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ABSTRACT. Developing an idea of Carlitz, I show how one can describe explicitly the
maximal abelian extension of the rational function field over F, (the finite field of q
elements) and the action of the idèle class group via the reciprocity law homomorphism.
The theory is closely analogous to the classical theory of cyclotomic extensions of the
rational numbers.

The class field theory of the rational numbers Q is "explicit" in the sense that
one can write down a sequence of polynomials whose roots generate the maximal
abelian extension of Q, and one can describe concretely how a given Q-idele
class operates on each of these roots via the reciprocity law homomorphism (see
[1, Chapter 7]). A similar program can be carried out for imaginary quadratic
fields using the theory of elliptic curves (see [4, Chapter 13]). These results are
quite old, having originally been conceived by Kronecker in the late 19th century.
More recently, Lubin and Täte [5] have given such an explicit description of the
class field theory for any local field using the theory of formal groups. All of these
results use the same basic procedure: A ring of "integers" in the ground field is
made to act on part of the algebraic closure of that field, and the maximal abelian
extension is gotten essentially by adjoining the torsion points of that action. For
example, one obtains the maximal abelian extension of Q by adjoining the
torsion points of Z acting by exponentiation on the multiplicative group of the
field of algebraic numbers.

This paper contains a similar explicit description for the class field theory of a
rational function field (over a finite field of constants). The main idea comes from
a paper of Carlitz [2], the aim of which was to develop an analog of the
cyclotomic polynomial for the ring of polynomials over a finite field. In brief, this
Carlitz cyclotomic theory goes as follows: Let k be the field of rational functions
over the finite field F, of q elements. Of the q3 - q generators of k over Fq pick
one, say T, and consider the polynomial subring RT = Fq[T] of k. Carlitz makes
RT act as a ring of endomorphisms on the additive group of kK, the algebraic
closure of k. For M G RT, the action of M is given by a separable polynomial
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78 D. R. HAYES

with coefficients in RT whose set of roots Aw (the M-torsion points of A:"0)
generate a finite abelian extension field k(AM) of k. The properties of these
extensions are quite similar to those of the cyclotomic extensions of Q.

Carlitz arrives at his definition of the RT action in a remarkable way. The
choice of T singles out an "infinite prime" of k, namely the unique pole Px of T.
In a previous paper [3], he had defined an analytic function ip(u) on kx, the
completion of k at £,, with properties closely resembling those of the function
exp(/'*) on the real numbers. This \p(u) is defined by an everywhere convergent
power series with coefficients from k. Carlitz then notices that for a given
M G RT, }p(Mu) = uM(^(u)) where wM is a uniquely determined additive poly-
nomial over RT. The properties of \p(u) made it evident that the action
M • u = uM(u) gives the additive group of /cac the structure of an /?rmodule.
Carlitz was able to give a purely algebraic description of uM and, therefore, of the
RT action. He noted also that the roots of wM are expressible in the form
i¡{(A/M)Í) where £ is a "transcendental element" lying in the completion of the
algebraic closure of kx and A is in RT. Thus, the elements of AM are the values
of an analytic function at the rational points of the form A/M ! For the details, I
refer the reader to the original papers.

Carlitz makes a careful study of the polynomials uM(u) and proves the analog
of the theorem which states that the cyclotomic polynomial is irreducible over Q.
In §§1-4 below, I give an exposition of Carlitz' results in the language of modern
algebraic number theory. A discussion of how the prime £, splits in k(hM) is also
included. This question does not arise naturally in Carlitz' set-up, but it is crucial
for the application to the class field theory of k. For what it is worth, I also
calculate the different of k(AM) when M is a power of an irreducible and thereby
get a formula for the genus of k(AM) in that case.

§§5, 6 and 7 are modeled after the usual explicit construction of the norm
residue symbol for cyclotomic extensions of Q (see Chapter 7 of [1] or Chapter
7 of [4]). It turns out that the extensions k(AM) together with the constant field
extensions almost generate the maximal abelian extension of k. What is lacking
is a piece containing the extensions where P^ is wildly ramified. This piece is
constructed out of the theory which results from the choice of 1/7 as generator
instead of T.

