
Arthur Freitas Ramos

Explicit Computational Paths in Type Theory

Universidade Federal de Pernambuco

posgraduacao@cin.ufpe.br
http://cin.ufpe.br/~posgraduacao

Recife

2018

mailto:posgraduacao@cin.ufpe.br
http://cin.ufpe.br/~posgraduacao

Arthur Freitas Ramos

Explicit Computational Paths in Type Theory

Esse trabalho foi apresentado à Pós-
graduação em Ciência da Computação do
Centro de Informática da Universidade
Federal de Pernambuco como requisito
parcial para obtenção do grau de Doutor em
Ciência da Computação.

Área de Concentração: Teoria da
Computação

Orientadora: Anjolina Grisi de Oliveira
Co-orientador: Ruy José Guerra Barreto de
Queiroz

Recife

2018

 Catalogação na fonte
Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

R175e Ramos, Arthur Freitas
Explicit computational paths in type theory / Arthur Freitas Ramos. – 2018.

 145 f.: il., tab.

 Orientadora: Anjolina Grisi de Oliveira.
 Tese (Doutorado) – Universidade Federal de Pernambuco. CIn, Ciência da

Computação, Recife, 2018.
 Inclui referências.

1. Ciência da computação. 2. Teoria da computação. I. Oliveira, Anjolina
Grisi de (orientador). II. Título.

 004 CDD (23. ed.) UFPE- MEI 2018-140

Arthur Freitas Ramos

“Explicit Computational Paths in Type Theory”

 Tese de Doutorado apresentada ao Programa

de Pós-Graduação em Ciência da

Computação da Universidade Federal de

Pernambuco, como requisito parcial para a

obtenção do título de Doutora em Ciência da

Computação.

Aprovado em: 17/08/2018.

Orientadora: Profa. Anjolina Grisi de Oliveira

BANCA EXAMINADORA

__
Prof. Frederico Luiz Gonçalves de Freitas

Centro de Informática /UFPE

__
Prof. Edward Hermann Haeusler

Departamento de Informática / PUC/RJ

Prof. Hugo Luiz Mariano

Instituto de Matemática e Estatística / USP

Profa. Elaine Gouvêa Pimentel

Departamento de Matemática / UFRN

Prof. António Mário da Silva Marcos Florido

Departamento de Ciência de Computadores /
Universidade do Porto

To my parents, Neide & Valdez, who are my role models.

To my wife, Láis, for all the love and support.

ACKNOWLEDGEMENTS

This work would have not been possible without the help of many people. First, I can

point the never-ending dedication of my parents, Neide and Valdez. Despite facing many

hardships in life, they always valued my education, supporting and encouraging my stud-

ies. For this, I am eternally grateful. You are my role models and my heroes. I thank

my wife, Laís, for her patience, love and support. Without her, it would be impossible to

write this work. I also thank my advisor, Professor Ruy de Queiroz. He has been in this

journey with me for 5 years, since the end of my undergraduate studies. I have learned a

great deal from him and he has shown me true wisdom. Last but not least, I thank God

for giving me patience, strength and resilience every time I asked.

ABSTRACT

The current work has three main objectives. The Ąrst one is the proposal of com-

putational paths as a new entity of type theory. In this proposal, we point out the fact

that computational paths should be seen as the syntax counterpart of the homotopical

paths between terms of a type. We also propose a formalization of the identity type using

computational paths. The second objective is the proposal of a mathematical structure for

a type using computational paths. We show that using categorical semantics it is possible

to induce a groupoid structure for a type and also a higher groupoid structure, using

computational paths and a rewrite system. We use this groupoid structure to prove that

computational paths also refutes the uniqueness of identity proofs. The last objective is to

formulate and prove the main concepts and building blocks of homotopy type theory. We

end this last objective with a proof of the isomorphism between the fundamental group

of the circle and the group of the integers.

Key-words: Computational paths. Homotopy type theory. Identity type. Category the-

ory. Term rewrite system. Uniqueness of identity proofs.

RESUMO

O presente trabalho tem três objetivos principais. O primeiro é propor caminhos com-

putacionais como uma nova entidade da teoria dos tipos. Nessa proposta, indicamos que

os caminhos computacionais podem ser vistos como uma contrapartida sintática dos cam-

inhos homotópicos entre termos de um mesmo tipo. Também propomos uma formalização

do tipo identidade usando caminhos computacionais. O segundo objetivo é propor uma

estrutura matemática para um tipo usando os caminhos computacionais. Mostramos, us-

ando semântica categórica, que é possível induzir uma estrutura de grupóide de alta ordem

para um tipo, utilizando os caminhos computacionais e um sistema de reescrita. Usamos

o modelo de grupóide para provar que os caminhos computacionais também refutam a

unicidade de provas de identidade. O último objetivo é formular e provar os principais

conceitos da teoria homotópica dos tipos utilizando caminhos. Finalizamos esse último

objetivo com uma prova do isomorĄsmo entre o grupo fundamental do círculo e o grupo

dos inteiros.

Palavras-chaves: Caminhos computacionais. Teoria homotópica dos tipos. Tipo iden-

tidade. Teoria das categorias. Sistema de reescrita de termos. Unicidade de provas de

identidade.

LIST OF TABLES

Table 1 Ű Multiple semantical interpretations of a type 31

LIST OF ABBREVIATIONS AND ACRONYMS

𝐼𝑑⊗ 𝐸 identity type elimination

𝐼𝑑𝑒𝑥𝑡 ⊗ 𝐸 extensional identity type elimination

𝐼𝑑𝑒𝑥𝑡 ⊗ 𝐸𝑞 extensional identity type equality

𝐼𝑑𝑒𝑥𝑡 ⊗ 𝐹 extensional identity type formation

𝐼𝑑𝑒𝑥𝑡 ⊗ 𝐼 extensional identity type introduction

𝐼𝑑𝑖𝑛𝑡 ⊗ 𝐹 identity type formation

𝐼𝑑𝑖𝑛𝑡 ⊗ 𝐼 identity type introduction

Π ⊗ 𝐶 dependent function computation

Π ⊗ 𝐸 dependent function elimination

Π ⊗ 𝐹 dependent function formation

Π ⊗ 𝐼 dependent function introduction

Σ ⊗ 𝐸1 Ąrst dependent sum elimination

Σ ⊗ 𝐸2 second dependent sum elimination

Σ ⊗ 𝐹 dependent sum formation

Σ ⊗ 𝐼 dependent sum introduction

N ⊗ 𝐼0 zero introduction

N ⊗ 𝐼𝑠 successor induction

× ⊗ 𝐸1 Ąrst product elimination

× ⊗ 𝐸2 second product elimination

× ⊗ 𝐹 product formation

× ⊗ 𝐼 product introduction

UIP Uniquiness of Identity Proofs

ZFC Zermelo-Frankel-Choice

CONTENTS

1 INTRODUCTION . 13

1.1 FOUNDATIONS OF MATHEMATICS AND ZFC 13

1.2 THE IDENTITY TYPE . 15

1.3 OBJECTIVES . 16

1.4 STRUCTURE . 17

2 TYPE THEORY . 19

2.1 BASIC CONCEPTS . 20

2.1.1 Definitional Equality vs Propositional Equality 20

2.1.2 Type Families . 22

2.1.3 Function Type . 22

2.1.4 Dependent Function Type(Π) . 24

2.1.5 Product type (×) . 25

2.1.6 Coproduct (+) . 26

2.1.7 Dependent Pair Type (Σ) . 27

2.1.8 Alternative Formulation for the Dependent Pair 28

2.1.9 The Natural Numbers . 29

2.1.10 Additional Information . 31

2.2 IDENTITY TYPE . 31

2.2.1 Formal Definition of The Identity Type 32

2.2.2 Basic Constructions . 33

2.2.3 Extensionality vs Intensionality . 36

2.3 CONCLUSION . 37

3 CATEGORY THEORY . 38

3.1 BASIC CONCEPTS . 38

3.1.1 Categories . 39

3.1.2 Isomorphism . 41

3.1.3 Groupoid . 43

3.1.4 Functors . 43

3.1.5 Duality . 45

3.1.6 Commutativity . 46

3.1.7 Product between two categories . 46

3.1.8 Hom and Small Categories . 47

3.2 PRODUCT IN A CATEGORY . 48

3.2.1 Product in Type Theory and Category Theory 50

3.2.2 Coproduct . 51

3.3 NATURAL TRANSFORMATIONS . 51

3.3.1 Adjoints . 55

3.4 HIGHER CATEGORIES . 57

3.4.1 Globular Sets . 57

3.4.2 Horizontal Composition . 58

3.4.3 Bicategories . 59

3.5 CONCLUSION . 61

4 COMPUTATIONAL PATHS . 62

4.1 INTRODUCING COMPUTATIONAL PATHS 63

4.1.1 Formal Definition . 64

4.1.2 Equality Equations . 66

4.1.3 Identity Type . 67

4.1.4 Path-based Examples . 68

4.1.4.1 Reflexivity . 69

4.1.4.2 Symmetry . 69

4.1.4.3 Transitivity . 69

4.2 TERM REWRITE SYSTEM . 72

4.2.1 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆 . 73

4.2.1.1 Subterm Substitution . 73

4.2.1.2 Rewriting Rules . 73

4.2.2 Normalization . 83

4.2.2.1 Termination . 83

4.2.2.2 Confluence . 84

4.2.2.3 Normalization Procedure . 85

4.2.3 Rewrite Equality . 86

4.2.4 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆2 . 87

4.3 GROUPOID MODEL . 89

4.3.1 Globular Structure . 89

4.3.2 The Induced Groupoid . 90

4.3.3 Higher Structures . 93

4.4 UNIQUENESS OF IDENTITY PROOFS 98

4.5 CONCLUSION . 99

5 HOMOTOPY TYPE THEORY . 101

5.1 GROUPOID LAWS . 101

5.2 FUNCTORIALITY . 107

5.3 TRANSPORT . 109

5.4 HOMOTOPIES . 113

5.5 CARTESIAN PRODUCT . 115

5.6 UNIT TYPE . 119

5.7 FUNCTION EXTENSIONALITY . 120

5.8 UNIVALENCE AXIOM . 124

5.9 IDENTITY TYPE . 125

5.10 COPRODUCT . 128

5.11 REFLEXIVITY . 130

5.12 NATURAL NUMBERS . 131

5.13 SETS AND AXIOM K . 133

5.14 FUNDAMENTAL GROUP OF A CIRCLE 135

5.15 RULES ADDED TO 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆 . 138

5.16 CONCLUSION . 139

6 CONCLUSION . 140

6.1 FUTURE WORK . 141

REFERENCES . 143

13

1 INTRODUCTION

In this chapter, we introduce the main objective of this work. First, we show that the

axiom system Zermelo-Frankel-Choice (ZFC), the main theory currently used as founda-

tions of mathematics, is not constructive and thus, modeling it using computers is not

practicable. After that, we introduce a theory that can be used as a foundation for com-

putation and mathematics at the same time, homotopy type theory. Then, we introduce

the type responsible for this connection, the identity type. Given the importance given

to this type, it will be the main entity of this work. The main objective is to show an

alternative way of formalizing the identity type, using an entity known as computational

path. To do that, we propose a mathematical model to computational paths and prove

many results of homotopy type theory using it.

1.1 FOUNDATIONS OF MATHEMATICS AND ZFC

One can easily say that the XIX century caused a mathematical revolution. It is mainly

responsible for the modern way of mathematical thinking (AVIGAD, 2007). Before this

century, mathematical practice was closely related to algorithmic processes. This cen-

tury was marked by a sharp increase in abstraction in mathematics (AVIGAD, 2007).

For example, it was in this century that non-euclidean geometries were proposed. First,

the hyperbolic geometry by Nikolai Lobachevsky in 1832 and then elliptic geometry by

Bernhard Riemman in 1851.

Given this high level of abstraction, a natural question has arisen. Where do math-

ematical objects come from? A mathematical object already exists and is awaiting for

someone to discover it, or is it a creation of human minds? This question divided the

mathematical community and was responsible for the creation of a whole new area of re-

search, called philosophy of mathematics. In one hand, there were some mathematicians

that defended that there is already an abstract and immutable universe containing all

mathematical objects. Thus, a mathematicianŠs job was to discover the objects of this

work. This vision is known as Platonism and is currently the main vision of most mathe-

maticians. On the other hand, there were some that believed that a mathematical object

is created at the exact moment that it is conceived in the mind of a mathematician. Thus,

the objective is constructed by the mathematician. This vision is known as constructivism.

Since computers uses algorithmic process (programs) to obtain results, it is closely related

to this constructive view of mathematics.

This work has been written based on the author’s master’s thesis (RAMOS, 2015), three journal papers,
two published (RAMOS; QUEIROZ; OLIVEIRA, 2017; QUEIROZ; OLIVEIRA; RAMOS, 2016) and a third
one still unpublished, and a conference talk (RAMOS, 2017) based on the still unpublished paper.

Chapter 1. Introduction 14

The way one does mathematics can depend on the view one chooses to follow. We are

going to give an classic example of two proofs (DUMMETT, 1977), one that is not accepted

by constructivists and one that is. Consider the following proposition:

Proposition 1.1. There exist two irrational numbers 𝑎 e 𝑏 such that 𝑎𝑏 is a rational

number.

First, we give a proof that is accepted by platonists but not by constructivists.

Proof. Consider the number
√

2. It is clearly irrational. Thus,
√

2
√

2
is irrational or ratio-

nal. If it is rational, then we conclude the proof. If not (
√

2
√

2
)

√
2 =

√
2

2
= 2 (DUMMETT,

1977), also conclude the proof, since
√

2
√

2
was considered to be irrational.

This proof shows that one of the two cases solves the problem, but not determine

which one does. Thus, this proof is not constructive. But, if one accepts the platonic

point of view, this proof is completely acceptable. Consider this alternate proof:

Proof. Consider numbers
√

2 and log√
2 3. Since both are irrationals and

√
2

log√
2 3

= 3,

then our proof is complete.

One can notice that we directly show two irrational numbers that can be used to

construct a rational one. Thus, we consider this proof as a constructive one.

Currently, most mathematicians are platonists, thus they accept proofs like the Ąrst

one. One of the factors that may be responsible for this is the fact that 𝑍𝐹𝐶 is widely

accepted as a foundation for mathematics. 𝑍𝐹𝐶, a abbreviation for Zermelo-Frankel with

choice is an axiomatic theory proposed in 1908 and improved in 1920-1940 (HORSTEN,

2015). that gave a mathematical formalization for set theory. It was born out of necessity,

since Russel noticed that naive set theory led to a paradox.

In 1901, the philosopher and mathematician Bertrand Russell discovered a paradox

that disrupted the mathematical community. In naive set theory, one can construct the

following set: 𝑅 = ¶𝑥♣𝑥 /∈ 𝑥♢. Russel noticed that it led to a paradox (IRVINE, 2014), if

one thinks in the following way: If 𝑅 is not a member of itself, then by the deĄnition of 𝑅

it should be a member of itself. But if 𝑅 is a member of itself, it would contradict directly

its own deĄnition. Thus, 𝑅 cannot exist. Thus, 𝑍𝐹𝐶 was proposed to deal with problems

like this one.

The main problem is that 𝑍𝐹𝐶 is not constructive. Using the axiom of choice, one can

show a theorem that states that every set can be well-ordered(HRBACEK; JECH, 1999).

Nevertheless, one is not able to construct directly a well-ordering for the reals. Therefore,

this clearly shows that 𝑍𝐹𝐶 admits results without an explicit construction.

Chapter 1. Introduction 15

1.2 THE IDENTITY TYPE

In this section, we show that it is possible to connect computer science and mathematics

using the identity type. The identity type is arguably the most important entity of a

theory known as type theory. Type theory is a construct theory proposed by the mathe-

matician Martin-Löf in 1971(MARTIN-LÖF, 1975; MARTIN-LÖF, 1982; MARTIN-LÖF, 1984).

The fundamental concept of this theory is the concept of type. A type is deĄned by a

description on how to construct and eliminate it (BRIDGES; PALMGREN, 2013). We show

this theory in detail in chapter 2

Given any type 𝐴, we write 𝑎 : 𝐴 to indicate that 𝑎 is a term of type 𝐴. The identity

type captures the following idea: given any terms 𝑎 : 𝐴 and 𝑏 : 𝐴 and a proof 𝑝 that

establishes that 𝑎 = 𝑏, then one can say that 𝑝 is term of the identity type 𝐼𝑑𝐴(𝑎, 𝑏), i.e.,

the terms of type 𝐼𝑑𝐴(𝑎, 𝑏) are proofs that establish that 𝑎 = 𝑏. That way, the identity

type gives two main facts: that 𝑎 is equal to 𝑏 and why this equality holds.

A groundbreaking result turned the identity type in one of the most studied topics

of type theory: the direct relation between the identity type and homotopy type theory

(VOEVODSKY, 2014). This came from the fact that one can semantically interpret a type

𝐴 as a topological space, the objects 𝑎, 𝑏 : 𝐴 are seen as point of this space and a term 𝑝 :

𝐼𝑑𝐴(𝑎, 𝑏) is seen as a homotopical path between points 𝑎 and 𝑏(Univalent Foundations Program,

2013). This interpretation yielded groundbreaking results. One of the most important

result is the fact that it connected homotopy theory with type theory, giving rise to

homotopy type theory. Moreover, it raised the possibility of type theory as a foundation

of mathematics. Also, since type theory is naturally constructive, it can be used as a

foundation for computation.

The distinguished mathematician Vladimir Voevodsky made clear the advantages of

using a constructive theory as a foundation for mathematics (VOEVODSKY, 2014). Vo-

evodsky, which is a Fields Medal winner, proposes that the increasingly abstraction of

mathematics makes the mathematician prone to committing errors when doing mathe-

matics. To illustrate that, he uses his past experiences: he discovered in 2013 that a paper

published by him in 1989 contained errors (VOEVODSKY, 2014). Thus, he argues that if

one did mathematics using the help of an automatic theorem checker, errors like this one

would not occur anymore. Thus, one practical advantage of homotopy type theory is the

fact that all proofs can be modeled and checked by computers.

One of the disadvantages of the identity type is that it can be hard to understand. It

is based on the fact that the only canonical proof of equality is the reĆexivity, i.e., given

a term 𝑎 : 𝐴, we have a canonical proof 𝑟(𝑎) : 𝑎 = 𝑎. This leads to a complex elimination

rule that gives rise to an induction known as path induction (Univalent Foundations Program,

2013). Although beautifully deĄned, we have noticed that proofs that uses the identity

type can be sometimes a little too complex. The elimination rule of the intensional identity

type encapsulates lots of information, sometimes making too troublesome the process of

Chapter 1. Introduction 16

Ąnding the reason that builds the correct type.

Inspired by the path-based approach of the homotopy interpretation, we believe that

a similar approach can be used to deĄne the identity type in type theory. Our main idea is

to add computational paths to the formal syntax of type theory. That way, this new entity

would be the syntax counterpart of semantical paths. In the sequel, we shall deĄne formally

the concept of a computational path. The main idea, i.e. proofs of equality statements as

(reversible) sequences of rewrites, is not new, as it goes back to a paper entitled ŞEquality

in labeled deductive systems and the functional interpretation of propositional equality

", presented in December 1993 at the 9th Amsterdam Colloquium, and published in the

proceedings in 1994(QUEIROZ; GABBAY, 1994).

One of the most interesting aspects of the identity type is the fact that it can be used

to construct higher structures. This is a rather natural consequence of the fact that it is

possible to construct higher identities. For any 𝑎, 𝑏 : 𝐴, we have type 𝐼𝑑𝐴(𝑎, 𝑏). If this type

is inhabited by any 𝑝, 𝑞 : 𝐼𝑑𝐴(𝑎, 𝑏), then we have type 𝐼𝑑𝐼𝑑A(𝑎,𝑏)(𝑝, 𝑞). If the latter type is

inhabited, we have a higher equality between 𝑝 and 𝑞(HARPER, 2012). This concept is also

present in computational paths. One can show the equality between two computational

paths 𝑠 and 𝑡 by constructing a third one between 𝑠 and 𝑡. We show in the sequel a system

of rules used to establish equalities between computational paths(OLIVEIRA, 1995). Then,

we show that these higher equalities go up to the inĄnity, forming a ∞-globular-set. We

also show that computational paths naturally induce a structure known as groupoid. We

also go a step further, showing that computational paths are capable of inducing a higher

groupoid structure.

After constructing this mathematical model, we also need to show that it is possible to

use computational paths to construct concepts of homotopy type theory. To do that, we

investigate well established properties and concepts of the foundations of homotopy type

theory. We are interested in the ones connected to the identity type. Our main objective is

to show that these properties and theorems are valid in our approach for the identity type

based on computational paths. In this sense, we show that one can use computational

paths to deĄne and develop concepts of homotopy type theory. We end this work with a

proof using computational paths that the fundamental group of a circle is isomorphic to

the integers.

1.3 OBJECTIVES

In the previous sections, we pointed out the importance of type theory to mathematics

and computation. We have also said that the identity type is one of the main concepts

of this theory and perhaps the most interesting one. With that in mind, we have said

that we want to develop an alternative approach to the identity type, based on the fact

that an equality proof can be seen as a sequence of rewrites between two computational

objects. In this sense, this work has 3 main objectives.

Chapter 1. Introduction 17

The Ąrst objective is to formally introduce to type theory an entity known as com-

putational paths and, based on this entity, propose a formulation for the identity type.

To do this, we revisit the main concepts of type theory and some important concepts of

Ú-calculus. Then, we introduce the notion of computational paths. We present this new

entity in the traditional way of deĄning a type in type theory: we deĄne formation, intro-

duction, elimination and computation rules. We also establish a rewrite system that will

work as an algebra of computational paths.

The second objective is to give mathematical meaning to the structure of computa-

tional paths. We do this using categorical semantics. SpeciĄcally, we are talking about

the groupoid structure of a type. We use our computational path entity and the associ-

ated rewrite system to show that every type has an induced groupoid associated to it.

We also go a step further, showing that it is possible to induce higher structures such as

bicategories.

Our Ąnal objective is to establish the connection between computational paths and

homotopy type theory. We use the theory developed in this work to show that many

concepts and proofs of homotopy type theory can be achieved without the use of path-

induction, using computational paths instead. In this sense, we show that our approach is

capable of producing the main building blocks of homotopy theory. We end this objective

with an important proof: we use computational paths to show that the fundamental

groupoid of the circle is isomorphic to the group of the integers.

Thus, to achieve the Ąrst objective, we have mainly used a computational approach.

The second one is mainly a mathematical approach. The third objective is a mix between

the previous two.

1.4 STRUCTURE

This Ąrst chapter was meant as an introduction for this work. We have highlighted the

importance of the importance of the identity type in type theory. We have also exposed

the main objectives of this work.

The second chapter will be focused on type theory. In this chapter, we will introduce

the basic concepts and the difference of deĄnitional and propositional equality. We also

show the classic approach for the identity type, showing the formation, introduction,

elimination and computation rules. We also show how to use this approach in practice,

showing how some basic types can be constructed.

The third chapter will be focused on category theory. We show the basic concepts

of this theory and also some concepts of higher category. This chapter is important to

understand the results of chapter 4.

The fourth chapter is of great importance, since it is responsible for objectives 1 and

2. In this chapter, we introduce the concept of computational paths and establishes the

connection with the identity type. Moreover, we introduce an extremely important rewrite

Chapter 1. Introduction 18

system, responsible for establishing the equalities between computational paths. Thus,

we use this system and categorical semantics to show that computational paths induce

a mathematical structure known as groupoid. We Ąnish this chapter establishing one

fundamental result, the refutation of the uniqueness of identity proofs using computational

paths.

The Ąfth chapter is responsible for objective 3. In this chapter. we use the theory

developed in chapter 4 to deĄne, construct and prove the main building blocks of homotopy

theory. In the process, we prove dozens of lemmas and theorems. We end this chapter with

one of the most classic proofs of algebraic topology: we use computational paths and the

rewrite system to show that the fundamental group of the circle is isomorphic to the group

of the integers.

The sixth chapter is the conclusion of this work. It is a short chapter in which we

review and point out all results obtained in this work.

19

2 TYPE THEORY

Among the theories used as a foundation for computation, one of the most famous

and that is closely related to a general purpose computer are the theory of Turing ma-

chines, proposed by Alan Turing in 1937. Turing machines had great success in giving a

mathematical formalization for the concept of computer. Moreover, it is essential in the

investigation of the complexity of algorithms and the limits of computations, proving the

existence of problems that are not bound to be solved by computers (BARKER-PLUMMER,

2013).

Even before TuringŠs groundbreaking work, one theory that has the same power of

TuringŠs machine had already been proposed by Alonso Church. Known as Ú-calculus, it

can be seen as a very basic programming language, with only two operations: function

abstraction and function application. Despite this fact, Ú-calculus plays a very important

role in computation, logic and mathematics.

Initially, Ú-calculus was proposed to simplify the notation of functions (ALAMA, 2015).

