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Abstract— This article re-examines the Brillouin flow solutions
in crossed-field diodes, with applications to magnetrons, mag-
netically insulated line oscillators (MILOs), and magnetically
insulated transmission lines (MITLs). The Brillouin flow solu-
tions are constructed for various geometries, including planar
magnetrons, MILOs, and MITLs, cylindrical magnetrons with
electrons flowing in the azimuthal direction, cylindrical MITLs
and MILOs with electrons flowing in the axial direction, and
radial MITLs and MILOs with electrons flowing in the radial
direction. A common theme of this analysis is that two main
external parameters are used to characterize the Brillouin flow:
the anode–cathode voltage (Va) and the total magnetic flux
within the crossed-field diodes (Aa). These two parameters are
equivalent to the gap voltage and a specification of the degree
of magnetic insulation, which is approximately equal to the ratio
of the magnetic field to the Hull cutoff (HC) magnetic field.
The magnetic flux may be provided externally by a magnet (as
in a magnetron) or by the wall currents without an external
magnet (as in a MILO or MITL), or by some combination
of the two, as in the intermediate case of a magnetron–MILO
hybrid. Once these two parameters are specified, the electron flow
speed at the top of the Brillouin hub is uniquely determined.
This immediately yields the Buneman–Hartree (BH) condition
according to the Brillouin flow model, whether it be a planar
magnetron or a cylindrical MILO. In so doing, we have obtained,
for the first time using the Brillouin flow model, the BH condition
for a cylindrical MILO, and we show that the same condition
is obtained from the single-particle orbit model. We also found
that, in general, the electron current within the Brillouin hub
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contributes only to a very small fraction of the magnetic flux
Aa, regardless of the gap voltage Va , thereby correcting an
erroneous notion that the electron flow within the crossed-field
gap could be responsible for the magnetic insulation. Another
counter-intuitive finding is that, for a given degree of magnetic
insulation, the Brillouin hub height decreases as the gap voltage
Va increases. These conclusions, and other results, were based on
the simple, explicit analytic expressions that we have obtained
for the Brillouin flow profiles, including the velocity, electron
density, as well as the self-magnetic field and the self-electric field
profiles due to the Brillouin hub electrons. From these analytical
expressions, we deduce useful scaling laws that are applicable to
the prevailing cases where the magnetic field exceeds 1.5 times the
HC magnetic field, and they are valid in both relativistic and non-
relativistic regimes. Thus, these scaling laws show the contrast
between magnetrons and MILOs, and a ready assessment of the
viability of building a moderate-current MILO, a low-voltage
MILO, and a magnetron–MILO hybrid which might combine
the advantages of a magnetron and a MILO. The Brillouin flow
profiles in a radial MITL are explicitly calculated. Additional
issues are addressed.

Index Terms— Brillouin flow, crossed-field devices, magneti-
cally insulated line oscillator (MILO), magnetically insulated
transmission lines (MITLs), magnetron.

I. INTRODUCTION

MAGNETICALLY insulated line oscillators (MILOs) [1]
and relativistic magnetrons (RMs) [2] are both

crossed-field devices capable of generating high-power
microwaves (HPMs) [3]–[31]. The RM has the same operating
principles as the kilowatt-class magnetrons that power the
microwave oven [32]–[35], but upgraded in power exceeding a
million times [2]–[5]. The MILO is similar to the RM but does
not require an external magnetic field. These two devices are
thus very different, yet similar. The RM possesses a moder-
ately high efficiency. The MILO has a much lower efficiency,
but has tremendous system advantages as no external magnetic
field is required, leading to a substantial reduction in size and
weight compared with the RM.

Extensive literature on magnetrons has existed for over
70 years [32]–[35]. While MILOs have been in existence for
more than 30 years, they are much less developed in compari-
son. For example, even the Buneman–Hartree (BH) condition,
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which governs the operation of magnetrons, does not seem to
have been properly established for the cylindrical MILO. One
might also find confusing characterizations of the properties of
the electron flows in a MILO. However, MILOs have received
considerable attention recently [3], [4], [13]–[31], largely
because their operation does not require an external magnetic
field. The incomplete understanding of MILOs, in particular,
how HPMs are generated in comparison with magnetrons,
has greatly hindered efforts to find an optimal crossed-field
configuration, if one exists, that might combine the advantages
of MILOs and RMs. The viability of a low-voltage MILO is
also attractive, because of the availability of low-impedance
linear transformer drivers (LTDs) in recent years [36]–[39].

The above background motivated us to provide a founda-
tional study of Brillouin flow that is applicable to both MILOs
and RMs. Brillouin flow is also well investigated [40]–[69]
and is generally regarded as the prevalent equilibrium state
in crossed-field devices [32], [44], [52], [55], [57], [67], [68].
Our recent particle-in-cell simulations on these devices reliably
show a profile consistent with Brillouin flow, albeit with
some noise due to the finite particle nature of the simula-
tion [66], [67]. The Brillouin flow profile has been used to
derive the Hull-cutoff (HC) condition and the BH condition
for magnetrons [8], [44], [46], [48], [57], [69]. It will also
be used in this article to obtain, for the first time, the BH
for a cylindrical MILO with an axial electron flow, which is
the most common MILO configuration. Novel scaling laws,
which shall be derived in this article, will elucidate the crucial
parameters that control MILO performance according to the
Brillouin flow model. Since the Brillouin flow is postulated
to be the unperturbed flow, we assume that the electron
spokes are drawn from it and that the electrons in the spokes
convert their potential energy to coherent radiation, for both
magnetrons and MILOs. We must stress that the Brillouin

flow is assumed to be the basic state for both MILOs and

magnetrons treated in this article. The amount of current
carried within the Brillouin hub then represents the maximum
current available to form electron spokes in both magnetrons,
MILOs, and their hybrid.

There are difficulties in obtaining the relativistic Brillouin
flow solutions, in general, and in obtaining the BH in MILOs
and in cylindrical relativistic magnetrons, in particular.

A) The self-magnetic field due to the Brillouin flow elec-
trons was considered very significant, and there is no
simple, closed-form solution to quantify it, in general.

B) BH is a plot of gap voltage versus magnetic field.
The importance of the self-magnetic field is unclear in
this picture. While Lau et al. [69] solved this problem
by using the gap voltage and the total magnetic flux
and showed that the BH is very different between the
Brillouin flow model and the widely used single-particle
orbit model [70] for a cylindrical magnetron, they did
not consider the cylindrical MILO.

C) In the Brillouin flow description of the smooth bore
MILO, the anode current is different from the cathode
current by the amount equal to the total electron current
carried in the Brillouin hub [50], [51]. The use of gap
voltage and diode impedance diminishes the role of

Fig. 1. Four (4) crossed-field diodes studied in this article, and their
Brillouin flow profiles with electrons shown in red, flow velocity profiles
shown by yellow arrows, and magnetic field shown in green. (a) Planar
geometry modeling the magnetron, MILO, and their hybrid. (b) Cylindrical
MILO with axial electron flow. (c) Cylindrical MITL with radial electron flow.
(d) Cylindrical magnetron with azimuthal electron flow. Magnetic insulation
may be provided by an external magnetic field, as in (d), or by wall currents,
as in (b) and (c), or by an arbitrary mix of external magnetic field or wall
currents, as in (a).

the electron current whose magnitude and profile are
geometry-dependent and not readily available.

In a magnetron, the two external parameters commonly used
to characterize the Brillouin flow are naturally the gap voltage
and the magnetic field, because the magnetic field is provided
by an external magnet. The dc current plays a secondary role.
In fact, in the conventional magnetron model, the dc current is
drawn only after oscillations have started [32], [35]. In MILO
and magnetically insulated transmission line (MITL) [3], [4],
it is natural to use the gap voltage and the current (or diode
impedance) as the two major parameters. The magnetic field
does not explicitly enter. Thus, as we struggle to find a general
Brillouin flow solution that is applicable to all crossed-field
geometries, including magnetrons, MILOs (and their hybrids),
and MITLs, we must find another external parameter (other
than the magnetic field or the current) in addition to the gap
voltage (Va). This second parameter is the vector potential, or
the total magnetic flux (Aa) within the anode-cathode (AK)
gap which, as we shall show, is equivalent to specifying the
degree of magnetic insulation. Thus, for the entire Brillouin
flow problem, regardless of the geometry or voltages, the two
fundamental quantities are simply the scalar potential and the
vector potential at the anode, assuming the values of both
potentials equal to zero at the cathode. For both planar and
cylindrical MILOs, the HC and BH conditions depend only
on these two parameters and are independent of the geometry
and of the mode of operation, in the manner shown in Fig. 2.
Additionally, the closed-form explicit solution of the entire
Brillouin flow may be obtained in terms of these two external
parameters. This Brillouin flow solution is also independent of
how the magnetic flux Aa is produced. Thus, it is applicable
to the magnetron, MILO, and MITL geometries.

The generality of the above approach enables consideration
of four representative cases, as shown in Fig. 1.

a) A planar magnetron whose magnetic field is provided
by an external magnet, a planar MILO (or MITL)
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whose magnetic field is exclusively generated by the
wall currents (i.e., without an external magnetic field),
or some combination of the two, which we call the
magnetron–MILO hybrid.

b) A cylindrical MILO (or MITL) whose magnetic field is
generated by the axial wall currents on the anode and
cathode, without any external magnetic field.

c) A MITL in which there is no external magnetic field
and magnetic insulation is provided by the radially
converging current flows on the circular anode and
cathode plates.

d) A cylindrical magnetron in which the axial magnetic
field is provided by an external magnet and the Brillouin
flow is in the azimuthal direction.

The cases a) and b) have exact, closed-form solutions in
all quantities of the Brillouin flow, and case c) has accurate
approximate solutions over the main region of magnetic insu-
lation. These three cases contain all of the new results stated
in the Abstract; the useful scaling laws that led to these new
results are derived in Appendix A. Case d) was solved in [69]
and is only briefly summarized here for completeness. The
main findings of this article are summarized below.

1) In terms of Va and Aa , we have found an explicit,
analytic solution of the Brillouin flow for all geometries
shown in Fig. 1, except the cylindrical magnetron with
azimuthal flow [Fig. 1(d)] which required numerical
computations. These explicit analytic solutions lead to
the BH and HC conditions for the cylindrical MILO
[Fig. 1(b)]. They are the same as those obtained from
single-particle orbit model, as shown in Appendix B.
The BH and HC thus obtained (Fig. 2) turn out to be also
applicable to the planar magnetron and MILO, or some
combination of the two, in which the total magnetic
flux (Aa) is partially provided by an externally imposed
magnetic field and partially provided by the wall currents
as in a MILO.

