
Explicit, approximate expressions for the resolution and a posteriori
covariance of massive tomographic systems

Guust Nolet,* Ra¡aellaMontelli and JeanVirieux
Geosciences Azur, 250 Rue A. Einstein, 06560 Valbonne, France

Accepted 1999 February 12. Received 1999 February 8; in original form 1998 March 16

SUMMARY
We present an approximate method to estimate the resolution, covariance and
correlation matrix for linear tomographic systems Ax~b that are too large to be solved
by singular value decomposition. An explicit expression for the approximate inverse
matrix A{ is found using one-step backprojections on the Penrose condition AA{&I ,
from which we calculate the statistical properties of the solution. The computation of
A{ can easily be parallelized, each column being constructed independently.

The method is validated on small systems for which the exact covariance can still be
computed with singular value decomposition. Though A{ is not accurate enough to
actually compute the solution x, the qualitative agreement obtained for resolution and
covariance is su¤cient for many purposes, such as rough assessment of model precision
or the reparametrization of the model by the grouping of correlating parameters. We
present an example for the computation of the complete covariance matrix of a very
large (69 043|9610) system with 5:9|106 non-zero elements in A. Computation time
is proportional to the number of non-zero elements in A. If the correlation matrix
is computed for the purpose of reparametrization by combining highly correlating
unknowns xi, a further gain in e¤ciency can be obtained by neglecting the small
elements in A, but a more accurate estimation of the correlation requires a full treat-
ment of even the smaller Aij. We ¢nally develop a formalism to compute a damped
version of A{.
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INTRODUCTION

Seismic tomography is playing an increasingly large role in the
study of the Earth and its dynamic behaviour. Tomographic
images now assist us in understanding, amongst other things,
the deep structure of continents, the details of the subduction
process, and magma upwelling under ocean ridges and
volcanoes. As the relevance of these seismological investi-
gations grows for other Earth Science disciplines, it becomes
important to deal with a fundamental shortcoming of all
tomographic imaging: the non-uniqueness of the solution. The
model resulting from an inversion is just one member of a
subspace of models that satisfy the data equally well or better.
Since the choice of the `preferred' model in the subspace
invariably involves a damping of ill-resolved aspects of the
model, whereas well-resolved characteristics are more or less
¢xed, such damping usually reveals a strong in£uence of the
ray path coverage in tomographic images.

The non-uniqueness of the solution can be characterized
by its resolution and its variance, usually represented by the
resolution matrix and the (a posteriori) covariance matrix. For
small-scale problems, these matrices can be calculated con-
veniently using a singular value decomposition of the problem
(Wiggins 1972; Jackson 1972). For larger problems this
becomes impractical or downright impossible. The resolution
can still be investigated using sensitivity tests (e.g. Spakman
& Nolet 1988). Such tests have shortcomings (Leveque et al.
1993), but an even greater disadvantage is that such tests
measure the sensitivity only with respect to a ¢xed pattern
of cells (e.g. a checkerboard test), and the estimation of
the resolution of single cells requires the repetition of many
sensitivity tests. Furthermore, no satisfactory method exists to
¢nd the a posteriori covariance of the solution, other than
adding random errors to the sensitivity tests and estimating the
covariance matrix from the results of many such tests (Kennett
& Nolet 1978), a practice too laborious to have found general
acceptance. Techniques such as `jackni¢ng' or `bootstrapping'
(Tichelaar & Ru¡ 1989) rely on the overdetermined nature of
an inverse problem and should never be applied to an under-
determined system of equations. Their use on large mixed
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over/underdetermined problems such as found in tomography
is not only highly questionable but also computationally very
expensive.
Recently, the estimation of the resolution matrix from

the ¢rst few Ritz vectors (approximate eigenvectors) resulting
from a Lanczos-type iteration on the linear system has been
proposed (Zhang & McMechan 1995, 1996). Such schemes are
seriously £awed unless the number of Ritz vectors approaches
the e¡ective rank of the matrix, a goal which is impractical for
inversions with, say, the number of data and model parameters
exceeding 105 (Deal & Nolet 1996). We can summarize the
situation as follows:

(1) for models with many degrees of freedom, it becomes
impossible to calculate the a posteriori covariance matrix of
the result;
(2) resolution calculations by means of a limited number of

sensitivity tests have serious shortcomings;
(3) there is no satisfactory way to suppress the in£uence of

the uneven distribution of ray paths in the ¢nal result.

