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Model studied

Model of a quantum particle in a potential V

with a polarizability term.


i∂tψ =

(
−∆ + V (x)

)
ψ + u(t)Q1(x)ψ

+u(t)2Q2(x)ψ

, x ∈ D,
ψ|∂D = 0,

ψ(0, ·) = ψ0,

(1.1)

where
ψ is the wave function,
D ⊂ Rm is a bounded regular domain,
V ∈ C∞(D,R) is the potential,
the control u is the real amplitude of the electric field,
Q1 ∈ C∞(D,R) is the dipolar moment,

Q2 ∈ C∞(D,R) is the polarizability moment.
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Notations

S :=
{
ψ ∈ L2(D,C); ||ψ||L2 = 1

}
.

< f , g >:=

∫
D
f (x)g(x)dx , for f , g ∈ L2.

Let (λk)k∈N∗ be the non decreasing sequence of eigenvalues of the operator(
−∆ + V

)
with domain H2 ∩ H1

0 .
Let (ϕk)k∈N∗ be the associated sequence of eigenvectors in S.
C := {cϕ1; c ∈ C , |c | = 1} .

Goal : Find a control u such that ψ → ϕ1.
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LaSalle invariance principle in infinite dimensions. I

1 Lyapunov function. L : H → R non negative, L(x) = 0⇐⇒ x = x̃ and
L(x) −→

x→∞
+∞.

2 Non increasing along trajectories

t 7→ L(x(t)) non increasing ,

so
L(x(t)) →

t→+∞
α.

3 Invariant set. We assume x solution of the PDE and

d
dt
L(x(t)) ≡ 0,∀t ≥ 0 =⇒ x(t) ≡ x̃ ,∀t ≥ 0.

4 Let (tn)n∈N ↗ +∞. L(x(tn)) ≤ L(x(t0)) so (x(tn))n∈N is bounded.

x(tn) ⇀
n→+∞

x∞.
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LaSalle invariance principle in infinite dimensions. II

5 Continuity with respect to the initial condition. Let x∞(·) initiated from x∞.

xn(t) := x(t + tn) ⇀
n→∞

x∞(t),∀t ≥ 0.

6 Conclusion. Continuity of the Lyapunov function for the weak topology.

L(xn(t)) →
n→∞

L(x∞(t)), ∀t ≥ 0,

L(x(tn + t)) →
n→∞

α, ∀t ≥ 0.

So (invariant set)
x∞(t) = x̃ , ∀t ≥ 0,

hence
x(t) ⇀

t→∞
x̃ .
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System under the dipole approximation

System studied in [Beauchard and Nersesyan, 2010].
i∂tψ =

(
−∆ + V (x)

)
ψ + u(t)Q(x)ψ,

ψ|∂D = 0,

ψ(0, ·) = ψ0.

(2.1)

Lyapunov function

L(ψ) := γ||(−∆ + V )Pψ||2L2 +
(
1− |〈ψ,ϕ1〉|2

)
,

with P the orthogonal projection on Span {ϕk , k ≥ 2} and γ > 0.
Hypotheses

〈Qϕ1, ϕk〉 6= 0, for all k ≥ 2.
λ1 − λj 6= λp − λq, for all {1, j} 6= {p, q} and j 6= 1.
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Semiglobal weak stabilization using feedback law

We consider the feedback law

u(ψ) := −Im [〈γ(−∆ + V )P(Qψ), (−∆ + V )Pψ〉 − 〈Qψ,ϕ1〉〈ϕ1, ψ〉] .
(2.2)

Theorem
Under the previous hypotheses, there exists J ⊂ R∗+ finite or countable such that
for any ψ0 ∈ S ∩ H1

0 ∩ H2 not belonging to C, there exists γ∗ := γ∗(||ψ0||L2) > 0
such that the solution of the system (2.1) with control u defined in (2.2) with
γ ∈ (0, γ∗)\J and initial condition ψ0 satisfies (up to a global phase)

ψ(t) ⇀
t→∞

ϕ1, in H2
w .