Take 𝑓(𝑥) = 𝑥š as a very simple example. How do we calculate the value of 𝑓(3)? It is

very simple. We just need to plug the value 3 in place of 𝑥 in the expression 𝑥2, resulting

in 32 = 9. The idea that 𝑥2 is an expression that awaits one term to be plugged into it

is given by the abstraction operation. We denote this fact by the expression Ú.𝑥2. Thus,

𝑓 = Ú.𝑥2. Function is the reverse process. Given Ú.𝑥2, one can use an application to

substitute the value of input 𝑥 for an arbitrary value 𝑦. When we apply 𝑦, we wound

up with (Ú.𝑥2).𝑦. Then, we say that this term Ñ-reduce to [𝑦/𝑥]𝑥2 = 𝑦2. The notation

[𝑦/𝑥] indicates that all occurrences of 𝑥 in the term will be substituted for 𝑦. We are also

going to use this notation in type theory. Therefore, we had in our previous example the

following case: [3/𝑥]𝑥2 = 32 = 9.

One of the most counterintuitive facts is that it is possible to prove that this theory

with only two simple operations is powerful enough to formalize all computable functions

(HINDLEY; SELDIN, 2008). That way, Ú-calculus, together with the theory of TuringŠs

machines are the two main theories used to formalize computability and that serve as a

foundation for computation.

Type theory is a theory that is in many aspects similar to Ú-calculus. Despite this,

it was originally proposed with for a different purpose. Instead of being a foundation for

computation, the main objective of type theory was to function as a foundation for con-

structive mathematics. SpeciĄcally, an attempt based on Erret BishopŠs constructivism.

This work will focus on a speciĄc kind of type theory: Martin-LöfŠs intensional type the-

Parts of this chapter are based on previous research done by the author and appears in his Master’s
Thesis (RAMOS, 2015)

Chapter 2. Type Theory 20

ory, originally proposed in 1971. Since this theory is intrinsically constructive, it has also

been used as a foundation for computation. This fact can be seen in practice: Coq, Agda

and Epigram are all examples of programming languages based on the concepts of type

theory.

In the next section, we describe and develop the main basic concepts and types of

Martin-LöfŠs intensional type theory. The correct understanding of this concepts will be

essential to the development of latter sections of this work.

2.1 BASIC CONCEPTS

The main and most basic concept of type theory is the concept of type. A type must be

understood as a fundamental concept that work as the basis of type theory. One can think

of a type as similar to the concept of set in set theory. In fact, types are more powerful

in type theory than sets in set theory (Univalent Foundations Program, 2013). The reason for

that is that one cannot derive all results of ZFC using sets only. The use of Ąrst-order

logic is necessary to state the axioms. In ZFC, the concept of set and propositions are

completely distinct. In contrast, we are going to see that propositions can be seen as types

in type theory.

Let 𝐴 be a type and 𝑎 a term of type 𝐴. We say that 𝐴 is inhabited by 𝑎 and denote

this by 𝑎 : 𝐴. This is the basic judgment of type theory. Another judgment is 𝑎 = 𝑏 : 𝐴,

indicating that 𝑎 and 𝑏 are intensionally equal elements of type 𝐴.

The syntax of type theory is independent of the nature of type 𝐴. 𝐴 can be a set,

a proposition or even a topological space. Nevertheless, for all those cases, if 𝑎 has type

𝐴, then we always denote 𝑎 : 𝐴. What differs is the semantical interpretation of 𝑎 : 𝐴

(Univalent Foundations Program, 2013). If 𝐴 is a set, then 𝑎 can be understood as an element

of set 𝐴. If it is a space, then 𝑎 is a point of space 𝐴. A very interesting case is when 𝐴

is a proposition. In that case, 𝑎 can be seen as a witness of the veracity of 𝐴. In other

words, 𝑎 is a proof that 𝐴 is true. One should keep in mind that it is only a semantical

interpretation. Even when 𝐴 is a set and 𝑎 : 𝐴, one cannot write 𝑎 ∈ 𝐴.

In the next subsection, we investigate the existence of two different kinds of equalities

in type theory.

2.1.1 Definitional Equality vs Propositional Equality

One of the main things that one should grasp about type theory is the existence and

the difference between two types of equality. The Ąrst kind of equality is originated by

the fact that two terms are equal simply by deĄnition, without the need of some result

establishing the equality. This equality is called deĄnitional equality. The other kind of

equality is when equality is seen as a type. In that case, it is called propositional equality.

Chapter 2. Type Theory 21

Between the two kinds of equality, the most interesting one is the propositional, since it

originates the identity type. Given terms 𝑎, 𝑏 : 𝐴, one could derive the judgment 𝑎 = 𝑏 : 𝐴.

Thus, taken this judgment as a starting point, one can naturally conceive a premise

establishing the equality between terms 𝑎 and 𝑏 of type 𝐴. This equality gives rise to

a proposition, i.e., a type known as identity type, usually written as 𝐼𝑑𝐴(𝑎, 𝑏). Using

the aforementioned interpretation, 𝐼𝑑𝐴(𝑎, 𝑏) should be understood as a proposition that

establishes the equality between 𝑎 and 𝑏. We say that 𝑎 is propositionally equal to 𝑏. If

we have a proof 𝑝 of this equality, then 𝑝 : 𝐼𝑑𝐴(𝑎, 𝑏). That way, 𝑝 is a witness of 𝐼𝑑𝐴(𝑎, 𝑏),

establishing the veracity of the proposition that 𝑎 is propositionally equal to 𝑏.

The deĄnitional equality is much simpler than the propositional one. In this equal-

ity, the existence of a witness that establishes the equality is not necessary. We denote

deĄnitional equality using the symbol ⊕. For example, take the function 𝑓 : N ⊃ N as

𝑓(𝑥) ⊕ 𝑥2 (Univalent Foundations Program, 2013). Suppose one wants to compute 𝑓(3). From

the deĄnition of 𝑓 , we can conclude that 𝑓(3) ⊕ 32. Nevertheless, one cannot conclude

by deĄnition that 𝑓(3) = 9. To conclude that, one needs to conceive a proof 𝑝 such that

𝑝 : 𝐼𝑑N(3, 9). Thus, one could establish that 3 is propositionally equal to 9. To denote

that two terms of type 𝐴 are deĄnitionally equal we use the notation 𝑎 ⊕ 𝑏 : 𝐴.

To better grasp the difference between these two kinds of equalities, consider the

following example (HARPER, 2012):

Example 2.1. DeĄne addition as following:

𝑎𝑑𝑑 :

∏︁

⋁︁

⨄︁

⋁︁

⋃︁

𝑎+ 0 = 𝑎

𝑎+ 𝑠(𝑏) = 𝑠(𝑎+ 𝑏)

Consider 𝑠(𝑥) as the successor function. We can analyze the following cases:

• 2 + 2 ⊕ 4 : N (True): First, we have 2 ⊕ 𝑠(1). From the deĄnition, we have

2 + 𝑠(1) ⊕ 𝑠(2 + 1) ⊕ 𝑠(𝑠(2 + 0)) ⊕ 𝑠(𝑠(2)) ⊕ 𝑠(3) ⊕ 4.

• 0 + 𝑥 ⊕ 𝑥 : N (False): Since by deĄnition we only have that 𝑥 + 0 ⊕ 𝑥, we cannot

conclude that 0 + 𝑥 ⊕ 𝑥. One can easily prove that, but since we need a proof to

establish this, this is a propositional equality.

• 𝑠(𝑥) ⊕ (1 + 𝑥) : N (False): We know that 𝑠(𝑥) ⊕ (1 + 𝑥), but we need to prove the

commutativity of addition to conclude that 𝑥+ 1 = 1 +𝑥. Thus, this equality is not

deĄnitional.

• (𝑥+ 𝑦) ⊕ (𝑦 + 𝑥) : N (False): Same case as before.

This example shows the subtle differences between deĄnitional equality and proposi-

tional equality. Every time one needs an external evidence, it is a propositional equality.

If the result follows directly from a deĄnition, then it is a deĄnitional equality. That way,

Chapter 2. Type Theory 22

even a simple property as commutativity of addition is established by a propositional

equality.

2.1.2 Type Families

In this subsection, our objective is to show that it is possible to simulate the concept of

predicate in type theory. To understand that, it is useful to consider a simple example.

Given 𝑥 : N, one wants to decide if 𝑥 is even. The problem is that if you consider a type

that 𝑒𝑣𝑒𝑛(𝑥), that is inhabited if 𝑥 is even, the type would depend of the value of 𝑥. Since

for every different value of 𝑥 one creates a new type 𝑒𝑣𝑒𝑛(𝑥), we say that it is a type

family indexed by the values of 𝑥, i.e., indexed by the natural numbers. Thus, in this type

family, we would have 0 : 𝑒𝑣𝑒𝑛(0). Since 1 is odd, 𝑒𝑣𝑒𝑛(1) is not inhabited. Thus, every

𝑒𝑣𝑒𝑛(2𝑛) is inhabited and every 𝑒𝑣𝑒𝑛(2𝑛+ 1) is not.

As one can see, the concept of type families is equivalent to the concept of predicate.

One important property of type families is the following: (HARPER, 2012):

𝑚 : 𝐴

[𝑥 : 𝐴]

𝐵(𝑥) type

[𝑚/𝑥]𝐵(𝑥) type

Given a type family 𝐵(𝑥) indexed by a type 𝐴, then if one has a term 𝑚 : 𝐴 then one

can obtain the type [𝑚/𝑥]𝐵(𝑥) ⊕ 𝐵(𝑚). We have another important property: (HARPER,

2012):

𝑚 ⊕ 𝑛 : 𝐴

[𝑥 : 𝐴]

𝐵(𝑥) type
functionality

[𝑚/𝑥]𝐵(𝑥) ⊕ [𝑛/𝑥]𝐵(𝑥) type

This property establishes that if we have a type family indexed by 𝐴 and two terms

𝑚 ⊕ 𝑛 : 𝐴, then it is intuitive to think that 𝐵(𝑚) ⊕ 𝐵(𝑛). For example, we know that

2+2 ⊕ 1+3 ⊕ 4 : N. Thus, by functionality, we have 𝑒𝑣𝑒𝑛(1+3) ⊕ 𝑒𝑣𝑒𝑛(2+2) ⊕ 𝑒𝑣𝑒𝑛(4).

2.1.3 Function Type

In this subsection we are going to introduce the type that represents functions. Given

any two types 𝐴,𝐵, one can build the function type 𝐴 ⊃ 𝐵. The Ąrst type, 𝐴, is called

domain of the function and the type 𝐵 is called codomain. Of course it is also possible

to construct this type using only 𝐴, obtaining 𝐴 ⊃ 𝐴. In that case, 𝐴 is at the same

time the domain and the codomain of the function. In set theory, a function is built as a

relation, i.e., pairs of input and output, whereas in type theory a function is understood

as a primitive element of the theory (Univalent Foundations Program, 2013). Since it is a

Chapter 2. Type Theory 23

primitive element, a function must be understood and interpreted by the way of how it

is constructed and utilized.

In a function type 𝑓 : 𝐴 ⊃ 𝐵, one can apply 𝑓 in a term 𝑎 : 𝐴 to obtain a term 𝑏 : 𝐵.

In that case, we write the usual notation 𝑓(𝑎) = 𝑏 : 𝐵. The notation 𝑓𝑎 = 𝑏 : 𝐵 can also

be used sometimes. This behavior deĄnes how the function type can be used. We also

need to deĄne how a function can be constructed.

There are two main ways of constructing 𝐴 ⊃ 𝐵 (Univalent Foundations Program, 2013).

The Ąrst one is to use directly the deĄnitional equality of 𝑓(𝑥). In that case, 𝐴 ⊃ 𝐵

is constructed from an expression 𝑓(𝑥) ⊕ 𝜃. The necessary conditions are that 𝑥 must

a term of type 𝐴, i.e., 𝑥 : 𝐴 and that 𝜃 : 𝐵. The second way is deĄning a function

using Ú notation. In that case, a function is deĄned using an abstraction Ú𝑥, obtaining

(Ú(𝑥 : 𝐴).𝜃) : 𝐴 ⊃ 𝐵. Using this notation, a function application is similar to how is done

in Ú-calculus: (Ú𝑥.𝜃)(𝑎) ⊕ [𝑎/𝑥]𝜃.

As a simple example, one can take a 𝑓 : N ⊃ N that has a input 𝑥 : N and gives

𝑥 + 2 : N as output. One can construct this function using the two aforementioned

approaches. First, take the one using deĄnitional equality. One obtain 𝑓(𝑥) ⊕ 𝑥 + 2 :

N ⊃ N, with 𝑓(𝑎) ⊕ 𝑎 + 2, 𝑎 : N. The other way is using Ú notation. One can deĄne

𝑓 = Ú𝑥.(𝑥 + 2) : N ⊃ N. If one applies 𝑎 : N, one winds up with the same result:

(Ú𝑥.(𝑥+ 2))(𝑎) ⊕ [𝑎/𝑥](𝑥+ 2) ⊕ 𝑎+ 2.

It also should be possible to deĄne multivariable functions. In the previous examples,

the function received only one input. Nonetheless, it is possible to deĄne functions receiv-

ing 2 or more inputs. Take the case of 2 inputs as example: 𝑓(𝑥, 𝑦 : N) ⊕ 𝜃 : 𝑁 . This

function has type 𝑓 : N × N ⊃ N. We have not formally deĄned the symbol × yet, but

take it as the usual cartesian product, which can also be deĄned in the framework of type

theory. Using Ú notation, one deĄnes 𝑓 = (Ú𝑥.Ú𝑦.𝜃) : N × N ⊃ N. To deĄne functions

with more than 2 variables, one can use an analogous process.

One important concept of multivariable functions is the existence of a process known

as currying. Currying is a process to transform a function in 𝑛 variables into 𝑛 functions

that receives only one variable, such that the output of those functions is another function

(Univalent Foundations Program, 2013). LetŠs explain this process in a function of two vari-

ables, since one can analogously extend this process to an arbitrary number of variables.

Given a function 𝑓(𝑎, 𝑏) ⊕ 𝑐, it is possible to transform 𝑓 into a function that receives only

𝑎 and has as output another function that receives only 𝑏, giving 𝑐 as the Ąnal output.

Doing this, the type 𝑓 : N×N ⊃ N is transformed in an equivalent type 𝑓 : N ⊃ (N ⊃ N).

Since parenthesis is right-associative, one can write this type as N ⊃ N ⊃ N.

To a better understanding of this process, letŠs take an example. LetŠs take a function

𝑓(𝑥, 𝑦) ⊕ 𝑥+𝑦+ 5. Consider the speciĄc case of an application 𝑥 = 3 and 𝑦 = 5. Without

using currying, one could do 𝑓(3, 5) ⊕ 3+5+5 ⊕ 8+5 ⊕ 13. With currying, 𝑓(𝑥) outputs

𝑔 : N ⊃ N that receives 𝑦 as input. In that case, one would have 𝑓(3) ⊕ Ú𝑦.(3 + 𝑦 + 5).

Chapter 2. Type Theory 24

This function receives 𝑦 = 5 : 𝑓(3)(5) ⊕ 3 + 5 + 5 ⊕ 13. As one could see, the Ąnal results

of these two approaches is exactly the same.

2.1.4 Dependent Function Type(Π)

Sometimes the type of the output of a function depends on the value of the input. Using

only the function type, it is impossible to do this kind of construction. That way, we need

to introduce a new function type called dependent function type. To better understand

that, consider a type 𝑆𝑒𝑞(𝑥) indexed by the natural numbers. A term of type 𝑆𝑒𝑞(𝑥) can

be seen as a sequence of naturals from 0 to 𝑥. Now, a problem arises when we try to

construct a function that receives 𝑛 : N as input and ¶0...𝑛♢ : 𝑆𝑒𝑞(𝑛) as output. Since

the output depends on the value of the input, the previous function type cannot deĄne

a function for this case. To indicate that a type is a dependent function, one can use the

following notation: Π(𝑥:𝐴)𝐵(𝑥), where 𝑥 is the input and 𝐵(𝑥) a type family indexed by

the type 𝐴. In the previous example of 𝑆𝑒𝑞(𝑥), one can construct the dependent function

Π(𝑥:N)𝑆𝑒𝑞(𝑥). We also have the following inference rules (HARPER, 2012).

𝐴 type

[𝑥 : 𝐴]

𝐵(𝑥) type
(Π ⊗ 𝐹)

Π(𝑥:𝐴)𝐵(𝑥) type

[𝑥 : 𝐴]

𝑚(𝑥) : 𝐵(𝑥)
(Π ⊗ 𝐼)

Ú(𝑥 : 𝐴).𝑚(𝑥) : Π(𝑥:𝐴)𝐵(𝑥)

In the case of dependent function formation (Π ⊗ 𝐹), given a type 𝐴 and a type

family 𝐵(𝑥) indexed by this type, it is formed the type Π(𝑥:𝐴)𝐵(𝑥). The case of dependent

function introduction (Π ⊗ 𝐼) is also very simple. Given a term 𝑚(𝑥) : 𝐵(𝑥), with 𝑥 : 𝐴,

it is possible to obtain a dependent function that receives type 𝑥 and gives a term of type

𝑚(𝑥) as output. The elimination rule is the following:

𝑛 : 𝐴 𝑚 : Π(𝑥:𝐴)𝐵(𝑥)
(Π ⊗ 𝐸)

𝑚.𝑛 : [𝑛/𝑥]𝐵(𝑥)

The dependent function elimination (Π⊗𝐸) boils down to an application of a element

𝑛 in the dependent function. The output is very similar to the non-dependent case, the

sole difference is the fact that the type of the output depends on the value of the input.

We also have a computation rule:

𝑛 : 𝐴

[𝑥 : 𝐴]

𝑚(𝑥) : 𝐵(𝑥)
(Π ⊗ 𝐶)

(Ú(𝑥 : 𝐴).𝑚).𝑛 = [𝑛/𝑥]𝑚(𝑥) : [𝑛/𝑥]𝐵(𝑥)

Chapter 2. Type Theory 25

If one looks closely, the dependent function computation (Π ⊗𝐶) establishes function

application the exactly way that was deĄned in non-dependent functions. The sole dif-

ference is that the output depends on 𝑥. With that, we have all necessary rules to deĄne

and compute dependent functions. Also, when working directly with types that represent

propositions, one should can semantically interpret a type Π(𝑥:𝐴)𝐵(𝑥) as ∀(𝑥 : 𝐴)𝐵(𝑥).

2.1.5 Product type (×)

Previously we have mentioned the existence of multivariable functions, that receives two

or more inputs. But how can we represent a function that, for instance, receives two

natural numbers? In set theory, one could use the cross product to do that. That way,

this function receives N × N as input. In this sense, it is essential to deĄne cross product

in the framework of type theory.

Intuitively, for any types 𝐴 and 𝐵 one should be able to construct the type 𝐴 × 𝐵.

A term of 𝐴 × 𝐵 is a pair (𝑎, 𝑏) : 𝐴 × 𝐵, with 𝑎 : 𝐴 and 𝑏 : 𝐵. This is formalized in the

following rules (QUEIROZ; OLIVEIRA; GABBAY, 2011):

𝐴 type 𝐵 type
(× ⊗ 𝐹)

𝐴×𝐵 type

𝑎 : 𝐴 𝑏 : 𝐵 (× ⊗ 𝐼)
(𝑎, 𝑏) : 𝐴×𝐵

If one looks closely, if 𝐴 and 𝐵 are propositions, 𝐴× 𝐵 can be interpreted as 𝐴 ∧ 𝐵.

That way, one should be able to infer 𝐴 and 𝐵 from 𝐴 × 𝐵. To do that, we introduce

functions 𝐹𝑆𝑇 and 𝑆𝑁𝐷 (QUEIROZ; OLIVEIRA; GABBAY, 2011):

⟨𝑎, 𝑏⟩ : 𝐴×𝐵
(× ⊗ 𝐸1)

𝐹𝑆𝑇 ((𝑎, 𝑏)) : 𝐴

(𝑎, 𝑏) : 𝐴×𝐵
(× ⊗ 𝐸2)

𝑆𝑁𝐷((𝑎, 𝑏)) : 𝐵

Using 𝐹𝑆𝑇 and 𝑆𝑁𝐷 functions, we want to be able to retrieve the Ąrst and sec-

ond elements of a pair ⟨𝑎, 𝑏⟩ respectively. Thus, we have the following computation rules

(QUEIROZ; OLIVEIRA; GABBAY, 2011):

(𝑎, 𝑏) : 𝐴×𝐵 × ⊗ 𝐸1 ⊲Ñ 𝑎 : 𝐴
𝐹𝑆𝑇 ((𝑎, 𝑏)) : 𝐴

(𝑎, 𝑏) : 𝐴×𝐵 × ⊗ 𝐸2 ⊲Ñ 𝑏 : 𝐴
𝑆𝑁𝐷((𝑎, 𝑏)) : 𝐵

The above rules are called ×-reductions. We also have another computation rule called

×-induction (QUEIROZ; OLIVEIRA; GABBAY, 2011):

Chapter 2. Type Theory 26

𝑐 : 𝐴×𝐵 × ⊗ 𝐸1
𝐹𝑆𝑇 (𝑐) : 𝐴

𝑐 : 𝐴×𝐵 × ⊗ 𝐸2
𝑆𝑁𝐷(𝑐) : 𝐵 × ⊗ 𝐼 ⊲Ö 𝑐 : 𝐴×𝐵

(𝐹𝑆𝑇 (𝑐), 𝑆𝑁𝐷(𝑐)) : 𝐴×𝐵

2.1.6 Coproduct (+)

In the previous subsection we have introduced the product type. We saw that × can be

seen semantically as a cross product in set theory and the connector ∧ when dealing with

propositions. Thus, it is natural to think that the dual of the product should also be able

to be formalized in type theory. That is what we do in this section. In set theory, the

coproduct represents the disjoint union. If one is working with propositions, the coproduct

can be semantically interpreted as the connector ∨.

In the product, we have seen that from a term of 𝐴×𝐵 one should be able to obtain

terms of 𝐴 and 𝐵 by separate processes. Since the coproduct work as the dual of the

product, then it is natural to think that one should be able to obtain a term of 𝐴 + 𝐵

from a term of 𝐴 or a term of 𝐵. That is exactly what happens (QUEIROZ; OLIVEIRA;

GABBAY, 2011):

𝐴 type 𝐵 type
(+ ⊗ 𝐹)

𝐴+𝐵 type

𝑎 : 𝐴 (+ ⊗ 𝐼1)
𝑖𝑛𝑙(𝑎) : 𝐴+𝐵

𝑏 : 𝐵 (+ ⊗ 𝐼2)
𝑖𝑛𝑟(𝑏) : 𝐴+𝐵

The elimination rule follows directly from the fact that if one from 𝑎 : 𝐴 is able to

construct a term 𝑟(𝑎) : 𝐶 and from 𝑏 : 𝐵 we also construct 𝑙(𝑏) : 𝐶, then we should be

able to construct one term of type 𝐶 directly from a term 𝑐 : 𝐴+𝐵 (QUEIROZ; OLIVEIRA;

GABBAY, 2011):

𝑐 : 𝐴+𝐵

[𝑎 : 𝐴]

𝑟(𝑎) : 𝐶

[𝑏 : 𝐵]

𝑙(𝑏) : 𝐶
(+ ⊗ 𝐸)

𝐶𝐴𝑆𝐸(𝑐, �́�𝑟(𝑎), �́�𝑙(𝑏)) : 𝐶

One should see 𝑑(𝑎) and 𝑒(𝑏) as functional expressions dependent on 𝑎 and 𝑏 respec-

tively. One should also notice the use of Ś́ Š in �́� and �́�. One should see Ś́ Š as an abstractor

that binds the occurrences of the variable 𝑎 and 𝑏 both introduced in the local assump-

tions. We have the following reduction rules (QUEIROZ; OLIVEIRA; GABBAY, 2011):

𝑐 : 𝐴
𝑖𝑛𝑙(𝑐) : 𝐴+𝐵

[𝑎 : 𝐴]

𝑟(𝑎) : 𝐶

[𝑏 : 𝐵]

𝑙(𝑏) : 𝐶
(+ ⊗ 𝐸) ⊲Ñ

𝐶𝐴𝑆𝐸(𝑖𝑛𝑙(𝑐), �́�𝑟(𝑎), �́�𝑙(𝑏)) : 𝐶

[𝑐 : 𝐴]

[𝑐/𝑥]𝑟(𝑎) : 𝐶

Chapter 2. Type Theory 27

𝑐 : 𝐵
𝑖𝑛𝑟(𝑐) : 𝐴+𝐵

[𝑎 : 𝐴]

𝑟(𝑎) : 𝐶

[𝑏 : 𝐵]

𝑙(𝑏) : 𝐶
(+ ⊗ 𝐸) ⊲Ñ

𝐶𝐴𝑆𝐸(𝑖𝑛𝑟(𝑐), �́�𝑟(𝑎), �́�𝑙(𝑏)) : 𝐶

[𝑐 : 𝐵]

[𝑐/𝑥]𝑙(𝑏) : 𝐶

We also have an induction rule (QUEIROZ; OLIVEIRA; GABBAY, 2011):

𝑐 : 𝐴+𝐵

[𝑎 : 𝐴]
+ ⊗ 𝐼1

𝑖𝑛𝑙(𝑎) : 𝐴+𝐵

[𝑏 : 𝐵]
+ ⊗ 𝐼2

𝑖𝑛𝑟(𝑦) : 𝐴+𝐵
+ ⊗ 𝐸 ⊲Ö

𝐶𝐴𝑆𝐸(𝑐, ´(𝑎)𝑖𝑛𝑙(𝑎), �́�𝑖𝑛𝑟(𝑏)) : 𝐴+𝐵
𝑐 : 𝐴+𝐵

2.1.7 Dependent Pair Type (Σ)

When working with functions, it is sometimes useful to work with ordered pairs (𝑎, 𝑏)

such that 𝑎 is a input for the function and 𝑏 is the respective output. But what happens

if one is working with a dependent function? In that case, the type of the output 𝑏

would be bounded to the value of the input 𝑎. To represent this, one needs to use a type

called dependent pair. The notation for this type is Σ(𝑥:𝐴)𝐵(𝑥) and it has the following

rules(HARPER, 2012):

𝐴 type

[𝑥 : 𝐴]

𝐵(𝑥) type
(Σ ⊗ 𝐹)

Σ(𝑥:𝐴)𝐵(𝑥) type

𝑚 : 𝐴 𝑛 : 𝐵(𝑚)
(Σ ⊗ 𝐼)⟨𝑚,𝑛⟩ : Σ(𝑥:𝐴)𝐵(𝑥)

The dependent sum formation (Σ ⊗ 𝐹) is similar to Π ⊗ 𝐹 . For dependent sum intro-

duction (Σ ⊗ 𝐼), an element 𝑚 : 𝐴 and an element 𝑛 : 𝐵(𝑚) are enough to introduce a

dependent pair ⟨𝑚,𝑛⟩ : Σ(𝑥:𝐴)𝐵(𝑥). We have two elimination rules:

𝑚 : Σ(𝑥:𝐴)𝐵(𝑥)
(Σ ⊗ 𝐸1)

Þ1(𝑚) : 𝐴

𝑚 : Σ(𝑥:𝐴)𝐵(𝑥)
(Σ ⊗ 𝐸2)

Þ2(𝑚) : [Þ1(𝑚)/𝑥]𝐵(𝑥)

In traditional type theory, the dependent pair has two eliminations. This is explained

by the fact that since the pair is composed by two terms, it is possible to eliminate

Σ obtaining the Ąrst or the second term. From a dependent pair, one can use the Ąrst

dependent sum elimination (Σ ⊗ 𝐸1) and extract the Ąrst element. From the second

dependent sum elimination (Σ ⊗ 𝐸2) one can extract the second element, which type

depends on the value of the Ąrst element. Thus, we have two computation rules:

Chapter 2. Type Theory 28

Þ1(⟨𝑚,𝑛⟩) = 𝑚 e Þ2(⟨𝑚,𝑛⟩) = 𝑛.