In this paper we shall develop a simple approximate algorithm
to estimate the resolution and the a posteriori covariance of a
tomographic solution which avoids the calculation of eigen-
vectors or Ritz vectors.Whilst we leave an investigation of the
third problem to a future paper, we believe the in£uence of
the ray path distribution should be reduced by an adaptive
reparametrization of the model, for which an estimation of the
model covariance is a necessary prerequisite.

STATEMENT OF THE PROBLEM

We consider the n|m linear inversion problem for a model x,
given (exact) data b with errors �:

Ax~bz�~bê , (1)

scaled such that the covariance matrix of the data error � is the
n|n unit matrix,

C�~In . (2)

Without loss of generality, we assume that the expected value
of the data errors as well as the model parameters is zero:

E[�i]~0 , i~1, . . . , n , (3)

E[xi]~0 , i~1, . . . , m : (4)

Let A{ denote the inverse of A in a generalized sense; for
example, A{bê might be the minimum norm solution of the
least-squares system belonging to (1). While there is consider-
able freedom in the choice of A{, a generalized inverse must
satisfy AA{A~A, or, as paraphrased by Jackson (1972),

AA{&In , (5)

A{A&Im , (6)

which we shall refer to as the two `Penrose conditions'. We can
express the error of the solution xª in terms of A{ (Nolet 1987):

xª {xtrue~A{(bz�){xtrue~(A{A{Im)xtruezA{� , (7)

which expresses the well-known result that the error in the
solution has two causes: the inadequacy of the generalized
inverse to satisfy the second Penrose condition (6) exactly, and
the propagation of error terms through multiplication with
A{. Using the terminology of statistics, the ¢rst term con-

stitutes the bias of the solutions, the second term the statistical
£uctuations (for di¡erent realizations of the observational
errors) around the biased solution.
Similarly, for the data mis¢t we ¢nd

k:Axª {b~(AA{{In)bzAA{� , (8)

from which we see that the data mis¢t s2~jkj2 also has a bias
and a variance. If we succeed in satisfying the ¢rst Penrose
condition (5) we reduce the bias. Setting �~0 in (7), we ¢nd an
expression for the resolution matrix:

xª ~Rxtrue , (9)

where

R~A{A : (10)

If, as is usually the case, (1) is a linear approximation to a
non-linear problem, we may de¢ne � to include also the errors
due to linearizations, or other approximations in the forward
problem (Tarantola 1987). This will undoubtedly introduce
some correlations between the components of the error vector
�, which in principle could be removed through a linear trans-
formation. To make a reasonable a priori estimate of the
covariance matrix of � is, however, a task so daunting that we
are not aware of any successful e¡orts to do so for the seismic
tomography problem. The unscaled C� is therefore generally
assumed to be diagonal, so the transformation to satisfy (2)
reduces to a trivial multiplication. The a posteriori covariance
matrix of the solution xª is then given by

Cxª ~A{C�(A{)T~A{(A{)T : (11)