It is perhaps surprising that the results come by using endomorphisms of the
additive group of kiC. Note however that the formal group law constructed from
itT + Tq in the Lubin-Tate theory is just X + Y in the equicharacteristic case.
This gives some hope that the additive group might be used in a similar way to
do explicit class field theory for an arbitrary function field in one variable over Fr

1. The RT action. As above, k is the field of rational functions over the finite
field F, of q elements. We arbitrarily choose a generator T of k and put
R-T = Fq[T], the polynomial subring of k generated by T over ¥q. Most of the
results will be relative to this choice of T, although this fact is suppressed (more
or less) in the notation.
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EXPLICIT CLASS FIELD THEORY 79

Let A:*0 be the algebraic closure of tc. The F?-algebra Endive40) of all Fq-
endomorphisms of the additive group of fe*0 contains the Frobenius automor-
phism <p defined by <p(«) = uq and the map /ir defined by \Lj(u) = Tu. Since RT
is a polynomial ring over F,, the substitution T t-* <p + /tr yields a ring homomor-
phism RT -» End(7cac) which provides ktc with the structure of an Äj-module. If
we write uM for the action of M G RT on »» G fcac, then we have

(1.1) «M - M(tp + ftT)(u).

Note that for a G F,, «a = aw, so that our RT action, respects the E^-algebra
structure of tc".

Proposition 1.1. Ifd = deg M, then

(1.2) MM = |o[f]^

where each [*f] is a polynomial in RT of degree (d - i )q\ Further [%] = M and [ ¿ ]
»s the leading coefficient of M.

Proof. Since each element of RT is an E/linear combination of powers of T, it
suffices to verify the proposition for the special case M = Td. The endomor-
phisms (p and ¡iT do not commute but rather obey the rule <p ° /ir = /if- o <p.
Therefore, one can write (<p + nT)d as a sum of terms of the form /if o <p'. Since
(/if o <p')u = r5«*', we see that uM is indeed a polynomial in u of the form (1.2).
For » = d, there is a unique term <pd and (¡^(w) = u*d. For » = 0, there is a unique
term ¡if and /if («) = Tdu. For 0 < » < d, there is a unique term with maximum
5, namely qp' ° /tf-' = /i(/_,)í' ° <¡p'. This completes the proof.

Put [**] = 0 for i < 0 and » > deg M. In calculating the polynomial [*f], one
can make use of the following easily established properties:

In [2, Equation 1.6], Carlitz gives an explicit formula for these polynomials.
Definition 1.2. Let Aw denote the set of M-torsion points of 7cac, i.e., the set of

zeros of the polynomial uM. Since RT is commutative, AM is an /?rsubmodule of
Tcac.

Proposition 13. As a polynomial in u over k, uM is separable of degree qd, where
d — deg M. The submodule AM is finite of order qd and is therefore a vector space
over Fq of dimension d.
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80 D. R. HAYES

Proof. From Proposition 1.1, we see that uM is of degree qd in u and that its
derivative with respect to u is just [if] = M. The proposition follows immediate-
iy-

The structure of the Pj-module AM will now be determined. As one might
expect from the analogous cyclotomic theory, Au turns out to be a cyclic Rf
module.

Proposition 1.4. Let M = a TJ P" be a factorization of M into powers of monk
irreducibles. Then

(1.3) Aw = 2 A,.,
P\M

and the sum is direct.

Proof. This follows from the general theory of modules over principal ideal
domains. In fact, AP* is the P-primary submodule of Au, and so (1.3) is the
canonical decomposition of AM into its P-primary components.

Proposition 1.5. If M = P", where P is irreducible, then AM is a cyclic Rr
module.

Proof. Let d = deg P. The proof goes by induction on n. For n = 1, A, is a
vector space over RT/(P). Since both Rt/(P) and Ay, contain qd elements, AP is
1-dimensional, hence cyclic over RT/(P), and hence cyclic over RT. Now assume
the proposition true for n = k, k > 1. The map m h-> ur from A,**. -* A,» is
surjective since its domain, kernel and range contain respectively qd(k+l\ qd and
qdk elements. Since Apk is cyclic by the induction hypothesis, one can therefore
choose X G Apic+i so that X'' generates A,*. This X will generate APk+, over RT. To
prove it, let ¡i E Apk-n be given. Then choose A E RT such that pr = XPA. Then
H — Xa belongs to AP. Now X'* G AP is not zero since X' generates A,*.
Therefore, since AP is a 1-dimensional vector space over RT/(P), there is a
B E RT such that ¡i - Xa = XF"B. We conclude that y. = XA+pkB. Therefore, X
generates Apk+\, and the proof is complete.

Theorem 1.6. The RTmodule AM is naturally isomorphic to RT/(M) for every
M # 0 in Rj,

Proof. Since by Propositions 1.4 and 1.5 each of the P-primary components of
AM is cyclic, AM is itself cyclic. Therefore, AM is naturally isomorphic to the
quotient of RT by the annihilator ideal of AM. Clearly, the ideal (M) is contained
in that annihilator. On the other hand, both AM and RT/(M ) have qd elements,
where d = deg M. Therefore, (M) must equal the annihilator of AM, and the
proof is complete.