The operators Þ1 and Þ2 extract the necessary information from the dependent pair.

One obtains 𝑚 and 𝑛 respectively. The dependent pair should be understood as the dual

of the dependent product.

2.1.8 Alternative Formulation for the Dependent Pair

If one is working within the paradigm of formulae-as-types(HOWARD, 1980), the depen-

dent product should be semantically interpreted as the ∃ quantiĄer. Nevertheless, it has

been pointed out by(QUEIROZ; GABBAY, 1995) that the previous formulation for the de-

pendent pair leads to problems. The main issue is the fact that the previous formulation

does not ŠhideŠ the witness in an existential formula. One can apply directly Þ1 to a

dependent pair, obtaining the witness and ignoring the fact that it should be hidden.

Thus,(QUEIROZ; GABBAY, 1995) argues that this ŠavailabilityŠ does not match with the

true spirit of indeĄniteness of the existential qualiĄer. To better see this, one could con-

sider the fact that the duality between the existential and universal quantiĄers are the

Ąrst-order counterpart of the duality between the disjunction and the conjunction. In the

language of type theory, when one talks about conjunction one is really talking about

×-product. In the ×-product, the terms of a pair are readily available:

𝑎 : 𝐴 𝑏 : 𝐵 × ⊗ 𝐼
(𝑎, 𝑏) : 𝐴×𝐵 × ⊗ 𝐸1
𝐹𝑆𝑇 ((𝑎, 𝑏)) : 𝐴

𝑎 : 𝐴 𝑏 : 𝐵 × ⊗ 𝐼
(𝑎, 𝑏) : 𝐴×𝐵 × ⊗ 𝐸2
𝑆𝑁𝐷((𝑎, 𝑏)) : 𝐵

In the case of the disjunction, i.e., the coproduct in type theory, once one of the

disjuncts is used to construct a term of the coproduct, it becomes ŠhiddenŠ, the elimina-

tion rule has to proceed by Skolem-like introductions of new local assumptions(QUEIROZ;

GABBAY, 1995):

𝑎 : 𝐴 + ⊗ 𝐼
𝑖𝑛𝑙(𝑎) : 𝐴+𝐵

[𝑥 : 𝐴]

𝑟(𝑥) : 𝐶

[𝑦 : 𝐵]

𝑙(𝑦) : 𝐶
+ ⊗ 𝐸1

𝐶𝐴𝑆𝐸(𝑖𝑛𝑙(𝑎), �́�𝑟(𝑥), 𝑦𝑙(𝑦))

𝑏 : 𝐵 + ⊗ 𝐼
𝑖𝑛𝑟(𝑏) : 𝐴+𝐵

[𝑥 : 𝐴]

𝑟(𝑥) : 𝐶

[𝑦 : 𝐵]

𝑙(𝑦) : 𝐶
+ ⊗ 𝐸2

𝐶𝐴𝑆𝐸(𝑖𝑛𝑟(𝑏), �́�𝑟(𝑥), 𝑦𝑙(𝑦))

In the Ąrst case, one has 𝑎 : 𝐴 in the start, but after introducing 𝑖𝑛𝑙(𝑎) : 𝐴 + 𝐵, 𝑎

becomes hidden, i.e., one loses direct access to it. The same thing happens to 𝑏 : 𝐵 and

𝑖𝑛𝑟(𝑏) : 𝐴 + 𝐵 in the second case. Thus, one proceeds adding local assumptions 𝑥 : 𝐴

and 𝑦 : 𝐵. With that in mind, (QUEIROZ; GABBAY, 1995) showed that the existential

Chapter 2. Type Theory 29

should mirror this aspect. The witness should be hidden and one should proceed by

introducing Skolem-like local assumptions. Thus, the elimination rule for the dependent

pair is reformulated (QUEIROZ; GABBAY, 1995):

𝑛 : Σ(𝑥:𝐴)𝐵(𝑥)

[𝑡 : 𝐴, 𝑓(𝑡) : 𝐵(𝑡)]

ℎ(𝑡, 𝑓) : 𝐶
(Σ ⊗ 𝐸)

𝐸(𝑛, 𝑡𝑓ℎ(𝑡, 𝑓)) : 𝐶

This elimination rule eliminates the dependent pair without giving direct access to

the witness. Of course, it generates new computation rules. Here follows the reduction

rule(QUEIROZ; GABBAY, 1995):

𝑎 : 𝐷 𝑓(𝑎) : 𝐹 (𝑎)
Σ ⊗ 𝐼⟨𝑎, 𝑓(𝑎)⟩ : Σ(𝑥:𝐷)𝐹 (𝑥)

𝑡 : 𝐷, 𝑔(𝑡) : 𝐹 (𝑡)

𝑑(𝑔, 𝑡) : 𝐶
Σ ⊗ 𝐸 ⊲Ñ

𝐸(⟨𝑎, 𝑓(𝑎)⟩ , 𝑔𝑡𝑑(𝑔, 𝑡)) : 𝐶

[𝐴 : 𝐷, 𝑓(𝑎) : 𝐹 (𝑎)]

[𝑓/𝑔, 𝑎/𝑡]𝑑(𝑔, 𝑡)

The last rule is the induction(QUEIROZ; GABBAY, 1995):

𝑐 : Σ(𝑥:𝐷)𝑃 (𝑥)

[𝑡 : 𝐷] [𝑔(𝑡) : 𝑃 (𝑡)]
Σ ⊗ 𝐼⟨𝑡, 𝑔(𝑡)⟩ : Σ(𝑦:𝐷)𝑃 (𝑦)

Σ ⊗ 𝐸 ⊲Ö 𝑐 : Σ(𝑥:𝐷)𝑃 (𝑥)
𝐸(𝑐, 𝑔𝑡 ⟨𝑡, 𝑔(𝑡)⟩) : Σ(𝑦:𝐷)𝑃 (𝑦)

2.1.9 The Natural Numbers

It has been said that one of the main objectives that motivated type theory was the

fact that it worked as a foundation for constructive mathematics. Thus, a theory that

proposes to be a foundation for mathematics should at least be able to formalize the

natural numbers. Set theory, for example, is capable of doing that. Thus, the objective of

this subsection is to show how the natural numbers can be constructed in type theory and

to show some basic properties of the naturals. As always, we start with basic constructions:

(HARPER, 2012):

(N ⊗ 𝐼0)0 : N
𝑚 : N (N ⊗ 𝐼𝑠)

𝑠𝑢𝑐𝑐(𝑚) : N

Chapter 2. Type Theory 30

The natural are constructed in a simple way, from the two rules above. The zero

introduction (N ⊗ 𝐼0) should be understood as the base of the construction. It states the

existence of at least one term called 0 that is a term of N. From a term 𝑚 : N, one can

apply the successor induction (N⊗𝐼𝑠) to obtain another term of type 𝑠𝑢𝑐𝑐(𝑚) : N. Thus, if

one starts from 0 and inductively construct numbers applying 𝑠𝑢𝑐𝑐, one wind up with the

entire set of natural numbers. Nevertheless, those two rules does not give us the tools to

work with the natural numbers. Ideally, one wants to construct functions on the naturals

and also apply the inductive principle to construct proofs. Those tools are given by the

computation rules. LetŠs start with the non-dependent case (HARPER, 2012):

𝑚 : N 𝐶 type 𝑁0 : 𝐶

[𝑥 : 𝐶]

𝑁𝑠 : 𝐶
𝑟𝑒𝑐(𝑚,𝑁0, Ú𝑥.𝑁𝑠) : 𝐶

The inference rule above can be rather confusing. The idea is to use a recursor 𝑟𝑒𝑐 to

deĄne basic functions on the naturals, such as addition, multiplication and exponentiation.

The recursor receives a base case 𝑁0, that states how 𝑟𝑒𝑐 should act when it iterates 0

times. Another piece of information is that given 𝑥 iterations, the recursor needs to know

how to compute the next iteration. This next iteration is represented by 𝑁𝑠. Thus, based

on the inductive deĄnition of the naturals, this is enough to deĄne how any function on the

naturals works. To better illustrate that, letŠs use 𝑟𝑒𝑐 to deĄne addition. Given 𝑚,𝑛 : N,

we want 𝑚+𝑛 : N. Starting from 𝑚, one can deĄne the base case to be 𝑚+ 0 = 𝑚. Thus,

one just needs to iterate 𝑛 times the function 𝑠𝑢𝑐𝑐 starting from 𝑚. This is expressed as

following:

𝑚 : N N type 𝑚 : N

[𝑛 : N]

𝑠𝑢𝑐𝑐(𝑛) : N
𝑟𝑒𝑐(𝑚,𝑚, Ú𝑛.𝑠𝑢𝑐𝑐(𝑛)) : N

Ú𝑚.𝑟𝑒𝑐(𝑚,𝑚, Ú𝑛.𝑠𝑢𝑐𝑐(𝑛)) : N ⊃ N

This rule used to deĄne recursive functions on the naturals is called the non-dependent

case, since it originates terms of a non-dependent type 𝐶. To use the induction principle,

one needs to deĄne the dependent case (HARPER, 2012):

𝑚 : N

[𝑥 : N]

𝐶(𝑥) type 𝑁0 : [0/𝑥]𝐶(𝑥)

[𝑥 : N, 𝑦 : 𝐶(𝑥)]

𝑁𝑠 : [𝑠𝑢𝑐(𝑥)/𝑥]𝐶(𝑥)

𝑟𝑒𝑐(𝑚,𝑁0, (𝑥, Ú𝑦.𝑁𝑠)) : [𝑚/𝑥]𝐶(𝑥)

If one looks closely, one should notice that the non-dependent case is the induction

principle of the natural numbers. Basically, it states that given a proof of the base case

Chapter 2. Type Theory 31

𝑁0 : 𝐶(0) and the inductive step, i.e., that a proof 𝑦 : 𝐶(𝑥) implies a proof of 𝑁𝑠 : 𝐶(𝑥+1),

then one should wind up with a proof 𝐶(𝑚) for any 𝑚 : N. With that, we conclude the

construction and main properties used to work with the naturals in type theory.

2.1.10 Additional Information

We have said that a type can be semantically interpreted in different ways. It can be a

proposition, a topological space, a set, among others semantical interpretation. The main

ones are summed up in the table below:

Table 1 Ű Multiple semantical interpretations of a type

Types Logic Sets Homotopy

A proposition set space

a : A proof element point

B(x) predicate family of sets fibration

b(x) : B(x) conditional proof family of elements section

0,1 ⊥,⊤ ∅, ¶∅♢ ∅, *
A + B A ∨ B disjoint union coproduct

A × B A ∧ B set of pairs product space

A ⊃ B A ⇒ B set of functions function space

Σ𝑥:𝐴B(x) ∃(𝑥:𝐴)B(x) disjoint sum total space

Π𝑥:𝐴B(x) ∀(𝑥:𝐴)B(x) product space of sections

Id𝑎 equality = ¶(x, x) ♣ x ∈ A♢ path space A𝐼

Source: Homotopy Type Theory Book (Univalent Foundations Program, 2013).

As one can see, type theory is capable of representing many diverse objects of mathe-

matics and logic. In the previous subsections, we have shown the basic constructions that

everyone interested in type theory should be familiar with. Nevertheless, we have not

talked about the identity type yet. Since it is a type of central to the main contribution

of this work, the next section is completely focused on explaining it.

2.2 IDENTITY TYPE

After brieĆy introducing the main concepts and types of type theory, the objective of this

section is to introduce the main entity of this work, the identity type. Here we are going

to introduce the classic approach of type theory. One can check our proposed formulation

for the identity type in chapter 4 of this work.

The identity type is arguably the most interesting concept of type theory. This claim

is based on the fact that many results have been achieved using it. One of these was

the discovery of the Univalent Models in 2005 by Vladimir Voevodsky (VOEVODSKY,

2014). From this work, a groundbreaking result has arisen: the connection between type

Chapter 2. Type Theory 32

theory and homotopy theory. The intuitive connection is simple: a term 𝑎 : 𝐴 can be

considered as a point of the space 𝐴 and 𝑝 : 𝐼𝑑𝐴(𝑎, 𝑏) is a homotopy path between points

𝑎, 𝑏 ∈ 𝐴(Univalent Foundations Program, 2013). This has given rise to a whole new area of

research, known as Homotopy Type Theory. It leads to a new perspective on the study of

equality, as expressed by Voevodsky in a recent talk in The Paul Bernays Lectures (Sept

2014, Zürich): equality (for abstract sets) should be looked at as a structure rather than

as a relation.

2.2.1 Formal Definition of The Identity Type

We start with the formation and introduction rules (QUEIROZ; OLIVEIRA, 2014b):

𝐴 type 𝑎 : 𝐴 𝑏 : 𝐴
𝐼𝑑𝑖𝑛𝑡 ⊗ 𝐹

𝐼𝑑𝑖𝑛𝑡
𝐴 (𝑎, 𝑏) type

𝑎 : 𝐴
𝐼𝑑𝑖𝑛𝑡 ⊗ 𝐼

𝑟(𝑎) : 𝐼𝑑𝑖𝑛𝑡
𝐴 (𝑎, 𝑎)

First, we need to clarify the meaning of 𝑖𝑛𝑡 that appears in 𝐼𝑑𝑖𝑛𝑡. This 𝑖𝑛𝑡 indicates

that we are working with the intensional version of the identity type. The difference

between the intensional and extensional version will be explained in detail in the next

subsection. For now, letŠs postulate that every time 𝑖𝑛𝑡 or 𝑒𝑥𝑡 do not appear above 𝐼𝑑𝐴,

one should assume that the version being used is the intensional one.

The identity type formation (𝐼𝑑𝑖𝑛𝑡 ⊗ 𝐹) is pretty straightforward. Given any terms

𝑎, 𝑏 : 𝐴, it is possible to create a type that will only be inhabited if there exits an witness

that testiĄes the propositional equality between 𝑎 and 𝑏. Nevertheless, the existence of

type 𝐼𝑑𝐴(𝑎, 𝑏) does not dependent on whether it is inhabited or not.

The rule identity type introduction (𝐼𝑑𝑖𝑛𝑡 ⊗ 𝐼) states that there is only one canonical

proof of equality, the reĆexivity. It states that any term 𝑎 : 𝐴 is always propositional

equal to itself. This introduces a canonical proof of reĆexivity 𝑟(𝑎) : 𝐼𝑑𝑖𝑛𝑡
𝐴 (𝑎, 𝑎). Thus, the

main idea is that every proof of equality can be constructed inductively from a reĆexive

proof of equality (QUEIROZ; OLIVEIRA, 2014b):

𝑎 : 𝐴 𝑏 : 𝐴 𝑐 : 𝐼𝑑𝑖𝑛𝑡
𝐴 (𝑎, 𝑏)

[𝑥 : 𝐴]

𝑑(𝑥) : 𝐶(𝑥, 𝑥, 𝑟(𝑥))

[𝑥 : 𝐴, 𝑦 : 𝐴, 𝑧 : 𝐼𝑑𝐴(𝑥, 𝑦)]

𝐶(𝑥, 𝑦, 𝑧) type
𝐼𝑑⊗ 𝐸

𝐽(𝑐, 𝑑) : 𝐶(𝑎, 𝑏, 𝑐)

𝑎 : 𝐴

[𝑥 : 𝐴]

𝑑(𝑥) : 𝐶(𝑥, 𝑥, 𝑟(𝑥))

[𝑥 : 𝐴, 𝑦 : 𝐴, 𝑧 : 𝐼𝑑𝐴(𝑥, 𝑦)]

𝐶(𝑥, 𝑦, 𝑧) type
𝐼𝑑⊗ 𝐸𝑞

𝐽(𝑟(𝑎), 𝑑(𝑥)) = 𝑑(𝑎/𝑥) : 𝐶(𝑎, 𝑎, 𝑟(𝑎))

Chapter 2. Type Theory 33

The identity type elimination (𝐼𝑑 ⊗ 𝐸) introduces the recursor 𝐽 and eliminates the

identity type in the process. The inner details of the recursor 𝐽 are pretty complicated

to understand and uses complex concepts of category theory. Nevertheless, one can try

to intuitively understand 𝐽 . Basically, 𝐽(𝑐, 𝑑) : 𝐶(𝑎, 𝑏, 𝑐) works constructing 𝑐 from a

reĆexive proof 𝑑. In this case, as any recursor of type theory, 𝑐 is constructed based on

multiple iterations that starts from the base 𝑑. Since this elimination rule has many terms,

constructing some types using 𝐽 can be a cumbersome process, as we are going to see

in the next subsection. In this work, we are going to introduce a way of formalizing the

identity type using a new entity known as computational paths. We believe that this way

is simpler and more straightforward to use than the one introduced here. Nevertheless,

we leave this discussion to a further chapter of this work.

2.2.2 Basic Constructions

The objective of this subsection is to show the use of the elimination rule of the identity

type in practice. The constructions that we have chosen to build are the reĆexive, transitive

and symmetric type of the identity type. Those were not random choices. The main reason

is the fact that reĆexive, transitive and symmetric types are essential to the process of

building a groupoid model for the identity type (HOFMANN; STREICHER, 1994).

Before we start the constructions, we think that it is essential to understand how to use

the eliminations rules. The process of building a term of some type is a matter of Ąnding

the right reason. In the case of 𝐽 , the reason is the correct 𝑥, 𝑦 : 𝐴 and 𝑧 : 𝐼𝑑𝐴(𝑎, 𝑏) that

generates the adequate 𝐶(𝑥, 𝑦, 𝑧).

We start proving the reĆexivity. We want a witness for Π(𝑎:𝐴)𝐼𝑑𝐴(𝑎, 𝑎). This case is

trivial, since we have the canonical proof of identity:

𝑎 : 𝐴 𝐼𝑑⊗ 𝐼
𝑟(𝑎) : 𝐼𝑑𝐴(𝑎, 𝑎)

The second construction is the symmetry. This one does not follow trivially from the

introduction rule. Thus, we need to use the elimination rule in some way. Our objective

is to construct a term for the type Π(𝑎:𝐴)Π(𝑏:𝐴)(𝐼𝑑𝐴(𝑎, 𝑏) ⊃ 𝐼𝑑𝐴(𝑏, 𝑎)).

Looking at the elimination rule of the constructor J, it is clear that our main objective

is to Ąnd a suitable 𝐶(𝑥, 𝑦, 𝑧), with 𝑥 : 𝐴, 𝑦 : 𝐴 and 𝑧 : 𝐼𝑑𝐴(𝑎, 𝑏). The main problem is

the fact that, to Ąnd the correct reason, we do not have a Ąxed process or a Ąxed set of

rules to follow. One needs to rely on oneŠs intuition. In this case, one could conclude that

the correct reason is to look at 𝐶(𝑥, 𝑦, , 𝑧) as the type 𝐼𝑑𝐴(𝑦, 𝑥), with 𝑥 : 𝐴, 𝑦 : 𝐴 and 𝑧

as any term (in the deduction, 𝑧 will be represented by ⊗, to indicate that it can be any

term). Thus, we obtain the following deduction:

Chapter 2. Type Theory 34

𝑎 : 𝐴 𝑏 : 𝐴 𝑐 : 𝐼𝑑𝐴(𝑎, 𝑏)

[𝑥 : 𝐴]

𝑟(𝑥) : 𝐼𝑑𝐴(𝑥, 𝑥)

[𝑥 : 𝐴, 𝑦 : 𝐴,⊗ : 𝐼𝑑𝐴(𝑎, 𝑏)]

𝐼𝑑𝐴(𝑦, 𝑥) type
𝐼𝑑⊗ 𝐸

𝐽(𝑐, 𝑟(𝑥)) : 𝐼𝑑𝐴(𝑏, 𝑎) ⊃ ⊗𝐼
Ú𝑐.𝐽(𝑐, 𝑟(𝑥)) : 𝐼𝑑𝐴(𝑎, 𝑏) ⊃ 𝐼𝑑𝐴(𝑏, 𝑎)

Π ⊗ 𝐼
Ú𝑏.Ú𝑐.𝐽(𝑐, 𝑟(𝑥)) : Π(𝑏:𝐴)(𝐼𝑑𝐴(𝑎, 𝑏) ⊃ 𝐼𝑑𝐴(𝑏, 𝑎))

Π ⊗ 𝐼
Ú𝑎.Ú𝑏.Ú𝑐.𝐽(𝑐, 𝑟(𝑥)) : Π(𝑎:𝐴)Π(𝑏:𝐴)(𝐼𝑑𝐴(𝑎, 𝑏) ⊃ 𝐼𝑑𝐴(𝑏, 𝑎))

The third and last construction will be the transitivity. Our objective is to construct

a term for the type Π(𝑎:𝐴)Π(𝑏:𝐴)Π(𝑐:𝐴)(𝐼𝑑𝐴(𝑎, 𝑏) ⊃ 𝐼𝑑𝐴(𝑏, 𝑐) ⊃ 𝐼𝑑𝐴(𝑎, 𝑐)).

LetŠs now use 𝐽 to build a term for the transitivity. The proof will be based on the

one found in (Univalent Foundations Program, 2013). The difference is that instead of deĄning

induction principles for 𝐽 based on the elimination rules, we will use the rule directly.

