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Abstract : In this paper, a Model Predictive Control problem for constrained
nonlinear systems with quantized input is formulated and represented as a multi-
parametric Nonlinear Integer Programming (mp-NIP) problem. Then, a com-
putational method for explicit approximate solution of the resulting mp-NIP
problem is suggested, which consists in constructing a feasible piecewise con-
stant approximation to the optimal solution on the state space of interest. The
proposed approximate mp-NIP approach is applied to the design of an explicit

approximate MPC controller for a clutch actuator with on/off valves.

1 Introduction

In several control engineering problems, the system to be controlled is charac-
terized by a finite set of possible control actions. Such systems are referred to as
systems with quantized control input and the possible values of the input rep-
resent the levels of quantization. For example, hydraulic systems using on/off
valves are systems with quantized input. In order to achieve a high quality of
the control system performance it would be necessary to take into account the
effect of the control input quantization. Thus, in [7] receding horizon optimal
control ideas were proposed for synthesizing quantized control laws for linear

systems with quantized inputs and quadratic optimality criteria. Further in [1],
a method for explicit solution of optimal control problems with quantized control
input was developed. It is based on solving multi-parametric Nonlinear Integer
Programming (mp-NIP) problems, where the cost function and the constraints
depend linearly on the vector of parameters. In this paper, a Model Predictive
Control (MPC) problem for constrained nonlinear systems with quantized input
is formulated and represented as an mp-NIP problem. Then, a computational
method for explicit approximate solution of the resulting mp-NIP problem is
suggested. The mp-NIP method proposed here is more general compared to the
mp-NIP method in [1], since it allows the cost function and the constraints to
depend nonlinearly on the vector of parameters (the state variables).

The following notation is used in the paper. A ≻ 0 means that the
square matrix A is positive definite. For x ∈ R

n, the Euclidean norm is
‖x‖ =

√
xTx and the weighted norm is defined for some symmetric matrix

A ≻ 0 as ‖x‖A =
√
xTAx.
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2 Formulation of quantized Nonlinear Model Pre-
dictive Control problem

Consider the discrete-time nonlinear system:

x(t+ 1) = f(x(t), u(t)) (1)

y(t) = Cx(t), (2)

where x(t) ∈ R
n is the state variable, y(t) ∈ R

p is the output variable, and
u(t) ∈ R

m is the control input, which is constrained to belong to the finite set
of values UA = {u1, u2, ... , uL}, ui ∈ R

m, ∀i = 1, 2, ... , L, i.e. u ∈ UA. Here,
u1, u2, ... , uL represent the levels of quantization of the control input u. In (1),
f : R

n × UA 7−→ R
n is a nonlinear function.

Here, we consider a reference tracking problem where the goal is to have
the output variable y(t) track the reference signal r(t) ∈ R

p. Suppose that a full
measurement of the state x(t) is available at the current time t. For the current
x(t), the reference tracking quantized NMPC solves the following optimization
problem:
Problem P1:

V ∗(x(t), r(t)) = min
U

J(U, x(t), r(t)) (3)

subject to xt|t = x(t) and:

ymin ≤ yt+k|t ≤ ymax, k = 1, ... , N (4)

ut+k ∈ UA = {u1, u2, ... , uL}, k = 0, 1, ... , N − 1 (5)∥∥yt+N |t − r(t)
∥∥ ≤ δ (6)

xt+k+1|t = f(xt+k|t, ut+k), k ≥ 0 (7)

yt+k|t = Cxt+k|t, k ≥ 0 (8)

Here, U = [ut, ut+1, ... , ut+N−1] ∈ R
Nm is the set of free control moves, U ∈ UB ,

where UB = (UA)N = UA × ... × UA and the cost function given by:

J(U, x(t), r(t)) =

N−1∑

k=0

[∥∥yt+k|t − r(t)
∥∥2

Q
+
∥∥h(xt+k|t, ut+k)

∥∥2

R

]

+
∥∥yt+N |t − r(t)

∥∥2

P
(9)