Definition 1.7. If M E RT, M =/= 0, then $(Af) is the order of the group of
units of RT/{M).
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EXPLICIT CLASS FIELD THEORY 81

Corollary 1.8. The cyclic Rrmodule AM has exactly 3>(A/) generators. In fact, if
X is a given generator and A G RT, then Xa is a generator if and only if A and M
are relatively prime.

2. The fields k(AM). One knows that, with one exception, the prime divisors of
the rational function field k correspond one-to-one to the monic irreducible
polynomials P in RT. The exception is the unique pole £, of T, the "infinite
prime." For convenience, I will use the symbol "P" to denote both a monic
irreducible and the prime divisor to which it corresponds. No confusion should
arise.

Consider now the extension field k(AM) of k which arises by adjoining to k the
elements of the finite module AM. Let X be a generator of AM over RT (Theorem
1.6). Since Xa is a polynomial in X with coefficients from Rt, Xa G k(X) for every
A G RT. It follows that one can obtain k(AM) by adjoining to k a single
generator of AM. Also, since AM is the set of zeros of the separable polynomial
uM over RT C k, the extension k(Au)/k is finite and Galois. Further, the
elements of AM are all integral over RT since by Proposition 1.1 the leading
coefficient of uM belongs to F,.

Let GM be the Galois group of k(AM)/k. The action of GM commutes with the
/?7-action since the /?raction is given by a polynomial over tc. Choose a
generator \ of AM. Since X also generates the field extension, every a G GM is
determined by its action on X. We must have o(X) = Xa for some A relatively
prime to M since o must map a generator of AM to another generator. Further,
this A does not depend on the choice of the generator X. Therefore, the map
a r-* A (mod A/) is a well-defined injection of GM into the group of units of
RT/(M). One easily verifies that this injection is a group homomorphism. We
have thus proved the following

Theorem 2.1. The Galois group GM is isomorphic to a subgroup of the group of
units of RT/(M). The Galois extension k(AM)/k is abelian, and [k(AM): k]
< $(M).

This last theorem does not tell the whole story since actually the map from GM
into the group of units of RT/(M) is an isomorphism. One way to prove it is to
examine the ramification at the prime divisors which correspond to the irreduci-
ble factors of M, just as one does in the usual cyclotomic theory.

Proposition 2.2. Suppose M = P" where P is a monic irreducible polynomial in T
with deg P = d. Then every prime divisor of k except P and R¿ is unramified in
k(AM), and the ramification number of P is $(A/) = o* - o^"-1'.

Proof. Let IM be the integral closure of RT in k(AM). Since RT is a Dedekind
ring, so is IM. We must determine which finite prime divisors of k divide the
discriminant D(IM) of IM over RT. Let À be a generator of AM. Then RT[X] is a
subring of Iu, and its discriminant D(X) divides the divisor of Norm (/'(A)) where
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82 D. R. HAYES

f(u) is any polynomial over RT which has X as a root. Take/(h) = um. Then, by
Proposition 1.1,/'(h) = M = P", a constant polynomial over RT. Therefore, P
is the only prime divisor of RT which enters into D(X). Since D(IM) divides D(X),
it follows that P is the only prime divisor of RT which divides D(IM). Therefore,
except maybe for £,, the only ramification of the extension k(AM)/k occurs at P.

In order to calculate the ramification number at P, proceed as follows: Note
first that uf" = (up"'x)? = up"'x • /(h) for some polynomial/(h) over RT since h
divides up by Proposition 1.1. Therefore,/(h) = up"/up"~' = P + higher terms.
The roots of/are obviously exactly the generators of the module AM. Therefore,

(id ±p = n x"
where A runs over a set of representatives of the group of units of RT/(M). Now
X divides Xa in IM since u divides uA. By symmetry, Xa also divides X. Therefore,
Xa = (unit) • X. Substituting this in (2.1), we find that

(2.2) ±P = (unit)-X*<J,'>.

The ramification number eP of P is therefore greater than 3>(A/"). But also
e> < [k(AM): k] < $(A/).  Therefore,  eP = [k(AM): k] = $(A/).  This com-
pletes the proof.

The main result is a corollary of this last proposition:

Theorem 23. The extension k(AM)/k has degree $(M), and the Galois group GM
is isomorphic to the group of units of RT/(M).

Proof. By Theorem 2.1, it is enough to prove that the degree equals $(M). For
M = P", this follows from Proposition 2.2. If M has the factorization M
= a n P"> where each P is a monic irreducible, then the total ramification of
k(APi) at P shows that each extension k(APn)/k for P dividing M is linearly
disjoint from the composite of the remaining ones. Therefore,

[k(AM): k]=U lk(AP.y. k]=U W) = *(M),
P\M P\M

and the proof is complete.
One last result is needed for use in §§4 and 7 below. The analogous result in

the cyclotomic theory can be proved directly from properties of binomial
coefficients. One can devise a similar direct proof which works here, but we give
a proof based on Proposition 2.2.