The complexity is the same, since the proofs are two forms of presenting the same thing

and they share the same reasons. As one should expect, the Ąrst and main step is to

Ąnd a suitable reason. In other words, we need to Ąnd suitable 𝑥, 𝑦 : 𝐴 and 𝑧 : 𝐼𝑑𝐴(𝑎, 𝑏)

to construct an adequate 𝐶(𝑥, 𝑦, 𝑧). Similar to the case of symmetry, this Ąrst step is

already problematic. Different from our approach, in which one starts from a path and

applies intuitive equality axioms to Ąnd a suitable reason, there is no clear point of how

one should proceed to Ąnd a suitable reason for the construction based on 𝐽 . In this

case, one should rely on intuition and make attempts until one Ąnds out the correct

reason. As one can check in (Univalent Foundations Program, 2013), a suitable reason would

be 𝑥 : 𝐴, 𝑦 : 𝐴,⊗ : 𝐼𝑑𝐴(𝑥, 𝑦) and 𝐶(𝑥, 𝑦, 𝑧) ⊕ 𝐼𝑑𝐴(𝑦, 𝑐) ⊃ 𝐼𝑑𝐴(𝑥, 𝑐). Looking closely,

the proof is not over yet. The problem is the type of 𝐶(𝑥, 𝑥, 𝑟(𝑥)). With this reason,

we have that 𝐶(𝑥, 𝑥, 𝑟(𝑥)) ⊕ 𝐼𝑑𝐴(𝑥, 𝑐) ⊃ 𝐼𝑑𝐴(𝑥, 𝑐). Therefore, we cannot assume that

𝑞(𝑥) : 𝐼𝑑𝐴(𝑥, 𝑐) ⊃ 𝐼𝑑𝐴(𝑥, 𝑐) is the term 𝑟(𝑥). The only way to proceed is to apply again

the constructor 𝐽 to build the term 𝑞(𝑥). It means, of course, that we will need to Ąnd yet

another reason to build this type. This second reason is given by 𝑥 : 𝐴, 𝑦 : 𝐴,⊗ : 𝐼𝑑𝐴(𝑥, 𝑦)

and 𝐶 ′(𝑥, 𝑦, 𝑧) ⊕ 𝐼𝑑𝐴(𝑥, 𝑦). In that case, 𝐶 ′(𝑥, 𝑥, 𝑟(𝑥)) = 𝐼𝑑𝐴(𝑥, 𝑥). We will not need to

use 𝐽 again, since now we have that 𝑟(𝑥) : 𝐼𝑑𝐴(𝑥, 𝑥). Then, we can construct 𝑞(𝑥):

𝑥 : 𝐴 𝑐 : 𝐴 𝑞 : 𝐼𝑑𝐴(𝑥, 𝑐)

[𝑥 : 𝐴]

𝑟(𝑥) : 𝐼𝑑𝐴(𝑥, 𝑥)

[𝑥 : 𝐴, 𝑦 : 𝐴,⊗ : 𝐼𝑑𝐴(𝑥, 𝑦)]

𝐼𝑑𝐴(𝑥, 𝑦) type
𝐼𝑑⊗ 𝐸

𝐽(𝑞, 𝑟(𝑥)) : 𝐼𝑑𝐴(𝑥, 𝑐) ⊃ ⊗𝐼
Ú𝑞.𝐽(𝑞, 𝑟(𝑥)) : 𝐼𝑑𝐴(𝑥, 𝑐) ⊃ 𝐼𝑑𝐴(𝑥, 𝑐)

Finally, we obtain the desired term:

Chapter 2. Type Theory 35

𝑎
:
𝐴

𝑏
:
𝐴

𝑝
:
𝐼
𝑑

𝐴
(𝑎
,𝑏

)

[𝑥
:
𝐴

]

Ú
𝑞.
𝐽

(𝑞
,𝑟

(𝑥
))

:
𝐼
𝑑

𝐴
(𝑥
,𝑐

)
⊃

𝐼
𝑑

𝐴
(𝑥
,𝑐

)

[𝑥
:
𝐴
,𝑦

:
𝐴
,⊗

:
𝐼
𝑑

𝐴
(𝑥
,𝑦

)]

𝐼
𝑑

𝐴
(𝑦
,𝑐

)
⊃

𝐼
𝑑

𝐴
(𝑥
,𝑐

)
ty

p
e
𝐼
𝑑

⊗
𝐸

𝐽
(𝑝
,Ú
𝑞.
𝐽

(𝑞
,𝑟

(𝑥
))

)
:
𝐼
𝑑

𝐴
(𝑏
,𝑐

)
⊃

𝐼
𝑑

𝐴
(𝑎
,𝑐

)
⊃

⊗
𝐼

Ú
𝑝.
𝐽

(𝑝
,Ú
𝑞.
𝐽

(𝑞
,𝑟

(𝑥
))

)
:
𝐼
𝑑

𝐴
(𝑎
,𝑏

)
⊃

𝐼
𝑑

𝐴
(𝑏
,𝑐

)
⊃

𝐼
𝑑

𝐴
(𝑎
,𝑐

)
Π

⊗
𝐼

Ú
𝑐.
Ú
𝑝.
𝐽

(𝑝
,Ú
𝑞.
𝐽

(𝑞
,𝑟

(𝑥
))

)
:
Π

(𝑐
:𝐴

)(
𝐼
𝑑

𝐴
(𝑎
,𝑏

)
⊃

𝐼
𝑑

𝐴
(𝑏
,𝑐

)
⊃

𝐼
𝑑

𝐴
(𝑎
,𝑐

))
Π

⊗
𝐼

Ú
𝑏.
Ú
𝑐.
Ú
𝑝.
𝐽

(𝑝
,Ú
𝑞.
𝐽

(𝑞
,𝑟

(𝑥
))

)
:
Π

(𝑏
:𝐴

)Π
(𝑐

:𝐴
)(
𝐼
𝑑

𝐴
(𝑎
,𝑏

)
⊃

𝐼
𝑑

𝐴
(𝑏
,𝑐

)
⊃

𝐼
𝑑

𝐴
(𝑎
,𝑐

))
Π

⊗
𝐼

Ú
𝑎
.Ú
𝑏.
Ú
𝑐.
Ú
𝑝.
𝐽

(𝑝
,Ú
𝑞.
𝐽

(𝑞
,𝑟

(𝑥
))

)
:
Π

(𝑎
:𝐴

)Π
(𝑏

:𝐴
)Π

(𝑐
:𝐴

)(
𝐼
𝑑

𝐴
(𝑎
,𝑏

)
⊃

𝐼
𝑑

𝐴
(𝑏
,𝑐

)
⊃

𝐼
𝑑

𝐴
(𝑎
,𝑐

))

Chapter 2. Type Theory 36

This construction is an example that makes clear the difficulties of working with

this approach for the identity type. We had to Ąnd two different reasons and use two

applications of the elimination rule. Another problem is the fact that the reasons were

not obtained by a Ąxed process, like the applications of axioms in some entity of type

theory. They were obtained purely by the intuition that a certain 𝐶(𝑥, 𝑦, 𝑧) should be

capable of constructing the desired term. For that reason, obtaining these reasons can be

troublesome.

Further in this work we are going to construct those types using computational paths.

Thus, we will have some base on which we can compare the two approaches.

2.2.3 Extensionality vs Intensionality

We have seen that functions are extensional in set theory. Functions are considered as pairs

of input and output. The way of how those pairs were obtained is ignored completely. This

does not occurs on the aforementioned formulation of the identity type. In that case, the

proof of how the equality has been obtained matters. That is the reason way we said

that this approach is intensional. In the original formulation of type theory, Martin-Löf

proposed an intensional approach (MARTIN-LÖF, 1998) and an extensional one (MARTIN-

LÖF, 1982; MARTIN-LÖF, 1984). Since we have already shown the construction of the

intensional approach, we show the construction of the extensional one in this subsection.

We have the following rules (QUEIROZ; OLIVEIRA; RAMOS, 2016):

𝐴 type 𝑎 : 𝐴 𝑏 : 𝐴
𝐼𝑑𝑒𝑥𝑡 ⊗ 𝐹

𝐼𝑑𝑒𝑥𝑡
𝐴 (𝑎, 𝑏) type

𝑎 = 𝑏 : 𝐴
𝐼𝑑𝑒𝑥𝑡 ⊗ 𝐼

𝑟 : 𝐼𝑑𝑒𝑥𝑡
𝐴 (𝑎, 𝑏)

The extensional identity type formation (𝐼𝑑𝑒𝑥𝑡 ⊗ 𝐹) is completely equal to the inten-

sional case. The extensional identity type introduction (𝐼𝑑𝑒𝑥𝑡 ⊗ 𝐼) is also very simple. If

we have that 𝑎 = 𝑏 : 𝐴, then one has for sure at least one proof 𝑟 that establishes this

equality. Naturally, 𝑟 has type 𝐼𝑑𝑒𝑥𝑡
𝐴 (𝑎, 𝑏). We have now the elimination and equality rules

(QUEIROZ; OLIVEIRA; RAMOS, 2016):

𝑐 : 𝐼𝑑𝑒𝑥𝑡
𝐴 (𝑎, 𝑏)

𝐼𝑑𝑒𝑥𝑡 ⊗ 𝐸
𝑎 = 𝑏 : 𝐴

𝑐 : 𝐼𝑑𝑒𝑥𝑡
𝐴 (𝑎, 𝑏)

𝐼𝑑𝑒𝑥𝑡 ⊗ 𝐸𝑞
𝑐 = 𝑟 : 𝐼𝑑𝑒𝑥𝑡

𝐴 (𝑎, 𝑏)

The Ąrst thing one should notice is that extensional identity type elimination (𝐼𝑑𝑒𝑥𝑡 ⊗
𝐸) is much simpler than the intensional version. One does not need to deĄne over-

complicated structures like 𝐽 . Given any element 𝐼𝑑𝑒𝑥𝑡
𝐴 (𝑎, 𝑏), since we do not need to

Chapter 2. Type Theory 37

keep track of the equality proof, one can extract directly that 𝑎 = 𝑏 : 𝐶. At this point,

the information that 𝑐 is responsible for establishing is irrelevant. As one can see, the

existence of the term 𝑐 is completely excluded of the Ąnal inference. The fact that we do

not need to keep track of an equality proof is also seen in the extensional identity type

equality (𝐼𝑑𝑒𝑥𝑡 ⊗ 𝐸𝑞). This rule shows that any two equality proofs 𝑐 and 𝑟 are equal.

Thus, how 𝑐 and 𝑟 are constructed does not matter. The only relevant fact is that they

are both proofs of the equality 𝑎 = 𝑏 : 𝐴.

The approach that we are going to propose based on computational paths will be

clearly intensional. This is due to the fact that computation is intrinsically intensional.

Two algorithms can solve the same problem, but they can be implemented in completely

different ways and have difference space and time complexities. Also, the intensional ver-

sion is much more interesting, since it gave rise to homotopy type theory. Thus, this work

will introduce computational paths as an alternative way of formalizing the intensional

type theory.

2.3 CONCLUSION

In this chapter, we have introduced the basic types of type theory. We showed how to

construct and compute using those types. We have also highlighted the essential differ-

ence between deĄnitional equality and propositional equality. Based on this difference, we

showed how to construct a type based on propositional equality, called identity type.

A good understanding of the basic concepts of this chapter is essential to understand

the main results of this work. In further chapters, we are going to propose a different

way of formalizing intensional identity type. We are going to compare the two approaches

using the basic constructions shown in this chapter. In the next chapter, we are going

to introduce the basic concepts of another theory essential to the results of this work:

category theory.

38

3 CATEGORY THEORY

In this chapter, we introduce the theory that we are going to use to develop the math-

ematical aspect of computational paths. The theory used to construct this mathematical

model will be category theory. We are going to see that this theory is extremely powerful,

but it is abstract and complex. With that in mind, we start this chapter deĄning and ex-

posing the main basic concepts of this theory. We then use those basic concepts to arrive

at more complicated results, which will be necessary in the construction of our mathemat-

ical model for computational paths. Since this model has many details and peculiarities,

we leave it to the next chapter of this work.

Category theory appeared for the Ąrst time in the works of Eilenberg & Mac Lane

in 1945. It was originally proposed as just a tool to study natural transformations and

functors(MARQUIS, 2014). Functors and natural transformations are basically entities that

transform one mathematical structure into another. For instance, one can transform a

function between sets into a homotopy between topological spaces. Despite being proposed

as only a tool, category theory grew quickly and became a well-established theory. Today,

it is widely used in mathematics and computer science. Even logic and Ú-calculus can be

modeled by category theory. It also has been used as foundation of mathematics in place

of 𝑍𝐹𝐶 (MARQUIS, 2014).

Despite its power of abstraction, category theory does not hinder the importance of

type theory. It can be used as a foundation for mathematics, but it shares some problems

that appears in ZFC, such as the fact that it is hard to be modeled by computers. Thus,

the importance of category theory to this work is limited to the fact that it is closely

related to type theory. This fact is clear when one realizes that many type theoretical

constructions can be mathematically modeled using category theory.

It is also important to note that this chapter is not limited to basic category theory. To

obtain the results that we want about computational paths, one also needs to deĄne some

basic concepts of higher category theory. Thus, we are going to introduce those concepts

in the end of this chapter.

3.1 BASIC CONCEPTS

Category theory has a rather interesting aspect when compared directly with set theory

or type theory. It is the fact that set theory and type theory have a fundamental concept

in the core of those theories. One gains nothing asking what is the exact deĄnition of sets

or types, but one can ask what results can be obtained from those concepts. In category

Parts of this chapter are based on previous research done by the author and appears in his Master’s
Thesis (RAMOS, 2015)

Chapter 3. Category Theory 39

theory, this does not happen. It is possible to prove from rules and well-established entities

whether some structure is a category or not. Perhaps the best way of introducing category

theory is to analyze some aspects of functions. The reason for that is that one can affirm

that a category is constructed based on structures called morphisms that are very similar

to functions.

Consider that we have sets 𝐴, 𝐵 and 𝐶 and functions 𝑓 and 𝑔 such that 𝑓 : 𝐴 ⊃ 𝐵

and 𝑔 : 𝐵 ⊃ 𝐶. Thus, it is possible to construct a composite function (𝑔 ◇ 𝑓) : 𝐴 ⊃ 𝐶

deĄned by (𝑔 ◇ 𝑓) = 𝑔(𝑓(𝑥)). We have the following diagram:

𝐴 𝐵

𝐶

f

g◇f
g

One should become acquainted with those kinds of diagrams, since they commonly

appear in category theory. Categories are based on objects (in the above diagrams, the

objects are sets) and arrows or morphisms (in the above diagram, the functions). Thus, it

is natural to think that those structures are represented by diagrams. They are not just

a graphic representation of some structure, since they are frequently used as the main

argument in proofs of important properties.

One interesting property rises from function composition: it is associative. In other

words, if there is some ℎ : 𝐶 ⊃ 𝐷, then (ℎ ◇ 𝑔) ◇ 𝑓 = ℎ ◇ (𝑔 ◇ 𝑓). This property is

represented by the following diagram (AWODEY, 2010):

𝐴 𝐵

𝐶 𝐷

f

g◇f
g

h◇g

h

Functions have another interesting property. For any set 𝐴, there is a identity function

1𝐴 : 𝐴 ⊃ 𝐴 deĄned by 1𝐴(𝑎) = 𝑎. This function can be considered as the neutral element

of the composition operation, i.e. 1𝐵 ◇ 𝑓 = 𝑓 = 𝑓 ◇ 1𝐴. In the next subsection we give

a formal deĄnition for the concept of category, which will give general versions of those

properties.

3.1.1 Categories

Category is the main concept of category theory. Its deĄnition follows:

Definition 3.1 (Categories (AWODEY, 2010)). A category C is a structure with the fol-

lowing elements and rules:

Chapter 3. Category Theory 40

• Objects: Objects are usually represented by capital letters 𝐴,𝐵,𝐶.... The class of all

objects is called 𝐶0.

• Arrows(morphisms): Arrows or morphisms are commonly represented by letters which

are used to represent functions, such as 𝑓, 𝑔, ℎ.... It is importance to notice that ar-

rows always appear between two objects. The class of all arrows is called 𝐶1.

• Domain and range: Given any arrow 𝑓 : 𝐴 ⊃ 𝐵, the domain of 𝑓 is 𝐴 and is

written as 𝑑𝑜𝑚(𝑓) = 𝐴. The range of 𝑓 is 𝐵 and is written as 𝑐𝑜𝑑(𝑓) = 𝐵.

• Composition: Given any arrows 𝑓 : 𝐴 ⊃ 𝐵 and 𝑔 : 𝐵 ⊃ 𝐶, there is always an

arrow ℎ = (𝑔 ◇ 𝑓) : 𝐴 ⊃ 𝐶. This arrow is the composition of 𝑓 and 𝑔. Moreover, ℎ

has a universal property, i.e., given any 𝑚 = (𝑔 ◇ 𝑓), then 𝑚 = ℎ.

• Identity Arrow: For any object 𝐴 there is an arrow 1𝐴 : 𝐴 ⊃ 𝐴 called identity arrow.

• Associativity rule: Given any arrows 𝑓 : 𝐴 ⊃ 𝐵, 𝑔 : 𝐵 ⊃ 𝐶 and ℎ : 𝐶 ⊃ 𝐷, then

(ℎ ◇ 𝑔) ◇ 𝑓 = ℎ ◇ (𝑔 ◇ 𝑓) always holds.

• Identity rule: Given any 𝑓 : 𝐴 ⊃ 𝐵, then 1𝐵 ◇ 𝑓 = 𝑓 = 𝑓 ◇ 1𝐴.

From the above deĄnition, it is clear that a function has a categorical structure. In

fact, one of the most common category is Sets. In this category, objects are sets and

arrows are functions between sets. As we have just seen, a function follows associative

and identity rules and thus, Sets is clearly a category. Before we deĄne further concepts,

it is important to show the use of the above deĄnition in another example. An interesting

one is the structure Pos. As we have seen in chapter 1, a set can be ordered by an order

relation ⊘. Those ordered sets are known as posets (partially ordered sets). That way, an

object in this structure is a poset and an arrow is a monotone function (AWODEY, 2010).

A function is monotone iff 𝑎 ⊘ 𝑏 ⇒ 𝑓(𝑎) ⊘ 𝑓(𝑏).

Proposition 3.1. Pos is a category.

Proof. A proof that some structure is a category follows a well-deĄned set of steps. Ini-

tially, it is necessary to deĄne what is an arrow, the compositions and the identity arrow.

Then, one just needs to check if the rules of associativity and identity hold.

• Composition: The composition is similar to the one given in Sets, i.e., given any

𝑓 : 𝐴 ⊃ 𝐵 and 𝑔 : 𝐵 ⊃ 𝐶, then one can deĄne (𝑔 ◇ 𝑓) = 𝑔(𝑓(𝑥)). In the case

of Pos, (𝑔 ◇ 𝑓) needs to be monotone. Suppose that 𝑎 ⊘ 𝑏. Since 𝑓 is monotone,

then 𝑓(𝑎) ⊘ 𝑓(𝑏). Since 𝑔 is monotone, then 𝑔(𝑓(𝑎)) ⊘ 𝑔(𝑓(𝑏)) and thus, 𝑔 ◇ 𝑓 is

monotone.

Chapter 3. Category Theory 41

• Identity: The identity arrow will also be similar to the one in Sets, i.e., the identity

arrow will be an 1𝐴 : 𝐴 ⊃ 𝐴 deĄned by 1𝐴(𝑎) = 𝑎. 1𝐴 is clearly monotone, since

𝑎 ⊘ 𝑏 then 1𝐴(𝑎) = 𝑎 ⊘ 𝑏 = 1𝐴(𝑏).

• Associativity rule: Since arrows are functions, the associative rule clearly holds.

• Identity rule: Analogous to the associative rule. It has already proved for functions

that 1𝐴 respects the identity rule.

Therefore Pos is a category. Our choice of Pos as an example was intentional, since

it is a category of great importance to computer science. The reason for that is the fact

that Pos is used on the formalization of boolean algebra. Nevertheless, this formalization

is out of the scope of this work. After introducing the concept of category, we can proceed

with other interesting concepts.

3.1.2 Isomorphism

In many areas of mathematics it is rather common to work with two different structures

that have similar properties. Sometimes one wants to establish a direction connection

between those structures. To do this, one establishes an isomorphism. The main problem

is that the deĄnition of isomorphism is intrinsically dependent to the structure being used.

For example, the concept of isomorphism between sets is different to isomorphism between

posets, which is different from an isomorphism between groups. Thus, the uniĄcation of

those different deĄnitions for the same concept would be a great feat. Fortunately, this

can be easily done in category theory. It also showcases how powerful is this theory. We

have the following deĄnition:

Definition 3.2 (Isomorphism (AWODEY, 2010)). : In a category C, an arrow 𝑓 : 𝐴 ⊃ 𝐵

is called isomorphism if there exists an arrow 𝑔 : 𝐵 ⊃ 𝐶 such that 𝑔 ◇ 𝑓 = 1𝐴 and

𝑓 ◇ 𝑔 = 1𝐵. When this happens, 𝑔 is called inverse of 𝑓 . We say that 𝐴 is isomorphic

to 𝑏 and the write 𝐴 ≍= 𝐵. The arrow that generated this isomorphism is written as:

𝑓 : 𝐴 ≍⊗⊃ 𝐵.

Proposition 3.2. Given any isomorphism 𝑓 and a inverse 𝑔 of 𝑓 , then 𝑔 is unique.

Proof. Let h be an inverse of 𝑓 To show that 𝑔 is unique, one needs to show that ℎ = 𝑔.

The following equations establish this result:

(𝑔 ◇ 𝑓) ◇ ℎ = 𝑔 ◇ (𝑓 ◇ ℎ)

1𝐴 ◇ ℎ = 𝑔 ◇ 1𝐵

ℎ = 𝑔.

Chapter 3. Category Theory 42

One can see that the Ąrst equation comes directly from the associativity of the com-

position. The second comes from the fact that 𝑔 and ℎ are inverses of 𝑓 . The last equation

comes from the fact that composition respects the identity rule.

Using the above result we can create a notation for an inverse of an isomorphism 𝑓 .

Since an inverse 𝑔 is unique, we can write it as 𝑓⊗1.

Using this deĄnition, what would constitute an isomorphism in Sets? One can notice

that sets 𝐴 and 𝐵 are isomorphic iff there is a 𝑓 : 𝐴 ⊃ 𝐵 and a 𝑔 : 𝐵 ⊃ 𝐴 such

that 𝑔(𝑓(𝑥)) = 𝑥. Thus, 𝑔 = 𝑓⊗1, i.e., 𝑔 is the inverse of 𝑓 . In set theory, a function

has an inverse iff 𝑓 is bijective. Thus, 𝐴 and 𝐵 are isomorphic in Sets iff there is an

injective function 𝑓 from 𝐴 onto 𝐵. Some interesting results arise from this deĄnition of

isomorphism:

Proposition 3.3. 𝐴 and 𝐵 are isomorphic in Sets iff they have the same cardinality

(this result can be informally interpreted as both sets having the same size).

Proof. One can prove directly both sides of this proof. In one hand, One knows that if 𝐴

and 𝐵 are isomorphic, then there is a bijection 𝑓 : 𝐴 ⊃ 𝐵. Since two sets by deĄnition

have the same cardinality if there is a bijection between them, then 𝐴 and 𝐵 have the

same cardinality. On the other hand, if two sets have the same cardinality then there

exists a bijection 𝑓 between them, Thus, they are isomorphic.

In set theory, it is well known that one can prove that N, Z e Q have the same

cardinality (HRBACEK; JECH, 1999). Thus, by the above proposition, the naturals are

isomorphic to the integers and to the rationals. At a Ąrst glance, it can be completely

counterintuitive. The naturals have the same structure as the integers? To answer this, one

should remember that in Sets the object of the category is only a set. Thus, this category

does not consider a set together with a order relation. If one considers the naturals and

integers with their usual orderings, then it is obvious that they are not isomorphic. One

direct argument is that in their usual orderings, the naturals are well-ordered, but the

integers are not.

What would constitute an isomorphism in Pos? Given two orderings (𝐴,⊘′) and

(𝐵,⊘′′), one can think of an isomorphism as a bijection 𝑓 between 𝐴 and 𝐵 that respects

the ordering, i.e., if 𝑎, 𝑏 ∈ 𝐴 and 𝑎 ⊘′ 𝑏, then 𝑓(𝑎) ⊘′′ 𝑓(𝑏).

From this deĄnition of isomorphism, one can show that one can pick a suitable ordering

to make the naturals isomorphic to the integers:

Proof. Consider the naturals together with its traditional ordering, i.e, (N,⊘) = 0, 1, 2,

For the integers, consider an ordering ⊘′′ such that (Z,⊘′′) = 0,⊗1, 1,⊗2, 2,⊗3, 3..... One

needs to Ąnd a bijection 𝑓 such that 𝑓(0) = 0, 𝑓(1) = ⊗1, 𝑓(2) = 1, 𝑓(3) = ⊗2, etc. To do

that, one can deĄne 𝑓(𝑥) = (⊗1)𝑥.
⌈︁

𝑥
2

⌉︁

. 𝑓 is clearly monotone, i.e., 𝑎 ⊘ 𝑏 ⇒ 𝑓(𝑎) ⊘′′ 𝑓(𝑏)

and it is also onto. Thus, (N,⊘) ≍= (Z,⊘′′).

Chapter 3. Category Theory 43

In this subsection, we have seen a way of using category theory to give a general

deĄnition for a important concept of mathematics. We have also shown practical examples

using Sets and Pos. Isomorphism will be an essential concept in the mathematical model

of computational paths.