As usual, this is the covariance in the `minimum norm'
solution, which may be small either because a parameter is well
constrained by the data, or because it is strongly damped
towards 0. For the latter, the `bias' is large but with little
uncertainty. A true indication of the model accuracy can only
be obtained by inspecting both the resolution matrix R and the
covariance matrix Cxª .
From (11) we can easily compute the elements of the

correlation matrix, de¢ned as

oij~
Cij

[CiiCjj ]1=2
, (12)

where we have suppressed the subscript xª . Fully unresolved
parameters (for which the column in A is empty) require a
special treatment: their variance, while in¢nite in reality, is
numerically zero because the null space of A is excluded from
the solution space, and the correlation is unde¢ned. We set
such oij:0.
Intuitively, one understands from (7) that the statistical

error term will grow when A{ has large components. Forcing
the elements of A{ to remain small will reduce the variance
but increase the bias, since we also reduce our ability to satisfy
(6). The early literature on geophysical inverse problems is
exhaustive in its analysis of this trade-o¡ between bias and
error, or variance, of the solution, either in discrete systems
such as those considered here (Wiggins 1972; Jackson 1972), or
in systems where models are not discretized a priori (Backus &
Gilbert 1970; Tarantola 1987). However, it invariably requires
the inversion of large matrices, which is generally performed by
the application of singular value decomposition (SVD). While
the increasing capacities of large computers now allow us

ß 1999 RAS,GJI 138, 36^44

37Resolution and covariance in massive tomographic systems



to apply SVD to matrices where m and n&103, large-scale
traveltime inversions commonly deal with n~104^106 or more
data, and require 103^105 or more model elements.
Of course, the computation of the exact generalized inverse

of A with SVD is not feasible for such large tomographic
problems. Therefore, we can only attempt an approximate
solution to our problem. We note that the computation of the
solution itself does not require the computation of the inverse
A{, since we can use iterative techniques to do so.We do need
the inverse, however, to characterize the resolution by means of
R and Cxª .
Since we de¢ne our solution as xª ~A{bê , (1) implies the

condition AA{bê ~bê , and it is obvious that the ¢rst Penrose
condition (5) is the equation that we shall wish A{ to satisfy as
closely as possible. We shall see later that this is not an
optimum solution to (6) in our approximate analysis of the
problem; that is, it does not minimize the model bias.
De¢ne ck as the vector equal to the kth column of A{, and ek

as the n-dimensional unit vector in the direction k. (5) implies
the following:

Ack~ek (k~1, . . . , n) . (13)

Nakanishi & Suetsugu (1986) have proposed solving (13)
exactly for all k, a strategy which is only possible for small n.
We derive a fast, approximate solution using backprojection.
The backprojection direction is found by taking the negative
gradient {+c at location ck0 in model space of the mis¢t
jAck{ekj2, which is equal to {AT(Ack0{ek). In our case ck0~0,
from which we ¢nd

ok:ATek, (14)

where ok is a vector of dimension n. (14) gives simply

oki ~AT
ik~Aki (i~1, . . . , m) . (15)

We seek an approximate solution to (13) by imposing the
condition that ck is in the direction of ok: ck~akok. If we
impose the condition that the mis¢t is minimized, this implies
orthogonality of the mis¢t vector: (akAok{ek, akAok)~0.
Hence the coe¤cient

ak~
(ek, Aok)
(Aok, Aok)

, (16)

or, when written out explicitly,

ak~

Xm
j~1

A2
kj

Xn
i~1

Xm
j~1

AijAkj

 ! Xm
q~1

AiqAkq

 ! : (17)

Since

A{
ik ~cki ~akoki ~akAki , (18)

the generalized inverse can therefore be written as

A{~ATD , (19)

whereD is a diagonal matrix, its diagonal elements equal to ak:

Dkk~
(AAT)kkXn

i~1

(AAT)2ik

(k~1, . . . , n) : (20)

Unfortunately, Penrose's second condition (6) leads to
a di¡erent approximate solution. Following the same
backprojection method, we ¢nd

A{~D'AT , (21)

with the elements of D0 de¢ned by

D0kk~
(ATA)kkXm

i~1

(ATA)2ik

(k~1, . . . , m) . (22)