Proposition 2.4. If M = P", where P is a monic irreducible in RT, then
f(u) = up"/up"'' is an Eisenstein polynomial over RT at P.

Proof. Let X be a generator of Aw. From the proof of Proposition 2.2,

(2.3) f(u) = JI(u-XA)
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EXPLICIT CLASS FIELD THEORY 83

where A runs through a set of representatives of the group of units of RT/(M).
Let t> be the unique prime divisor of k(AM) lying over P. From (2.2) and the total
ramification at P, it follows that ordpX = 1, and the same holds true of the
generator Xa. Therefore, (2.3) shows that the coefficients of all but the highest
order term in/(«) belong to the valuation ring at £ and hence are divisible by P
in RT. Since the constant coefficient is P, /(«) is Eisenstein, and the proof is
complete.

Corollary 2.5. Suppose P is a finite prime of k which does not divide M. Then the
automorphism <pP of k(AM) which takes X in AM to Xp is that given by the Artin
symbol.

Proof. Let d = deg P. Consider a given generator X G AM. Let the Artin
symbol take X to XL for suitable L G RT. By definition, we have XL = A»'
(mod £) where £ is a prime of k(AM) lying over P. But also Xp = X'' (mod t>) by
the above proposition. Now

uM =    LI    (« - X").
A mod M

Taking the derivative of both sides of this equation and recalling that the
derivative of uM is just M, we get

M=    II    (XB-X")       (A*B)
A mod M

for every B in RT. Since P does not divide M, this means that the Xa , A mod M,
have distinct images in the residue class field at p. Therefore, Xp = X¿ implies
that X' = XL. But an automorphism of k(AM) is determined by its action on X.
So <pF is the Artin symbol at P.

3. The ramification at £,. The fundamental fact about the ramification at Px in
k(AM)/k is that it is tame:

Theorem 3.1. Let M G RT, M # 0. Then Px is tamely ramified in k(AM)/k.

It suffices by the usual arguments to prove this theorem in the special case
M = P" where P is a monic irreducible in RT. For this special case, I prove a
better theorem which shows precisely how £, splits.

Theorem 3.2. Let M = P" where P is a monic irreducible in RT with deg P = d.
Then %, splits into ®(M)/(q — 1)prime divisors in k(AM). The ramification number
ex is given by ex = q — 1 at each of these primes, and the degree of inertia is 1.

Proof. Let ^ be any prime divisor of k(AM) lying over Px. Since the extension
k(AM)/k is Galois of degree i>(A/), it suffices to prove that e% = q - 1 and
/p = 1. Let £ be a prime divisor of k(AP) C k(AM) which lies under ?$ (and
hence over P^. Schematically, we have
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84 D. R. HAYES

k    ->   k(AP)   -»   k(AM),

&    «-        P «-        «.
I show first that efi = q — I and /„ = 1 and then that p splits completely in
k(AM)/k(AP). Since e and /multiply in towers, this will yield the theorem. The
proof is an exercise in drawing Newton polygons.

First consider p over R¿. The field k(AP) is gotten by adjoining to k any root
of the irreducible polynomial g(u) — uF/u. From Proposition 1.1, g(u) = Mu*'1)
where

A(h) = 2 MT) ■ h<«'-»/<*-'> = ffoiT) +fx(T)u + ■•-

and deg/ = (d — i)q'. Let kx be the completion of k at P„, and let i/w be the
normalized valuation on kx. Then vx(f(T)) = -deg/(70 = -(d-i)q'.
To get the Newton polygon of h(u) over kx, one plots the points /?, =
((?' - l)/(<7 - l)»-(¿_ 1)«') for 0 < / < d. A short calculation shows that
the slope of the line segment joining /3, and ßi+x is just -(d - i)(q - 1) + q.
Since the slopes increase strictly with /', the points /3, must be exactly the
vertices of the Newton polygon of h(u). For the points ß0 and ßx, we find the
slope -d(q - 1) + q, which shows that h(u) has a root 8 in k„ with vn(0) =
í/(<7 - 1) - q. Now because g(u) — h(vfl~x), the completion k(AP\ of ^(A,,)
at p is gotten from /:w by adjoining a root X of h*_1 - 0 = 0. Therefore,
since tfoo(0) and q—\ are relatively prime, the extension k(AP\/kn is
totally ramified of degree q - 1. Hence, e„ = ç — 1 and/e = 1.

