating screen design principles of balance, unity 
and focus on recall, learning, study time and completion rates. Journal of Multimedia and 

Hypermedia, 8 (1998), 23-42. 
121. Teplan, M. Fundamentals of EEG measurement. Measurement Science Review, 2, 3 
(2002), 1-11. 
122. Tesche, C.D., and Karhu, J. Theta oscillations index human hippocampal activation 
during a working memory task. Proceedings of the National Academy of Sciences U.S.A., 2000, 
pp. 919-924. 



39 
 

123. Thiruchselvam, R., Blechert, J., Sheppes, G., Rydstrom, A., &, and Gross, J.J. The 
temporal dynamics of emotion regulation: An EEG study of distraction and reappraisal. 
Biological Psychology, 87 (2011), 84-92. 
124. Titah, R., and Barki, H. Nonlinearities Between Attitude and Subjective Norm in 
Information Technology Acceptance: A Negative Synergy? MIS Quarterly, 33, 4 (2009), 827-
844. 
125. Trans. B-Alert X10: User Manual Carlsbad, CA: Advanced Brain Monitoring, 2010. 
126. Van der Heijden, H. User acceptance of hedonic IS. MIS Quarterly, 28, 4 (2004), 695-
704. 
127. Vance, A., Elie-Dit-Cosaque, C., and Straub, D.W. Examining Trust in Information 
Technology Artifacts: The Effects of System Quality and Culture. Journal of Management 

Information Systems, 24, 4 (2008), 73-100. 
128. Vedhara, K., Miles, J., Bennett, P., Plummer, S., Tallon, D., Brooks, E., Gale, L., 
Munnoch, K., Schreiber-Kounine, C., Fowler, C., Lightman, S., Sammon, A., Rayter, Z., and 
Farndon, J. An investigation into the relationship between salivary cortisol, stress, anxiety and 
depression. Biological Psychology, 62, 2 (2003), 89-96. 
129. Venkatesh, V. Determinants of perceived ease of use: Integrating control, intrinsic 
motivation, and emotion into the technology acceptance model. Information Systems Research, 
11, 4 (2000), 342-365. 
130. Venkatesh, V., and Davis, F.D. A Theoretical Extension of the Technology Acceptance 
Model: Four Longitudinal Field Studies. Management Science, 45, 2 (2000). 
131. Venkatesh, V., Davis, F.D., and Morris, M.G. Dead or alive? The development, trajectory 
and future of technology addoption research. Journal of the Association for Information Systems, 
8, 4 (2007), 267-286. 
132. Vincent, A., Meche, M.A., and Ross, D.R. Computer learning behavior: Strategies for 
learning and behavior improvement. Journal of Information Systems Education, 13, 4 (2002), 
331-342. 
133. Webster, J., and Ahuja, J. Enhancing the Design of Web Navigation Systems: The 
Influences of User Disorientation on Engagement and Performance. MIS Quarterly, 30, 3 (2006), 
661-678. 
134. Webster, J., and Ho, H. Audience Engagement in Multimedia Presentations. The Data 

Base for Advances in Information Systems, 28, 2 (1997), 63-77. 
135. Webster, J., Trevino, L.K., and Ryan, L. The Dimensionality and Correlates of Flow in 
Human-Computer Interactions. Computers in Human Behavior, 9 (1993), 411-426. 
136. Wilson, G.F. An analysis of mental workload in pilots during flight using multiple 
psychophysiological measures. International Journal of Aviation Psychology, 12 (2004), 3-18. 
 



40 
 

Tables and Figures 
 

 
 
 
 

 
 

 

Figure 1. The Technology Acceptance Model (TAM) 
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Table 1. Factorial analysis – loadings and cross-loadings   

 I PU PEOU E F ML D 

I1 0.99 0.51 0.31 0.19 0.03 0.04 -0.12 
I2 0.98 0.49 0.27 0.18 0.09 0.06 -0.07 

PU1 0.54 0.96 0.24 0.24 -0.13 0.08 -0.46 
PU2 0.42 0.93 0.18 0.27 -0.15 0.10 -0.40 
PU3 0.45 0.96 0.11 0.24 -0.08 0.16 -0.45 
PU4 0.51 0.96 0.15 0.12 -0.09 0.13 -0.48 

PEOU1 0.31 0.23 0.90 0.29 -0.40 0.39 0.07 
PEOU2 0.29 0.16 0.95 0.30 -0.46 0.40 0.20 
PEOU3 0.23 0.12 0.93 0.17 -0.43 0.46 0.23 
    E11 -0.13 0.04 0.01 0.50 -0.05 0.03 -0.05 
    E21 0.05 0.11 0.13 0.58 -0.11 -0.11 -0.02 
    E3 0.18 0.18 0.09 0.85 -0.09 0.16 -0.19 
    E41 0.15 -0.05 0.23 0.55 -0.09 -0.08 0.01 
    E5 0.13 0.20 0.47 0.85 -0.37 0.21 -0.04 
    E6 0.27 0.17 0.15 0.76 0.01 0.10 0.02 
    E7 0.03 0.015 0.12 0.70 0.08 0.09 0.05 

F1 -0.02 -0.30 -0.51 -0.29 0.86 0.20 0.05 
F2 0.15 0.04 -0.29 -0.08 0.85 0.003 -0.10 
F3 0.08 0.08 -0.34 -0.06 0.88 0.006 -0.12 

ML1 0.05 0.12 0.45 -0.06 0.10 1.00 -0.19 
D1 0.10 0.47 0.18 -0.07 -0.04 -0.19 1.00 

1Note: Though the internal validity of the engagement scale has been demonstrated in past 
research [133, 134] we decided to drop items E1, E2 and E4 from the study because their 
loadings were below the recommended threshold of .6 [53]. 
 