Finally, we notice a di¡erence between the last equation and
the approximate inverse we would obtain by simply reducing
ATA to its diagonal. In that case we would have an inverse
similar to (21): A{~D00AT, with D00kk~(ATA){1

kk . We investi-
gated this third possibility brie£y and abandoned it as quickly
because of its complete lack of ¢t to either (5) or (6).
It is well known that one iteration of a backprojection

step will converge to the correct solution in the case where all
singular values of A are equal. This is not even remotely the
case for tomographic systems. However, backprojections often
give very reasonable data ¢ts. The reason must be sought in the
sparse nature of the matrices. If there is little overlap between
rays, the products involved in AAT will involve multiplications
with zeros, unless two rays sample the same model cell.
Therefore, AAT is likely to be diagonally dominant. One can
easily check that (5) is satis¢ed as long as (AAT)ij (i=j) can be
neglected with respect to (AAT)ii. Since cells always correlate
with neighbouring cells, the diagonal of ATA is probably less
dominant, which would explain the inferior performance of the
diagonal approximation D00kk~(ATA){1

kk . This approximation
may work better for systems in which E[Aij ]&0, such as in
di¡raction tomography, but is obviously bad for systems from
body wave tomography where E[Aij ]&0. Such considerations
are, however, far from conclusive, and in the next section we
shall rely on a numerical test to justify our approach.
We can use (19) in (10) and (11) to obtain estimates of the

resolution and the covariance matrix, respectively. Note that
these expressions have an added advantage over the expressions
for R and Cxª as computed by SVD, apart from the saving on
computer memory and CPU: they allow us to compute only
part of these matrices, which is useful if our parameters are
`local' (for example, spline supports, rather than non-local
parameters such as spherical harmonic coe¤cients). Thus, we
can isolate velocity or slowness parameters from parameters
designating source or station corrections, or even isolate
a particular geographic region of interest. The parameter
transformations inherent to SVD prohibit this with the exact
computations.
Another advantage is that the computation of A{ lends

itself naturally to parallel computations, since each of the
columns of A{ is computed independently from the others.

VALIDATION ON A SMALL LINEAR
SYSTEM

The validity of our approach depends on how well (13) is solved
with only one backprojection step. Earlier experience with the
iterative inversion of sparse matrices suggests that the ¢rst
backprojection step almost always provides the bulk of the
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variance reduction, often reducing the data mis¢t by more than
50 per cent of the total (converged) reduction. In this section
we investigate the validity of our approach.
Although SVD is always to be preferred for matrices of small

dimensions, since it allows for an exact computation of the
solution statistics, we use our method on such a small system to
make a comparison with the exact solution possible.We choose
realistic examples. Two matrices A are taken from the Sn
tomography study of Nolet et al. (1998), and are denoted by
`east' and `west', respectively. Aeast is a 121|115 system with
a rather sparse coverage of ray paths (see Fig. 2 in Nolet
et al. 1998). In contrast, Awest, 839|429, has a dense coverage
with many, often overlapping ray paths. Both systems
include source and station corrections in addition to unknown
slowness anomalies in the vector x.
In a ¢rst test we randomly generate synthetic data vectors b

that satisfy (1) exactly, and test how well x~A{b satis¢es the
data. This is a direct test of the ¢rst Penrose condition (5).
Fig. 1 shows histograms of the ¢ts (de¢ned as jAx{bj2/jbj2)
for A{ computed with (19) and (21). For both east (left) and
west (right) it is clear that (19) (a) yields a superior data ¢t, as is
to be expected since (19) was constructed to satisfy (5), but the
di¡erence with (21) (b) is not large.
Although it is clear that the variance reduction is not com-

plete, it is obvious that A{b reduces the variance by at least 50
per cent, and often by much more than that. Since this is not
a small variance reduction for many tomographic inversions,
and since our aim is to estimate the statistics, not to con-
struct xª , we judge this outcome highly encouraging. Since
backprojections work most e¤ciently for non-overlapping ray
paths (and would result in the optimal ¢t if every cell was
visited only once), we conjecture that the di¡erences between
east and west are due to the di¡erence in ray path overlap, with
the estimate becoming less accurate as the ray paths overlap
more. This would imply that the more accurate estimate of A{