Here, N is a finite horizon and h : R
n × UA 7−→ R

s is a nonlinear function. It
is assumed that P,Q,R ≻ 0. From a stability point of view it is desirable to
choose δ in (6) as small as possible. However, the feasibility of (3)–(9) will rely
on δ being sufficiently large. A part of the NMPC design will be to address this
tradeoff. We introduce an extended state vector:

x̃(t) = [x(t), r(t)] ∈ R
ñ, ñ = n+ p (10)

Let x̃ be the value of the extended state at the current time t. Then, the
optimization problem P1 can be formulated in a compact form as follows:
Problem P2:

V ∗(x̃) = min
U

J(U, x̃) subject to G(U, x̃) ≤ 0 (11)
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The quantized NMPC problem defines a multi-parametric Nonlinear Integer
Programming problem (mp-NIP), since it is a Nonlinear Integer Programming
problem in U parameterized by x̃. An optimal solution to this problem is
denoted U∗ = [u∗t , u

∗
t+1, ... , u

∗
t+N−1] and the control input is chosen according

to the receding horizon policy u(t) = u∗t . Define the set of N -step feasible initial
states as follows:

Xf = {x̃ ∈ R
ñ |G(U, x̃) ≤ 0 for some U ∈ UB} (12)

If δ in (6) is chosen such that the problem P1 is feasible, then Xf is a non-empty
set.

In parametric programming problems one seeks the solution U∗(x̃) as an
explicit function of the parameters x̃ in some set X ⊆ Xf ⊆ R

ñ [2]. In this
paper we suggest a computational method for constructing an explicit piece-
wise constant (PWC) approximate solution of the reference tracking quantized

NMPC problem.

3 Approximate mp-NIP approach to explicit quan-

tized NMPC

3.1 Computation of feasible PWC solution

Definition 1 (Feasibility):
Let X̄ ⊂ R

ñ be a hyper-rectangle and VX̄ = {v1, v2, ... , vQ} ⊂ X̄ be a discrete

set. A function U(x̃) is feasible on VX̄ if G(U(vi), vi) ≤ 0, i ∈ {1, 2, ... , Q}.
Further, the feasibility of U(x̃) on VX̄ ⊂ X̄ will be referred to as feasibility of

U(x̃) on X̄.

We restrict our attention to a hyper-rectangleX ⊂ R
ñ where we seek to approxi-

mate the optimal solution U∗(x̃) to problem P2. We require that the state space
partition is orthogonal and can be represented as a k−d tree. The main idea of
the approximate mp-NIP approach is to construct a feasible piecewise constant

(PWC) approximation Û(x̃) to U∗(x̃) on X, where the constituent constant
functions are defined on hyper-rectangles covering X. The solution of problem
P2 is computed at the 2ñ vertices of a considered hyper-rectangle X0 by solv-
ing up to 2ñ NIPs, as well as at some interior points. These additional points
represent the vertices and the facets centers of one or more hyper-rectangles
contained in the interior of X0. The following procedure is used to generate a
set of points V0 = {v0, v1, v2, ... , vN1

} associated to a hyper-rectangle X0:
Procedure 1 (Generation of set of points):
Consider any hyper-rectangle X0 ⊆ X with vertices Λ0 = {λ0

1, λ
0
2, ... , λ

0
Nλ

} and

center point v0. Consider also the hyper-rectangles X
j
0 ⊂ X0, j = 1, 2, ... , N0

with vertices respectively Λj = {λj
1, λ

j
2, ... , λ

j
Nλ

}, j = 1, 2, ... , N0. Suppose

X1
0 ⊂ X2

0 ⊂ ... ⊂ XN0

0 . For each of the hyper-rectangles X0 and X
j
0 ⊂ X0,

j = 1, 2, ... , N0, denote the set of its facets centers with Φj = {φj
1, φ

j
2, ... , φ

j
Nφ

},
j = 0, 1, 2, ... , N0. Define the set of all points V0 = {v0, v1, v2, ... , vN1

}, where

vi ∈
{

N0⋃
j=0

Λj

}
⋃
{

N0⋃
j=0

Φj

}
, i = 1, 2, ... , N1.