The next problem is to determine how p splits in the extension k(AM)/k(AP).
Let v„ be the (normalized) valuation of ^(A,.) at p. From the previous paragraph,
g(u) has a root X such that i>„(X) = d(q - 1) - q. Now as h7" = u • g(u),

um _ mp" = (mp-')' = „i- . g(up"-¡)

so that A:(AM) comes by adjoining to k any root of g(H,"~'). Therefore, k(AM) is
gotten from ^(A/,) by adjoining a root of up"~' - X = 0. To calculate the Newton
polygon of up"'x — X, one plots the points

y_x = (0,v„(X)) = (0,d(q - I) - q)

and

y, = WMïiiT))) = (q\~(q - i)(d- l)q>)
for 0 < / < d(n - 1). A short calculation shows that the slope from y.x to y0 is
—(q - \)dn + q and that the slope from y¡ to yi+1 for /' > 0 is -(q — 1)
■ (dn - d - i) + q. Again, these slopes increase strictly with / so that the vertices
of the Newton polygon of up"~' - X over k(AP)p are exactly the y¡. The segment
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EXPLICIT CLASS FIELD THEORY 85

from ■/_! to -yo shows that up"~y - X has a root in k(AP\. Since the extension is
Galois, this means that X> splits completely in k(AM). This completes the proof.

4. Calculation of the different and genus. Throughout this section, M = P"
where P is a monic irreducible in T. The enterprising reader can write down a
formula for the different for arbitrary M by using the functorial properties of the
different and the results given here.

Theorem 4.1. Let £> be the different of the extension k(AM)/k, where M = P",
P monic, and deg P = d. Then

(4.1) * - v • n v-2
where *$ is the unique prime ofk(AM) lying over P and s = ti • <fr(M) - o^"-1*.

Proof. Only primes lying over PorÇ, are ramified, so only such primes divide
2i. Since the ramification at £ for £ | £, is tame, p appears in the different with
exponent ep - 1 = q - 2. Hence, everything is proved except for the value of s.

To find s, go local and calculate the different of k(AM\/kP. This extension is
totally ramified of degree 3>(A/), and k(AM)% is generated over kP by a single root
X of f(u) = up"/up"~'. By Proposition 2.4,/(a) is Eisenstein at P, which implies
that the powers X* for 0 < » < <b(M) constitute an integral basis for the
extension. Therefore, the discriminant D of the extension is the ideal generated
by Norm(/'(X)). Now uF' = m/""' •/(«) and the derivatives of up" and m'*"' are
respectively the constants P" and P"~l by Proposition 1.1. Therefore,

P" = P"-x ■ f(u) + up"-' ■ /'(«)

and hence

(4.2) P" = XP^ -f'(X).
Since X'""' G Ap, the norm of X'""1 is the $(M )/$(/>) power of its norm from
k(AP)y to kp, and this latter norm is just ±P. Therefore, on taking norms in (4.2),
we find that (Norm/'(X)) = (P)' where s = n- <¡>(M) - (4>(AO/$(/>)) = «
• $(M) - o*"-».

Now let 2>p be the different of k(Au)%/kP. Then !hP = $' = (X)' for some t.
Since D = Norm(ZV) = (Norm X)' = (P)', we see on comparing exponents
that t = s. This completes the proof.

Corollary 42. Let gM denote the genus ofk(AM)/k. Then

2gu-2 = (dqn - dn - o)($(M)/(o - 1)) - dq*-».

Proof. By the Hurwitz formula,

2gM - 2 = -2 • 9{M) + deg(£>).

The degree of !£> is easily calculated from (4.1) and is found to yield the result.
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5. The extension A/k. Our aim now is to show how the theory developed in
§§1-4 can be used to construct the maximal abelian extension A of k and the
reciprocity law homomorphism \¡/: J -» Gal(A/k) from the group of &-idèles /
into the Galois group of A/k. These constructions will be "explicit" in the sense
that:

(a) A/k is the composite of certain of its finite subextensions, each one of which
is generated by the roots of a polynomial which we can write down, and

(b) the action of an element of J via \p on the roots of one of these polynomials
is given by another polynomial which also we can write down.

In constructing A and \j/, we proceed in an elementary fashion using only basic
algebraic number theory. But in order to show that our construction does in fact
yield the maximal abelian extension of k and the reciprocity law homomorphism,
we must appeal to class field theory in the end. One can make shorter proofs if
he is willing to introduce the class field theory at an earlier stage in the
constructions.