is obtained by assembling overlapping ray paths into `summary
rays' (Morelli & Dziewonski 1987).
For the actual computation of the solution of Ax~b

the application of repeated backprojections in a conjugate

gradient algorithm such as LSQR is not only more accurate but
also faster (Paige & Saunders 1982; Nolet 1983).
When comparing estimates of Cxª and R with their exact

counterparts we face a problem related to the damping of the
SVD solution. The situation is schematically sketched in Fig. 2.
In this ¢gure, our estimated variance and resolving length (or
correlation distance) is shown by the dot. The curve represents
the trade-o¡ between variance and resolving length for a
truncated SVD solution as we vary the number of eigenvalues.
Since our estimate A{ is not exact, our solution is not exactly
on the curve that describes the trade-o¡ between variance and
resolving power.
We can damp the SVD solution such that we obtain the same

resolving length as with the approximate inverse A{, or the
same resolving power, or make a choice in between. We shall
compare variance estimates for equally resolved models (that
is, point B in Fig. 2). We use the e¡ective rank of the inverse
matrix as a measure of the overall resolving power. Wiggins
(1972) showed that the e¡ective rank of the truncated SVD
inverse (the number of eigenvectors used to construct the
generalized inverse) is equal to the sum of the diagonal
elements of R:

keff~
Xm
i~1

Rii . (23)

ForRwest we ¢nd keff~21:4. In Fig. 3 we compare the estimated
and the true values of Rii for 22 eigenvectors, and similarly
for Reast for which keff~16:3 we choose 17 eigenvectors.
Clearly, for well-resolved parameters with Rii > 0:5 there is
broad agreement; although Rii may be in error by as much as
50 per cent, only a few `unresolved' parameters are plotted
as resolved. The few that have RSVD

ii < 0:1 but for which our
estimate exceeds 0.1 are all event or station corrections, not
slowness parameters. This conclusion does not seem to depend

Figure 1. Histograms showing the data mis¢t jAx{bj2/jbj2 for a
Monte Carlo simulation using 1000 random data vectors b in the range
of (left) Aeast and (right) Awest. (a) A{ de¢ned with the ¢rst Penrose
condition (5); (b) A{ de¢ned using (6).

Figure 2. Schematic diagram showing the trade-o¡ of variance versus
resolving length for the SVD solution. The approximate inverse yields
estimates for these quantities which are o¡ this curve (black dot),
and which may be compared either with the SVD solution with similar
variance (point A) or with similar resolving power (point B), or
somewhere between A and B.
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on the exact choice of keff , since adding or subtracting an
eigenvector a¡ects only the ill-resolved parameters.
In Fig. 4 we compare the part of the covariance matrix

relating to the slowness parameters with their exact counter-
parts for east (again calculated with 17 eigenvectors) and west
(calculated with 22 eigenvectors). The colour scale is chosen
to highlight parameters with a large (co)variance; that is, for
which the tomographic image might be suspect.
An eyeball comparison again shows broad agreement

between the estimated Cxª , denoted by `EST', and the exact
ones (`SVD'). Variances in the east, where the ray density is
less than the west, are generally higher than in the west. On
the diagonal, many gaps correspond to unresolved parameters
for which the variance is `numerically' zero due to the mini-
mum norm character of the solution. Generally, the order
of magnitude of the variances is well reproduced by the
estimations, as are groups of covariances around the diagonal.
In the o¡-diagonal bands corresponding to nearest-neighbour
cells, the estimations seem to be biased towards somewhat
larger values, but far o¡ the diagonal (that is, for parameters
located further apart) the estimated covariance is lower than
the true value. Awest is an order of magnitude larger in size
than Aeast but no strong dependence of accuracy on matrix
size is evident. If anything, the estimations for Cwest

xª seem to be
slightly better than for Ceast

xª . Since there is also no reason
a priori to assume that the accuracy degrades with the size of
the matrix, we are con¢dent that, even for very large systems,
the order of magnitude of the variance is estimated correctly.