3.1.3 Groupoid

We can use the concept of isomorphism to deĄne a structure known as groupoid. It has

the following deĄnition:

Definition 3.3 (Groupoid (AWODEY, 2010)). Given any category C, we say that C is a

groupoid iff every arrow 𝑓 ∈ 𝐶1 is an isomorphism. In other words, every pair of objects

are mutually isomorphic.

The concept of groupoid plays a main role in the semantical deĄnition of the identity

type. If a category C is a groupoid, then every object of C has a similar structure. In fact,

this concept has achieved great importance due to the discovery of the fact that types

in Martin-LöfŠs type theory have a groupoid structure (HOFMANN; STREICHER, 1994). In

fact, one can prove that types have a weak groupoid structure. Weak here means that the

equalities do not hold on the nose (i.e., the equalities are not deĄnitional), but only up to

propositional equality. One will have a better grasp of the concept of a weak structure in

the next chapter, when we introduce the weak groupoid model of computational paths. In

fact, one of the objectives of our next chapter is to show that one can use computational

paths to build a weak structure similar to the one proposed by (HOFMANN; STREICHER,

1994), which uses the usual formulation of the intensional identity type to build it. With

that in mind, one should notice that groupoid plays an important rule in this work.

We leave further details of this topic for the next chapter. Nevertheless, to better illus-

trate this concept, we are going to give simple examples. Take a category whose objects

are sets and the arrows are bijections between these sets. Since bijections are isomor-

phisms, this category constitutes a groupoid structure. Another example of groupoid is

constructed using Pos. One can take a category whose objects are ordered sets (𝐴𝑛,⊘𝑛)

and arrows are bijections that respect the orderings. Thus, every arrow is an isomorphism.

3.1.4 Functors

The notion of functor is one of the most interesting and important concepts of category

theory. Functors could be understood as a function that receives a category as input.

Therefore, a functor transforms one category into another For example, one could think

of the transformation of a category C into a category D. To do that, one needs to transform

every object of C into a object of D and the arrows of C into arrows of D. Moreover, the

associativity and identity rule must be preserved. We have the following formal deĄnition:

Chapter 3. Category Theory 44

Definition 3.4 (Functor (AWODEY, 2010)). A functor 𝐹 : C ⊃ D between categories C

and D is a mapping of objects and arrows such that:

• 𝐴 ∈ 𝐶0 is mapped to 𝐹 (𝐴) ∈ 𝐷0,

• 𝑓 : 𝐴 ⊃ 𝐵 ∈ 𝐶1 is mapped to 𝐹 (𝑓) : 𝐹 (𝐴) ⊃ 𝐹 (𝐵) ∈ 𝐷1,

• 𝐹 (𝑔 ◇ 𝑓) = 𝐹 (𝑔) ◇ 𝐹 (𝑓),

• 𝐹 (1𝐴) = 1𝐹 (𝐴).

Perhaps a better way of understanding the above deĄnition is to visualize it through

the help of diagrams (AWODEY, 2012):

Example 3.1. This example is going to show the diagram representation of the action of

a generic functor 𝐹 : C ⊃ D. Let C be a category represented by the following diagram:

𝐴 𝐵

𝐶

1𝐴

f

g◇f
g

After applying a functor 𝐹 , one ends up with 𝐹 (C) = D. This is represented by the

following diagram:

𝐹 (𝐴) 𝐹 (𝐵)

𝐹 (𝐶)

F (1𝐴)=1𝐹 (𝐴)

F (f)

F (g◇f)=F (g)◇F (f)
F (g)

Functors are common in practice. A simple example is the functor 𝐹𝑜𝑟 : Pos ⊃ Sets.

One can deĄne 𝐹𝑜𝑟 explaining its action on the objects and arrows of Pos. As we have

seen, an object of Pos is a pair (𝐴,⊘), in which 𝐴 is a set. 𝐹𝑜𝑟 has the following behavior:

𝐹𝑜𝑟(𝐴,⊘) = 𝐴. In the arrows, we have that 𝐹𝑜𝑟(𝑓 : (𝐴,⊘) ⊃ (𝐵,⊘′)) = 𝑓 : 𝐴 ⊃ 𝐵.

Thus, 𝐹𝑜𝑟 can be seen as a forgetful functor that forgets the ordering of a ordered set,

returning only the set. For the arrows, 𝐹𝑜𝑟 forgets that 𝑓 is a monotone function, returning

only the function. Forgetful functors are common in mathematics. Another well known

example is 𝐹𝑜𝑟 : Grp ⊃ Sets. This functor receives a category of groups as input. It then

forgets the group structure, returning only the underlying set. Forgetful functors plays a

fundamental role in category theory, since it is the basic concept behind the concept of

adjoint.

Further in this chapter we are going to see that the use of functors is needed in the

deĄnition of a 2-category.

Chapter 3. Category Theory 45

3.1.5 Duality

Duality is a principle of category theory that states that for any category C, there is a

dual category 𝐶𝑂𝑃 . This category is deĄned in the following way (AWODEY, 2012):

Definition 3.5. Given any category C, the category C𝑂𝑃 is the dual category of C and

is defined in the following way::

• C𝑂𝑃
0 = C0.

• C𝑂𝑃
1 = C1.

• 𝑑𝑜𝑚 C𝑂𝑃 = 𝑐𝑜𝑑 C.

• 𝑐𝑜𝑑 C𝑂𝑃 = 𝑑𝑜𝑚 C.

We can represent this duality using diagrams. Given any category C represented by

the following diagram:

𝐴 𝐵

𝐶

1𝐴

f

g◇f
g

Thus, 𝐶𝑂𝑃 is given by:

𝐴 𝐵

𝐶

1̄𝐴=1𝐴

f̄

ḡ
¯g◇f=f̄◇ḡ

From a dual category, one can deĄne a new kind of functor known as contravariant

functor. A contravariant functor is given by 𝐹 : C𝑂𝑃 ⊃ D. Instead of deĄning a functor

that acts on a category C𝑂𝑃 , one can apply directly a contravariant functor in a category

C. To do that, one just needs to invert the order of the arrows in the application of the

functor. To better see this, consider C as the category of the above example. We have the

following diagram of an application of a contravariant functor 𝐹 :

𝐴 𝐵

𝐶

F (1𝐴)

F (f)

F (g)
F (g◇f)

Chapter 3. Category Theory 46

The use of contravariant functors in category theory is common. Also, duality is a very

useful principle, since many properties of category theory appears from the dual category

of some property. For example, if one has a diagram that represents the product of two

categories, one just needs to get the dual category to deĄne the coproduct.

3.1.6 Commutativity

In this subsection, we introduce two kinds of diagrams widely used in category theory,

the commutative triangle and commutative square.

Definition 3.6 (Commutative triangle). A commutative triangle is the following diagram:

𝐴 𝐵

𝐶

f

h
g

Since it commutes, the triangle 𝐴𝐵𝐶 respects the following equation: 𝑔 ◇ 𝑓 = ℎ.

Definition 3.7 (Commutative square). A commutative square is the following diagram:

𝐴 𝐵

𝐶 𝐷

f

t g

s

Since it commutes, the square 𝐴𝐵𝐶𝐷 respects the following equation: 𝑔 ◇ 𝑓 = 𝑠 ◇ 𝑡.

Those two diagrams are used to deĄne and prove many entities and properties of

category theory.

3.1.7 Product between two categories

Before we deĄne product between two categories, it is important to notice that there is

a signiĄcant difference between product between categories and product between objects

of a category. Product between categories is an operation that builds another category,

whereas a product between objects of a category builds another object. Moreover, we can

always obtain the product of two categories, but sometimes the product of two objects

does not exist. Thus, in this subsection we introduce the product between two categories.

We are also going to introduce the product between two objects in the sequel, since it is

directly connected to the product of two types in type theory.

Chapter 3. Category Theory 47

Definition 3.8 (Product between two categories (AWODEY, 2010)). Given any categories

C and D, one can obtain a category C × D defined by:

• Objects: Objects have the form (𝐶,𝐷), with 𝐶 ∈ 𝐶0 e 𝐷 ∈ 𝐷0.

• Arrows: Arrows have the form (𝑓, 𝑔) : (𝐶,𝐷) ⊃ (𝐶 ′, 𝐷′), with 𝑓 : 𝐶 ⊃ 𝐶 ′ ∈ 𝐶1 e

𝑔 : 𝐷 ⊃ 𝐷′ ∈ 𝐷1.

• Composition: Composition is defined component-wise, given by (𝑓 ′, 𝑔′) ◇ (𝑓, 𝑔) =

(𝑓 ′ ◇ 𝑓, 𝑔′ ◇ 𝑔).

• Identity: The identity arrow is also defined component-wise, given by 1(𝐶,𝐷) =

(1𝐶 , 1𝐷).

• Two projection functors, represented by the following diagram:

C C × D D
π1 π2

The projections respects the following equations:

Þ1(𝐶,𝐷) = 𝐶 Þ2(𝐶,𝐷) = 𝐷

Þ1(𝑓, 𝑔) = 𝑓 Þ2(𝑓, 𝑔) = 𝑔.

This deĄnition will play an important role in the deĄnition of bicategory, as we are

going to see further in this chapter.

3.1.8 Hom and Small Categories

In category theory, there is a important structure called 𝐻𝑜𝑚 and deĄned as:

Definition 3.9 (𝐻𝑜𝑚C(𝐴,𝐵) (AWODEY, 2012)). 𝐻𝑜𝑚C(𝐴,𝐵) is a structure that con-

tains all arrows from object 𝐴 to object 𝐵, both objects of C.

Why we called 𝐻𝑜𝑚 a structure instead of a set? The reason for that is the fact that

sometimes 𝐻𝑜𝑚 is more than just a set. In higher categories, for example, 𝐻𝑜𝑚 can be a

category. Also, when we talk about the size of a category, one has the following deĄnitions:

Definition 3.10 (Large and small category (AWODEY, 2010)). A category C is called

small if 𝐶0 and 𝐶1 are sets. Otherwise the category is called large.

Chapter 3. Category Theory 48

The concept of large category rose up from the fact that in many categories the objects

and arrows cannot be represented by sets. In many cases, each object of a category is

another category. The same thing can happen to the arrows. Moreover, another important

thing to notice is that many properties are only valid in small categories. This happens

because some properties are directly dependent on the fact that the objects and arrows

are sets. We have one more relevant deĄnition:

Definition 3.11 (Locally small category (AWODEY, 2010)). A category C is locally small

if for any pair of objects 𝐴,𝐵 ∈ 𝐶0, then 𝐻𝑜𝑚C(𝐴,𝐵) is a set.

Sometimes we just need some category C to be locally small. This will become more

clear further in this chapter, when we investigate some properties of higher categories.

3.2 PRODUCT IN A CATEGORY

In the previous section, we have seen the deĄnition of product between categories. In this

section, our objective is to deĄne product between objects of a category. This plays an

important role in this work, since it has a direct connection with product of types, as we

are going to show in this section. Based on those connections that we have decided to

use category theory to propose a mathematical model for computational paths, as we are

going to do in the next chapter.

Definition 3.12 (Product in a category (NLAB, 2014)). In a category C, the product

between two objects 𝑋, 𝑌 ∈ 𝐶0 is an object 𝑋×𝑌 equipped with morphisms 𝑝 : 𝑋×𝑌 ⊃ 𝑋

and 𝑞 : 𝑋 × 𝑌 ⊃ 𝑌 , which are called projections. Moreover, the product has a universal

property, which states that given any 𝑍 ∈ 𝐶0 and maps 𝑓 : 𝑍 ⊃ 𝑋 and 𝑔 ⊃ 𝑍 ⊃ 𝑌 , then

there exists a unique map ℎ : 𝑍 ⊃ 𝑋 × 𝑌 such that 𝑝 ◇ ℎ = 𝑓 and 𝑞 ◇ ℎ = 𝑔.

This is represented in the following diagram (AWODEY, 2010):

𝑍

𝑋 𝑋 × 𝑌 𝑌

f
h

g

p q

In the above diagram, the triangles are commutative. If one pays attention to the

deĄnition, the projections are easy to understand. Nevertheless, the part that related to

the universal property, i.e., 𝑍 and the unicity of ℎ might be a little complicated. This part

can be explained in the following way: If there is an arrow 𝑓 : 𝑍 ⊃ 𝑋 and 𝑔 : 𝑍 ⊃ 𝑌 ,

then the unicity of ℎ : 𝑍 ⊃ 𝑋 × 𝑌 indicates that there is only one way to construct the

product from these two arrows. Therefore, we can write ℎ uniquely as ℎ = (𝑓, 𝑔).

Chapter 3. Category Theory 49

Proposition 3.4. In Sets, the product between two objects 𝐴,𝐵 ∈ 𝑆𝑒𝑡𝑠0 is the cartesian

product between two sets.

Proof. To show that the product between two sets is the cartesian product, the Ąrst thing

one needs to do is to show the projects. Thus, one just needs to deĄne 𝑝 : 𝐴 × 𝐵 ⊃ 𝐴

as 𝑝(𝑎, 𝑏) = 𝑎 and deĄne 𝑞 : 𝐴 × 𝐵 ⊃ 𝐵 as 𝑞(𝑎, 𝑏) = 𝑏. Now, one needs to show the

universal property. Let 𝑓 : 𝑍 ⊃ 𝐴 and 𝑔 : 𝑍 ⊃ 𝐵. One can deĄne a ℎ : 𝑍 ⊃ 𝐴 × 𝐵

in the following way: ℎ(𝑥) = (𝑓(𝑥), 𝑔(𝑥)). To end this proof, one needs to check that

𝑝 ◇ℎ = 𝑓 and 𝑞 ◇ℎ = 𝑔. Indeed, (𝑝 ◇ℎ)(𝑥) = 𝑝(ℎ(𝑥)) = 𝑝(𝑓(𝑥), 𝑔(𝑥)) = 𝑓(𝑥). Analogously,

(𝑞 ◇ ℎ)(𝑥) = 𝑞(ℎ(𝑥)) = 𝑞(𝑓(𝑥), 𝑔(𝑥)) = 𝑔(𝑥). Therefore, the cartesian product of two sets

should be seen a the product between two objects of Sets.

A natural questions arises. Is it possible to Ąnd another deĄnition for the product of

two objects in Sets. The following proposition answers this question (AWODEY, 2010):

Proposition 3.5. If × and ×′ are products of a category C, then 𝐴×𝐵 ≍= 𝐴×′ 𝐵.

Proof. This is one case that the a proof with the help of diagrams is much easier to see

(AWODEY, 2010):

𝐴×𝐵

𝐴 𝐴×′ 𝐵 𝐵

𝐴×𝐵

p1 (p1,p2) p2

q1

(q1,q2)

q2

p1 p2

The main point here is that from the universal property of the products, one can

obtain the arrows (𝑝1, 𝑝2) and (𝑞1, 𝑞2). Moreover, all triangles in the above diagram are

commutative. Looking at the diagram, the following equations are obtained from the

triangles (𝐴×𝐵)(𝐴×𝐵)𝐴 and (𝐴×𝐵)(𝐴×𝐵)𝐵:

𝑝1 ◇ (𝑞1, 𝑞2) ◇ (𝑝1, 𝑝2) = 𝑝1

𝑝2 ◇ (𝑞1, 𝑞2) ◇ (𝑝1, 𝑝2) = 𝑝2

Indeed, (𝑞1, 𝑞2) ◇ (𝑝1, 𝑝2) acts as the identity arrow of 𝐴 × 𝐵. By the unicity of those

arrows, one knowns that (𝑞1, 𝑞2)◇(𝑝1, 𝑝2) = 1𝐴×𝐵. Using the symmetry of the diagram, one

obtains (𝑝1, 𝑝2) ◇ (𝑞1, 𝑞2) = 1𝐴×′𝐵. Therefore (𝑝1, 𝑝2) and (𝑞1, 𝑞2) are inverses and establish

the isomorphism between the two products.

Based on this proof, it is possible to state that every category has only one deĄnition

for the product of two objects since all possible deĄnitions are mutually isomorphic.

Chapter 3. Category Theory 50

3.2.1 Product in Type Theory and Category Theory

This section is going to show the close relation between type theory and category theory.

To see that, we are going to show some type theoretic constructions together with the

respective diagrams in type theory. We start with product formation (× ⊗ 𝐹) (NLAB,

2014):

𝐴 type 𝐵 type × ⊗ 𝐹
𝐴×𝐵 type

Product formation is intuitive. Given any types 𝐴 and 𝐵, it is possible to obtain 𝐴×𝐵.

In categories, there is an equivalent proposition: If 𝐴,𝐵 ∈ 𝐶0, then 𝐴 × 𝐵𝑖𝑛𝐶0. Now we

have product introduction (× ⊗ 𝐼) (NLAB, 2014):

𝑎 : 𝐴 𝑏 : 𝐵 × ⊗ 𝐼⟨𝑎, 𝑏⟩ : 𝐴×𝐵

𝑍

𝐴 𝐴×𝐵 𝐵

a (a,b) b

Indeed, given any terms 𝑎 : 𝐴 and 𝑏 : 𝐵, it is possible to construct ⟨𝑎, 𝑏⟩ : 𝐴 × 𝐵.

In categories, it is represented by arrows 𝑎 and 𝑏. Given those arrows, it is possible to

obtain a unique ⟨𝑎, 𝑏⟩ given by the universal property of the product. Now follows the

Ąrst product elimination (× ⊗ 𝐸1) and the second product elimination (× ⊗ 𝐸2) (NLAB,

2014):

𝑡 : 𝐴×𝐵 × ⊗ 𝐸1
𝑝1(𝑡) : 𝐴

𝑡 : 𝐴×𝐵 × ⊗ 𝐸2
𝑝2(𝑡) : 𝐵

𝑍

𝐴 𝐴×𝐵 𝐵

t

p1 p2

The eliminations are done using the projections. This is exactly that the above diagram

represents. We also have diagram representations of the computation rules 𝑝1(⟨𝑎, 𝑏⟩) = 𝑎

and 𝑝2(⟨𝑎, 𝑏⟩) = 𝑏:

𝑍

𝐴 𝐴×𝐵 𝐵

a ⟨a,b⟩ b

p1 p2

Chapter 3. Category Theory 51

That way, one can see that we can translate type theoretic constructions to the lan-

guage of category theory. In this subsection, we have shown the speciĄc case of the prod-

uct, but using a similar process one can translate any entity of type theory, including

path-induction and the constructor 𝐽 .

3.2.2 Coproduct

The objective of this section is not to give a detailed construction of the coproduct, but

to show that it is possible to use duality on the constructions of the product to obtain

direct constructions of the coproduct. Given any a category C and objects 𝐴,𝐵 ∈ 𝐶0, the

coproduct of two objects is represented by 𝐴+𝐵 and given by the following diagram:

𝑍

′𝐴 𝐴+𝐵 𝐵

f

i1

[a,b]
g

i2

As one can see, the coproduct is exactly the dual category of the product. The projec-

tions are replaced by injections. It also has a universal product, that states the following:

if there are 𝑓 : 𝐴 ⊃ 𝑍 and 𝑔 : 𝐵 ⊃ 𝑍, then there is a unique ℎ : 𝐴 + 𝐵 ⊃ 𝑍. We can

also use duality to prove the following proposition:

Proposition 3.6. If + and +′ are coproducts of a category C, then 𝐴+𝐵 ≍= 𝐴+′ 𝐵.

Proof. The proof is directly connected to the fact that the dual of an isomorphism is also

an isomorphism. The duality only changes the direction of the arrow. Thus, if an arrow

is an isomorphism in the original category, then it will also be in the dual. Since the

isomorphism has been proved for the product, the duality keeps it

Using the same process that we have established for the product, one can translate

the construction of the coproduct in type theory to the language of category theory.

3.3 NATURAL TRANSFORMATIONS

Natural transformations are one of the most important concepts of category theory. As we

have said in the introduction of this chapter, category theory was originally proposed to

study natural transformations. Moreover, we are going to use this concept in the deĄnition

of bicategory. Perhaps a good way of introducing natural transformations is the following

example: Suppose that𝐴,𝐵 and 𝐶 are objects of a category with products. Then, (𝐴×𝐵)×
𝐶 ≍= 𝐴×(𝐵×𝐶) (AWODEY, 2010). We will not show the proof of this proposition, since it is

pretty straightforward. One just needs to draw the diagram and establishes the equations

using the commutative triangles. Nevertheless, the important piece o information is the

Chapter 3. Category Theory 52

fact that there exists an isomorphism 𝑓 : (𝐴×𝐵) ×𝐶
≍⊗⊃ 𝐴× (𝐵×𝐶). This isomorphism

𝑓 has a limitation though. It establishes only the isomorphism for objects 𝐴,𝐵 and 𝐶.

Ideally, one wants a general result that does not depend on the choice of objects 𝐴,𝐵 or

𝐶. To do that, one needs the concept of natural transformations.

Intuitively, a natural transformation is a morphism between functors. We can use the

associativity of the product as our Ąrst example of natural transformation. First, one can

conceive the following functors: 𝐹 : C × C × C ⊃ C deĄned by 𝐹 = (⊗1 × ⊗2) × ⊗3 and

the functor 𝐺 : C × C × C ⊃ C deĄned by 𝐺 = ⊗1 × (⊗2 × ⊗3). With that in mind,

one needs to Ąnd a natural transformation 𝜃 : 𝐹 ⊃ 𝐺. Moreover, one also needs to show

that 𝜃 is an entity known as natural isomorphism. Thus, one Ąnishes the proof that the

isomorphism (𝐴×𝐵) ×𝐶 ≍= 𝐴× (𝐵×𝐶) does not depend on the choice of the objects. In

that case, it is said that the isomorphism is natural on 𝐴,𝐵 and 𝐶. Here follows a formal

deĄnition for natural transformation:

Definition 3.13 (Natural transformation (AWODEY, 2010)). Given any categories C

and D and functors 𝐹,𝐺 : C ⊃ D, a natural transformation 𝜃 : 𝐹 ⊃ 𝐺 is a family of

arrows in D given by: (𝜃𝐶 : 𝐹𝐶 ⊃ 𝐺𝐶)𝐶∈𝐶0. Moreover, given a 𝑓 : 𝐶 ⊃ 𝐶 ′ ∈ 𝐶1, then

𝜃𝐶′ ◇𝐹 (𝑓) = 𝐺(𝑓) ◇ 𝜃𝐶. This equality is represented by the following commutative square:

𝐹𝐶 𝐺𝐵

𝐹𝐶 ′ 𝐺𝐷

θ𝐶

F (f) G(g)

θ𝐶′

The arrows 𝜃𝐶 are called components 𝜃 in 𝐶.

Looking at the above deĄnition, one can conclude that to Ąnd a natural transformation

between two functors, one just needs to Ąnd a suitable morphism for the components.

This morphism needs to be natural, i.e, it must obey the commutative square. From the

deĄnition of natural transformation, one can deĄne the following category:

Definition 3.14 (Category 𝐹𝑢𝑛(C,D) (AWODEY, 2010)). Given any categories C and

D, it is possible to construct the category 𝐹𝑢𝑛(C,D) defined by:

• Objects: Objects are functors 𝐹 : C ⊃ D.

• Arrows: Arrows are natural transformations 𝜃 : 𝐹 ⊃ 𝐺.

• Composition: Given any two arrows 𝜃 : 𝐹 ⊃ 𝐺 e ã : 𝐺 ⊃ 𝐻, it is possible to define

(ã ◇ 𝜃) component-wise: (ã ◇ 𝜃)𝐶 = ã𝐶 ◇ 𝜃𝐶.

Chapter 3. Category Theory 53

• Identity: Given any functor 𝐹 , the arrow 1𝐹 is defined component-wise: (1𝐹)𝐶 =

1𝐹 𝐶 : 𝐹𝐶 ⊃ 𝐹𝐶.

Therefore, we can now deĄne natural isomorphism:

Definition 3.15 (Natural isomorphism (AWODEY, 2010)). A natural isomorphism is

a natural transformation 𝜃 : 𝐹 ⊃ 𝐺 such that 𝜃 is an isomorphism in the category

𝐹𝑢𝑛(C,D).

There is a easier way to check if a natural transformation is an isomorphism (AWODEY,

2010):

Proposition 3.7. A natural transformation 𝜃 : 𝐹 ⊃ 𝐺 is a natural isomorphism iff every

component 𝜃𝐶 : 𝐹𝐶 ⊃ 𝐺𝐶 is an isomorphism.

Proof. (⇒) To prove this direction, one needs to prove that given any natural isomorphism

𝜃 : 𝐹 ⊃ 𝐺Ď then every component 𝜃𝐶 is also an isomorphism. Since 𝜃 is an isomorphism,

then 𝜃 has an inverse ã : 𝐺 ⊃ 𝐹 . Thus, one has that 𝜃 ◇ ã = 1𝐺 and ã ◇ 𝜃 = 1𝐹 . Thus,

if one takes any component in 𝐶, one concludes that (𝜃 ◇ ã)𝐶 = (1𝐺)𝐶 and (ã ◇ 𝜃)𝐶 =

(1𝐹)𝐶 . By the deĄnition of composition and identity in 𝐹𝑢𝑛, one obtains ã𝐶 ◇ 𝜃𝐶 = 1𝐹 𝐶

and 𝜃𝐶 ◇ ã𝐶 = 1𝐺𝐶 . Therefore, ã𝐶 is inverse to 𝜃𝐶 . Therefore, every component is an

isomorphism.