We begin by constructing A as the composite of three pairwise linearly disjoint
extensions E/k, KT/k and Lx/k. These extensions are defined (as subfields of k*°)
as follows:

(i) E/k is the union of all the "constant field extensions" of k. In other words,
E is gotten by adjoining to k all roots of the polynomials k»' - u for v = 1, 2, 3,
_The Galois group GE of E/k is the projective limit of all the finite cyclic

groups and is therefore isomorphic to the completion of Z in its ideal topology.
It is generated as a topological group by the unique automorphism Frob of E/k
whose restriction to the algebraic closure of Fq in E is the Frobenius automor-
phism u H» uq.

(ii) KT/k is the union of all the fields k(AM) for all polynomials M in RT. Thus,
KT is gotten by adjoining to k all roots of the polynomials uM, M in RT. By
Theorem 2.3, the Galois group GT of KT/k is the projective limit of the
multiplicative groups (RT/(M))*, and GT acts on KT via its quotient groups
(RT/(M))* as described in §2.

The composite E • KT in klc cannot be the maximal abelian extension of k
since by Theorem 3.1 it contains no finite subextension in which P„ is wildly
ramified. That part of the maximal abelian extension of k in which P^ is wildly
ramified can be constructed by using \/T instead of T as our generator for k.

(iii) Viewing the theory in §1 for \/T as the generator instead of T, put
F, = k(AT-r\) for v = 1, 2, 3.Let X be a generator of the Rx/T module
Ar-,-i. Any polynomial N in \/T over F, with nonzero constant term acts on F,
by way of the automorphism which takes X to XN. In particular, we can identify
F* with the group of automorphisms rß (ß E F*) which take X to X^ = ßX. Let
L„ be the fixed field of F* in Fe. Since [Fp: k] = q'(q - 1) and [Fr: L,] = q - 1.
the extension Ljk is Galois of degree q". By Proposition 2.2. Px = 1/7" is totally
ramified in Fjk and hence totally and wildly ramified in Ljk. It is clear that
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L, C Lp+X. We put Lx = \J?=xLr. Since the Galois group of Ljk is naturally
identified with the group Gr of polynomials in 1/7" mod(l/7T+1 which have
constant term 1, the Galois group Gx of Ljk is the projective limit of these
groups. In other words, Gx is the multiplicative group in the ring of formal power
series F,[[l/r]] consisting of those"power series with constant term 1. And Gx acts
on Ljk via its quotients mod(\/T)"+x.

Definition 5.1. Put A = E • KT- Lx, where the composite is taken inside the
fixed algebraic closure /Vac of k.

E ■ KT- L=A

(5.1)
E- K.

Kn

Proposition 5.2. The extensions E/k and KT/k are linearly disjoint, and their
composite E ■ KT/k is linearly disjoint from Ljk. Therefore, the Galois group ofA/k
is naturally isomorphic with the product G£ X GTX Gx.

Proof. Any finite subextension of E • KT/k is tamely ramified at /J, because it
is contained in the composite of a finite constant field extension of k and some
k(AM). And each Lp is totally ramified at £, with ramification number p'.
Therefore, (E ■ KT) n L„ = k, which implies that E • KT/k and Ljk are
linearly disjoint. This leaves E/k and KT/k. To prove these two extensions
linearly disjoint, it suffices to show that k(AM) n E = k for every polynomial M
in RT. We use induction on the degree of M. For deg M = 0, the result is clear.
Assume it true for all polynomials M' of degree strictly less than deg M and put
M = P' • M', P -f M', where P is some monic irreducible dividing M. Then we
have the tower k C k(AM) C ^(A^). By hypothesis, k(AM.) D E = k. There-
fore, if k(AM) n E ¥= k, then k(AM)/k(AM.) must contain a constant field
extension. But any extension of the prime divisor P of k is totally ramified in
k(AM)/k(AM). Therefore, we must have k(AM) n E = k, and the proof is
complete.

6. The homomorphism \¡/. Having introduced the field A, our next task is to
construct the group homomorphism \p: J -» Ga\(A/k). This we do by writing J
as a direct product of four of its subgroups and then building ip on each factor
separately. The map \¡/ is trivial on one factor and on the other three factors maps
into the Galois groups of E/k, KT/k and Ljk respectively. Before describing this
decomposition of J, it is convenient to introduce some notational conventions.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



88 D. R. HAYES

Given a prime divisor p of k, the completion of k at p is denoted by kv. The
valuation ring of kv is denoted by op, and the maximal ideal and group of units
of o„ are denoted by p and U„ respectively. Our choice of the generator T of k
yields a canonical uniformizer ir„ in o„ defined by

(a) 7t„ = P if p ¥" Px, where P is the unique monic irreducible in RT such that
ord„(P) = 1, and

(bK = l/rifp = Pe.
This uniformizer having been chosen, every element x E k% can be written in
the form

(6.1) x = uti¡

for suitable u E Up and v E Z which are uniquely determined. We put sgnpto
= h, where h is the canonical image of u in the residue class field of oe. Clearly,
sgn„ is a multiplicative homomorphism from k% onto (op/p)*. We identify
a E F* C kv with sgn„(a). Further, let V9 = Ker(sgn„) and k$p = ^ n U„.
Since k^ is open in ^ (as VLV is open in ke), (6.1) shows that \Ç is isomorphic as
a topological group with ktf> X Z.