The global solution U∗(vi) of problem P2 at a point vi ∈ V0 is computed by us-
ing the routine ’glcSolve’ of the TOMLAB optimization environment in Matlab
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[4]. The routine ’glcSolve’ implements an extended version of the DIRECT al-
gorithm [5], that handles problems with both nonlinear and integer constraints.
The DIRECT algorithm (DIviding RECTangles) [5] is a deterministic sampling
algorithm for finding the global minimum of a multivariate function subject to
constraints, using no derivative information. It is a modification of the standard
Lipschitzian approach that eliminates the need to specify a Lipschitz constant.

Based on the global solutions U∗(vi) at all points vi ∈ V0, a feasible local

constant approximation Û0(x̃) = K0 to the optimal solution U∗(x̃), valid in the
whole hyper-rectangle X0, is determined by applying the following procedure:
Procedure 2 (Computation of explicit approximate solution):
Consider any hyper-rectangle X0 ⊆ X with a set of points V0 = {v0, v1, v2, ... , vN1

}
determined by applying Procedure 1. Compute K0 by solving the following NIP:

min
K0

N1∑

i=0

(J(K0, vi) − V ∗(vi)) subject to G(K0, vi) ≤ 0, ∀vi ∈ V 0 (13)

3.2 Estimation of error bounds

Suppose that a constant function Û0(x̃) = K0 that is feasible on V 0 ⊆ X0

has been determined by applying Procedure 2. Then, for the cost function
approximation error in X0 we have:

ε(x̃) = V̂ (x̃) − V ∗(x̃) ≤ ε0 , x̃ ∈ X0 (14)

where V̂ (x̃) = J(Û0(x̃), x̃) is the sub-optimal cost and V ∗(x̃) denotes the cost
corresponding to the global solution U∗(x̃), i.e. V ∗(x̃) = J(U∗(x̃), x̃). The
following procedure can be used to obtain an estimate ε̂0 of the maximal ap-
proximation error ε0 in X0.
Procedure 3 (Computation of error bound approximation):
Consider any hyper-rectangle X0 ⊆ X with a set of points V0 = {v0, v1, v2, ... , vN1

}
determined by applying Procedure 1. Compute an estimate ε̂0 of the error bound

ε0 through the following maximization:

ε̂0 = max
i∈{0,1,2, ... ,N1}

(V̂ (vi) − V ∗(vi)) (15)

3.3 Approximate mp-NIP algorithm

Assume the tolerance ε̄ > 0 of the cost function approximation error is given.
The following algorithm is proposed to design explicit reference tracking quan-

tized NMPC:
Algorithm 1 (explicit reference tracking quantized NMPC)

1. Initialize the partition to the whole hyper-rectangle, i.e. Π = {X}.
Mark the hyper-rectangle X as unexplored.

2. Select any unexplored hyper-rectangle X0 ∈ Π. If no such hyper-
rectangle exists, terminate.

3. Generate a set of points V0 = {v0, v1, v2, ... , vN1
} associated to X0 by

applying Procedure 1.
4. Compute a solution to problem P2 for x̃ fixed to each of the points

vi , i = 0, 1, 2, ... , N1 by using routine ’glcSolve’ of TOMLAB optimization en-
vironment. If problem P2 has a feasible solution at all these points, go to step
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6. Otherwise, go to step 5.
5. Compute the size of X0 using some metric. If it is smaller than some

given tolerance, mark X0 infeasible and explored and go to step 2. Otherwise,
split X0 into hyper-rectangles X1, X2, ... , XNs

by applying the heuristic rule 1
from [3]. Mark X1, X2, ... , XNs

unexplored, remove X0 from Π, add X1, X2,
... , XNs

to Π, and go to step 2.