(⇐) To prove the opposite direction, one needs to show that if every component 𝜃𝐶

of a natural transformation 𝜃 is an isomorphism, then 𝜃 is also an isomorphism. If each

component is an isomorphism then for each 𝜃𝐶 there exists an inverse arrow ã𝐶 such that

𝜃𝐶 ◇ ã𝐶 = 1𝐺𝐶 and ã𝐶 ◇ 𝜃𝐶 = 1𝐹 𝐶 . By the deĄnition of composition and identity of 𝐹𝑢𝑛,

one has that 𝜃𝐶 ◇ã𝐶 = (𝜃 ◇ã)𝐶 = 1𝐺𝐶 = (1𝐺)𝐶 . Thus, 𝜃 ◇ã = 1𝐺. Analogously, one shows

that ã ◇ 𝜃 = 1𝐹 . Therefore, ã is a natural transformation inverse to 𝜃. One concludes that

𝜃 is natural isomorphism.

The above proposition makes the notion of natural isomorphism easier to work with,

since one only needs to show that every component is an isomorphism. To show how

one can use natural transformations and natural isomorphisms in practice, consider the

following proposition:

Proposition 3.8. Let C be a category that has binary products and 𝐴,𝐵 ∈ 𝐶0, then

𝐴×𝐵 ≍= 𝐵 × 𝐴 and the isomorphism is natural in 𝐴 and in 𝐵.

If we limited the above proposition to a proof of 𝐴× 𝐵 ≍= 𝐵 × 𝐴, then it would be a

matter of showing diagrams of the product to establish this isomorphism. Nevertheless,

we also need to show that this isomorphism is natural in 𝐴 and in 𝐵. There is only one

way of doing that: using natural transformations. Here is the proof (AWODEY, 2010):

Chapter 3. Category Theory 54

Proof. To prove this natural isomorphism, one needs to deĄne the functors Ąrst. The Ąrst

functor is × : C×C ⊃ C, deĄned by × = (⊗1,⊗2). The second is given by ×̄ : C×C ⊃ C

deĄned by ×̄ : (⊗2,⊗1). Thus, in objects 𝐴×̄𝐵 = 𝐵×𝐴 and in arrows Ð×̄Ñ = Ñ×Ð. that

way, one now needs to conceive a natural transformation 𝜃 between those two functors.

One can deĄne 𝜃 by its behavior when applied in terms (𝐴,𝐵). Thus, one can deĄne

𝜃(𝐴,𝐵)(𝑎, 𝑏) = (𝑏, 𝑎), with 𝑎 and 𝑏 arrows of a product (i.e., given a 𝑍, they are arrows

𝑍 ⊃ 𝐴 e 𝑍 ⊃ 𝐵 respectively). One also needs to show that 𝜃 is a natural transformation.

In other words, to show that the following diagram commutes:

𝐴×𝐵 𝐵 × 𝐴

𝐴′ ×𝐵′ 𝐵′ × 𝐴′

θ(𝐴,𝐵)

α×β β×α

θ(𝐴′,𝐵′)

To show that the above diagram commutes, one only needs to take any (𝑎, 𝑏) from 𝑍,

𝑎 : 𝑍 ⊃ 𝐴 and 𝑏 : 𝑍 ⊃ 𝐵. Thus, we obtain the following equations:

(Ñ × Ð)𝜃(𝐴,𝐵)(𝑎, 𝑏) = (Ñ × Ð)(𝑏, 𝑎)

(Ñ × Ð)(𝑏, 𝑎) = (Ñ𝑏, Ð𝑎)

(Ñ𝑏, Ð𝑎) = 𝜃(𝐴′,𝐵′)(Ð𝑎, Ñ𝑏)

(Ð𝑎, Ñ𝑏) = 𝜃(𝐴′,𝐵′)(Ð× Ñ)(𝑎, 𝑏)

Therefore, (Ñ × Ð)𝜃(𝐴,𝐵)(𝑎, 𝑏) = 𝜃(𝐴′,𝐵′)(Ð × Ñ)(𝑎, 𝑏), proving that the square is com-

mutative. Thus, one concludes that 𝜃 is a natural transformation. Nonetheless, one still

needs to show that 𝜃 is an isomorphism. To do that, one can use proposition 3.7, i.e.,

one just needs to show that every component is an isomorphism. The isomorphism for

each component is simple to show, since for each 𝜃(𝐴,𝐵) there is an inverse ã(𝐴,𝐵) = 𝜃(𝐵,𝐴).

Here follows:

(𝜃(𝐴,𝐵) ◇ ã(𝐴,𝐵))(𝐵 × 𝐴) = 𝜃(𝐴,𝐵)(𝐴×𝐵) = 𝐵 × 𝐴

(ã(𝐴,𝐵) ◇ 𝜃(𝐴,𝐵))(𝐴×𝐵) = ã(𝐵,𝐴)(𝐵 × 𝐴) = 𝐴×𝐵

Therefore, one concludes:

(𝜃(𝐴,𝐵) ◇ ã(𝐴,𝐵)) = 1×̄(𝐴,𝐵)

(ã(𝐴,𝐵) ◇ 𝜃(𝐴,𝐵)) = 1×(𝐴,𝐵).

Thus, each component 𝜃 em (𝐴,𝐵) is an isomorphism. Therefore, 𝜃 is an isomorphism.

Thus, one concludes this proof.

Chapter 3. Category Theory 55

3.3.1 Adjoints

After introducing the concept of natural transformations, we can talk about adjoints. It

is one of the most important concepts of this theory, since it has many applications.

We have talked about functions and how one can transform a structure into another.

A question arises: what is the best way of making this transformation? In other words,

we have an optimization problem in our hands. This subsection proposes a solution to

this question. It introduces a concept that it is possible to optimize those transformations

and its inverse process. For example, we talked about a forgetful functor that forgets the

group structure and returns only the underlying set. As a matter of fact, it is the optimal

way of transforming a group into a set. We also have an inverse process, we take a set

and obtain a group freely generated by it. This is also optimal, thus we are going to say

that those two functors form a pair of adjoints.

Perhaps one of the best way of introducing adjoints is to use the concept of monoid,

the forgetful functor on a monoid and the functor that generates a free monoid. First,

letŠs recall the classic deĄnition of monoid:

Definition 3.16 (Monoid (NLAB, 2017)). A monoid is a set 𝑀 equipped with a binary

operation Û : 𝑀 ×𝑀 ⊃ 𝑀 and a special element 1 ∈ 𝑀 (the neutral element) such that

1 and 𝑥.𝑦 = Û(𝑥, 𝑦) satisfies the associative law:

(𝑥.𝑦).𝑧 = 𝑥.(𝑦.𝑧)

and the left and right unit laws:

1.𝑥 = 𝑥 = 𝑥.1

Thus, from a monoid, one can clearly apply a forgetful functor to obtain the underlying

set. From a set, one can freely generate a monoid using the elements of this set. Intuitively,

a free generation works using the elements of the set as as letters and the operation of

the monoid as compositions. Also, all equalities must come from the monoid axioms.

Nevertheless, one can use category theory to precisely deĄne a free monoid. Before we

deĄne that, it is important to notice some facts. If one have a monoid 𝑁 , then one also

have an underlying set ‖𝑁‖. Also, from every monoid homomorphism 𝑓 : 𝑁 ⊃ 𝑀 , one

have a forgetful functor ‖𝑓‖ : ‖𝑁‖ ⊃ ‖𝑀‖. Thus, one can deĄne a free monoid in the

following way:

Definition 3.17 (Free Monoid (AWODEY, 2010)). A free monoid 𝑀(𝐴) on a set 𝐴 is the

monoid with the following universal mapping property: There’s a function 𝑖 : 𝐴 ⊃ ‖𝑀(𝐴)‖
and given any monoid 𝑁 and any function 𝐴 ⊃ ‖𝑁‖, there’s a unique monoid homo-

morphism 𝑓 : 𝑀(𝐴) ⊃ 𝑁 such that ‖𝑓‖ ◇ 𝑖 = 𝑓 . This is given by the following diagrams:

In the category of monoids:

Chapter 3. Category Theory 56

𝑀(𝐴) 𝑁
f̄

in the category of Sets:

𝐴 𝑀(𝐴)

‖𝑁‖

i

f
‖f̄‖

Since we have considered the forgetful functor as the optimal way of obtaining a set

from a monoid, one can consider a free monoid as the optimal way of obtaining a monoid

from a set. Together, those two functors makes a pair of adjoints.

Based on that, we can deĄne adjoints formally already:

Definition 3.18 (Adjunction (AWODEY, 2010)). An adjuction between categories C and

D are a pair of functors:

𝐹 : 𝐶 𝐷 : 𝑈
𝑠

𝑡

and a natural transformation:

Ö : 1𝐶 ⊃ 𝑈 ◇ 𝐹

that follows the diagrams:

𝐹 (𝐶) 𝐷
g

𝐶 𝑈(𝐹 (𝐶))

𝑈(𝐷)

η𝐶

f
U(g)

In the above deĄnition, 𝐹 is called the left adjoint, 𝑈 the right adjoint and Ö is the unit

of the adjunction. In the monoid example, the left adjoint is the free monoid generator

and the right adjoint is the forgetful functor.

Chapter 3. Category Theory 57

3.4 HIGHER CATEGORIES

In this section, we introduce only the concepts of higher category theory that will be

necessary to prove our results in the next chapter.

Previously in this chapter, we have said that sometimes the arrows between two objects

do not form only a set, but a category instead. In that case, we have categories between

every pair of objects. In this sense, we can think that we have added a new dimension to

the category. Indeed, this process can continue. We can take a category, then a category

between pair of objects and go even further, taking a category between pairs of objects of

this inner category. This process can add inĄnitely many dimensions. When this process

goes up to the inĄnity, we have an ∞ ⊗ 𝑔𝑟𝑜𝑢𝑝𝑜𝑖𝑑.

Another important concept is the fact that sometimes the equalities of a category

does not hold "on the nose", but only in a weak sense. For example, we have seen the

difference between deĄnitional and propositional equalities in type theory. In this theory,

the equalities of a category induced by a type do not hold in the strict sense of deĄnitional

equalities, but only hold up to propositional equality, thus they are weak structures. In

fact, weak structures are much more common in mathematics than strict ones. Thus, we

are going to be interested in weak higher order categories.

Moreover, it is important to notice that we are going to limit the scope of this work

to weak categories of the second order, called bicategories. Obtaining a weak ∞-groupoid

would be a great achievement, but since it involves many highly complex concepts of

higher category theory, trying to achieve this result would be unpractical.

With that said, we can Ąnally deĄne some basic concepts of higher category theory.

3.4.1 Globular Sets

The Ąrst important concept is globular set:

Definition 3.19 (Globular Sets (LEINSTER, 2004)). Let 𝑛 ∈ N. A globular set 𝑋 is the

following diagram of sets and functions:

𝑋(𝑛) 𝑋(𝑛⊗ 1) ... 𝑋(0)
𝑠

𝑡

𝑠

𝑡

𝑠

𝑡

The diagram must respect the following equations for any 𝑚 ∈ ¶2,, 𝑛♢ and 𝑥 ∈
𝑋(𝑚):

𝑠(𝑠(𝑥)) = 𝑠(𝑡(𝑥)), 𝑡(𝑠(𝑥)) = 𝑡(𝑡(𝑥))

The terms 𝑥 ∈ 𝑋(𝑛) are called 𝑛-cells.

Chapter 3. Category Theory 58

3.4.2 Horizontal Composition

Given any globular set, a 0-cell is simply an object and is represented by the following

diagram:

𝑎

An 1-cell is a morphism between objects, represented by:

𝑎 𝑏𝑠

2-cells are morphisms between 1-cells. Therefore, are represented by the following

diagram:

𝑎 𝑏

𝑠

𝑡

Ð

Since a 2-cell has a higher dimension that 1-cells, it is possible to compose 2-cells in

two different ways. The Ąrst way is the traditional composition written as ◇. The diagram

𝑎 𝑏

𝑠

t

𝑥

Ð

ä

can be represented by:

𝑎 𝑏

𝑠

𝑥

ä ◇ Ð

Chapter 3. Category Theory 59

In a 2-cell, the traditional composition is also known as vertical composition. For 2-

cells, we have an additional composition written as ◇ℎ. It is called horizontal composition

(LEINSTER, 2004). It is represented by transforming the following diagram

𝑎 𝑏 𝑐

𝑠

𝑥

𝑡

𝑦

Ð ä

into the diagram:

𝑎 𝑐

𝑡 ◇ 𝑠

𝑦 ◇ 𝑥

ä ◇ℎ Ð

Thus, when one works with categories of order higher than 1, one needs to take into

account those new kind of compositions. In the case of 2-categories, the 2-cells will have

those two compositions. Moreover, the horizontal composition must also respects asso-

ciativity and the identity laws. Analogously, 3-cells, in addition of the two compositions

present in 2-cells, has a third one. Indeed, a 𝑛-cell has 𝑛 compositions. Formally, 𝑚 com-

positions of a 𝑚-cell ∈ 𝐴(𝑚) is represented by (LEINSTER, 2004):

𝐴(𝑚) ×𝐴(𝑝) 𝐴(𝑚) = ¶(𝑥′, 𝑥) ∈ 𝐴(𝑚) × 𝐴(𝑚) ♣ 𝑡𝑚⊗𝑝(𝑥) = 𝑠𝑚⊗𝑝(𝑥′)♢, with 𝑝 ⊘ 𝑚

3.4.3 Bicategories

Bicategories are weak second order categories. They are deĄned as follows:

Definition 3.20 (Bicategories (LEINSTER, 1998)). A bicategory Γ is a structure with the

following data and axioms:

Data:

• Objects collection ob Γ (Elements are 0-cells 𝐴,𝐵, ...)

• Categories Γ(𝐴,𝐵) (1-cells 𝑓, 𝑔, ... are the objects of those categories and arrows are

2-cells Ð, Ñ, ...)

• Functors:

Chapter 3. Category Theory 60

𝑐𝐴𝐵𝐶 : Γ(𝐵,𝐶) × Γ(𝐴,𝐵) ⊃ Γ(𝐴,𝐶)

(𝑔, 𝑓) ⊃ 𝑔 ◇ 𝑓 = 𝑔𝑓

(Ñ, Ð) ⊃ Ñ ◇ℎ Ð

and 𝐼𝐴 : 1 ⊃ Γ(𝐴,𝐴) (thus, 𝐼𝐴 is an 1-cell 𝐴 ⊃ 𝐴)

• The following natural isomorphisms:

Thus, we have 2-cells:

𝑎ℎ𝑔𝑓 : (ℎ𝑔)𝑓 ≍⊗⊃ ℎ(𝑔𝑓)

𝑟𝑓 : 𝑓 ◇ 𝐼𝐴
≍⊗⊃ 𝑓

𝑙𝑓 : 𝐼𝐵 ◇ 𝑓 ≍⊗⊃ 𝑓

Axioms:

Consider the following configuration of 1-cells

𝑎 𝑏 𝑐 𝑑 𝑒𝑠 𝑟 𝑝 𝑢

The following diagrams commute:

Chapter 3. Category Theory 61

((𝑢 ◇ 𝑝) ◇ 𝑟) ◇ 𝑠

(𝑢 ◇ 𝑝) ◇ (𝑟 ◇ 𝑠)

(𝑢 ◇ (𝑝 ◇ 𝑟)) ◇ 𝑠

𝑢 ◇ ((𝑝 ◇ 𝑟) ◇ 𝑠)

𝑢 ◇ (𝑝 ◇ (𝑟 ◇ 𝑠))

𝑎

𝑎 ◇ℎ 1

𝑎

𝑎 1 ◇ℎ 𝑎

(𝑟 ◇ 𝜌𝑏) ◇ 𝑠 𝑟 ◇ (𝜌𝑏 ◇ 𝑠)

𝑟 ◇ 𝑠

𝑎

𝑟𝑟 ◇ℎ 1 1 ◇ℎ 𝑙𝑠

In the literature of higher order category theory, the axioms of a weak higher order

category are called coherence laws (LEINSTER, 2004).

3.5 CONCLUSION

In this chapter, we have seen the basic concepts of category theory. Most will play an

important role in the next chapter. The concepts of isomorphism and groupoid, for in-

stance, will be the base for mathematical model for computational paths. We have also

seen concepts of higher category theory, since in the sequel we are going to show that

computational paths forms a higher structure.

62

4 COMPUTATIONAL PATHS

In this chapter, we introduce the main concept of this work, an entity known as

computational paths. In chapter 2, we have seen that it is possible to interpret the

identity type semantically, considering the terms as homotopical paths between two points

of a space. Nevertheless, there is no entity that represents those paths in the syntax of

type theory. Thus, we add computational paths to Ąll this gap. In this sense, our objective

is to formulate the identity type using this new entity.

This work has also been motivated by the fact that although beautifully deĄned, we

have noticed that proofs that uses the identity type can be sometimes a little too complex.

The elimination rule of the intensional identity type encapsulates lots of information,

sometimes making too troublesome the process of Ąnding the reason that builds the correct

type. We have also seen this in chapter 2. We proposed constructions for the symmetry

and transitivity of the identity type. Although one could expect those constructions to be

pretty straightforward, the process of obtaining the right reason to construct those types

was troublesome.

Thus, inspired by the path-based approach of the homotopy interpretation, we believe

that a similar approach can be used to deĄne the identity type in type theory. To achieve

that, we have been using a notion of computational paths. The interpretation will be

similar to the homotopy one: a term 𝑝 : 𝐼𝑑𝐴(𝑎, 𝑏) will be a computational path between

terms 𝑎, 𝑏 : 𝐴, and such path will be the result of a sequence of rewrites. In the sequel, we

shall deĄne formally the concept of a computational path. The main idea, i.e. proofs of

equality statements as (reversible) sequences of rewrites, is not new, as it goes back to a

paper entitled ŞEquality in labeled deductive systems and the functional interpretation of

propositional equality ", presented in December 1993 at the 9th Amsterdam Colloquium,

and published in the proceedings in 1994(QUEIROZ; GABBAY, 1994).

In the previous chapter, we have seen the concept of higher structures such as higher

categories. Indeed, one of the most interesting aspects of the identity type is the fact that it

can be used to construct higher structures. This is a rather natural consequence of the fact

that it is possible to construct higher identities. For any 𝑎, 𝑏 : 𝐴, we have type 𝐼𝑑𝐴(𝑎, 𝑏). If

this type is inhabited by any 𝑝, 𝑞 : 𝐼𝑑𝐴(𝑎, 𝑏), then we have type 𝐼𝑑𝐼𝑑A(𝑎,𝑏)(𝑝, 𝑞). If the latter

type is inhabited, we have a higher equality between 𝑝 and 𝑞(HARPER, 2012). This concept

is also present in computational paths. One can show the equality between two computa-

tional paths 𝑠 and 𝑡 by constructing a third one between 𝑠 and 𝑡. We show in this chapter a

This chapter is based on two papers published by the author (jointly with his advisor and co-advisor):
Propositional equality, identity types, and computational paths in South American Joournal of Logic,
2016 (QUEIROZ; OLIVEIRA; RAMOS, 2016) and On the Identity Type as the Type of Computational

Paths in Logic Journal of the IGPL, 2017 (RAMOS; QUEIROZ; OLIVEIRA, 2017).

Chapter 4. Computational Paths 63

system of rules used to establish equalities between computational paths(OLIVEIRA, 1995).

Then, we show that these higher equalities go up to the inĄnity, forming a ∞-globular-set.

We also show that computational paths naturally induce a groupoid structure. We also

go a step further, showing that computational paths are capable of inducing a higher

groupoid structure.

Another important question we want to answer is one that arises naturally when

talking about equality: Is there a canonical proof for an expression 𝑡1 = 𝑡2? In the language

of computational paths, is there a normal path between 𝑡1 = 𝑡2 such that every other path

can be reduced to this one? In fact, we are going to prove that the answer is negative.

Our model also refute the Uniquiness of Identity Proofs (UIP)).

4.1 INTRODUCING COMPUTATIONAL PATHS

Before we enter in details of computational paths, letŠs recall what motivated the intro-

duction of computational paths to type theory. In type theory, our types are interpreted

using the so-called Brower-Heyting-Kolmogorov Interpretation. That way, a semantic in-

terpretation of types are not given by truth-values, but by the concept of proof as a

primitive notion. Thus, we have (QUEIROZ; OLIVEIRA; RAMOS, 2016):

a proof of the proposition: is given by:

𝐴 ∧𝐵 a proof of 𝐴 and a proof of 𝐵

𝐴 ∨𝐵 a proof of 𝐴 or a proof of 𝐵

𝐴 ⊃ 𝐵 a function that turns a proof of 𝐴 into a proof of 𝐵

∀𝑥𝐷.𝑃 (𝑥) a function that turns an element 𝑎 into a proof of 𝑃 (𝑎)

∃𝑥𝐷.𝑃 (𝑥) an element 𝑎 (witness) and a proof of 𝑃 (𝑎)

Also, based on the Curry-Howard functional interpretation of logical connectives, one

have (QUEIROZ; OLIVEIRA; RAMOS, 2016):

a proof of the proposition: has the canonical form of:

𝐴 ∧𝐵 ⟨𝑝, 𝑞⟩ where 𝑝 is a proof of 𝐴 and 𝑞 is a proof of 𝐵

𝐴 ∨𝐵 𝑖(𝑝) where 𝑝 is a proof of 𝐴 or 𝑗(𝑞) where 𝑞 is a proof of 𝐵

(Ś𝑖Š and Ś𝑗Š abbreviate Śinto the left/right disjunctŠ)

𝐴 ⊃ 𝐵 Ú𝑥.𝑏(𝑥) where 𝑏(𝑝) is a proof of B

provided 𝑝 is a proof of A

∀𝑥𝐴.𝐵(𝑥) Λ𝑥.𝑓(𝑥) where 𝑓(𝑎) is a proof of 𝐵(𝑎)

provided 𝑎 is an arbitrary individual chosen

from the domain 𝐴

∃𝑥𝐴.𝐵(𝑥) 𝜀𝑥.(𝑓(𝑥), 𝑎) where 𝑎 is a witness

from the domain 𝐴, 𝑓(𝑎) is a proof of 𝐵(𝑎)

Chapter 4. Computational Paths 64

If one looks closely, there is one interpretation missing in the BHK-Interpretation.

What constitutes a proof of 𝑡1 = 𝑡2? In other words, what is a proof of an equality

statement? We answer this by proposing that an equality between those two terms should

be a sequence of rewrites starting from 𝑡1 and ending at 𝑡2. Thus, we would have (QUEIROZ;

OLIVEIRA; RAMOS, 2016):

a proof of the proposition: is given by:

𝑡1 = 𝑡2 ?

(Perhaps a sequence of rewrites

starting from 𝑡1 and ending in 𝑡2?)

We call computational path the sequence of rewrites between these terms.

4.1.1 Formal Definition

Since computational path is a generic term, it is important to emphasize the fact that

we are using the term computational path in the sense deĄned by(QUEIROZ; OLIVEIRA,

2014a). A computational path is based on the idea that it is possible to formally deĄne

when two computational objects 𝑎, 𝑏 : 𝐴 are equal. These two objects are equal if one can

reach 𝑏 from 𝑎 by applying a sequence of axioms or rules. This sequence of operations

forms a path. Since it is between two computational objects, it is said that this path is

a computational one. Also, an application of an axiom or a rule transforms (or rewrite)

an term in another. For that reason, a computational path is also known as a sequence

of rewrites. Nevertheless, before we deĄne formally a computational path, we can take a

look at one famous equality theory, the ÚÑÖ ⊗ 𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦(HINDLEY; SELDIN, 2008):

Definition 4.1. The ÚÑÖ-equality is composed by the following axioms:

(Ð) Ú𝑥.𝑀 = Ú𝑦.𝑀 [𝑦/𝑥] if 𝑦 /∈ 𝐹𝑉 (𝑀);

(Ñ) (Ú𝑥.𝑀)𝑁 = 𝑀 [𝑁/𝑥];

(𝜌) 𝑀 = 𝑀 ;

(Ö) (Ú𝑥.𝑀𝑥) = 𝑀 (𝑥 /∈ 𝐹𝑉 (𝑀)).