Morgan MORANCEY (CMLA, ENS Cachan) Approximate controllability Sept. 2011 10 / 22



Beyond the dipolar approximation I

 i
d
dt
ψ(t) =

(
H0 + u(t)H1 + u(t)2H2

)
ψ(t),

ψ(0, ·) = ψ0.
(2.3)

with ψ(·) ∈ Cn, H0,H1 and H2 are n × n Hermitian matrices. λ1, · · · , λn
eigenvalues of H0 and ϕ1, · · · , ϕn the associated eigenvectors.

Studied in [Grigoriu et al., 2009].
Improved in [Coron et al., 2009].

Strategy : Use of a time periodic feedback

u(t, ψ) := α(ψ) + β(ψ) sin
( t
ε

)
.
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Beyond the dipolar approximation II

i
d
dt
ψ(t) =

(
H0 + α(ψ)H1 + β(ψ) sin

( t
ε

)
H1 + α2(ψ)H2 + 2α(ψ)β(ψ) sin

( t
ε

)
H2

+ β2(ψ) sin2
( t
ε

)
H2

)
ψ(t). (2.4)

Use of the averaged system. Let f be T periodic and
fav (x) = 1

T

∫ T
0 f (t, x)dt.

ẋ(t) = f (t, x(t)) =⇒ ẋav (t) = fav (xav (t)).

This leads to

i
d
dt
ψav (t) =

(
H0 + α(ψav )H1 +

(
α2(ψav ) +

1
2
β2(ψav )

)
H2

)
ψav (t). (2.5)

Stabilization of the averaged system.
Approximation by averaging.
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Application of the LaSalle invariance principle I

Lyapunov function.

L(ψav (t)) := ||ψav (t)− ϕ1||2.

Choice of the feedbacks.

d
dt
L(ψav (t)) = 2αI1(ψav (t)) + (2α2 + β2)I2(ψav (t)),

where Ij(ψav (t)) = Im(〈Hjψav (t), ϕ1〉.
Let k ∈

(
0, 1
||H2||

)
. The choice of feedbacks

α(ψav (t)) : = −kI1(ψav (t)),

β(ψav (t)) : = (I2(ψav (t)))−,

leads to

d
dt
L(ψav (t)) = −2

(
kI1(ψav (t))2(1− kI2(ψav (t))) +

1
2

(I2(ψav (t))−)3
)
≤ 0.
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Application of the LaSalle invariance principle II

Invariant set. Assume λj 6= λl for j 6= l and for any j ∈ {2, · · · , n},
〈H1ϕj , ϕ1〉 6= 0 or 〈H2ϕj , ϕ1〉 6= 0. Then

ψav (·) solution of (2.5) with L(ψav (·)) constant implies ψav (·) ≡ ±ϕ1.

Under the previous hypothesis, the averaged system is globally asymptotically
stable on S2n−1\{−ϕ1}.
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Approximation by averaging

Lemma of approximation
Let T > 0. There exists C and ε0 > 0 such that, for every τ ∈ R and for every
ε ∈ (0, ε0), if ψ : [τ, τ + T ]→ S2n−1 is a solution of (2.4), and ψav is the solution
of (2.5) such that ψav (τ) = ψ(τ), then

||ψ(t)− ψav (t)|| < Cε, ∀t ∈ [τ, τ + T ].