2) The explicit analytic solutions lead to scaling laws for
various quantities of the Brillouin flow such as the
Brillouin flow hub height, flow velocity at the top
of the Brillouin flow, and the self-magnetic field that
the Brillouin flow created. These scaling laws, derived
in Appendix A, illuminate quantitatively the efficiency
comparison between MILOs and magnetrons, based on
the two parameters, Va and Aa , once we assume similar
mechanisms for spoke formation and for conversion of
the potential energy to RF, for MILO, RM, and their
hybrid.

3) The self-magnetic field associated with the Brillouin
flow is only a small fraction of that required for magnetic
insulation whenever the total magnetic field exceeds
1.5 times the Hull magnetic field. The Brillouin hub
height is a small fraction of the AK gap separation.
These statements are independent of the gap voltage.

4) The scaling laws show that MILO efficiency is limited
to single digits, if we assume that the electron physics
behind its operation is the same as a magnetron in
this Brillouin flow model. MILO efficiency is even
lower at nonrelativistic voltage, making a low-voltage

Fig. 2. BH and the HC condition in terms of the normalized gap voltage
(V̄a) and normalized total magnetic flux ( Āa) according to the Brillouin flow
model. These curves are applicable to the planar magnetron, planar MILO,
their hybrid [Fig. 1(a)], and to the cylindrical MILO [Fig. 1(b)] regardless of
its geometrical aspect ratio. Given (V̄a, Āa), the circled point is the operating
point that satisfies BH, that is, the phase velocity of the operating mode
equals to the Brillouin flow velocity at the top of the electron hub. The point
of tangency between the BH and HC curves is given in terms of βb and

γb = 1/

�

1 − β2
b defined in (2.34). Equation (2.28) gives Āmin

a , which is the

minimum value of Āa to achieve magnetic insulation at a given gap voltage.
This graph is also valid for the three RF sources shown in Fig. 1(a), (b),
and (d) according to the single-particle orbit model, if βph is taken to be the
normalized phase speed at the anode of the operating mode in these three
classes of devices.

MILO running at 50 kV very inefficient. However,
a lower current MILO, running at 250 kV and 10 kA,
is viable, which was demonstrated in our recent experi-
ments [71], [72].

5) For the radial MITL [Fig. 1(c)], the Brillouin flow
profile is a function of radius. We derive the approximate
Brillouin flow profile for the various radii at which
magnetic insulation exists. We use the gap voltage and
the anode current as the input parameters, after we relate
them to Va and Aa for each radius.

We treat the four configurations in Fig. 1(a)–(d), respec-
tively, in Sections II–V. The planar geometry of Fig. 1 will be
treated in detail in Section II, including the dominant scaling
and useful formulas, many of which are used in Sections III–V.
Each of these sections may be read independently. Additional
issues are discussed in Section VI.

For all four geometries shown in Fig. 1, we will non-
dimensionalize the governing equations using the speed of
light c as the velocity scale, from which the following scales
may be constructed. They are all universal constants

Vs = voltage scale = mc2/e = 511 kV

As = vector potential scale = mc/e (1.1)

= 1.706 × 10−3 T-m (1.2)

vs = velocity scale = c = 3 × 108 m/s (1.3)

Is = current scale = mc/(eµ0) = 1.358 kA. (1.4)

Note that Is equals 511 kV/377 � = 17 kA/(4π).
Next, introduce the length scale, xs , and further construct
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the following scales:

Es = electric field scale = Vs/xs = mc2/(exs)

=
�

5.11 × 107 V/m
�

∗ (1 cm/xs) (1.5)

Bs = magnetic field scale = As/xs

= mc/(exs) = 0.1706T ∗ (1 cm/xs) (1.6)

Hs = magnetization scale = Bs/µ0

= mc/(exsµ0)

= (1.358 kA/cm) ∗ (1 cm/xs) (1.7)

Ks = surface current density scale = Hs

= mc/(exsµ0)

= (1.358 kA/cm) ∗ (1 cm/xs) (1.8)

Js = current density scale = Is/x2
s

= mc/
�

eµ0x2
s

�

=
�

1.358 kA/cm2
�

∗ (1 cm/xs)
2 (1.9)

ns = number density scale = �0 E s/(exs)

= �0mc2/
�

e2x2
s

�

=
�

2.82 × 1011/cm3
�

∗ (1 cm/xs)
2. (1.10)

All dimensionless variables are designated with a bar, after
being divided by their respective scales. Thus

x̄ = x/xs, r̄ = r/xs (1.11)

φ̄ = φ/Vs, Ā = A/As (1.12)

v̄ ≡ β = v/c, Ī = I/Is (1.13)

Ē = E/Es, B̄ = B/Bs (1.14)

H̄ = H/Hs, K̄ = K/Ks (1.15)

J̄ = J/Js , n̄ = n/ns . (1.16)

In Cartesian geometry [Fig. 1(a)], we set xs equal to D,
the gap spacing, and x̄ = x/D. The governing equations for
the planar Brillouin flow, in dimensionless form, are given
by (2.1)–(2.10). Their exact, closed-form solutions are derived
in Section II. In the cylindrical MILO geometry with an axial
Brillouin flow [Fig. 1(b)], we set xs equal to ra , the anode
radius, and x̄ = r̄ = r/ra . The governing equations for the
Brillouin flow for cylindrical MILOs (and cylindrical MITLs)
are given by (2.1), (2.2), (3.2), (3.3), and (2.5)–(2.10). The
exact, closed-form solution to these equations, together with
the BH condition, is derived in Section III. Note that in the
normalized governing equations, (2.1)–(2.10), there are only

two free parameters, the gap voltage and the total magnetic
flux, Va and Aa, and they enter only in the boundary conditions
(2.8) and (2.9). The geometries for Fig. 1(c) and (d) will be
similarly treated in Sections IV and V, where their solutions
are outlined.

Since the use of vector potential is uncommon among
experimentalists, a few words on their use are in order. Once
the anode voltage Va and the anode vector potential (or equiva-
lently the total magnetic flux per unit length) Aa are specified,
their normalized values V̄a = Va/Vs and Āa = Aa/As are
immediately known using (1.1) and (1.2). The gap voltage
gives the relativistic factors γa, βa given in (2.27), as well as
the quantity Āmin

a given in (2.28). We shall see that Āmin
a is

the minimum normalized magnetic flux required for magnetic

insulation. Thus, the quantity Āa/ Āmin
a measures the degree of

magnetic insulation. It is roughly equal to B/BH because of
result 3) summarized above, where BH is the HC magnetic
field. Thus, in place of (Va, Aa), we may alternatively use Va,
and the degree of magnetic insulation Āa/ Āmin

a , as the two
fundamental, but more familiar parameters. Figs. 3–8 are
presented this way.

II. PLANAR BRILLOUIN FLOW

For the planar geometry shown in Fig. 1(a), the cathode is
located at x = 0 and the anode is located at x = D. The
electrostatic field Ex = −∂φ/∂x , and the magnetostatic field
Bz = ∂ Ay/∂x , are given in terms of the scalar potential φ(x)

and the vector potential Ay(x), respectively. Without loss of
generality, we set φ(0) = 0 and Ay(0) = 0 on the cathode,
and φ(D) = Va > 0 and Ay(D) = Aa > 0 on the anode.
Hereafter, we assume that the AK voltage drop Va and the
total magnetic flux per unit length in y within the AK gap, Aa,
are pre-specified, whether or not the gap is filled with space
charge and space current, and whether or not this magnetic flux
is provided by an external magnet (as in a planar magnetron),
or by the wall currents on the anode and cathode (as in a planar
MILO or planar MITL), or by some mixture of the two (as in
a magnetron–MILO hybrid). Note that if this magnetic flux is
provided only by an external dc magnetic field (B) that has
been in existence for a long time, so that B has diffused into
the anode and cathode surfaces, then Kc = 0 and Ka = 0,
where Kc and Ka are, respectively, the surface current on
both the metallic cathode and anode surfaces. If, in the other
extreme, the total magnetic flux Aa is produced only by the
surface currents Kc and Ka , without any externally imposed
magnetic field, then Kc = Bc/µ0 and Ka = Ba/µ0, where Bc

and Ba are, respectively, the magnetic fields adjacent to the
metallic cathode and anode surfaces, whether or not the gap
is filled with space charge and space current.

Thus, by specifying the total magnetic flux Aa within the
gap, we leave it completely general without specifying how
it is produced. In Section II-A, we construct the closed-form,
explicit solutions for the Brillouin flow profile, including the
spatial dependence in the space charge density, electron veloc-
ity profile, and the electric and magnetic field distributions
within the gap. All of them depend only on the two input
parameters, Va and Aa. In Section II-B, we construct the
BH and HC conditions from these Brillouin flow solutions.
In Section II-C, we summarize the asymptotic formulas for
deeply magnetically insulated diodes, which are derived in
Appendix A. The scaling laws developed in Appendix A help
clarify some confusion found in the literature. Much of the
theory developed here will be applicable when we treat the
other configurations shown in Fig. 1.

A. Brillouin Flow Solutions in a Planar Gap

For the Brillouin flow in the planar gap shown in Fig. 1(a),
we use the AK gap spacing, D, as the length scale xs .
The normalized governing equations and the boundary con-
ditions for the Brillouin flow are

Ē = ∂φ̄/∂ x̄ (2.1)
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Fig. 3. Parameter χb as a function of Āa/ Āmin
a , the degree of magnetic

insulation, at various gap voltages, obtained from the exact expressions (2.26).
The dashed curves represent the asymptotic formula (2.39). The exact values
and the errors in the asymptotic formula are tabulated in Table I. This graph,
and Table I, are applicable to the three configurations shown in Fig. 1(a)–(c).

TABLE I

χb VALUES FROM (2.26), THE ANALYTIC SOLUTION

B̄ = ∂ Ā/∂ x̄ (2.2)

∂ Ē/∂ x̄ = n̄ (2.3)

∂ B̄/∂ x̄ = n̄β (2.4)

Ē = β B̄ (2.5)

φ̄ = γ − 1, γ =
1

�

1 − β2
(2.6a,b)

Ā = γβ (2.7)

φ̄(cathode) = 0, φ̄(anode) = V̄a (2.8)

Fig. 4. Parameter κ as a function of Āa/ Āmin
a , the degree of magnetic

insulation, at various gap voltages, obtained from the exact expressions (2.29).
The dashed curves represent the asymptotic formula (2.40). The exact values
and the errors in the asymptotic formula are tabulated in Table II. This graph
and Table II are applicable to the three configurations shown in Fig. 1(a)–(c).