And the following rules of inference:

𝑀 = 𝑀 ′
(Û)

𝑁𝑀 = 𝑁𝑀 ′
𝑀 = 𝑁 𝑁 = 𝑃(á)

𝑀 = 𝑃

Chapter 4. Computational Paths 65

𝑀 = 𝑀 ′
(Ü)

𝑀𝑁 = 𝑀 ′𝑁
𝑀 = 𝑁(à)
𝑁 = 𝑀

𝑀 = 𝑀 ′
(Ý)

Ú𝑥.𝑀 = Ú𝑥.𝑀 ′

Definition 4.2. (HINDLEY; SELDIN, 2008) 𝑃 is Ñ-equal or Ñ-convertible to 𝑄 (notation

𝑃 =Ñ 𝑄) iff 𝑄 is obtained from 𝑃 by a finite (perhaps empty) series of Ñ-contractions

and reversed Ñ-contractions and changes of bound variables. That is, 𝑃 =Ñ 𝑄 iff there

exist 𝑃0, . . . , 𝑃𝑛 (𝑛 ⊙ 0) such that 𝑃0 ⊕ 𝑃 , 𝑃𝑛 ⊕ 𝑄, (∀𝑖 ⊘ 𝑛⊗ 1)(𝑃𝑖 ◁1Ñ 𝑃𝑖+1 or 𝑃𝑖+1 ◁1Ñ

𝑃𝑖 or 𝑃𝑖 ⊕Ð 𝑃𝑖+1).

(Note that equality has an existential force, which will show in the proof rules for the

identity type.)

The same happens with ÚÑÖ-equality:

Definition 4.3. (ÚÑÖ-equality(HINDLEY; SELDIN, 2008)) The equality-relation determined

by the theory ÚÑÖ is called =ÑÖ; that is, we define

𝑀 =ÑÖ 𝑁 ⇔ ÚÑÖ ⊢ 𝑀 = 𝑁.

Example 4.1. Take the term 𝑀 ⊕ (Ú𝑥.(Ú𝑦.𝑦𝑥)(Ú𝑤.𝑧𝑤))𝑣. Then, it is ÑÖ-equal to 𝑁 ⊕ 𝑧𝑣

because of the sequence:

(Ú𝑥.(Ú𝑦.𝑦𝑥)(Ú𝑤.𝑧𝑤))𝑣, (Ú𝑥.(Ú𝑦.𝑦𝑥)𝑧)𝑣, (Ú𝑦.𝑦𝑣)𝑧, 𝑧𝑣

which starts from 𝑀 and ends with 𝑁 , and each member of the sequence is obtained via

1-step Ñ- or Ö-contraction of a previous term in the sequence. To take this sequence into

a path, one has to apply transitivity twice, as we do in the example below.

Example 4.2. The term 𝑀 ⊕ (Ú𝑥.(Ú𝑦.𝑦𝑥)(Ú𝑤.𝑧𝑤))𝑣 is ÑÖ-equal to 𝑁 ⊕ 𝑧𝑣 because of

the sequence:

(Ú𝑥.(Ú𝑦.𝑦𝑥)(Ú𝑤.𝑧𝑤))𝑣, (Ú𝑥.(Ú𝑦.𝑦𝑥)𝑧)𝑣, (Ú𝑦.𝑦𝑣)𝑧, 𝑧𝑣

Now, taking this sequence into a path leads us to the following:

The first is equal to the second based on the grounds:

Ö((Ú𝑥.(Ú𝑦.𝑦𝑥)(Ú𝑤.𝑧𝑤))𝑣, (Ú𝑥.(Ú𝑦.𝑦𝑥)𝑧)𝑣)

The second is equal to the third based on the grounds:

Ñ((Ú𝑥.(Ú𝑦.𝑦𝑥)𝑧)𝑣, (Ú𝑦.𝑦𝑣)𝑧)

Now, the first is equal to the third based on the grounds:

á(Ö((Ú𝑥.(Ú𝑦.𝑦𝑥)(Ú𝑤.𝑧𝑤))𝑣, (Ú𝑥.(Ú𝑦.𝑦𝑥)𝑧)𝑣), Ñ((Ú𝑥.(Ú𝑦.𝑦𝑥)𝑧)𝑣, (Ú𝑦.𝑦𝑣)𝑧))

Now, the third is equal to the fourth one based on the grounds:

Ñ((Ú𝑦.𝑦𝑣)𝑧, 𝑧𝑣)

Thus, the first one is equal to the fourth one based on the grounds:

á(á(Ö((Ú𝑥.(Ú𝑦.𝑦𝑥)(Ú𝑤.𝑧𝑤))𝑣, (Ú𝑥.(Ú𝑦.𝑦𝑥)𝑧)𝑣), Ñ((Ú𝑥.(Ú𝑦.𝑦𝑥)𝑧)𝑣, (Ú𝑦.𝑦𝑣)𝑧)), Ñ((Ú𝑦.𝑦𝑣)𝑧, 𝑧𝑣))).

Chapter 4. Computational Paths 66

The aforementioned theory establishes the equality between two Ú-terms. Since we

are working with computational objects as terms of a type, we need to translate the

ÚÑÖ-equality to a suitable equality theory based on Martin LöfŠs type theory. We obtain:

Definition 4.4. The equality theory of Martin Löf’s type theory has the following basic

proof rules for the Π-type:

𝑁 : 𝐴

[𝑥 : 𝐴]

𝑀 : 𝐵(Ñ)
(Ú𝑥.𝑀)𝑁 = 𝑀 [𝑁/𝑥] : 𝐵[𝑁/𝑥]

[𝑥 : 𝐴]

𝑀 = 𝑀 ′ : 𝐵(Ý)
Ú𝑥.𝑀 = Ú𝑥.𝑀 ′ : (Π𝑥 : 𝐴)𝐵

𝑀 : 𝐴(𝜌)
𝑀 = 𝑀 : 𝐴

𝑀 = 𝑀 ′ : 𝐴 𝑁 : (Π𝑥 : 𝐴)𝐵
(Û)

𝑁𝑀 = 𝑁𝑀 ′ : 𝐵[𝑀/𝑥]

𝑀 = 𝑁 : 𝐴(à)
𝑁 = 𝑀 : 𝐴

𝑁 : 𝐴 𝑀 = 𝑀 ′ : (Π𝑥 : 𝐴)𝐵
(Ü)

𝑀𝑁 = 𝑀 ′𝑁 : 𝐵[𝑁/𝑥]

𝑀 = 𝑁 : 𝐴 𝑁 = 𝑃 : 𝐴(á)
𝑀 = 𝑃 : 𝐴

𝑀 : (Π𝑥 : 𝐴)𝐵
(Ö) (𝑥 /∈ 𝐹𝑉 (𝑀))

(Ú𝑥.𝑀𝑥) = 𝑀 : (Π𝑥 : 𝐴)𝐵

We are Ąnally able to formally deĄne computational paths:

Definition 4.5. Let 𝑎 and 𝑏 be elements of a type 𝐴. Then, a computational path 𝑠 from

𝑎 to 𝑏 is a composition of rewrites (each rewrite is an application of the inference rules of

the equality theory of type theory or is a change of bound variables). We denote that by

𝑎 =𝑠 𝑏.

As we have seen in example 4.2, composition of rewrites are applications of the rule á .

Since change of bound variables is possible, each term is considered up to Ð-equivalence.

4.1.2 Equality Equations

One can use the aforementioned axioms to show that computational paths establishes the

three fundamental equations of equality: the reĆexivity, symmetry and transitivity:

𝑎 =𝑡 𝑏 : 𝐴 𝑏 =𝑢 𝑐 : 𝐴
transitivity

𝑎 =á(𝑡,𝑢) 𝑐 : 𝐴
𝑎 : 𝐴 reflexivity

𝑎 =𝜌 𝑎 : 𝐴

𝑎 =𝑡 𝑏 : 𝐴
symmetry

𝑏 =à(𝑡) 𝑎 : 𝐴

Chapter 4. Computational Paths 67

4.1.3 Identity Type

We have said that it is possible to formulate the identity type using computational paths.

As we have seen, the best way to deĄne any formal entity of type theory is by a set of

natural deductions rules. Thus, we deĄne our path-based approach as the following set of

rules:

• Formation and Introduction rules (QUEIROZ; OLIVEIRA; RAMOS, 2016; RAMOS; QUEIROZ;

OLIVEIRA, 2017):

𝐴 type 𝑎 : 𝐴 𝑏 : 𝐴
𝐼𝑑⊗ 𝐹

𝐼𝑑𝐴(𝑎, 𝑏) type

𝑎 =𝑠 𝑏 : 𝐴
𝐼𝑑⊗ 𝐼

𝑠(𝑎, 𝑏) : 𝐼𝑑𝐴(𝑎, 𝑏)

One can notice that our formation rule is exactly equal to the traditional identity

type. From terms 𝑎, 𝑏 : 𝐴, one can form that is inhabited only if there is a proof of

equality between those terms, i.e., 𝐼𝑑𝐴(𝑎, 𝑏).

The difference starts with the introduction rule. In our approach, one can notice

that we do not use a reĆexive constructor 𝑟. In other words, the reĆexive path is not

the main building block of our identity type. Instead, if we have a computational

path 𝑎 =𝑠 𝑏 : 𝐴, we introduce 𝑠(𝑎, 𝑏) as a term of the identity type. That way, one

should see 𝑠(𝑎, 𝑏) as a sequence of rewrites and substitutions (i.e., a computational

path) which would have started from 𝑎 and arrived at 𝑏

• Elimination rule (QUEIROZ; OLIVEIRA; RAMOS, 2016; RAMOS; QUEIROZ; OLIVEIRA,

2017):

𝑚 : 𝐼𝑑𝐴(𝑎, 𝑏)

[𝑎 =𝑔 𝑏 : 𝐴]

ℎ(𝑔) : 𝐶
𝐼𝑑⊗ 𝐸

𝑅𝐸𝑊𝑅(𝑚, 𝑔.ℎ(𝑔)) : 𝐶

LetŠs recall the notation being used. First, one should see ℎ(𝑔) as a functional

expression ℎ which depends on 𝑔. Also, one should notice the use of Ś́ Š in 𝑔. One

should see Ś́ Š as an abstractor that binds the occurrences of the variable 𝑔 introduced

in the local assumption [𝑎 =𝑔 𝑏 : 𝐴] as a kind of Skolem-type constant denoting the

reason why 𝑎 was assumed to be equal to 𝑏.

We also introduce the constructor 𝑅𝐸𝑊𝑅. In a sense, it is similar to the constructor

𝐽 of the traditional approach, since both arise from the elimination rule of the

Chapter 4. Computational Paths 68

identity type. The behavior of 𝑅𝐸𝑊𝑅 is simple. If from a computational path 𝑔

that establishes the equality between 𝑎 and 𝑏 one can construct ℎ(𝑔) : 𝐶, then if

we also have this equality established by a term 𝑚 : 𝐼𝑑𝐴(𝑎, 𝑏), we can put together

all this information in 𝑅𝐸𝑊𝑅 to construct 𝐶, eliminating the type 𝐼𝑑𝐴(𝑎, 𝑏) in the

process. The idea is that we can substitute 𝑔 for 𝑚 in 𝑔.ℎ(𝑔), resulting in ℎ(𝑚/𝑔) : 𝐶.

This behavior is established next by the reduction rule.

• Reduction rule (QUEIROZ; OLIVEIRA; RAMOS, 2016; RAMOS; QUEIROZ; OLIVEIRA,

2017):

𝑎 =𝑚 𝑏 : 𝐴
𝐼𝑑⊗ 𝐼

𝑚(𝑎, 𝑏) : 𝐼𝑑𝐴(𝑎, 𝑏)

[𝑎 =𝑔 𝑏 : 𝐴]

ℎ(𝑔) : 𝐶
𝐼𝑑⊗ 𝐸 ⊲Ñ

𝑅𝐸𝑊𝑅(𝑚, 𝑔.ℎ(𝑔)) : 𝐶

[𝑎 =𝑚 𝑏 : 𝐴]

ℎ(𝑚/𝑔) : 𝐶

• Induction rule:

𝑒 : 𝐼𝑑𝐴(𝑎, 𝑏)

[𝑎 =𝑡 𝑏 : 𝐴]
𝐼𝑑⊗ 𝐼

𝑡(𝑎, 𝑏) : 𝐼𝑑𝐴(𝑎, 𝑏)
𝐼𝑑⊗ 𝐸 ⊲Ö 𝑒 : 𝐼𝑑𝐴(𝑎, 𝑏)

𝑅𝐸𝑊𝑅(𝑒, 𝑡.𝑡(𝑎, 𝑏)) : 𝐼𝑑𝐴(𝑎, 𝑏)

Our introduction and elimination rules reassure the concept of equality as an existen-

tial force. In the introduction rule, we encapsulate the idea that a witness of a identity

type 𝐼𝑑𝐴(𝑎, 𝑏) only exists if there exist a computational path establishing the equality of

𝑎 and 𝑏. Also, one can notice that our elimination rule is similar to the elimination rule

of the existential quantiĄer.

4.1.4 Path-based Examples

The objective of this subsection is to show how to use in practice the rules that we have

just deĄned. The idea is to show construction of terms of some important types. The

constructions that we have chosen to build are the reĆexive, transitive and symmetric

type of the identity type. Those were not random choices. The main reason is the fact

that reĆexive, transitive and symmetric types are essential to the process of building

a groupoid model for the identity type(HOFMANN; STREICHER, 1994). As we shall see,

these constructions come naturally from simple computational paths constructed by the

application of axioms of the equality of type theory.

Before we start the constructions, we think that it is essential to understand how to use

the eliminations rules. The process of building a term of some type is a matter of Ąnding

the right reason. In the case of 𝐽 , the reason is the correct 𝑥, 𝑦 : 𝐴 and 𝑧 : 𝐼𝑑𝐴(𝑎, 𝑏) that

generates the adequate 𝐶(𝑥, 𝑦, 𝑧). In our approach, the reason is the correct path 𝑎 =𝑔 𝑏

that generates the adequate 𝑔(𝑎, 𝑏) : 𝐼𝑑(𝑎, 𝑏).

Chapter 4. Computational Paths 69

4.1.4.1 Reflexivity

One could Ąnd strange the fact that we need to prove the reĆexivity. Nevertheless, just

remember that our approach is not based on the idea that reĆexivity is the base of the

identity type. As usual in type theory, a proof of something comes down to a construction

of a term of a type. In this case, we need to construct a term of type Π(𝑎:𝐴)𝐼𝑑𝐴(𝑎, 𝑎).

The reason is extremely simple: from a term 𝑎 : 𝐴, we obtain the computational path

𝑎 =𝜌 𝑎 : 𝐴 (RAMOS; QUEIROZ; OLIVEIRA, 2017):

[𝑎 : 𝐴]
𝑎 =𝜌 𝑎 : 𝐴

𝐼𝑑⊗ 𝐼
𝜌(𝑎, 𝑎) : 𝐼𝑑𝐴(𝑎, 𝑎)

Π ⊗ 𝐼
Ú𝑎.𝜌(𝑎, 𝑎) : Π(𝑎:𝐴)𝐼𝑑𝐴(𝑎, 𝑎)

4.1.4.2 Symmetry

The second proposed construction is the symmetry. Our objective is to obtain a term of

type Π(𝑎:𝐴)Π(𝑏:𝐴)(𝐼𝑑𝐴(𝑎, 𝑏) ⊃ 𝐼𝑑𝐴(𝑏, 𝑎)).

We construct a proof using computational paths. As expected, we need to Ąnd a

suitable reason. Starting from 𝑎 =𝑡 𝑏, we could look at the axioms of definition 4.1 to

plan our next step. One of those axioms makes the symmetry clear: the à axiom. If we

apply à, we will obtain 𝑏 =à(𝑡) 𝑎. From this, we can then infer that 𝐼𝑑𝐴 is inhabited

by (à(𝑡))(𝑏, 𝑎). Now, it is just a matter of applying the elimination (RAMOS; QUEIROZ;

OLIVEIRA, 2017):

[𝑎 : 𝐴] [𝑏 : 𝐴]

[𝑝(𝑎, 𝑏) : 𝐼𝑑𝐴(𝑎, 𝑏)]

[𝑎 =𝑡 𝑏 : 𝐴]
𝑏 =à(𝑡) 𝑎 : 𝐴

𝐼𝑑⊗ 𝐼
(à(𝑡))(𝑏, 𝑎) : 𝐼𝑑𝐴(𝑏, 𝑎)

𝐼𝑑⊗ 𝐸
𝑅𝐸𝑊𝑅(𝑝(𝑎, 𝑏), 𝑡.(à(𝑡))(𝑏, 𝑎)) : 𝐼𝑑𝐴(𝑏, 𝑎) ⊃ ⊗𝐼

Ú𝑝.𝑅𝐸𝑊𝑅(𝑝(𝑎, 𝑏), 𝑡.(à(𝑡))(𝑏, 𝑎)) : 𝐼𝑑𝐴(𝑎, 𝑏) ⊃ 𝐼𝑑𝐴(𝑏, 𝑎)
Π ⊗ 𝐼

Ú𝑏.Ú𝑝.𝑅𝐸𝑊𝑅(𝑝(𝑎, 𝑏), 𝑡.(à(𝑡))(𝑏, 𝑎)) : Π(𝑏:𝐴)(𝐼𝑑𝐴(𝑎, 𝑏) ⊃ 𝐼𝑑𝐴(𝑏, 𝑎))
Π ⊗ 𝐼

Ú𝑎.Ú𝑏.Ú𝑝.𝑅𝐸𝑊𝑅(𝑝(𝑎, 𝑏), 𝑡.(à(𝑡))(𝑏, 𝑎)) : Π(𝑎:𝐴)Π(𝑏:𝐴)(𝐼𝑑𝐴(𝑎, 𝑏) ⊃ 𝐼𝑑𝐴(𝑏, 𝑎))

4.1.4.3 Transitivity

The third and last construction will be the transitivity. Our objective os to obtain a term

of type Π(𝑎:𝐴)Π(𝑏:𝐴)Π(𝑐:𝐴)(𝐼𝑑𝐴(𝑎, 𝑏) ⊃ 𝐼𝑑𝐴(𝑏, 𝑐) ⊃ 𝐼𝑑𝐴(𝑎, 𝑐)).

To build our path-based construction, the Ąrst step, as expected, is to Ąnd the reason.

Since we are trying to construct the transitivity, it is natural to think that we should start

Chapter 4. Computational Paths 70

with paths 𝑎 =𝑡 𝑏 and 𝑏 =𝑢 𝑐 and then, from these paths, we should conclude that there

is a path 𝑧 that establishes that 𝑎 =𝑧 𝑐. To obtain 𝑧, we could try to apply the axioms

of definition 4.1. Looking at the axioms, one is exactly what we want: the axiom á . If

we apply á to 𝑎 =𝑡 𝑏 and 𝑏 =𝑢 𝑐, we will obtain a new path á(𝑡, 𝑢) such that 𝑎 =á(𝑡,𝑢) 𝑐.

Using that construction as the reason, we obtain the following term (RAMOS; QUEIROZ;

OLIVEIRA, 2017):

Chapter 4. Computational Paths 71

[𝑎
:
𝐴

]
[𝑏

:
𝐴

]

[𝑤
(𝑎
,𝑏

)
:
𝐼
𝑑

𝐴
(𝑎
,𝑏

)]

[𝑐
:
𝐴

]

[𝑠
(𝑏
,𝑐

)
:
𝐼
𝑑

𝐴
(𝑏
,𝑐

)]

[𝑎
=

𝑡
𝑏

:
𝐴

]
[𝑏

=
𝑢
𝑐

:
𝐴

]
𝑎

=
á

(𝑡
,𝑢

)
𝑐

:
𝐴

𝐼
𝑑

⊗
𝐼

(á
(𝑡
,𝑢

))
(𝑎
,𝑐

)
:
𝐼
𝑑

𝐴
(𝑎
,𝑐

)
𝐼
𝑑

⊗
𝐸

𝑅
𝐸
𝑊
𝑅

(𝑠
(𝑏
,𝑐

),
𝑢
(á

(𝑡
,𝑢

))
(𝑎
,𝑐

))
:
𝐼
𝑑

𝐴
(𝑎
,𝑐

)
𝐼
𝑑

⊗
𝐸

𝑅
𝐸
𝑊
𝑅

(𝑤
(𝑎
,𝑏

),
𝑡𝑅
𝐸
𝑊
𝑅

(𝑠
(𝑏
,𝑐

),
𝑢
(á

(𝑡
,𝑢

))
(𝑎
,𝑐

))
)

:
𝐼
𝑑

𝐴
(𝑎
,𝑐

)
⊃

⊗
𝐼

Ú
𝑠.
𝑅
𝐸
𝑊
𝑅

(𝑤
(𝑎
,𝑏

),
𝑡𝑅
𝐸
𝑊
𝑅

(𝑠
(𝑏
,𝑐

),
𝑢
(á

(𝑡
,𝑢

))
(𝑎
,𝑐

))
)

:
𝐼
𝑑

𝐴
(𝑏
,𝑐

)
⊃

𝐼
𝑑

𝐴
(𝑎
,𝑐

)
⊃

⊗
𝐼

Ú
𝑤
.Ú
𝑠.
𝑅
𝐸
𝑊
𝑅

(𝑤
(𝑎
,𝑏

),
𝑡𝑅
𝐸
𝑊
𝑅

(𝑠
(𝑏
,𝑐

),
𝑢
(á

(𝑡
,𝑢

))
(𝑎
,𝑐

))
)

:
𝐼
𝑑

𝐴
(𝑎
,𝑏

)
⊃

𝐼
𝑑

𝐴
(𝑏
,𝑐

)
⊃

𝐼
𝑑

𝐴
(𝑎
,𝑐

)
Π

⊗
𝐼

Ú
𝑐.
Ú
𝑤
.Ú
𝑠.
𝑅
𝐸
𝑊
𝑅

(𝑤
(𝑎
,𝑏

),
𝑡𝑅
𝐸
𝑊
𝑅

(𝑠
(𝑏
,𝑐

),
𝑢
(á

(𝑡
,𝑢

))
(𝑎
,𝑐

))
)

:
Π

(𝑐
:𝐴

)(
𝐼
𝑑

𝐴
(𝑎
,𝑏

)
⊃

𝐼
𝑑

𝐴
(𝑏
,𝑐

)
⊃

𝐼
𝑑

𝐴
(𝑎
,𝑐

))
Π

⊗
𝐼

Ú
𝑏.
Ú
𝑐.
Ú
𝑤
.Ú
𝑠.
𝑅
𝐸
𝑊
𝑅

(𝑤
(𝑎
,𝑏

),
𝑡𝑅
𝐸
𝑊
𝑅

(𝑠
(𝑏
,𝑐

),
𝑢
(á

(𝑡
,𝑢

))
(𝑎
,𝑐

))
)

:
Π

(𝑏
:𝐴

)Π
(𝑐

:𝐴
)(
𝐼
𝑑

𝐴
(𝑎
,𝑏

)
⊃

𝐼
𝑑

𝐴
(𝑏
,𝑐

)
⊃

𝐼
𝑑

𝐴
(𝑎
,𝑐

))
Π

⊗
𝐼

Ú
𝑎
.Ú
𝑏.
Ú
𝑐.
Ú
𝑤
.Ú
𝑠.
𝑅
𝐸
𝑊
𝑅

(𝑤
(𝑎
,𝑏

),
𝑡𝑅
𝐸
𝑊
𝑅

(𝑠
(𝑏
,𝑐

),
𝑢
(á

(𝑡
,𝑢

))
(𝑎
,𝑐

))
)

:
Π

(𝑎
:𝐴

)Π
(𝑏

:𝐴
)Π

(𝑐
:𝐴

)(
𝐼
𝑑

𝐴
(𝑎
,𝑏

)
⊃

𝐼
𝑑

𝐴
(𝑏
,𝑐

)
⊃

𝐼
𝑑

𝐴
(𝑎
,𝑐

))

Chapter 4. Computational Paths 72

As one can see, each step is just straightforward applications of introduction, elimi-

nation rules and abstractions. The only idea behind this construction is just the simple

fact that the axiom á guarantees the transitivity of paths. If one compares the reason of

this construction to the one that used 𝐽 (we showed those constructions in chapter 2),

one can clearly conclude that the reason of the path-based approach was obtained more

naturally.

4.2 TERM REWRITE SYSTEM

As we have just shown, a computational path establishes when two terms of the same type

are equal. From the theory of computational paths, an interesting case arises. Suppose we

have a path 𝑠 that establishes that 𝑎 =𝑠 𝑏 : 𝐴 and a path 𝑡 that establishes that 𝑎 =𝑡 𝑏 : 𝐴.

Consider that 𝑠 and 𝑡 are formed by distinct compositions of rewrites. Is it possible to

conclude that there are cases that 𝑠 and 𝑡 should be considered equivalent? The answer

is yes. Consider the following examples (RAMOS, 2015):

Example 4.3. Consider the path 𝑎 =𝑡 𝑏 : 𝐴. By the symmetric property, we obtain

𝑏 =à(𝑡) 𝑎 : 𝐴. What if we apply the property again on the path à(𝑡)? We would obtain a

path 𝑎 =à(à(𝑡)) 𝑏 : 𝐴. Since we applied symmetry twice in succession, we obtained a path

that is equivalent to the initial path 𝑡. For that reason, we conclude the act of applying

symmetry twice in succession is a redundancy. We say that the path à(à(𝑡)) should be

reduced to the path 𝑡.