APPLICATION TO A LARGE SYSTEM

We have also tested the algorithm on a much larger system.
While we have no ground truth to compare the results, we
investigated the e¤ciency of the algorithm as well as the e¡ect
of neglecting small matrix elements.
For this purpose we created a matrix A simulating a

P-wave tomography experiment covering central and eastern
Asia, including the subduction in the northwest Paci¢c, using
one year of seismicity (1993). The systemöformulated without
source/station correction termsöhas 69 043 rows and 9610
columns, and could not be handled with SVD even on a large

computer. Using a linear spline parametrization (Thurber
1983), with pivots roughly 200 km apart, the matrix has
5:9|106 non-zero elements (0.9 per cent of the total). 44 per
cent of these are smaller than 1 per cent of the largest element,
21 per cent smaller than 0.1 per cent.
The inspection of several rows of Cxª , plotted as correlations

to facilitate the colour scaling, gives further con¢dence in
the results. Fig. 5 gives these correlation coe¤cients for three
locations, plotted in cross-sections as a function of latitude,
longitude and depth. We compare the resolution in three
di¡erent geographical locations plotted in Fig. 6. On the left in
Fig. 5, the solution at point a, located near the surface, is
clearly well constrained horizontally, but su¡ers from a lack of
resolution in the depth direction. In the centre of Fig. 5, the
solution in point b, located at 500 km depth just NE of Lake
Baikal, correlates with points as far as 1000 km away. Finally,
on the right of Fig. 5 one sees the e¡ect of ray bundles for
point c in the Japan slab, where the N^S cross-section evidently
samples ray paths towards Australian stations, and where the
lack of crossing ray paths at depth causes the elongated shape
of the correlating structure.
On the Sun UltraSparc processor the computations of R and

Cxª , including some overhead to calculate matrix statistics, take
about 5 hr for 106 non-zero elements. When we neglect the
smallest elements in A, computations of A{ are faster and we
¢nd that the computation time depends linearly on the number
of non-zero elements of A (Fig. 7). However, the accuracy is
clearly a¡ected by truncation. We tested this by counting the
number of correlation coe¤cients oij larger than a certain
threshold. When we truncate Aij at a level as large as 10 per
cent of the maximum, we greatly increase the speed of com-
putation (by a factor of 6), but we lose about 60 per cent of the
oij > 0:8, which are now underestimated in magnitude; this is
even worse for smaller oij (Fig. 8). Inspection of the actual
covariances shows that it is mostly the smaller covariances that
are a¡ected. Since these probably belong to the ill-resolved
parameters (the well-resolved parameters are associated with
large elements in A), the situation shown in Fig. 7 may give a
view that is too pessimistic. A modest truncation level of 1 per
cent may be acceptable if we only use the oij for the purpose of
reparametrization; this would result in a reduction of CPU
time by a factor of about 2.

Figure 3. Comparison between the estimated diagonal elements of the resolution matrix Rest and the correct values RSVD
ii for (left) Aeast and (right)

Awest. The SVD results were computed with 17 and 22 eigenvectors, respectively. See text for discussion.
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DISCUSSION

Programming considerations

The e¤ciency of the code depends strongly on some elemen-
tary programming considerations. The most commonly used
scheme for the storage of non-zero elements of the matrix A is
row-wise. This involves storage overhead more then double the
memory required to store just the values of non-zero Aij, since
one has to store the column number for each element as well as
the number of non-zeros in each row of A. The scheme allows
for fast computation of the product of both A and AT with a
vector, by looping through the elements of A in the same order
as they are stored.Whilst this strategy can still be followed for
the matrix product AAT by repeatedly multiplying A with one
of its own rows, it fails for ATA, when AT is multiplied with

columns of A. Although the computation of D in (20) only
requires the product AAT, reverse products occur in the com-
putation ofR~ATDA and Cxª ~ATD2A.We have found it most
e¤cient to storeA twice: once in row and once in column order.
We also note that neitherATA norAAT can be expected to be