TABLE II

κ VALUES FROM (2.29), THE ANALYTIC SOLUTION

Ā(cathode) = 0, Ā(anode) = Āa (2.9)

β(cathode) = 0, Ē(cathode) = 0 (2.10a,b)

where, and in the remaining of this article, we have adopted
the convention that the quantities Ē, B̄, φ̄, Ā, n̄, β, Va , and Aa

are all positive within the AK gap, which is 0 < x̄ < 1 for
the planar case. Equations (2.1) and (2.2) express the electric
and magnetic field in terms of the scalar potential and vector
potential, respectively. Equation (2.3) is the Poisson equation,
(2.4) is Ampere’s law, (2.5) states that all electrons move at the
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Fig. 5. Normalized Brillouin hub height, x̄b , for the planar diode [Fig. 1(a)]
as a function of Āa/ Āmin

a , the degree of magnetic insulation, at various gap
voltages, obtained from the exact expressions (2.30). The dashed curves repre-
sent the asymptotic formula (2.41). Note that at fixed Āa/ Āmin

a , the Brillouin
hub height decreases as gap voltage increases, and for a very high-voltage
MITL, (2.46) implies that the total electron current within the Brillouin hub
approaches a constant, which is a small fraction of the wall current that
provides magnetic insulation.

Fig. 6. Normalized electron flow velocity at the top of the Brillouin hub,
βb , for the planar diode [Fig. 1(a)] as a function of Āa/ Āmin

a , the degree
of magnetic insulation, at various gap voltages, obtained from the exact
expression (2.34). The dashed curves represent the asymptotic formula (2.42).

local E × B drift velocity, (2.6) states conservation of energy
for each electron, (2.7) states conservation of the canonical
momentum in the y-direction, (2.8) and (2.9) specify the AK
gap voltage and the total magnetic flux within the AK gap
per unit length in y, and (2.10) states that the electron flow
velocity and the electric field are both zero on the cathode
surface, which are the major assumptions in the Brillouin flow
solution. Equations (2.5)–(2.7) apply only within the Brillouin
hub, outside which the left hand sides (LHSs) are the vacuum
solutions. The vacuum field solutions are given by (2.20)
and (2.21).

Fig. 7. Normalized electron kinetic energy (which is equal to the normalized
potential energy in magnitude) at the top of the Brillouin hub, φ̄b , for the
planar diode [Fig. 1(a)] as a function of Āa/ Āmin

a , the degree of magnetic
insulation, at various gap voltages, obtained from the exact expression (2.14)
with χ = χb . The dashed curves show the asymptotic formula (2.43).

The exact, closed-form analytic solutions to the nonlinear
equations, (2.1)–(2.7), together with the boundary conditions
(2.8)–(2.10), may be constructed following [45], [46], [48].
We first express all quantities within the Brillouin hub through
the function

χ = χ(x̄), χ(x̄c) = 0 (2.11a,b)

where x̄c is the value of x̄ evaluated on the cath-
ode surface [x̄c = 0 for Fig. 1(a)]. Specifically,
we write [45], [46], [48], [69]

β = tanh(χ) (2.12)

so that the boundary condition (2.10a) is satisfied. With χ 0 ≡

∂χ(x̄)/∂ x̄ , we obtain

γ = cosh (χ) (2.13)

φ̄ = cosh(χ) − 1 (2.14)

Ā = sinh (χ) (2.15)

Ē = χ 0sinh(χ) (2.16)

B̄ = χ 0cosh(χ) (2.17)

n̄ = ∂
�

χ 0sinh(χ)
�

/∂ x̄ (2.18)

which follow, respectively, from (2.6b), (2.6a), (2.7), (2.1),
(2.2), and (2.3). We next substitute (2.17), (2.18), and (2.12)
into (2.4), which may be shown to reduce to (∂2χ(x̄)/∂ x̄2) =

0, yielding

χ(x̄) = κ x̄ (2.19)

for some constant κ , upon using the boundary condition
(2.11b). This constant κ , which equals to χ 0 by (2.19), and the
normalized Brillouin hub height, x̄b, will be determined next
in terms of the AK gap voltage (V̄a) and the magnetic flux
( Āa). Note that once κ and x̄b are determined, the Brillouin
flow profile may be obtained from (2.12)–(2.19), and the BH
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Fig. 8. (a) Normalized anode wall current K̄a and (b) normalized electron
current carried within the Brillouin hub K̄e , in a planar MILO or MITL
[Fig. 1(a)] as a function of Āa/ Āmin

a , the degree of magnetic insulation,
at various gap voltages, obtained from the exact expressions K̄a = κcosh(χb)
and K̄e = κ[cosh(χb) − 1]. The dashed curves represent the asymptotic
formulas (2.44) and (2.45). Note that K̄e � K̄a by at least one order
of magnitude whenever Āa/ Āmin

a > 1.5, regardless of the anode voltage,
implying that the electron current within the Brillouin hub always contributes
little to magnetic insulation.

condition and the HC conditions immediately follow, whether
the device is a planar MILO or planar relativistic magnetron,
or some mixture of the two. These BH and HC conditions are
shown in Fig. 2.

In the vacuum region, x̄b < x̄ < 1, both φ̄ and Ā are linear
functions of x̄ :

φ̄(x̄) = φ̄b + Ēb(x̄−x̄b) (2.20)

Ā(x̄) = Āb + B̄b(x̄ − x̄b) (2.21)

where, and hereafter, the subscript “b” denotes the value
at the top of the Brillouin hub, that is, at x̄ = x̄b

[Fig. 1(a)]. Evaluating (2.20) and (2.21) at the anode, x̄ = 1,

we obtain [46]

V̄a = cosh(χb) − 1 + sinh(χb) × κ(1 − x̄b) (2.22)

Āa = sinh(χb) + cosh(χb) × κ(1−x̄b) (2.23)

where we have used (2.14)–(2.17) to evaluate the correspond-
ing quantities at the top of the Brillouin hub, x̄ = x̄b, and

χb = κ x̄b (2.24)

Equations (2.22) and (2.23) are two equations in two
unknowns, χb and κ (after recognizing the factor κ(1−x̄b) =

(κ −χb) in these two equations), which can be solved in terms
of V̄a and Āa. By eliminating the factor [κ(1− x̄b)] from (2.22)
to (2.23), the quantity χb can be determined in terms of V̄a

and Āa from the following:

Āa − sinh (χb) =
�

V̄a − (cosh (χb) − 1)
�

coth (χb). (2.25)

We argue in Section II-B that, in terms of V̄a and Āa,
the closed-form solution of χb to (2.25) may be written
explicitly

χb = tanh−1

⎡

⎣

γa Āa −

�

Ā2
a −

�

Āmin
a

�2

Ā2
a + 1

⎤

⎦ (2.26)

where

γa = V̄a + 1 ≡ 1/

�

1 − β2
a (2.27)

Āmin
a = γaβa . (2.28)

As we shall see, Āmin
a is the minimum value of the normal-

ized magnetic flux required to achieve magnetic insulation.
It is important to note that Āmin

a depends only on the gap
voltage and is independent of the geometry and that the ratio
Āa/ Āmin

a then represents the degree of magnetic insulation.
Appendix C proves directly that (2.26) is a solution to (2.25).

In terms of χb, the solution of κ may be obtained from
(2.22), upon using (2.24)

κ =
1

sinh(χb)

�

V̄a − (cosh(χb) − 1) + χbsinh(χb)
�

. (2.29)

The normalized hub height is given by (2.24)

x̄b = χb/κ (2.30)

in which χb and κ are given explicitly by (2.26) and (2.29)
in terms of V̄a and Āa . The entire Brillouin flow profiles
may then be obtained from (2.19), and (2.12)–(2.18), and the
vacuum field solutions by (2.20) and (2.21). All quantities
at the cathode, at the top of the Brillouin hub, and at the
anode may be obtained by setting, respectively, the values of
x̄ equal to 0, x̄b, and 1 in these equations. Figs. 3–8 show the
Brillouin flow parameters as a function of Āa/ Āmin

a , the degree
of magnetic insulation, at various values of V̄a . The two most
important parameters, χb and κ , are plotted in Figs. 3 and 4.
Their numerical values are listed in Tables I and II, including
the errors in the approximate expressions using the scaling
laws (2.39) and (2.40). We shall describe these graphs shortly
in Section II-C, after we discuss in Section II-B the HC and
BH conditions that led to (2.26)–(2.28).
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B. HC and BH Condition in a Planar Gap

Given the gap voltage V̄a, the HC condition specifies the
minimum value of the magnetic flux, Āmin

a , that is required
to prevent the Brillouin hub from reaching the anode. At this
minimum value of magnetic flux, an electron at the top of the
Brillouin hub barely touches the anode; its relativistic mass
factor, γa, is then given by (2.27) by virtue of (2.6a), with the
associated normalized flow velocity, βa, also given by (2.27).
This minimum magnetic flux, Āmin

a = γaβa, then follows
from (2.7), and was displayed as (2.28). The HC condition,
Āa = Āmin

a , may be rewritten in the more familiar form upon
using (2.27)

Āa =

�

V̄ 2
a + 2V̄a (2.31)

which is plotted in Fig. 2.
Under the condition of magnetic insulation, Āa > Āmin

a ,
the BH condition stipulates that the phase velocity of the
circuit wave, vph, evaluated at the top of the Brillouin hub,
is equal to the Brillouin flow velocity there, that is,

βph =
vph

c
= βb ≡ β(x̄b). (2.32)

Since the BH according to this Brillouin flow formula-
tion has been proved to be identical to the BH according
to the single-particle orbit model in a planar crossed-field
gap [45], [46], [48], [69], we can immediately write down
this BH as

V̄a = Āaβb +

�

�

1 − β2
b − 1



. (2.33)

The BH condition (2.33) is shown in Fig. 2 as the straight
line with a slope βb. Equation (2.33) may be solved for βb in
terms of V̄a and Āa , yielding

βb =
γa Āa −

�

Ā2
a −

�

Āmin
a

�2

Ā2
a + 1

= tanh(χb) (2.34)

where the last equality sign follows (2.12). The negative sign
in front of the square root in (2.34) is chosen to ensure that
βb < βa. Note that (2.34) is identical to (2.26). The BH,
(2.33), is tangent to the HC condition, (2.31), in Fig. 2, and
the point of tangency is given in terms of βb and γb =

1/(1−β2
b)

1/2. We have also checked that the numerical values
of χb (cf. Table I) obtained from (2.26) are the same as those
obtained by the numerical solution of (2.25). Once more,
it was previously shown [69] that the BH and HC relation
given in Fig. 2, obtained from the Brillouin flow formulation,
are identical to those obtained from single-particle model [70]
for this planar geometry [Fig. 1(a)].