6. Compute a constant function Û0(x̃) using Procedure 2, as an approx-
imation to be used in X0. If no feasible solution was found, split X0 into two
hyper-rectangles X1 and X2 by applying the heuristic rule 3 from [3]. Mark X1

and X2 unexplored, remove X0 from Π, add X1 and X2 to Π, and go to step 2.
7. Compute an estimate ε̂0 of the error bound ε0 in X0 by applying

Procedure 3. If ε̂0 ≤ ε̄, mark X0 as explored and feasible and go to step 2. Oth-
erwise, split X0 into two hyper-rectangles X1 and X2 by applying Procedure 4
from [3]. Mark X1 and X2 unexplored, remove X0 from Π, add X1 and X2 to
Π, and go to step 2.

4 Explicit quantized NMPC of an electropneu-

matic clutch actuator using on/off valves

Here, a pneumatic actuator of an electropneumatic clutch system is considered.
The pneumatic actuator acts on the clutch plates through the clutch spring, and
the state of the clutch directly depends on the actuator position. The actuator
is controlled by using on/off valves. In comparison to proportional valves, the
on/off valves are smaller and cheaper. In [8] the case when only fully open
and closed are possible states of the valves is considered. Then, a controller
is designed to govern switches between these states based on backstepping and
Lyapunov theory. It should be noted however, that the method in [8] can not
handle the constraints imposed on the clutch actuator position. On the other
hand, Model Predictive Control (MPC) is an optimization based method for
control which can handle both state and input constraints. This makes the
MPC methodology very suitable to the optimal control of the clutch actuator.
The fast dynamics of the clutch actuator, characterized with sampling time of
about 0.01 [s] requires the design of an explicit MPC controller, where the only
computation performed on-line would be a simple function evaluation.

4.1 Description of the electropneumatic clutch actuator

The clutch actuator system is shown in Figure 1. To control both supply to and
exhaust from the clutch actuator chamber, at least one pair of on/off valves are
needed. As we only allow these to be fully open or closed, with two valves and
under the assumption of choked flow, we restrict the flow of the clutch actuator
to three possible values, maximum flow into the volume, maximum flow out of
the volume, or no flow [8]. The electronic control unit (ECU) calculates and sets
voltage signals to control the on/off valves. These signals control whether the
valve should open or close, and thus also the flow into the actuator. A position
sensor measures position and feeds it back to the ECU. To calculate the control
signals, knowledge of other states of the system are also needed, and these can
be obtained either by sensors or by estimation.
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Figure 1: Electropneumatic clutch actuator ([6], [8]).

The full 5-th order model of the clutch actuator dynamics is the following [6]:

ẏ = v (16)

v̇ =
1

M
(A0P0 +AApA −ABpB − ff (v, z) − fl(y)) (17)

ṗA = − AA

VA(y)
vpA +

RT0

VA(y)
wv(pA, u) (18)

ṗB =
AB

VB(y)
vpB +

RT0

VB(y)
wr(pB) (19)

ż = v − Kz

FC
|v|qz (20)

where y is the position, v is the velocity, pA is the pressure in chamber A, pB is
the pressure in chamber B, z is the friction state, wv(pA, u) is the flow to/from
chamber A, wr(pB) is the flow to/from chamber B, and u is an integer control
variable introduced below. The meaning of the parameters is the following: AA

and AB are the areas of chambers A and B, A0 = AB − AA is piston area, M
is piston mass, P0 is the ambient pressure, T0 is the temperature, R is the gas
constant of air, Kz is asperity stiffness, FC is Coulomb friction. In (18), (19),
VA(y) = VA0 + AAy and VB(y) = VB0 − ABy are the volumes of chambers A
and B, respectively, and VA0, VB0 are the dead volumes of these chambers. In
(20), |v|q =

√
v2 + σ2, where σ > 0 is an arbitrary small design parameter. In

(17), fl(y) and ff (v, z) are the clutch load and the friction force, described by:

fl(y) = Kl(1 − e−Lly) −Mly , ff (v, z) = Dvv +Kzz +Dż ż(v, z) (21)