Now suppose i is an idèle in J. Define "divisors" 6(i) and dT(\) for i as follows:

(6.2) 6(i) = II V***9^   (all primes of k)
t>

is the usual divisor, which is an element of the divisor group 2^ of k; and

(6-3) í/r(i) = sgnM(ioe)-   n  <fM
P+Pm

which is an element of £*. One sees immediately that 6 and dT are epimorphisms
from J onto the groups !2>B and k* respectively.

Finally, we define some subgroups of J: (A) k* sitting as a discrete subgroup
of J along the diagonal; (B) Vx = k£ X Z sitting inside kx, which is identified
as the group of idèles having 1 at every coordinate except the P„ coordinate; (C)
the subgroup \JT consisting of the idèles which have 1 in the P*, position and a
P- unit in the P coordinate for every P # &. From the definition of the J
topology, kx inherits its usual topology from J under the identification in (B),
and

(6.4) U ==  n  U,T P+PK

as a topological group.
We are now in a position to describe the decomposition of /. Given an idèle 1,

write

(6.5) 1 = ^(0-1*      (i*GUrx&)
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where dT(i) is a diagonal idèle as described in (A) above. By (6.1), the
decomposition (6.5) is the only way of writing i as a product of an element of k*
and an element of Ur x K¡- Therefore, J is the direct product k* X \JT X V^ as
a group; and since U7- X J£, is an open subgroup of J, J is even isomorphic to
this direct product as a topological group. Finally, since Vx = k£> X Z, we get

(6.6) 7sfc*XUXici"xZ

both algebraically and topologically. For given i G J, we write i as the product

(6.7) i = o,r(i)-irl00iz

given by the decomposition (6.6).
The group Ur is actually isomorphic to the Galois group GT of KT/k in a

natural way. In fact, we can give a constructive definition of the natural action
of Ur on KT which identifies Ur with GT. Suppose given an idèle i in \JT and a
monic polynomial M in RT. We will describe how i acts on k(AM)/k. Suppose
M = TJ P" is me canonical factorization of M. By the Chinese remainder
theorem, there is a polynomial A in RT such that A = \P (mod P") for every P
dividing M, and this polynomial is unique mod M. From the discussion in §2,
this A mod M determines a unique automorphism rA of k(AM)/k which takes
X G AM to Xa. We get a homomorphism $%: Uj- ~» Ga\(k(AM)/k) defined by
yp"(\) = ta- The reader can verify for himself that $t is continuous (discrete
topology on the finite group) and that M | N implies that the restriction of u^f t(>
k(AM) is just $%. Taking the limit, one gets a continuous homomorphism
\j/T: \JT~* GT. This \pT is easily seen to be injective and to have an image which
is dense in GT. Therefore, since Ur is compact, t¡/T is an isomorphism.

We have already noted in (iii) of §5 that the Galois group GM of Ljk is
isomorphic to k£) and indicated how k¡P acts on Lx via its quotients. Let
»ta : k£> -* Gx be this isomorphism.

Finally, we define a monomorphism i//z : Z -» GE into the Galois group of E/k
by requiring that ifa(l) = Frob. This ifz is certainly continuous since Z has the
discrete topology.

We can now define our homomorphism i//: / -* Ga\(A/k). Recall that
Gal(A/k) - GtXG^XGe by Proposition 5.2. Given i G J, we write i in the
form (6.7) and then put

(6.8) tfro-fefto-tfbfco-fcett
Our preceding remarks yield the following

Theorem 6.1. The map \[/ defined by (6.8) is a continuous homomorphism from J
into the Galois group ofA/k with kernel k*.

We show in the next section that x¡/ is in fact the reciprocity law homomorphism
for»c.
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7. \p is the reciprocity law homomorphism. Let A*/k be the maximal abelian
extension of k, and let \¡/*: J —* A* be the reciprocity law homomorphism. Since
A/k is abelian, A C A* and so one has the restriction homomorphism res:
Ga\(A*/k) —> Gal (A /k). We will show that res ° \p* = \p. Since both \p and \p*
have kernel k*, this will show that A = A *, and hence i|/ = \p*, by Galois theory.
Now, in order to prove that res ° \p* = if-, it suffices to prove for every idèle i in
J that ^/*(i) and ^(i) restrict to the same automorphism on each finite subexten-
sion of A/k. In fact, it is enough to show that \p(\) and ¡p*(\) agree on the
subextensions of A/k of the form:

(i) constant field extensions,
(ii) k(AM)/k where M = P" is a power of a monic irreducible in Rj,
(iii) Ljk for v > 1.