C. Properties of the Brillouin Flow and Scaling Laws

The ratio, Āa/ Āmin
a , represents the degree of magnetic

insulation. It is roughly equal to the ratio B/BH , where BH is
the HC magnetic field. We say “roughly equal to” because
the HC magnetic field is not well defined if the magnetic
field is spatially nonuniform. These two ratios are equal if
the magnetic flux is associated with the (spatially uniform)
vacuum magnetic field, B , at a given AK gap voltage Va . The
solid curves in Figs. 3 and 4 show χb and κ , respectively, as a
function of Āa/ Āmin

a at various gap voltages computed from

(2.26) and (2.29). The dashed curves in Figs. 3 and 4 show the
asymptotic formulas, (2.39) and (2.40), under the assumption
of deep magnetic insulation, Āa/ Āmin

a � 1. We note that all
curves for the exact values of χb in Fig. 3 have a negative
infinite slope as Āa/ Āmin

a → 1, a property we shall prove in
Appendix A, where we discuss this notable property as the
diode is about to lose magnetic insulation. The normalized
hub height, x̄b, given by (2.30), is plotted by the solid lines
in Fig. 5, which shows that x̄b < 0.15 whenever Āa/ Āmin

a > 2.
The very small value of the Brillouin hub height compared
with the AK gap spacing, at higher values of Āa/ Āmin

a , means
that the Brillouin flow itself may be treated in the Cartesian
geometry to the lowest order, even for a cylindrical Brillouin
flow. At a given degree of magnetic insulation, that is, at a
fixed value of Āa/ Āmin

a , Fig. 5 shows that the Brillouin hub
height decreases as the AK gap voltage increases, which is
unexpected intuitively. This implies that in a high-voltage

MITL that is deeply magnetically insulated, the Brillouin hub

height is extremely thin and it lies very close to the cathode

surface. Its Brillouin flow carries only a small, but finite
fraction of the wall current that is required to achieve this
degree of magnetic insulation, as implied by the scaling law
(2.46). The normalized electron flow velocity at the top of the
Brillouin hub, βb = tanh(χb), is shown in Fig. 6 (solid lines).
For Va < 250 kV and Āa/ Āmin

a > 2, which largely covers
the operating regimes of commercial magnetrons, we find
βb < 0.23, corresponding to a kinetic energy of less than
15 kV. Fig. 7 shows the kinetic energy of the electrons at the
top of the Brillouin hub. This kinetic energy also equals to
the value of its electrostatic potential energy (in magnitude)
at the top of the Brillouin hub by (2.6a).

All other field quantities at the cathode [anode] may be
obtained from φ̄ and Ā as given by (2.14) and (2.15) [(2.20)
and (2.21)] evaluated at x̄ = 0 [x̄ = 1]. In particular,
the magnetic field adjacent to the anode, and to the cathode,
is given by, respectively,

B̄a = B̄b = κcosh(χb) (2.35)

B̄c = κ. (2.36)

If the magnetic flux is solely provided by the anode current
(Ia) and the cathode current (Ic), as in the case of a planar
MILO and MITL, these two currents are proportional to B̄a

and B̄c. The difference between Ia and Ic is the total current
Ie that is carried by the electrons within the Brillouin hub,
that is,

Ie = Ia − Ic (2.37)

where we have again adopted the conventions that all I ’s are
positive. We thus arrive at the following ratios between the
three currents:

Ia : Ic : Ie = cosh(χb) : 1 : [cosh(χb) − 1]

=
�

1 + φ̄b

�

: 1 : φ̄b. (2.38)

The last equality follows from (2.14). Fig. 8(a) shows the
normalized anode current density K̄a = B̄a = κcosh(χb) in
a planar MILO. The normalized cathode current density is
K̄c = B̄c = κ . Their difference gives the normalized electron
current carried within the Brillouin hub K̄e = K̄a − K̄c,
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which is plotted in Fig. 8(b). Comparing Fig. 8(a) with (b),
we see that in dimensional form, Ke = Ie/W is much less
than Ka = Ia/W typically, where W is the width of the
MILO out of the plane of this article in Fig. 1(a). This means
that in a magnetically insulated diode, the self-magnetic field
generated by the electron current residing within the Brillouin
hub contributes little toward magnetic insulation. This is true,
in general, whether the magnetic insulation is exclusively
provided by the wall currents (Ia and Ic), as in a MILO,
or exclusively provided by an external magnetic field, as in a
magnetron, or by a combination of the two, as in their hybrid.
Thus, it is misleading to state that the insulating magnetic
field in a MILO is provided by the electron flow within the
insulating gap. This is also the reason behind our assertion
that Āa/ Āmin

a is roughly equal to the ratio B/BH .
Finally, we note that in Fig. 8(a), the horizontal line

K̄a = 10 (not shown) would intersect the solid green curve at
two points. That is, the green curve, corresponding to Va =

3000 kV, has a V-shape near Āa/ Āmin
a

∼= 1. In Appendix A,
we show that all curves of K̄a in Fig. 8(a) are of a V-shape very
close to the HC, regardless of the anode voltage Va . At the
minimum of this V-shape curve, the anode current required
to achieve magnetic insulation at this point ( Āa/ Āmin

a > 1)

is lower than that required to achieve HC ( Āa/ Āmin
a = 1).

This V-shape curve is an unexpected feature which is explored
further in Appendix A. It affects our treatment of the radial
MITL in Section V in the region where Āa/ Āmin

a
∼= 1. Finally,

we remark here that the current ratios given in (2.38) holds
for all geometries in Fig. 1(a)–(c) whenever the insulating
magnetic field is solely provided by the wall currents Ia and
Ic, (i.e., no external magnetic field).

To get an understanding of the scaling properties, we present
the approximate formulas for the various Brillouin flow quan-
tities in terms of V̄a and Āa , under the condition of deep
magnetic insulation, Āa/ Āmin

a � 1

χb ≈ V̄a/ Āa (2.39)

κ ≈ Āa (2.40)

x̄b ≈ V̄a/ Ā2
a (2.41)

βb ≈ V̄a/ Āa (2.42)

φ̄b ≈

�

V̄a/ Āa

�2

2
(2.43)

K̄a = B̄a = B̄b ≈ Āa (2.44)

K̄e ≈ V̄ 2
a /

�

2 Āa

�

(2.45)

Ia : Ic : Ie ≈ 1 : 1 :

�

V̄a/ Āa

�2

2
. (2.46)

These approximate solutions, (2.39)–(2.45), are displayed
as dotted lines in Figs. 3–8. They are derived in Appen-
dix A under the assumption of large Āa/ Āmin

a . As shown
in Figs. 3–8, these approximate formulas are fairly accurate
for Āa/ Āmin

a = 2 and become very accurate for Āa/ Āmin
a > 3,

corroborating the notion that the number three (3) is a suffi-
ciently large dimensionless expansion parameter for an accu-
rate asymptotic analysis. The relative errors in the approximate
formulas, (2.39) and (2.40), are presented in Tables I and II.
Appendix A also describes in some details the Brillouin

flow properties very close to HC, Āa/ Āmin
a → 1, a topic

insufficiently addressed in the literature. The scaling laws,
(2.39)–(2.46), shed some new light on the viability of building
a low current MILO, or a low voltage MILO. These will be
considered in Section III, where we treat the cylindrical MILO
geometry [Fig. 1(b)].

III. CYLINDRICAL BRILLOUIN FLOW IN

AXIAL DIRECTION

We now turn to the Brillouin flow for the cylindrical MILO
geometry, as shown in Fig. 1(b), where the flow is in the
z-direction and its Brillouin hub extends from the cathode
radius rc to the hub’s outer edge at radius rb. The anode is
at radius ra and is held at a gap voltage Va with respect to
the cathode. The electric field E is in the radial direction,
the magnetic field is in the azimuthal direction, and the
vector potential is in the z-direction. The total magnetic flux
within the AK gap per unit length in z is Aa . As in the
planar case treated in Section II, we will determine the closed-
form, explicit Brillouin flow solution in terms of V̄a and Āa,
the normalized gap voltage and total magnetic flux defined
in (2.8) and (2.9). Section III-A gives the explicit, closed-
form Brillouin flow profile solutions. Section III-B gives the
HC and BH conditions for the cylindrical MILO geometry
according to the Brillouin flow model (which will be shown
to be the same as the single-particle cycloidal orbit model
in Appendix B). Section III-C considers a few examples,
including the high current MILO, and considerations for the
viability of a moderate current MILO, a magnetron–MILO
hybrid, and a low-voltage MILO.

We should note at the outset that, if we assume that the
electron–circuit interaction is the same between a MILO and
a magnetron, MILO would possess a very low efficiency,
simply because of the very low electron current in the Brillouin
flow (from which the RF-generating spoke current is drawn)
compared with the wall currents that are needed to provide
magnetic insulation for the MILO. This has been shown
quantitatively in Fig. 8(a) and (b) and in the scaling law (2.46).