truly sparse matrices and that one should avoid storage of these
products. Fortunately, for the computation of D with (20) one
needs only one row of AAT at a time. For the end-products R
and Cxª one may use mass storage to store these, generally row-
wise in the form of 2-D or 3-D `images', and for many appli-
cations a heavy truncation of smaller elements is allowed.
Since the correlation matrix can be computed from Cxª no
separate storage of this is needed. If the correlation matrix
is only computed to construct a sensible reparametrization of
the model, an advisable strategy is to compute the diagonal
elements of R ¢rst, then work from the smallest diagonal

Figure 4. Comparison between the estimated covariance matrix (EST) and the correct covariance matrix (SVD) as computed for Aeast (top)
and Awest (bottom). Only the covariances of the slowness parameters are plotted. The scale is in 10{12 s2 m{2 for an assumed variance in delay times
of 1.0 s2.

ß 1999 RAS,GJI 138, 36^44

41Resolution and covariance in massive tomographic systems



elements to compute the correlations within that row and
regroup parameters. This will quickly eliminate the parameters
with the worst resolution and avoid unnecessary calculations.

Sensitivity tests

Our method is similar to that of sensitivity tests (Spakman &
Nolet 1988; Leveque et al. 1993) but on n data vectors in which
only one datum is equal to 1 and all others are set to zero,
rather than setting one model parameter to 1 to construct a
right-hand side. We also restrict the matrix solver to just one
iteration. One could in fact try to forgo an analytical treatment
as given here, and simply solve (13) using more iterations with
a matrix solver such as LSQR. However, for large systems
this will quickly saturate the available computer time. Since
A{ will lose its sparse nature, this strategy may also invite
storage problems, whilst truncating small elements of A{

may result in a loss of the extra precision gained by the extra
iterations.

In comparison with sensitivity tests, our method gives a
rough global estimate of both covariance and resolution,
whereas sensitivity tests with spikes give an accurate image of
the resolution, but for a few selected model parameters only,
and no information on the covariances. Which is preferred
depends on the application, and sometimes one may wish to
use both methods, since they nicely complement each other.
The main application we have in mind for our method is
the reparametrization of the model by grouping of highly
correlating parameters.

Lanczos iteration

Using the Ritz vectors (approximate eigenvectors) resulting
from a Lanczos or conjugate gradient iteration to compute
the resolution of large systems has been proposed (Zhang &
McMechan 1995) as an alternative to explicit computation of
the full eigensystem as in SVD. However, as pointed out by
Deal & Nolet (1996), it quickly becomes infeasible to compute

Figure 5. This ¢gure shows three examples of rows of the correlation matrix for the large (69 043|9610) problem, plotted by way of
cross-sections with ¢xed (from top to bottom) latitude, longitude and depth, respectively. (a) The P velocity near the surface below the Grand
Khingan mountains in Mongolia, slowness variance 3:1|10{4 s2 km{2; (b) at 500 km depth NE of Lake Baikal, variance 6:1|10{4 s2 km{2;
(c) at 500 km depth in the Japan subduction zone, variance 2:1|10{3 s2 km{2. The variances quoted are for an assumed variance in the delay time
observations of 1.0 s2.
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all the Ritz vectors needed to span the solution space as the
size of A and its e¡ective rank grows, due to a proli¢c growth
of duplicate vectors in the conjugate gradient scheme. For
example, the e¡ective rank keff of the large matrix used in
the previous section is estimated with (23) to be 574, and
to compute that many eigenvectors is very costly, and for
somewhat larger problems probably even beyond the reach

of iterative algorithms. We certainly do not agree with Zhang
& McMechan (1996) that it is su¤cient to compute the
uncertainty in xª by considering only a subset of Ritz vectors
constructed from the data vector b: for a correct estimation of
model statistics one has to allow perturbations of the model
in all directions. Nor could one assume that the selection of a
subspace spanned by an incomplete set of Ritz vectors con-
stitutes a good basis for reparametrization (smooth models for
which the statistics could then be computed). The reason is that
the set of Ritz vectors is dependent on the data vector used to
generate them and will ignore other directions in model space,
even those that are associated with quite large eigenvalues
(Deal & Nolet 1996).
This leaves the method described in this paper as the only

one to estimate the resolution and covariance matrix for large
systems.