Indeed, from our previous work it follows that every finite subextension of A/k
is contained in a composite of subextensions of the above three types.

Suppose then that F/k is a finite extension of type (i), (ii), or (iii) above. The
restriction of ^*(i) from Ga\(A*/k) to Ga\(F/k) induces a homomorphism from
J to Gal(P/Ac) which, by abuse of language, we also denote by ip*. From class
field theory, one has the following characterization of this \p* (see [4, Chapter 7,
§4]):

Let S be any finite set of primes ofk which contains at least all those primes which
ramify in F/k, and let Js denote the group of idèles which have a 1 in the f
coordinate for £ G S. Then \p* is the unique homomorphism J —* Ga.1 (F/k) such
that

(a) \p* is continuous.
(b) **(*) = l.
(c) ^*(i) = (3(0, F/k) for all \ E Js, where ( ,F/k) is the Artin symbol.
Therefore, if we check that \p satisfies conditions (a), (b) and (c) on all such

extensions, then we will be done. We already know that \p satisfies (a) and (b), so
we have only to look at (c). Call an idèle i G J a p-blip if it has a unit in each
coordinate except p and if its ö coordinate is wp. Since every idèle in Js can be
written as the finite product of p-blips and inverses of tt-blips for various b not in
S (clear!), it suffices to check (c) for i a p-blip. This we now proceed to do.

Case 1. F/k is a finite constant field extension. No prime ramifies, but for
convenience we take S = {£,}. Let i be a to-blip for ti = P ¥= Px. Then 6(i) = p,
and one easily checks that ($,F/k) = (Frob)degl' on F/k. On the other hand, the
Pt, coordinate of i • dT(S)~x is P"1, and ord^P-1) = deg P = deg p. Therefore,
iz = deg p and hence «KO = ^z(0 = (Frob)deg'' on F/k by definition. Thus, ip
satisfies (c) in this case.

Case 2. F/k is k(AM)/kfor M = P". We know by Proposition 2.2 that only P
and P», can ramify. Therefore, take 5 = {P, £,}. Suppose that i G Js is a p-blip
for p = Q, a finite prime different from P. Then since dT(i) — Q, the P
coordinate of i is Q~x. Since i acts on k(AM/k) via its P coordinate, we see that
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i|/(i) = iM'r') on k(AM) is the automorphism which maps X to Xe for every
X G AM. But, according to Corollary 2.5, this automorphism is the Artin symbol
at Q = 9(1).

Case 3. F/k is Ljk for some p > 1. We take S = {7", £,} since only these
primes can ramify. Let i be a p-blip in Js where p = P, a finite prime different
from T. The £, coordinate of i • dT(\)'x is P~l = (P~] Td)(\/T)d, where d
= deg P, and P~x Td is a unit at £,. Therefore, i«, = P~x Td and i;1 = P/Td.
Now P/rd = a P where a # 0 is the constant coefficient of P and P is a monic
polynomial in 1/T gotten by reversing the coefficients of a~lP. Since ord„P
= ordv(P/Td) = ord„P = 1, we see that P is the canonical uniformizer at p for
the theory with \/T for the generator of k. By definition, the automorphism
»KO = "/'«("co1) on L,//? is the restriction of the automorphism of Fr = /((Aj-^i)
which carries X G Ar-^i to Xa p. But the restriction of this automorphism to L, is
the same as the restriction of the automorphism which takes X to X?, because the
automorphism of Fv associated to a G F* fixes L„. Now the automorphism taking
X -» Xp is the Artin symbol in F, at p by Corollary 2.5, and therefore its restriction
to L, is the Artin symbol in L„ at p.

We have now proved the following

Theorem 7.1. The extension A/k constructed in §5 is the maximal abelian
extension of k, and the homomorphism ^: J —* Gal(A/k) constructed in §6 is the
reciprocity law homomorphism.

In particular, we see that A and \p do not depend upon our original choice of
the generator T.

We can also use Theorem 7.1 to give another characterization of A.

Theorem 7.2. The maximal abelian extension of k is the composite KT • Kx/T.

Proof. From the explicit construction of ip, one sees easily that the group of
idèles fixing KT (resp. Kx/1) is k* • kx (resp. k* • kT), where the completions kT
and kx are identified with subgroups of J in the usual way. Since the intersection
of these two subgroups is k*, we are done.
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