A. Cylindrical Brillouin Flow in the Axial Directions

For the cylindrical geometry [Fig. 1(b)], we use the anode
radius, ra , as the length scale. Thus, we write, for the cylin-
drical geometry [cf. (1.11)]

r̄ = r/ra ≡ x̄ (3.1)

where we again use x̄ to denote the normalized radius so
that many of the formulas in Section II can be used here.
For example, (2.1), (2.2), and (2.5)–(2.17) are all valid for
the cylindrical axial Brillouin flow studied here, together with
their physical meanings, and the convention that all quantities
(Ē, B̄, φ̄, Ā, n̄, β, Va, Aa) are nonnegative. The Poisson equa-
tion (2.3) and Ampere’s law (2.4) are now modified to read,
respectively,

1

r̄

∂

∂ r̄

�

r̄ Ē
�

= n̄ (3.2)

1

r̄

∂

∂ r̄

�

r̄ B̄
�

= n̄β. (3.3)
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We next substitute (2.16) and (2.17) into (3.2) and (3.3).
Equation (3.3) then reduces to the following equation for
χ(r̄) = χ(x̄) :

1

r̄

∂

∂ r̄

�

r̄
∂χ

∂ r̄

�

= 0. (3.4)

The solution to (3.4), subject to the boundary condition
(2.11b), which now reads χ(r̄c) = 0, is given by

χ(r̄) = κ̄ ln(r̄/r̄c), χ 0 = κ̄/r̄ (3.5)

for some constant κ̄. Analogous to (2.20) and (2.21), the field
solutions in the vacuum region read, (r̄b < r̄ < 1) :

φ̄(r̄) = φ̄b + Ēbr̄b ln(r̄/r̄b) (3.6)

Ā(r̄) = Āb + B̄br̄bln(r̄/r̄b) (3.7)

where both Ē(r̄) = ∂φ̄(r̄)/∂ r̄ and B̄(r̄) = ∂ Ā(r̄)/∂ r̄ have 1/r̄
dependence. Equations (2.22) and (2.23) are modified to read

V̄a = cosh(χb) − 1 + sinh(χb) × κ̄ln(1/r̄b) (3.8)

Āa = sinh(χb) + cosh(χb) × κ̄ln(1/r̄b). (3.9)

Upon eliminating the common factor, κ̄ ln(1/r̄b), in (3.8)
and (3.9), we obtain the same transcendental equation (2.25)
for χb whose analytic solution is given by (2.26) in terms of
V̄a and Āa, copied here for convenience

χb = tanh−1

⎡

⎣

γa Āa −

�

Ā2
a −

�

Āmin
a

�2

Ā2
a + 1

⎤

⎦ (3.10)

γa = V̄a + 1 ≡ 1/

�

1 − β2
a (3.11)

Āmin
a = γaβa . (3.12)

To calculate κ̄ and r̄b, we first evaluate (3.5) at r̄ = r̄b to
yield

κ̄ ln(r̄b) = κ̄ ln(r̄c) + χb. (3.13)

Using (3.13) in (3.8), we obtain

κ̄ =
1

ln(1/r̄c)

�

χb +
V̄a − (coshχb − 1)

sinhχb



(3.14)

which may also be written as

κ̄ = κ/ln(1/r̄c) (3.14a)

where κ is the same as (2.29) which was studied in great detail
in Section II, with values tabulated in Table II. Equation (3.13)
yields

r̄b = r̄ceχb/κ̄ . (3.15)

Note that (3.14) and (3.15) give κ̄ and r̄b as explicit
functions of V̄a and Āa by virtue of (3.10). We now have
the closed-form, analytic solution of the axial Brillouin flow
profile given by (2.12)–(2.17), in which χ is given by (3.5).
The vacuum fields exterior to the Brillouin hub are given by
(3.6) and (3.7).

Since χb given in (2.26) is the same for cylindrical MILO
(3.10) and for planar MILO, for a given set of V̄a and Āa,
we may use Fig. 3 and the tabulated values in Table I. The
values of (βb, γb, φ̄b, Āb) are also given by (2.12)–(2.15), so is

Fig. 9. Anode current Ia and the cathode current Ic as a function of gap
voltage Va , at various Āa/ Āmin

a in a cylindrical MILO [Fig. 1(b)] of aspect
ratio ra/rc = 6. The values of Ia and Ic are specified in the graph for Va

at 300 and 500 kV. In each pair, the top number (in kA) denotes Ia and
the bottom number denotes Ic , their difference denotes Ie , the total electron
current carried within the Brillouin hub.

the ratio given by (2.38) between Ia, Ic, and Ie, regardless of
the aspect ratio r̄c or gap spacing in the cylindrical geometry.
For the cylindrical MILO

Ic

Is

=
2πrc Hc

Is

= 2π r̄c H̄c = 2πκ̄ (3.16)

where we have used Ampere’s law for the cathode current Ic,
the scaling parameters Is, Hs in (1.4) and (1.7), and (2.17) and
(3.5) for the magnetic field on the cathode surface (χ = 0).
Since Is = 1.358 kA by (1.4), we obtain from (3.16) and
(2.38) the following expressions for the cathode, anode, and
electron currents on a cylindrical MILO [Fig. 1(b)]:

Ic = (8.53 kA)κ̄, Ia = Ic cosh (χb)

Ie = Ia − Ic. (3.17)

Note that the ratio between Ia, Ic, and Ie is still given
by (2.38), and this ratio depends only on V̄a and Āa and is
independent of the MILO radii ra and rc.

Fig. 9 plots the values of Ia and Ic as a function of Va at
various values of Āa/ Āmin

a according to (3.17), assuming the
aspect ratio 1/r̄c = ra/rc = 6. The total current carried by
the electrons within the Brillouin hub equals to (Ia − Ic). For
a moderate-current MILO driven by a MELBA-like acceler-
ator [9], we set Va = 300 kV, and assume Āa/ Āmin

a = 1.5,
rc = 1 cm, and ra = 6 cm, then Fig. 9 gives Ia = 8.88 kA,
Ic = 8.31 kA, and Ie = Ia − Ic = 0.57 kA is the electron
current carried in the Brillouin hub, whose hub radius is at
rb = 1.459 cm according to (3.15). This example, and others,
together with a discussion of MILO scaling, will be further
examined in Section III-C.
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B. HC and BH Conditions for a MILO With Cylindrical

Axial Brillouin Flow

In the Brillouin flow picture, the HC condition is derived
by requiring that the Brillouin hub barely touches the anode,
that is, r̄b = r̄a = 1, whence γb = γa = V̄a + 1 = cosh(χb).
Use these expressions in (3.9) to yield

Āa = sinh(χb) =

�

V̄ 2
a + 2V̄a (3.18)

which was shown in Fig. 2. In Appendix B, we show that the
same result is obtained from the single-particle orbit model
for the cylindrical MILO. This is also the same HC condition
(2.31) for planar MILO and planar magnetron, as shown
in Fig. 2.

For BH, we note that the square bracket in (3.10) is the
normalized electron flow speed, βb, at the top of the Brillouin
hub [cf. (2.12)]. It is also equal to the normalized phase
velocity, βph, of the MILO operating mode according to BH
in the Brillouin flow description. Since this βb satisfies (2.33),
which was already plotted in Fig. 2, (2.33) becomes BH by
replacing βb with βph

V̄a = Āaβph +
��

1 − β2
ph − 1

�

. (3.19)

Appendix B shows that the single-particle orbit model also
yields the same BH condition, (3.19), for the cylindrical MILO
shown in Fig. 1(b). An analogous form was given in [13, Eq.
(6)], but it is different from (3.19).

C. Scaling Laws and Examples

In this section, we establish the simple scaling laws for
cylindrical MILO, once more assuming good magnetic insu-
lation, Āa/ Āmin

a � 1. Some examples will be considered,
including: 1) a high-current MILO; 2) a moderate-current
MILO and a MILO–magnetron hybrid; and 3) a low-voltage
MILO. Given V̄a and Āa/ Āmin

a , and using the approximations
(2.39) and (2.40) for Āa/ Āmin

a � 1, (3.17) yields

Ic = (8.53kA)κ̄ = (8.53 kA)
κ

ln(ra/rc)

≈
8.53 kA

ln(ra/rc)
×

�

Āa

Āmin
a

�

γaβa (3.20)

Ie = Ia − Ic = Ic(cosh(χb) − 1) ≈ Icχ
2
b /2

≈ Ic ×

�

1

2

�

V̄a

γaβa

�2� 1

Āa/ Āmin
a

�2
�

. (3.21)

Note that, once more, under this assumption of good mag-
netic insulation, Ic ≈ Ia � Ie. We next assume that the MILO
produces RF power from the potential energy drop experienced
by the spoke electrons as they are transported across the AK
gap from the top of the Brillouin hub, as in a magnetron. This
maximum potential energy drop is clearly Va , the AK gap
voltage. We further assume that the maximum spoke current
is the electron current Ie, carried in the Brillouin hub, as in a
magnetron (realistically the spoke current is only a fraction
of Ie; see Vaughan [35] for an estimate for conventional
magnetrons). It follows that the maximum RF power that can
be generated in a MILO is Va Ie. The input power is Va Ia . So,

the maximum efficiency in a MILO is Ie/Ia , which is typically
at most a few percent, approximately given by the square
bracket in (3.21). This square bracket shows very unfavorable
efficiency scaling for a low-voltage (∼50 kV) MILO [see also
(2.38) and Fig. 7].

Below, we will give three examples of different types of
MILOs, mentioned at the beginning of this section. In all
examples, we set Āa/ Āmin

a = 1.5 for easy comparison. From
(3.20), we note that the cathode current Ic depends only on
ln(ra/rc), once Va and Āa/ Āmin

a are fixed.
1) High-Current MILO: In the literature, MILO exper-

iments operated at high currents, typically on the order
of 50 kA and beyond [3], [4], [20], [21], [25], [26], [28].
As an example, we take Va = 500 kV and Āa/ Āmin

a = 1.5.
We obtain κ = 2.354 and χb = 0.4451 from Tables I and II.
The normalized phase velocity for the synchronous operating
mode is βph, where βph = βb = tanh(χb) = 0.4178. If we
further assume ra = 8.57 cm, rc = 5.71 cm, as in the brazed
MILO [20], then (3.20) and (3.21) yield Ic = 49.45 kA,
Ia = 54.43 kA, and Ie = 4.98 kA. In addition, the cathode
magnetic field is Bc = 1.732 kG upon using (2.17) and
(3.5). These numbers are in qualitative agreement with the
experiments [20].

2) Moderate-Current MILO and MILO–Magnetron Hybrid:

We now consider the feasibility of driving a “moderate-
current” MILO using a MELBA-like accelerator, which oper-
ates at a current of order 10 kA [9]. We take Va = 300 kV, and
Āa/ Āmin

a = 1.5. We then obtain κ = 1.746 and χb = 0.3680
from Tables I and II. The normalized phase velocity for the
synchronous operating mode is βph, where βph = βb =

tanh(χb) = 0.3522. To reduce the cathode (and anode) current
to the 10 kA range, we need to increase the aspect ratio, ra/rc,
according to (3.20). So we take rc = 1 cm, and ra = 6 cm.
This gives Ic = 8.31 kA, Ia = 8.88 kA (see Fig. 9), and
Ie = 0.57 kA is the electron current carried in the Brillouin
hub, whose hub radius is at rb = 1.459 cm.