Combining this with the convergence of ψav we obtain

Main result
Assume that the coupling assumption and the non degeneracy of the spectrum
hold. Let V be a neighborhood of −ϕ1 and δ > 0. There exists a time T > 0 and
ε0 > 0 such that every solution of (2.4) with ε ∈ (0, ε0) that satisfies
ψ(τ) ∈ S2n−1\V for some τ > 0 also satisfies

||ψ(t)− ϕ1|| < δ, ∀t ≥ τ + T .
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Averaged system

{
i∂tψ =

(
−∆ + V (x)

)
ψ + u(t)Q1(x)ψ + u(t)2Q2(x)ψ,

ψ|∂D = 0,

with feedback control u(t, ψ(t)) := α(ψ(t)) + β(ψ(t)) sin(t/ε) leads to the
averaged system 

i∂tψav =
(
−∆ + V (x)

)
ψav + α(ψav )Q1ψav

+

(
α(ψav )2 +

1
2
β(ψav )2

)
Q2ψav ,

ψav|∂D = 0.

(3.1)
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Study of the averaged system and choice of the feedbacks I

Lyapunov function.

L(z) := γ||(−∆ + V )Pz ||2L2 +
(
1− |〈z , ϕ1〉|2

)
.

Feedback laws
α(z) := −kI1(z), β(z) := g(I2(z)),

with

Ij(z) := Im
(
γ〈(−∆ + V )P(Qjz), (−∆ + V )Pz〉 − 〈Qjz , ϕ1〉〈ϕ1, z〉

)
,

k > 0 small enough and g ∈ C 2(R,R+) satisfying g(x) = 0 if and only if
x ≥ 0, g ′ bounded.

Then,
d
dt
L(ψav (t)) ≤ 0.

Under the following assumptions
(H1) 〈Q1ϕ1, ϕk〉 = 0 =⇒ 〈Q2ϕ1, ϕk〉 6= 0,
(H2) Card {k ≥ 2; 〈Q1ϕ1, ϕk〉 = 0} <∞,
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Study of the averaged system and choice of the feedbacks II

(H3) λ1 − λk 6= λp − λq for {1, k} 6= {p, q} and k 6= 1,
(H4) λp 6= λq for p 6= q,

the invariant set is included in C.
Continuity with respect to the initial condition and continuity of the feedback
law for the weak H2 topology.

Assume that hypotheses (H1)-(H4) hold. If
ψ0 ∈ X0 :=

{
z ∈ S ∩ H1

0 ∩ H2; ∆z ∈ H1
0 ∩ H2

}
with 0 < L(ψ0) < 1, the solution

of (3.1) satisfies (up to a global phase)

ψav (t) ⇀
t→+∞

ϕ1, in H2.
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Approximation by averaging I

For an initial condition ψ0 ∈ X0, we consider the control

uε(t) := α(ψav (t)) + β(ψav (t)) sin(t/ε),

with ψav the solution of (3.1) satisfying ψav (0, ·) = ψ0.

Let L > 0, ψ0 ∈ X0 with 0 < L(ψ0) < 1. Let ψav be the solution of the closed
loop system (3.1) with initial condition ψ0. For any δ > 0, there exists ε0 > 0
such that if ψε is the solution of (1.1) with initial condition ψ0 and control uε

with ε ∈ (0, ε0), then

||ψε(t)− ψav (t)||H2 ≤ δ, ∀t ∈ [0, L].
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Explicit approximate controllability

Main result
Assume that hypotheses (H1)-(H4) hold. For any s < 2, for any ψ0 ∈ X0 with
0 < L(ψ0) < 1, there exist a strictly increasing time sequence (Tn)n∈N in R∗+
tending to +∞ and a decreasing sequence (εn)n∈N in R∗+ such that if ψε is the
solution of (1.1) associated to the control uε with ε ∈ (0, εn) and initial condition
ψ0,

distHs (ψε(t), C) ≤ 1
2n , ∀t ∈ [Tn,Tn+1].
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Open Problems

Convergence in the H2 norm.
Card {j ≥ 2; 〈Q1ϕ1, ϕj〉 = 0} =∞.
Approximation property on infinite time interval [s,+∞).
Semi global exact controllability using [Beauchard and Laurent, 2010] in the
1D case with V = 0.

Thank you for you attention.
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