An integer control variable u ∈ UA = {1, 2, 3} is introduced which is related to
the flow wv(pA, u) to/from chamber A in the following way:

u = 1 ⇒ wv(pA, 1) = −ρ0Cv,outψ(r,Bv,out)pA , r =
P0

pA
(22)

u = 2 ⇒ wv(pA, 2) = 0 (23)

u = 3 ⇒ wv(pA, 3) = ρ0Cv,inψ(r,Bv,in)PS , r =
pA

PS
(24)

In (24), PS is the supply pressure. Therefore, u = 1 corresponds to maximal
flow from chamber A, u = 2 means no flow, and u = 3 corresponds to maximal
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flow to chamber A. The expressions for the valve flow function ψ(r,Bv,in/out),
as well as for the flow wr(pB) to/from chamber B can be found in [6].

4.2 Design of explicit quantized NMPC

In order to reduce the computational burden, the design of the explicit quantized

NMPC controller is based on a simplified 3-rd order model of the clutch actuator,
where the states are the actuator position ys, the velocity vs and the pressure
ps

A in chamber A:

ẏs = vs (25)

v̇s =
1

M
(−AAP0 +AAp

s
A − f∗f (vs) − fl(y

s)) (26)

ṗs
A = − AA

VA(ys)
vsps

A +
RT0

VA(ys)
wvs(ps

A, u) (27)

In (26), f∗f (vs) = Dvv
s + FC

vs

√
vs2+σ2

is a static sliding friction characteristic

[6]. We discretize the model (25)–(27) using a sampling time Ts = 0.01 [s].
The control objective is to have the actuator position ys track a reference signal
r(t) > 0, which is achieved by minimizing the following cost function:

J(U, ys(t), r(t)) =

N−1∑

k=0



Q
(
ys

t+k|t − r(t)

r(t)

)2

+R

(
wvs(ps

A,t+k|t, ut+k)

wvs,max − wvs,min

)2




+P

(
ys

t+N |t − r(t)

r(t)

)2

(28)

where N = 10 is the horizon, Q = 1, R = 0.1, P = 1 are the weighting
coefficients, and wvs,max and wvs,min are the maximal and the minimal flows
to/from chamber A. The following constraints are imposed:

ymin ≤ ys
t+k|t ≤ ymax, k = 1, ..., N ; ut+k ∈ UA = {1, 2, 3}, k = 0, 1, ..., N − 1 (29)

where ymin = 0, ymax = 0.025 [m]. In (28), U ∈ UB = (UA)N . The quan-

tized NMPC minimizes the cost function (28) subject to the system equa-
tions (25)–(27) and the constraints (29). The extended state vector is x̃(t) =
[e(t), vs(t), ps

A(t), r(t)] ∈ R
4, where the state e(t) denotes the projected reference

tracking error defined as:

e(t) =






r(t) − ys(t) , if − 0.005 ≤ r(t) − ys(t) ≤ 0.005
−0.005 , if r(t) − ys(t) < −0.005
0.005 , if r(t) − ys(t) > 0.005

(30)

The state space to be partitioned is 4-dimensional and it is defined by X =
[−0.005; 0.005] × [−0.05; 0.15] × [P0;PS ] × [0.0001; 0.024]. The cost function
approximation tolerance is chosen as ε̄(X0) = max(ε̄a, ε̄r min

x̃∈X0

V ∗(x̃)), where

ε̄a = 0.001 and ε̄r = 0.02 are the absolute and the relative tolerances, re-
spectively. The partition has 10871 regions and 17 levels of search. Thus, 17
arithmetic operations are needed in real-time to compute the control input (17
comparisons).
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The performance of the explicit quantized NMPC controller was simulated for
a typical clutch reference signal and the resulting response is depicted in Figure
2. The simulations of the closed-loop system are based on the full 5-th order
model (16)–(20) of the clutch actuator dynamics.

0 1 2 3 4 5
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−0.01
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time [s]
0 1 2 3 4 5

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016
y [m]

time [s]

Figure 2: Left: The valve flow wv(pA, u). Right: The clutch actuator position
y. The red line is with the approximate explicit quantized NMPC, the blue line
is with the exact quantized NMPC and the black line is the reference signal.
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