To see the effect of the aspect ratio on the cathode current,
let us again set Va = 300 kV, and Āa/ Āmin

a = 1.5, so that
κ = 1.746 and χb = 0.3680 is the same as before. So is
βph = βb = tanh(χb) = 0.3522. If we now take rc = 3 cm
and ra = 6 cm then for a MILO that completely establishes
its magnetic field through driven current, the cathode current
required would be 21.48 kA according to (3.20), and the
cathode magnetic field is Bc = 1.432 kG upon using (2.17)
and (3.5). This cathode magnetic field then produces the
desired degree of magnetic insulation, Āa/ Āmin

a = 1.5, that
is, a total magnetic field roughly equal to 1.5 times the
HC magnetic field. If the MELBA-like accelerator can only
deliver 10 kA of axial current, to produce the same degree
of magnetic insulation, an external magnetic field, Bz , will be
required. This becomes a MILO–magnetron hybrid whose Bz

is approximately given by

B2
c =

�

10 kA

21.48 kA

�2

B2
c + B2

z (3.22)

so that the azimuthal magnetic field due to 10-kA current,
together with the externally imposed axial magnetic field Bz ,
would yield a total magnetic field equal to Bc = 1.432 kG
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in magnitude. Equation (3.22) yields Bz = 1.267 kG. Such
a high external magnetic field makes the MILO–magnetron
hybrid example unattractive compared with simply increasing
the aspect ratio, ra/rc [cf. (3.20)] to achieve the same degree
of magnetic insulation at a given voltage Va .

From Fig. 9, which assumes a high aspect ratio of ra/rc = 6,
MELBA MILO operation is feasible at ∼1.1 times the HC
at ∼10 kA currents without an axial magnetic field. MILO
experiments were recently performed using MELBA with
Va = 240 kV, Ia

∼= 10 kA, and Āa/ Āmin
a

∼= 1.2, guided by the
design procedure given here [71], [72].

3) Low-Voltage MILO: Finally, let us examine the possibil-
ity of a MILO operating at a low voltage Va. This is a rather
tempting proposition because of the potential availability of an
HPM device that operates without an external magnetic field
and at a low voltage. Let us consider a low-voltage MILO
with Va = 50 kV, and once more, we assume Āa/ Āmin

a = 1.5.
We obtain κ = 0.672 and χb = 0.1654 from Tables I and II.
The normalized phase velocity for the synchronous operating
mode is βph, where βph = βb = tanh(χb) = 0.1639. If we take
rc = 1 cm, and ra = 2 cm, then we obtain Ic = 8.270 kA,
and Bc = 1.654 kG. These are all very reasonable for HPM
sources. However, we also find that Ia = 8.383 kA, and Ie =

0.113 kA from (3.20) and (3.21). The very low electron current
in the Brillouin hub, Ie, in comparison with the anode current,
Ia , is due to the unfavorable scaling at low voltage, as indicated
by the square bracket in (3.21). A low Ie necessarily implies
a low spoke current, as spoke electrons are drawn from
the Brillouin hub (if we assume the same spoke generation
mechanism as in a magnetron). Thus, a MILO driven at a low
voltage, though immensely attractive in practice, is unlikely to
efficiently produce HPMs despite the availability of the low-
impedance LTD. A higher cathode current would make the
degree of insulation, Āa/ Āmin

a , higher, the Brillouin hub height
even smaller, further reducing Ie, as again implied by the
scaling law (3.21). This predicted decrease in efficiency with
decreasing applied voltage is supported by previous particle-
in-cell simulations [22].

Since a low-voltage MILO is highly inefficient, we consider
only Va > 200 kV in Fig. 9, where we calculate the anode
current Ia and the cathode current Ic in a cylindrical MILO
at various degrees of magnetic insulation, Āa/ Āmin

a , assuming
an aspect ratio ra/rc = 6. The total electron current carried
within the Brillouin hub is Ie = Ia − Ic, which can readily be
obtained from Fig. 9.

IV. RADIALLY CONVERGING BRILLOUIN FLOW

The radially converging Brillouin flow in the LTD geometry
is schematically shown in Fig. 1(c). This section gives the
approximate Brillouin flow solution for this radial MITL,
at each radius. The anode, located at z = D, is assumed to be
held at a constant AK gap voltage, Va, with respect to the cath-
ode, which is located at z = 0 and is held at zero potential. The
anode current, Ia , is assumed to be a constant (independent
of r) and flows radially inward. Both Va and Ia are treated as
input parameters, independent of r . The assumption that the
AK gap voltage does not vary strongly with radius is valid as

long as the load impedance is large and/or the current pulse is
not rapidly rising or falling, meaning that the radially depen-
dent inductive voltage VL(r) = L(r)d Ia/dt is relatively small
compared to the resistive or space–charge-limited voltage drop
across the load. The Brillouin electron flow, whose hub height
at r = R is denoted as zb for Fig. 1(c), flows radially inward,
carrying a total electron current of magnitude Ie that flows
radially outward. The current on the cathode, Ic, also flows
radially outward. The magnetic field is in the θ -direction.
For a radially converging anode current, the magnetic field
is a function of radius r , so is the Brillouin hub height,
the Brillouin flow profile, and the total electron current, Ie.
The cathode current Ic is also a function of radius r , but their
sum, Ie + Ic = Ia , is the pre-assigned constant. We shall seek
to determine the Brillouin flow profile as a function r , at some
typical radius r = R, with R � D. This assumption allows
us to use the Cartesian, planar Brillouin flow that was studied
in great detail in Section II, as a local approximation to the
radial Brillouin flow. This local approximation is expected to
be the lowest order approximation in an asymptotic analysis
using R/D as an expansion parameter, R/D � 1.

For R � D, the cylindrical geometry in the directions
(r, θ, z) in Fig. 1(c) may be approximated by the local
Cartesian geometry in Fig. 1(a), respectively, in the directions
(y, z, x). The height, W , in the Cartesian geometry [in the
z-direction in Fig. 1(a)] then becomes

W = 2π R (4.1)

so that the surface current density (in A/m) at the anode and
at the cathode is, respectively,

Ka = Ia/(2π R) = Ha = Ba/µ0 (4.2)

Kc = Ic/(2π R) = Hc = Bc/µ0 (4.3)

which clearly show that the magnetic field is a function of R.
In (4.2) and (4.3), H and B are to be evaluated at the anode and
at the cathode, at the radius r = R. As in Sections II and III,
we will use the normalized gap voltage V̄a and the local
normalized vector potential (or flux function) Āa to determine
the Brillouin flow properties. The radius R, for that local
normalized vector potential Āa, will then be determined for
the pre-assigned value of Ia .

For the normalized gap voltage V̄a , we define γa and βa

by (2.27) and the minimum magnetic flux Āmin
a = γaβa for

magnetic insulation [cf. (2.28)]. Now choose a value of Āa

which satisfies

Āa > Āmin
a = γaβa . (4.4)

We shall determine below, (4.7), the value of radius R that
corresponds to this assigned value of Āa.

With V̄a and a value of Āa given in (4.4), we com-
pute χb from (2.26), κ by (2.29), both having been given
in Figs. 3 and 4, and tabulated in Tables I and II. The
normalized hub height is z̄b = χb/κ by (2.30), the normalized
Brillouin flow speed at the top of the hub is βb = tanh(χb)

according to (2.12), and the normalized magnetic field at the
anode and cathode become, by (2.17),

H̄a = B̄a = K̄a = κ cosh(χb) (4.5)
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Fig. 10. Relation between R/D and the degree of magnetic insulation, for
R/D > 3, in a radial MITL [Fig. 1(c)] with Va = 100 kV, D = 1 cm, Ia =
1 MA. At each value of R/D, the value of Āa/ Āmin

a given here will be
used to construct Figs. 11–16. Note that over much of the region shown,
Āa/ Āmin

a > 2, and that the MITL is very deeply insulated magnetically for
smaller values of R.

H̄c = B̄c = K̄c = κ. (4.6)

Equation (4.2) then gives

R =
Ia

2π Ha

=
D

2π

�

Ia

Is

�

1

κ cosh(χb)
(4.7)

where we have used (4.5) and Is = 1.358 kA by (1.4). The
relation between the radius R and Āa/ Āmin

a as given by (4.7)
is plotted in Fig. 10 for an LTD example (similar to one at
the University of Michigan [37]), with Va = 100 kV, D =

1 cm, Ia = 1 MA. In other words, given these three quantities,
(Va, D, Ia), the radius R that would give a certain degree
of magnetic insulation as measured by Āa/ Āmin

a , is explicitly
given by (4.7). At that radius, the ratio between the anode
current (Ia), the cathode current (Ic), and the electron current
carried by the Brillouin hub (Ie), all defined positive by
convention, is given by (2.38).

We next determine the radius, R = Rm , at which
Āa/ Āmin

a = 1, that is, the top of the Brillouin hub barely
touches the anode at R = Rm . This corresponds to x̄b = 1 in
the Cartesian approximation, and (2.19) gives κ = χb, whereas
(2.13) implies cosh(χb) = γb = γa. Equation (4.7) then gives

Rm =
D

2π

�

Ia

Is

�

1

γa cosh−1 γa

. (4.8)

We note here that, as the (constant) anode current flows
radially inward passing through this radius, R = Rm ,
the MITL transitions from nonmagnetic insulation to magnetic
insulation, which will be discussed further below. A similar
transition might also have occurred spatially in a MILO
experiment, but this was not included in the analytical model
in Section III.

Using the LTD parameters quoted above, Va =

100 kV, D = 1 cm, Ia = 1 MA, we obtain Rm = 1.595 m
from (4.8). Since Rm � D, we are fully justified to approx-
imate the radial MITL geometry as Cartesian, locally, as we
have done here. We plot in Figs. 11–16 the values of χb,
κ , z̄b, βb, φb, and Ie/Ia , as a function of R for R > 3D.
In Figs. 11–16, we set Va = 100 kV, D = 1 cm, Ia = 1 MA,

Fig. 11. Parameter χb as a function of R/D for R/D > 3, in a radial MITL
[Fig. 1(c)] with Va = 100 kV, D = 1 cm, Ia = 1 MA.

Fig. 12. Parameter κ as a function of R/D for R/D > 3, in a radial MITL
[Fig. 1(c)] with Va = 100 kV, D = 1 cm, Ia = 1 MA.

Fig. 13. Normalized Brillouin hub height z̄b as a function of R/D for
R/D > 3, in a radial MITL [Fig. 1(c)] with Va = 100 kV, D = 1 cm,
Ia = 1 MA. Note the very thin Brillouin hub height for R/D < 75.

and for each R, we use the value of Āa/ Āmin
a given in Fig. 10.

All parameters in Figs. 11–16 are then determined assuming
a local Cartesian Brillouin flow [Fig. 1(a)] and explicitly
computed in detail in Section II. We anticipate that these
Cartesian solutions are excellent approximations for the radial
MITL for R/D > 3, as “3” is, in practice, a sufficiently large
parameter in an asymptotic analysis.