 

 

 

 

 

 

Table 2. Correlation Matrix, Reliabilities, VIFs and  square root of  AVE (shown in the 

diagonal) 

 Composite 

Reliabilities 

VIF Mean 

(St.Dev.) 

I PU PEOU E D F ML 

I  .98  5.54 (.05)  .97       
PU .98 1.04 4.29 (.08)  0.50 .95      
PEOU .95 1.04 5.65 (.02)  0.29  0.18  .93     
E .86 1.10 5.32 (.57)  0.18  0.22  0.27  .69    
D N/A 1.14 N/A -0.01 -0.47  0.18 -0.08  1.00   
F .90 1.01 2.15 (.12)  0.06  -0.11 -0.46 -0.19 -0.04  .87   
ML N/A 1.01 N/A  0.05  0.12 -0.45 -0.07 -0.19  0.10 1.00 
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Table 3. Effect of D on PU at different levels of Engagement (based on Figure 5) 

E Coef. D Standard Error t-value 

7 0.50 1.89 0.26 
6 -0.98 1.62 -0.61 
5.32 (mean of E) -1.99 1.44 -1.38 
5 -2.46 1.36 -1.81 
4 -3.94 1.10 -3.58*** 
3 -5.42 0.85 -6.41*** 
2 -6.90 0.60 -11.49*** 
1 -8.38 0.38 -21.80*** 
0 -9.86 0.28 -35.55*** 

Table 4. Effect of ML on PEOU at different levels of Frustration (based on Figure 6) 

F Coef. ML Standard Error t-value 

7 -6.92 3.13 -2.21*** 
6 -5.54 2.68 -2.07*** 
5 -4.16 2.24 -1.86 
4 -2.78 1.79 -1.55 
3 -1.40 1.35 -1.04 
2.12 (mean of F) -0.23 0.97 -0.24 
2 -0.02 0.91 -0.03 
1 1.36 0.48 2.86*** 
0 2.74 0.16 16.60*** 

Table 5. Effect Sizes 

 Effect size 𝐟𝟐 

Classification of Effect 

Sizesª 

Model with main effects (without interaction 

effects) 
  

Effect size of D on PU 0.36 Large 
Effect size of E on PU 0.07 Small 
Effect size of ML on PEOU 0.26 Medium 
Effect size of F on PEOU 0.28 Medium 
 

Model with interaction effects 
  

Effect size of D*E on PU 0.10 Small 
Effect size of ML*F on PEOU 0.02 Small 
ªNote: Cohen (1988) classifies effect sizes as follows: .35 as large, .15 as medium, and .02 as 

small. 
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Appendix: Explicit (Self-Reported) Measures 

Measures Scale Source 

Frustration:  
While using the system: 
- (F1) Trying to get this task done was a very frustrating 
experience 
- (F2) Being frustrated comes with this task 
- (F3) Overall, I experienced a lot of frustration on this 
task 

I disagree/ 
I agree 
 
7-point 
scale 

Peters et 
al. [88] 
 

Engagement: 
While using the system, the task:  
- (E1)1 Kept me totally absorbed in the browsing 
- (E2)1 Held my attention 
- (E3) Excited my curiosity 
- (E4)1 Aroused my imagination 
- (E5) Was fun 
- (E6) Was intrinsically interesting 
- (E7) Was engaging 

I disagree/ 
I agree 
 
7-point 
scale 

Webster et 
al. [135] 
 

PU: 
- (PU1) Using the system improves my performance in 
my task. 
- (PU2) Using the system in my task increases my 
productivity. 
- (PU3) Using the system enhances my effectiveness in 
performing my task. 
- (PU3) I find the system to be useful to performing my 
task. 

I disagree/ 
I agree 
 
7-point 
scale 

Venkatesh 
and Davis 
[130] 

PEOU: 
- (PEOU1) My interaction with the system is clear and 
understandable. 
- (PEOU2) I find the system to be easy to use. 
- (PEOU3) I find it easy to get the system to do what I 
want it to do. 

I disagree/ 
I agree 
 
7-point 
scale 

Venkatesh 
and Davis 
[130] 

Intention: 
- (I1) Assuming I had access to the system, I intend to use 
it. 
- (I2) Assuming I had access to the system, I predict that I 
would use it. 

I disagree/ 
I agree 
 
7-point 
scale 

Venkatesh 
and Davis 
[130] 

1Note: Though the internal validity of the engagement scale has been demonstrated 
in past research [133, 134] we decided to drop items E1, E2 and E4 from the study 
because their loadings were below the recommended threshold of .6 [53]. 

 