Damping

Strictly speaking, the estimated covariance and resolution is
valid only for an inversion with the same damping properties as
A{. However, if the ¢rst iteration of a backprojection method
such as LSQR de¢nes the major characteristics of the solution,
R and Cxª should be useful as order of magnitude estimates.
Since the variance in the data is not precisely known to begin
with, attempts to increase the precision of R and Cxª may seem
futile. In principle, one could apply Newton iteration to obtain
more precise versions of the inverse of A [the ¢rst correction
would be A{(I{R)] but the added computational e¡ort
will soon become prohibitive for really large systems.We may,

Figure 6. Geographical locations of the cells shown in Fig. 5.

Figure 7. CPU time needed to compute R and Cxª on a Sun
UltraSparc processor as a function of the number of non-zero elements
in A.

Figure 8. Test of the e¡ect of neglecting small elements of A by
measuring the number of correlation coe¤cients larger than 0.6 and 0.8
as a function of the cut-o¡ threshold, de¢ned in per cent of the largest
matrix element.
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however, investigate the case that (1) needs to be damped
strongly to keep the propagation of data errors under control.
Since A{ already involves a minimum degree of damping,

we are limited in controlling the damping of our approximate
inverse. However, in many cases the signal-to-noise ratio of
the data vector bê may be very small. For example, Morelli
& Dziewonski (1987) estimated the variance of teleseismic
P-delays at 1 s2, which implies a signal-to-noise ratio of the
order of 1. For S waves, tomographic systems are even less
accurate than that. In such cases it may actually be advisable to
damp the solution even further. This can be done by means of a
simple modi¢cation of A{. We may damp (1) in the same way
as is done in ridge regression, adding to the system (1) m
equations of the form jxi~0, where j serves to weigh these
equations against the `true' constraints:

A

jIm

 !
x:Bx~

b

0

 !
. (24)

We then de¢ne the inverse as

B{~BTDê ~(ATD(1) jD(2)) , (25)

where

D(1)
kk~

(AAT)kkXn
i~1

(AAT)2ikzj2
Xm
i~1

A2
ki

 ! (k~1, . . . , n) , (26)

D(2)
kk~

1Xn
i~1

A2
ikzj2

(k~1, . . . , m) . (27)

The de¢nition of R now depends on a subtle interpretation
of the damping. If we consider the added m equations jx~0 as
true information on the model, that is, if we have reason to
assume that the true earth model xtrue is really 0, we would
de¢ne R as before as B{B and ¢nd

R~ATD(1)Azj2D(2) . (28)

More probably, the damping equations are not re£ecting true
information, but are introduced to bias the model towards
0 and reduce its variance. In that case we can only say that
Axtrue~b, so that

x~(ATD(1) jD(2))
Axtrue

0

 !
~ATD(1)Axtrue , (29)

which implies

R~ATD(1)A . (30)

For the covariance we ¢nd, using the same interpretation of the
damping,

Cxª ~ATD(1) 2A . (31)

For j~0, this reduces to (11), and the variances behave
asymptotically as j{2 for j??, as we should expect.

CONCLUSIONS

We have developed an approximate but explicit expression for
the covariance and resolution of the solution of tomographic
systems. In contrast to schemes based on SVD or Lanczos

iteration, this can be applied to very large matrices. The CPU
time required varies linearly with the number of non-zero
elements in the matrix. The accuracy has been investigated
with small systems and was shown to be su¤cient for most
purposes.Work on the application of these results in a strategy
for automatic reparametrization of the model is currently in
progress.
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