Finally, we remark that, in the immediate vicinity of mar-
ginal magnetic insulation ( Āa/ Āmin

a = 1), one value of Ka

may correspond to two values of Āa/ Āmin
a , as shown by

the V-shaped curves in Fig. 8(a) and proved in Appendix A,
where we also discuss some subtlety of this double-valuedness.
For this reason, we use only the right branch of the
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Fig. 14. Normalized electron velocity at the top of the Brillouin hub, βb ,
as a function of R/D for R/D > 3, in a radial MITL [Fig. 1(c)] with Va =
100 kV, D = 1 cm, Ia = 1 MA.

Fig. 15. Electron kinetic energy, which equals to its potential energy in
magnitude, φb , at the top of the Brillouin hub, as a function of R/D for
R/D > 3, in a radial MITL [Fig. 1(c)] with Va = 100 kV,
D = 1 cm, Ia = 1 MA. Note the very low kinetic energy for R/D < 75.

Fig. 16. Ratio of the electron current within the Brillouin hub to the anode
current, as a function of R/D for R/D > 3, in a radial MITL [Fig. 1(c)]
with Va = 100 kV, D = 1 cm, Ia = 1 MA. Note that this ratio is very small
for all R, meaning that the electrons within the Brillouin hub contribute only
a very small self-magnetic field toward magnetic insulation.

above-mentioned V-shaped curve [Fig. 8(a)], down to the min-
imum of this V-shaped curve, when we construct Figs. 11–16,
as R/D increases from 3. The nature of this V-shaped curve
deserves further attention. This is especially true when the
MILO operates close to HC [71], [72].

V. CYLINDRICAL BRILLOUIN FLOW IN

AZIMUTHAL DIRECTION

The Brillouin flow is in the azimuthal direction for a
cylindrical magnetron [Fig. 1(d)]. In the relativistic regime,
this problem was studied in [46] and [69]. For completeness,

we include it here using our formulation and notation, in terms
of V̄a and Āa. The magnetic field is in the axial direction,
and the electric field is in the radial direction [Fig. 1(d)].
The anode radius is ra , which will be used as the distance
scale [cf. (1.11)], and the cathode radius is rc, with the
aspect ratio r̄c = rc/ra < 1. For the relativistic azimuthal
Brillouin flow, there is no analytic, closed-form solution for
the flow profile. The flow profile must be obtained numerically,
as detailed in [69], where it is shown that the BH condition
according to the Brillouin flow model is markedly different
from the single-particle orbit model (3.19), [69], [70] that was
commonly used in the literature, for both conventional and
relativistic cylindrical magnetrons. To facilitate comparison
with other Brillouin flow solutions shown in Fig. 1(a)–(c),
we outline below the Brillouin flow solution and the BH
condition for a cylindrical magnetron [Fig. 1(d)], using this
article’s notation.

Given the normalized gap voltage V̄a , the normalized total
axial magnetic flux in the AK gap, Āa (or equivalently the
degree of magnetic insulation Āa/ Āmin

a where Āmin
a is given by

(2.28) as in Sections II–IV), and the aspect ratio r̄c, we need
to numerically solve for the three parameters, (r̄b, κ̄, χb), from
the following three equations:

V̄a = cosh(χb) −1 +sinh(χb)

�

κ̄2+sinh2 (χb)×ln(1/r̄b)

(5.1)

Āa =
1

2r̄b

�

�

1 + r̄2
b

�

sinh(χb)

+
�

1 − r̄2
b

�

cosh (χb)

�

κ̄2 + sinh2(χb)



(5.2)

ln

�

r̄b

r̄c

�

=

� χb

0
dχ/

�

κ̄2 + sinh2 (χ). (5.3)

Equations (5.1)–(5.3) are the same as (7)–(9) of [69], whose
Appendix B presented an algorithm to solve for (r̄b, κ̄, χb).
From these values, we next obtain the relation between χ

and r̄ , that is, χ = χ(r̄), through the relation

ln

�

r̄

r̄c

�

=

� χ

0
dχ/

�

κ̄2 + sinh2 (χ), r̄c < r̄ < r̄b. (5.4)

The Brillouin flow fields, for r̄c < r̄ < r̄b, are then given by
(2.12)–(2.15), copied here for emphasis of their generality

β = tanh(χ) (5.5)

γ = cosh (χ) (5.6)

φ̄ = cosh(χ) − 1 (5.7)

Ā = sinh (χ). (5.8)

Equations (5.4) and (5.5) are the same as (10) and (11) of [69],
respectively.

The HC condition, according to the Brillouin flow model,
is obtained by setting r̄b = 1 in (5.1) and (5.2), which
yields (2.31).

For the BH condition, we consider an operating mode whose
phase velocity at the anode is vph = cβph in the azimuthal
direction. This azimuthal phase velocity, at the top of the
Brillouin hub, becomes (rb/ra)vph = r̄bcβph, which is to be
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equated with the Brillouin flow velocity at r = rb to obtain
BH. The BH according to the Brillouin flow model then reads

βphr̄b = tanh(χb) (5.9)

upon using (5.5) evaluated at r̄b. Equation (5.9) is the same as
(13) of [69] whose Appendix B also provides the algorithm to
solve (5.9). We should stress that βph in (5.9) is the normalized
phase velocity of the operating mode evaluated at the anode.

For the aspect ratio r̄c = rc/ra < 1/2, (5.9) shows
significant deviation from the BH condition shown in Fig. 2,
which is also the BH for the cylindrical magnetron according
to the single-particle orbit model [70], [11], [69]. Fig. 8 of [69]
shows that the experimental data from the University of
Michigan relativistic magnetron could not be interpreted in
terms of the BH condition according to the single-particle
orbit model, but are consistent with the BH according to
the Brillouin flow model. Simon [73] also found that the
simulation data of an inverted relativistic magnetron [74] could
not be explained in terms of the BH condition according to
the single-particle orbit model, but are consistent with the BH
condition according to the Brillouin flow model.

VI. CONCLUDING REMARKS

In this article, we derive the Brillouin flow solutions for
the four geometries described in Fig. 1. The AK gap volt-
age, the degree of magnetic insulation, and the geometrical
aspect ratio in the case of cylindrical geometry completely
characterize the Brillouin flow solutions, whether the magnetic
field is provided by an external magnet, by the wall currents,
or by a mixture of the two, as in a magnetron–MILO hybrid.
The Brillouin flow profiles are explicitly calculated. The BH
condition and the HC condition are derived from this Brillouin
flow model. Various scaling laws are derived, from which new
insights are offered.

In a magnetron, it is commonly accepted that the electron
spokes are generated from the Brillouin flow, and the spoke
current is only a fraction of the electron current carried within
the Brillouin electron hub. In this article, we assume the same
scenario for the MILO in an analytical theory, which is a
natural starting point to develop a MILO theory that can be
more readily compared with the magnetron theory. From this
assumption, we deduce that the MILO efficiency cannot be
much beyond 5 percent and is even less for a low-voltage
MILO. We are aware that in MILO experiments, the spoke
current may exceed the Brillouin flow current by a large
amount, implying the electron spokes in a MILO might not
have originated from the Brillouin flow and therefore might
achieve much higher power and efficiency experimentally than
those predicted based on the Brillouin flow picture that is
given in this article. If the MILO does generate spoke current
much higher than the electron current within the Brillouin
flow (by some unspecified mechanism), the hope remains for
a low-voltage MILO to be built, possibly with an operating
voltage as low as 50 kV.

Since magnetic insulation is quickly lost once
Āa/ Āmin

a → 1, the region of Āa/ Āmin
a

∼= 1 deserves close
attention. The V-shape shown in the anode current versus

Āa/ Āmin
a curves, for MILO or MITL as shown in Fig. 8(a),

occurs around Āa/ Āmin
a

∼= 1, and this V-shape nature has
affected our construction of the Brillouin flow solutions in
the radial MITL. It is of interest to ponder if this V-shape
is somehow related to the unexpectedly large spoke currents
observed in MILO experiments and simulations. Indeed,
MILO might operate at a rather low value of Āa/ Āmin

a ,
such as 1.1, which is very different from the operation of a
magnetron or a relativistic magnetron [71], [72].

Finally, when the MITL is magnetically well insulated,
Āa/ Āmin

a is large, the Brillouin hub height is very small, and
the Brillouin flow is non-relativistic, regardless of the voltage
and geometry. Under such a condition, we may consider the
Brillouin flow to be planar and non-relativistic, in which
case the diocotron instability is well studied. (The dio-
cotron instability has also been known as the slipping-stream
instability or Kelvin–Helmholtz instability. See Table I of
Buneman et al. [61].) We may then reassess the leakage
current on a MITL, caused by cathode surface roughness,
for instance, which could seed the diocotron instability. Note
that the diocotron instability has long been suspected to
be a candidate to initiate startup of the magnetron oscil-
lation, or as a source of excessive noise in crossed-field
devices [9], [34], [43], [44], [61].

APPENDIX A
ASYMPTOTIC BEHAVIOR OF PLANAR BRILLOUIN FLOW

In this appendix, we derive the asymptotic formulas,
(2.39)–(2.46), under the assumption Āa/ Āmin

a � 1. We shall
also give the behaviors of these quantities as Āa/ Āmin

a → 1.
Toward the end of this appendix, we further discuss several
important properties from these scaling laws to support the
claims in the main text.

At a fixed value of V̄a, for Āa/ Āmin
a � 1, the Brillouin

hub height is very small because the crossed-field diode is
deeply magnetically insulated. The normalized Brillouin flow
velocity βb at the top of the Brillouin hub is expected to be
a small number, that is, this velocity is deeply non-relativistic
because the flow velocity is constrained to be zero on the
cathode surface. If βb = tanh(χb) � 1, this implies that, for
Āa/ Āmin

a � 1

χb � 1. (A.1)

Using (A.1) in the hyperbolic functions in (2.25) [or,
equivalently, (C.1) of Appendix C], we obtain, to the lowest
order

χb ≈ V̄a/ Āa (A.2)

which is (2.39). Likewise, using (A.1) in (2.29), we obtain,
to the lowest order

κ ≈ Āa (A.3)

which is (2.40). These approximate formulas for χb and κ

are plotted in Figs. 3 and 4, with their comparison with the
exact values given in Tables I and II. Note that these two
parameters are independent of geometries and therefore they
are applicable to all geometries in Fig. 1(a)–(c).
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Using (A.1)–(A.3) in (2.30), (2.34), (2.14), and (2.35),
we obtain, respectively, (2.41), (2.42), (2.43), and (2.44).
Equations (2.45) and (2.46) then follow from (2.44) and (2.38).

While the approximate formulas, (2.39)–(2.46), are derived
asymptotically assuming Āa → ∞, Figs. (3)–(8) show that
all of these asymptotic formulas are very accurate as long as
Āa/ Āmin

a > 3. This observation encouraged us to approximate
the radial Brillouin flow profile in the MITL [Fig. 1(c)]
as locally a Cartesian Brillouin flow over the vast region
R/D > 3, where R is the radius from the center line and
D is the AK gap spacing, as in Section IV. Both Āa/ Āmin

a

and R/D are treated as dimensionless expansion parameters.
As Āa/ Āmin

a → 1, the Brillouin hub is about to touch
the anode. All quantities plotted in Figs. 3–8 have a finite
limit at Āa/ Āmin

a = 1, their values are given in (A.4)–(A.10).
Also given in (A.4)–(A.10) are the slopes of these curves as
Āa/ Āmin

a → 1

χb = cosh−1 (γa), ∂χb/∂ Āa → −∞ (A.4)

κ = cosh−1(γa), ∂κ/∂ Āa → γ 3
a /2 (A.5)

x̄b = 1, ∂ x̄b/∂ Āa → −∞ (A.6)

βb = βa, ∂βb/∂ Āa → −∞ (A.7)

φ̄b = V̄a, ∂φ̄b/∂ Āa → −∞ (A.8)

K̄a = B̄a = B̄b = γacosh−1(γa),

∂ K̄a/∂ Āa → −∞ (A.9)

K̄e = V̄a cosh−1 (γa), ∂ K̄e/∂ Āa →−∞ (A.10)

Ia : Ic : Ie =
�

1 + V̄a

�

: 1 : V̄a. (A.11)

To derive (A.4), we note that as the top of Brillouin
hub is about to touch the anode, (2.13) gives cosh(χb) =

γa which is the first part of (A.4). To derive the second
part of (A.4), we differentiate (2.34) with respect to Āa,
holding V̄a (and therefore Āmin

a ) fixed. The last term gives
(∂χb/∂ Āa)/ cosh2 (χb). The middle term gives, in the limit
Āa/ Āmin

a → 1, −[ Āa/( Ā2
a + 1)]/( Ā2

a − ( Āmin
a )

2
)1/2. Equating

these two terms, we obtain the slope of χb as Āa/ Āmin
a → 1

in Fig. 3:

∂χb

∂ Āa

∼= −

�

γ 2
a Āa

Ā2
a + 1



1
�

Ā2
a −

�

Āmin
a

�2
→ −∞, (A.12)

Āa/ Āmin
a →1.

Equation (A.4), in particular, the negative infinite slope of
χb at Āa/ Āmin

a = 1, are present in all solid curves in Fig. 3. The
remaining equations, (A.5)–(A.10), may be similarly proved
upon using, respectively, (2.29), (2.24), (2.12), (2.14), (2.35),
and (2.38). Note that (A11) follows from (2.38); it is valid
only when Āa/ Āmin

a = 1.
We next make a few remarks on the negative infinite slopes,

and the values of several quantities, at Āa/ Āmin
a = 1.

1) From (A.6), and Fig. 5, we see that the top of
the Brillouin hub rapidly approaches the anode as
Āa/ Āmin

a → 1. This corresponds to the well-known fact
that magnetic insulation in a crossed-field gap is quickly
lost as the magnetic field approaches the HC value [8].

2) Equation (2.44) shows that the anode current K̄a

increases with Āa at large values, whereas (A.9) shows

that K̄a decreases rapidly as Āa slightly exceeds Āmin
a .

The underlying reason is that, as magnetic insulation
is lost, K̄e rapidly increases (Fig. 8(b)), K̄c remains a
constant, (see (4.6) and Fig. 4), and K̄a = K̄e + K̄c.
Thus, the curve of K̄a as a function of Āa must have a
V-shape near the HC, as shown in Fig. 8(a), regardless
of the value of V̄a. This means that, in a MILO or MITL,
magnetic insulation ( Āa/ Āmin

a > 1) may be achieved at a
value of anode current less than the value corresponding
to HC ( Āa/ Āmin

a = 1). This unexpected result is evident
in the top curve (in green) in Fig. 8(a). It was also noted
in Packard’s recent MILO experiments [71], [72]. We
again encountered this double-valued problem when we
treated the radial MITL [Fig. 1(c)] in Sect IV. In the
radial MITL, if we fix the total anode current (and the
AK gap voltage), we will follow only the right half
branch of the V-shape curve in Fig. 8(a) as the radius
R increases, that is, as Āa/ Āmin

a decreases (see Fig. 10).
This issue is addressed in Section IV.

3) In a MILO or MITL operating with a gap voltage on the
order of hundreds of kV, which is within the common
range of the operating voltages, (A.11) shows that the
cathode current (Ic) and the total electron current carried
within the Brillouin hub (Ie) are of the same order of
magnitude. This might have led to the misconception
that the electron current contributes significantly to
magnetic insulation in a MILO and MITL. These two
currents are of the same order of magnitude only when

the diode is marginally magnetically insulated, that is,
only when Āa/ Āmin

a
∼= 1. For a deeply (and even not

so deeply) magnetically insulated diode, Ie is much less
than Ic, as shown in the scaling law (2.46) [see also
the exact expression (2.38) and Figs. 7 and 16]. Thus,
the electron current within the Brillouin hub contributes
little toward magnetic insulation in a MITL or MILO.

APPENDIX B
HC AND BH CONDITION IN A CYLINDRICAL MILO FROM

THE SINGLE-PARTICLE ORBIT MODEL

In this Appendix, we derive the HC condition and the BH
condition for the cylindrical MILO, according to the cycloidal
orbit, single-particle model. We show that they are the same
as the Brillouin flow model, given by (3.18) and (3.19),
respectively, and plotted in Fig. 2.

In the single-particle orbit model for the cylindrical MILO
[Fig. 1(b)], an electron released from the cathode surface
at r = rc with zero initial kinetic and potential energy
will move radially outward, execute a cycloidal motion by
acquiring a z-component velocity before it returns to the
cathode. The three components of the electron velocity are
(vr , vθ , vz) = c(βr , 0, βz). Including the space charge effect
and space current effect, φ̄ is governed by Poisson’s equation
(3.2), and Ā is governed by Ampere’s law (3.3) in which β is
replaced by βz .

To derive the HC condition, energy conservation for the
emitted electron gives

φ̄ = γ − 1, γ = 1/

�

1 − β2
r − β2

z . (B.1)
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Conservation of the z-component of the canonical momen-
tum for that electron gives

Ā = γβz (B.2)

where we have again used the convention that all quantities,
(φ̄, Ā, βr , βz), are positive. Note that (B.1) and (B.2) satisfy
the initial condition for this electron, φ̄ = Ā = βr = βz = 0,
on the cathode. The HC condition is reached when this
electron barely touches the anode, at which βr = 0, βz =

(1 − 1/γ 2)1/2, and (B.1) and (B.2) become

V̄a = γa − 1 (B.3)

Āa = γaβz =
�

γ 2
a − 1

�1/2
=

�

V̄ 2
a + 2V̄a (B.4)

where we have used the boundary conditions (2.8) and (2.9).
Equation (B.4) is the same as the HC condition (3.18)
which was derived from the Brillouin flow model. Note that
(B1)–(B4) remain valid even if there is an arbitrary charge dis-
tribution in the AK gap that depends only on r [32], [69], [70].

To derive the BH condition, we follow [69] and [70] and
assume that there is a small amplitude wave propagating in
the z-direction with phase velocity vph. This wave provides
a torque to bring the emitted electron from the cathode to
the anode (despite magnetic insulation), but without changing
its energy. The BH condition states that when this elec-
tron reaches the anode, it is trapped by this wave, that is,
it co-moves with the wave. Thus, in the frame co-moving with
the wave in the z-direction, at the constant velocity

*
v = ẑvph (B.5)

this electron is at rest when it reaches the anode. Hereafter,
we consider the electron dynamics in this moving frame.
In this moving frame, the initial energy of the electron is

Wi = γphmc2 (B.6)

γph = 1/
�

1 − β2
ph, βph = vph/c. (B.7)

This initial energy, Wi , includes the electron’s rest energy mc2.
The electric field and the transverse coordinates in the

moving frame (primed quantities) are related to those in the
lab frame (unprimed quantities) by the Lorentz transforma-
tion [80]

EE 0
⊥ = γph

�

EE⊥ + Ev × EB
�

(B.8)

Ex 0
⊥ = Ex⊥, r 0 = r (B.9)

where the “⊥” sign refers to the direction perpendicular to z,
which is mainly the radial direction for the present problem
[Fig. 1(b)]. Thus, the radial component of (B.8) reads

E 0
r = γph(Er − vz Bθ ) = γph

�

dφ

dr
− vph

d A

dr

�

(B.10)

where we have represented the electric (magnetic) field in
terms of the scalar (vector) potential φ(A). At the anode,
the kinetic energy the electron is zero in the moving frame,
because the electron co-moves with the wave. The total energy
of this electron at the anode, W f , then consists of its rest

energy, and the work done by E 0
r on the electron as the electron

moves radially from the cathode to the anode

W f = mc2 − e

� ra

rc

dr E 0
r = mc2 − eγph

�

Va − vph Aa

�

. (B.11)

In writing the last equality, we have used (B.10) and the
boundary conditions (2.8) and (2.9) for φ and A. Equating
(B.6) with (B.11), we obtain

γph = 1 − γph
�

V̄a − βph Āa

�

. (B.12)

This equation may be written as, using (B.7),

V̄a = Āaβph +
��

1 − β2
ph − 1

�

(B.13)

which is the same as the BH condition, (3.19), derived from
the Brillouin flow model.

APPENDIX C
CLOSED-FORM SOLUTION TO (2.25)

To prove that (2.26) is the solution to (2.25), we first
simplify (2.25) to read

Āa −
γa

tanh(χb)
= −

1

sinh (χb)
. (C.1)

Take the square of (C.1). This becomes a second-degree
polynomial in tanh(χb), easily solved to yield

χb = tanh−1

⎡

⎣

γa Āa ±
�

Ā2
a + 1 − γ̄ 2

a

Ā2
a + 1

⎤

⎦ (C.2)

which is (2.26) upon choosing the negative sign in front of
the square root to ensure that βb = tanh(χb) < βa .
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