Example 4.4. Consider the reĆexive path 𝑎 =𝜌 𝑎 : 𝐴. It one applies the symmetric

axiom, one ends up with 𝑎 =à(𝜌) 𝑎 : 𝐴. Thus, the obtained path is equivalent to the initial

one, since the symmetry was applied to the reĆexive path. Therefore, à(𝜌) is a redundant

way of expressing the path 𝜌. Thus, à(𝜌) should be reduced to 𝜌.

Example 4.5. Consider a path 𝑎 =𝑡 𝑏 : 𝐴. Applying the symmetry, one ends up with

𝑏 =à(𝑡) 𝑎 : 𝐴. One can take those two paths and apply the transitivity, ending up with

𝑎 =á(𝑡,à(𝑡)) 𝑎. Since one path is the inverse of the other, the composition of those two paths

should be equivalent to the reĆexive path. Thus, á(𝑡, à(𝑡)) should be reduced to 𝜌.

As one could see in the aforementioned examples, different paths should be considered

equal if one is just a redundant form of the other. The examples that we have just seen are

just straightforward and simple cases. Since the equality theory has a total of 7 axioms,

the possibility of combinations that could generate redundancies are high. Fortunately,

all possible redundancies were thoroughly mapped by(OLIVEIRA, 1995). In that work, a

system that establishes all redundancies and creates rules that solve them was proposed.

This system, known as 𝐿𝑁𝐷𝐸𝑄 ⊗𝑇𝑅𝑆, maps a total of 39 rules that solve redundancies.

Chapter 4. Computational Paths 73

4.2.1 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆

In this subsection, we show the rules that compose the 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆. All those rules

comes from the mapping of redundancies between computational paths, as we have seen

in the 3 previous examples.

4.2.1.1 Subterm Substitution

Before we introduce the rewriting rules, it is important to introduce the concept of subterm

substitution. In Equational Logic, the subterm substitution is given by the following

inference rule(OLIVEIRA; QUEIROZ, 1994):

𝑠 = 𝑡
𝑠𝜃 = 𝑡𝜃

One problem is that such rule does not respect the sub-formula property. To deal with

that,(CHENADEC, 1989) proposes two inference rules:

𝑀 = 𝑁 𝐶[𝑁] = 𝑂
𝐼𝐿

𝐶[𝑀] = 𝑂

𝑀 = 𝐶[𝑁] 𝑁 = 𝑂
𝐼𝑅

𝑀 = 𝐶[𝑂]

where M, N and O are terms.

As proposed in (QUEIROZ; OLIVEIRA; RAMOS, 2016), we can deĄne similar rules using

computational paths, as follows:

𝑥 =𝑟 𝒞[𝑦] : 𝐴 𝑦 =𝑠 𝑢 : 𝐴′

𝑥 =subL(𝑟,𝑠) 𝒞[𝑢] : 𝐴

𝑥 =𝑟 𝑤 : 𝐴′ 𝒞[𝑤] =𝑠 𝑢 : 𝐴

𝒞[𝑥] =subR(𝑟,𝑠) 𝑢 : 𝐴

where 𝐶 is the context in which the sub-term detached by Š[]Š appears and 𝐴′ could be

a sub-domain of 𝐴, equal to 𝐴 or disjoint to 𝐴.

In the rule above, 𝒞[𝑢] should be understood as the result of replacing every occurrence

of 𝑦 by 𝑢 in 𝐶.

4.2.1.2 Rewriting Rules

In this subsection, our objective is to show all rewrite reductions and their associated

rewriting rules. The idea is to analyze all possible occurrences of redundancies in proofs

which involves the rules of rewritings.

We start with the transitivity:

Definition 4.6 (reductions involving á (QUEIROZ; OLIVEIRA; RAMOS, 2016)).

𝑥 =𝑟 𝑦 : 𝐴 𝑦 =à(𝑟) 𝑥 : 𝐴

𝑥 =á(𝑟,à(𝑟)) 𝑥 : 𝐴
◁𝑡𝑟 𝑥 =𝜌 𝑥 : 𝐴

𝑦 =à(𝑟) 𝑥 : 𝐴 𝑥 =𝑟 𝑦 : 𝐴

𝑦 =á(à(𝑟),𝑟) 𝑦 : 𝐴
◁𝑡𝑠𝑟 𝑦 =𝜌 𝑦 : 𝐴

Chapter 4. Computational Paths 74

𝑢 =𝑟 𝑣 : 𝐴 𝑣 =𝜌 𝑣 : 𝐴

𝑢 =á(𝑟,𝜌) 𝑣 : 𝐴
◁𝑡𝑟𝑟 𝑢 =𝑟 𝑣 : 𝐴

𝑢 =𝜌 𝑢 : 𝐴 𝑢 =𝑟 𝑣 : 𝐴

𝑢 =á(𝜌,𝑟) 𝑣 : 𝐴
◁𝑡𝑙𝑟 𝑢 =𝑟 𝑣 : 𝐴

Associated rewriting rules:

á(𝑟, à(𝑟)) ◁𝑡𝑟 𝜌

á(à(𝑟), 𝑟) ◁𝑡𝑠𝑟 𝜌

á(𝑟, 𝜌) ◁𝑡𝑟𝑟 𝑟

á(𝜌, 𝑟) ◁𝑡𝑙𝑟 𝑟.

These reductions can be generalized to transformations where the reasons 𝑟 and à(𝑟)

(transf. 1 and 2) and 𝑟 and 𝜌 (transf. 3 and 4) appear in some context, as illustrated by

the following example: (QUEIROZ; OLIVEIRA; RAMOS, 2016):

Example 4.6.

𝑥 =𝑟 𝑦 : 𝐴
𝑖(𝑥) =Ý1(𝑟) 𝑖(𝑦) : 𝐴+𝐵

𝑥 =𝑟 𝑦 : 𝐴

𝑦 =à(𝑟) 𝑥 : 𝐴

𝑖(𝑦) =Ý1(à(𝑟)) 𝑖(𝑥) : 𝐴+𝐵

𝑖(𝑥) =á(Ý1(𝑟),Ý1(à(𝑟))) 𝑖(𝑥) : 𝐴+𝐵

◁𝑡𝑟

𝑥 =𝑟 𝑦 : 𝐴

𝑖(𝑥) =Ý1(𝑟) 𝑖(𝑦) : 𝐴+𝐵

Associated rewriting:

á(Ý1(𝑟), Ý1(à(𝑟))) ◁𝑡𝑟 Ý1(𝑟).

For the general context 𝒞[]:

Associated rewritings:

á(𝒞[𝑟], 𝒞[à(𝑟)]) ◁𝑡𝑟 𝒞[𝜌]

á(𝒞[à(𝑟)], 𝒞[𝑟]) ◁𝑡𝑠𝑟 𝒞[𝜌]

á(𝒞[𝑟], 𝒞[𝜌]) ◁𝑡𝑟𝑟 𝒞[𝑟]

á(𝒞[𝜌], 𝒞[𝑟]) ◁𝑡𝑙𝑟 𝒞[𝑟]

The transitivity rules are pretty straightforward. We have more complicated cases

(QUEIROZ; OLIVEIRA; RAMOS, 2016):

Chapter 4. Computational Paths 75

Definition 4.7.

𝑎 : 𝐴

[𝑥 : 𝐴]
...

𝑏(𝑥) =𝑟 𝑔(𝑥) : 𝐵
Ú𝑥.𝑏(𝑥) =Ý(𝑟) Ú𝑥.𝑔(𝑥) : 𝐴 ⊃ 𝐵

⊃ -intr

𝐴𝑃𝑃 (Ú𝑥.𝑏(𝑥), 𝑎) =Ü(Ý(𝑟)) 𝐴𝑃𝑃 (Ú𝑥.𝑔(𝑥), 𝑎) : 𝐵
⊃ -elim

◁𝑚𝑥𝑙

𝑎 : 𝐴

𝑏(𝑎/𝑥) =𝑟 𝑔(𝑎/𝑥) : 𝐵

Associated rewriting rule:

Ü(Ý(𝑟)) ◁𝑚𝑥𝑙 𝑟.

Definition 4.8 (reductions involving 𝜌 and à (QUEIROZ; OLIVEIRA; RAMOS, 2016)).

𝑥 =𝜌 𝑥 : 𝐴

𝑥 =à(𝜌) 𝑥 : 𝐴
◁𝑠𝑟 𝑥 =𝜌 𝑥 : 𝐴

𝑥 =𝑟 𝑦 : 𝐴

𝑦 =à(𝑟) 𝑥 : 𝐴

𝑥 =à(à(𝑟)) 𝑦 : 𝐴
◁𝑠𝑟 𝑥 =𝑟 𝑦 : 𝐴

Associated rewritings:

à(𝜌) ◁𝑠𝑟 𝜌

à(à(𝑟)) ◁𝑠𝑟 𝑟

Definition 4.9 (Substitution rules (QUEIROZ; OLIVEIRA; RAMOS, 2016)).

𝑢 =𝑟 𝒞[𝑥] : 𝐴 𝑥 =𝜌 𝑥 : 𝐴′

𝑢 =subL(𝑟,𝜌) 𝒞[𝑥] : 𝐴
◁𝑠𝑙𝑟 𝑢 =𝑟 𝒞[𝑥] : 𝐴

𝑥 =𝜌 𝑥 : 𝐴′ 𝒞[𝑥] =𝑟 𝑧 : 𝐴

𝒞[𝑥] =subR(𝜌,𝑟) 𝑧 : 𝐴
◁𝑠𝑟𝑟 𝒞[𝑥] =𝑟 𝑧 : 𝐴

𝑧 =𝑠 𝒞[𝑦] : 𝐴 𝑦 =𝑟 𝑤 : 𝐴′

𝑧 =subL(𝑠,𝑟) 𝒞[𝑤] : 𝐷

𝑦 =𝑟 𝑤 : 𝐴′

𝑤 =à(𝑟) 𝑦 : 𝐷′

𝑧 =subL(subL(𝑠,𝑟),à(𝑟)) 𝒞[𝑦] : 𝐴
◁𝑠𝑙𝑠 𝑧 =𝑠 𝒞[𝑦] : 𝐴

Chapter 4. Computational Paths 76

𝑧 =𝑠 𝒞[𝑦] : 𝐴 𝑦 =𝑟 𝑤 : 𝐴′

𝑧 =subL(𝑠,𝑟) 𝒞[𝑤] : 𝐴

𝑦 =𝑟 𝑤 : 𝐴′

𝑤 =à(𝑟) 𝑦 : 𝐴′

𝑧 =subL(subL(𝑠,𝑟),à(𝑟)) 𝒞[𝑦] : 𝐴
◁𝑠𝑙𝑠𝑠 𝑧 =𝑠 𝒞[𝑦] : 𝐴

𝑥 =𝑠 𝑤 : 𝐴′

𝑥 =𝑠 𝑤 : 𝐴′

𝑤 =à(𝑠) 𝑥 : 𝐴′ 𝒞[𝑥] =𝑟 𝑧 : 𝐴

𝒞[𝑤] =subR(à(𝑠),𝑟) 𝑧 : 𝐴

𝒞[𝑥] =subR(𝑠,subR(à(𝑠),𝑟)) 𝑧 : 𝐴
◁𝑠𝑟𝑠 𝒞[𝑥] =𝑟 𝑧 : 𝐴

𝑥 =𝑠 𝑤 : 𝐴′

𝑤 =à(𝑠) 𝑥 : 𝐴′

𝑥 =𝑠 𝑤 : 𝐴′ 𝒞[𝑤] =𝑟 𝑧 : 𝐴

𝒞[𝑥] =subR(𝑠,𝑟) 𝑧 : 𝐴

𝒞[𝑤] =subR(à(𝑠),subR(𝑠,𝑟)) 𝑧 : 𝐴
◁𝑠𝑟𝑟𝑟 𝒞[𝑤] =𝑟 𝑧 : 𝐴

Associated rewritings:

subL(𝒞[𝑟], 𝒞[𝜌]) ◁𝑠𝑙𝑟 𝒞[𝑟]

subR(𝒞[𝜌], 𝒞[𝑟]) ◁𝑠𝑟𝑟 𝒞[𝑟]

subL(subL(𝑠, 𝒞[𝑟]), 𝒞[à(𝑟)]) ◁𝑠𝑙𝑠 𝑠

subL(subL(𝑠, 𝒞[à(𝑟)]), 𝒞[𝑟]) ◁𝑠𝑙𝑠𝑠 𝑠

subR(𝑠, subR(𝒞[à(𝑠)], 𝑟)) ◁𝑠𝑟𝑠 𝑟

subR(𝒞[à(𝑠)], subR(𝒞[𝑠], 𝑟)) ◁𝑠𝑟𝑟𝑟 𝑟

Definition 4.10 ((QUEIROZ; OLIVEIRA; RAMOS, 2016)).

Ñ𝑟𝑒𝑤𝑟-×-reduction
𝑥 =𝑟 𝑦 : 𝐴 𝑧 : 𝐵

⟨𝑥, 𝑧⟩ =Ý1(𝑟) ⟨𝑦, 𝑧⟩ : 𝐴×𝐵
× -intr

𝐹𝑆𝑇 (⟨𝑥, 𝑧⟩) =Û1(Ý1(𝑟)) 𝐹𝑆𝑇 (⟨𝑦, 𝑧⟩) : 𝐴
× -elim

◁𝑚𝑥2𝑙 𝑥 =𝑟 𝑦 : 𝐴

𝑥 =𝑟 𝑥
′ : 𝐴 𝑦 =𝑠 𝑧 : 𝐵

⟨𝑥, 𝑦⟩ =Ý∧(𝑟,𝑠) ⟨𝑥′, 𝑧⟩ : 𝐴×𝐵
× -intr

𝐹𝑆𝑇 (⟨𝑥, 𝑦⟩) =Û1(Ý∧(𝑟,𝑠)) 𝐹𝑆𝑇 (⟨𝑥′, 𝑧⟩) : 𝐴
× -elim

◁𝑚𝑥2𝑙 𝑥 =𝑟 𝑥
′ : 𝐴

𝑥 =𝑟 𝑦 : 𝐴 𝑧 =𝑠 𝑤 : 𝐵

⟨𝑥, 𝑧⟩ =Ý∧(𝑟,𝑠) ⟨𝑦, 𝑤⟩ : 𝐴×𝐵
× -intr

𝑆𝑁𝐷(⟨𝑥, 𝑧⟩) =Û2(Ý∧(𝑟,𝑠)) 𝑆𝑁𝐷(⟨𝑦, 𝑤⟩) : 𝐵
× -elim

◁𝑚𝑥2𝑟 𝑧 =𝑠 𝑤 : 𝐵

𝑥 : 𝐴 𝑧 =𝑠 𝑤 : 𝐵

⟨𝑥, 𝑧⟩ =Ý2(𝑠) ⟨𝑥,𝑤⟩ : 𝐴×𝐵
× -intr

𝑆𝑁𝐷(⟨𝑥, 𝑧⟩) =Û2(Ý2(𝑠)) 𝑆𝑁𝐷(⟨𝑥,𝑤⟩) : 𝐵
× -elim

Chapter 4. Computational Paths 77

◁𝑚𝑥2𝑟 𝑧 =𝑠 𝑤 : 𝐵

Associated rewritings:

Û1(Ý1(𝑟)) ◁𝑚𝑥2𝑙1 𝑟

Û1(Ý∧(𝑟, 𝑠)) ◁𝑚𝑥2𝑙2 𝑟

Û2(Ý∧(𝑟, 𝑠)) ◁𝑚𝑥2𝑟1 𝑠

Û2(Ý2(𝑠)) ◁𝑚𝑥2𝑟2 𝑠

Ñ𝑟𝑒𝑤𝑟-+-reduction
𝑎 =𝑟 𝑎

′ : 𝐴

𝑖(𝑎) =Ý1(𝑟) 𝑖(𝑎′) : 𝐴+𝐵
+ -intr

[𝑥 : 𝐴]

𝑓(𝑥) =𝑠 𝑘(𝑥) : 𝐶

[𝑦 : 𝐵]

𝑔(𝑦) =𝑢 ℎ(𝑦) : 𝐶

𝐷(𝑖(𝑎), �́�𝑓(𝑥), 𝑦𝑔(𝑦)) =Û(Ý1(𝑟),𝑠,𝑢) 𝐷(𝑖(𝑎′), �́�𝑘(𝑥), 𝑦ℎ(𝑦)) : 𝐶
+ -elim

◁𝑚𝑥3𝑙

𝑎 =𝑟 𝑎
′ : 𝐴

𝑓(𝑎/𝑥) =𝑠 𝑘(𝑎′/𝑥) : 𝐶

𝑏 =𝑟 𝑏
′ : 𝐵

𝑗(𝑏) =Ý2(𝑟) 𝑗(𝑏′) : 𝐴+𝐵
+ -intr

[𝑥 : 𝐴]

𝑓(𝑥) =𝑠 𝑘(𝑥) : 𝐶

[𝑦 : 𝐵]

𝑔(𝑦) =𝑢 ℎ(𝑦) : 𝐶

𝐷(𝑗(𝑏), �́�𝑓(𝑥), 𝑦𝑔(𝑦)) =Û(Ý2(𝑟),𝑠,𝑢) 𝐷(𝑗(𝑏′), �́�𝑘(𝑥), 𝑦ℎ(𝑦)) : 𝐶
+ -elim

◁𝑚𝑥3𝑟

𝑏 =𝑠 𝑏
′ : 𝐵

𝑔(𝑏/𝑦) =𝑢 ℎ(𝑏′/𝑦) : 𝐶

Associated rewritings:

Û(Ý1(𝑟), 𝑠, 𝑢) ◁𝑚𝑥3𝑙 𝑠

Û(Ý2(𝑟), 𝑠, 𝑢) ◁𝑚𝑥3𝑟 𝑢

Ñ𝑟𝑒𝑤𝑟-Π-reduction

𝑎 : 𝐴

[𝑥 : 𝐴]

𝑓(𝑥) =𝑟 𝑔(𝑥) : 𝐵(𝑥)
Ú𝑥.𝑓(𝑥) =Ý(𝑟) Ú𝑥.𝑔(𝑥) : Π𝑥 : 𝐴.𝐵(𝑥)

𝐴𝑃𝑃 (Ú𝑥.𝑓(𝑥), 𝑎) =Ü(Ý(𝑟)) 𝐴𝑃𝑃 (Ú𝑥.𝑔(𝑥), 𝑎) : 𝐵(𝑎)

◁𝑚𝑥𝑙

𝑎 : 𝐴

𝑓(𝑎/𝑥) =𝑟 𝑔(𝑎/𝑥) : 𝐵(𝑎)

Associated rewriting:

Ü(Ý(𝑟)) ◁𝑚𝑥𝑙 𝑟

Ñ𝑟𝑒𝑤𝑟-Σ-reduction
𝑎 =𝑟 𝑎

′ : 𝐴 𝑓(𝑎) : 𝐵(𝑎)

𝜀𝑥.(𝑓(𝑥), 𝑎) =Ý1(𝑟) 𝜀𝑥.(𝑓(𝑥), 𝑎′) : Σ𝑥 : 𝐴.𝐵(𝑥)

[𝑡 : 𝐴, 𝑔(𝑡) : 𝐵(𝑡)]

𝑑(𝑔, 𝑡) =𝑠 ℎ(𝑔, 𝑡) : 𝐶

𝐸(𝜀𝑥.(𝑓(𝑥), 𝑎), 𝑔𝑡𝑑(𝑔, 𝑡)) =Û(Ý1(𝑟),𝑠) 𝐸(𝜀𝑥.(𝑓(𝑥), 𝑎′), 𝑔𝑡ℎ(𝑔, 𝑡)) : 𝐶

◁𝑚𝑥𝑟

𝑎 =𝑟 𝑎
′ : 𝐴 𝑓(𝑎) : 𝐵(𝑎)

𝑑(𝑓/𝑔, 𝑎/𝑡) =𝑠 ℎ(𝑓/𝑔, 𝑎′/𝑡) : 𝐶

𝑎 : 𝐴 𝑓(𝑎) =𝑟 𝑖(𝑎) : 𝐵(𝑎)

𝜀𝑥.(𝑓(𝑥), 𝑎) =Ý2(𝑟) 𝜀𝑥.(𝑖(𝑥), 𝑎) : Σ𝑥 : 𝐴.𝐵(𝑥)

[𝑡 : 𝐴, 𝑔(𝑡) : 𝐵(𝑡)]

𝑑(𝑔, 𝑡) =𝑠 ℎ(𝑔, 𝑡) : 𝐶

𝐸(𝜀𝑥.(𝑓(𝑥), 𝑎), 𝑔𝑡𝑑(𝑔, 𝑡)) =Û(Ý2(𝑟),𝑠) 𝐸(𝜀𝑥.(𝑖(𝑥), 𝑎), 𝑔𝑡ℎ(𝑔, 𝑡)) : 𝐶

Chapter 4. Computational Paths 78

◁𝑚𝑥𝑙

𝑎 : 𝐴 𝑓(𝑎) =𝑟 𝑖(𝑎) : 𝐵(𝑎)

𝑑(𝑓/𝑔, 𝑎/𝑡) =𝑠 ℎ(𝑖/𝑔, 𝑎/𝑡) : 𝐶

Associated rewritings:

Û(Ý1(𝑟), 𝑠) ◁𝑚𝑥𝑟 𝑠

Û(Ý2(𝑟), 𝑠) ◁𝑚𝑥𝑙 𝑠

Definition 4.11 (Ö𝑟𝑒𝑤𝑟 (QUEIROZ; OLIVEIRA; RAMOS, 2016)).

Ö𝑟𝑒𝑤𝑟- ×-reduction
𝑥 =𝑟 𝑦 : 𝐴×𝐵

𝐹𝑆𝑇 (𝑥) =Û1(𝑟) 𝐹𝑆𝑇 (𝑦) : 𝐴
× -elim

𝑥 =𝑟 𝑦 : 𝐴×𝐵

𝑆𝑁𝐷(𝑥) =Û2(𝑟) 𝑆𝑁𝐷(𝑦) : 𝐵
× -elim

⟨𝐹𝑆𝑇 (𝑥), 𝑆𝑁𝐷(𝑥)⟩ =Ý(Û1(𝑟),Û2(𝑟)) ⟨𝐹𝑆𝑇 (𝑦), 𝑆𝑁𝐷(𝑦)⟩ : 𝐴×𝐵
× -intr

◁𝑚𝑥 𝑥 =𝑟 𝑦 : 𝐴×𝐵

Ö𝑟𝑒𝑤𝑟- +-reduction

𝑐 =𝑡 𝑑 : 𝐴+𝐵

[𝑎1 =𝑟 𝑎2 : 𝐴]

𝑖(𝑎1) =Ý1(𝑟) 𝑖(𝑎2) : 𝐴+𝐵
+ -intr

[𝑏1 =𝑠 𝑏2 : 𝐵]

𝑗(𝑏1) =Ý2(𝑠) 𝑗(𝑏2) : 𝐴+𝐵
+ -intr

𝐷(𝑐, 𝑎1𝑖(𝑎1), 𝑏1𝑗(𝑏1)) =Û(𝑡,Ý1(𝑟),Ý2(𝑠)) 𝐷(𝑑, 𝑎2𝑖(𝑎2), 𝑏2𝑗(𝑏2))
+ -elim

◁𝑚𝑥𝑥 𝑐 =𝑡 𝑑 : 𝐴+𝐵

Π-Ö𝑟𝑒𝑤𝑟-reduction
[𝑡 : 𝐴] 𝑐 =𝑟 𝑑 : Π𝑥 : 𝐴.𝐵(𝑥)

𝐴𝑃𝑃 (𝑐, 𝑡) =Ü(𝑟) 𝐴𝑃𝑃 (𝑑, 𝑡) : 𝐵(𝑡)
Π-elim

Ú𝑡.𝐴𝑃𝑃 (𝑐, 𝑡) =Ý(Ü(𝑟)) Ú𝑡.𝐴𝑃𝑃 (𝑑, 𝑡) : Π𝑡 : 𝐴.𝐵(𝑡)
Π-intr

◁𝑥𝑚𝑟 𝑐 =𝑟 𝑑 : Π𝑥 : 𝐴.𝐵(𝑥)

where 𝑐 and 𝑑 do not depend on 𝑥.

Σ-Ö𝑟𝑒𝑤𝑟-reduction

𝑐 =𝑠 𝑏 : Σ𝑥 : 𝐴.𝐵(𝑥)

[𝑡 : 𝐴] [𝑔(𝑡) =𝑟 ℎ(𝑡) : 𝐵(𝑡)]

𝜀𝑦.(𝑔(𝑦), 𝑡) =Ý2(𝑟) 𝜀𝑦.(ℎ(𝑦), 𝑡) : Σ𝑦 : 𝐴.𝐵(𝑦)
Σ-intr

𝐸(𝑐, 𝑔𝑡𝜀𝑦.(𝑔(𝑦), 𝑡)) =Û(𝑠,Ý2(𝑟)) 𝐸(𝑏, ℎ́𝑡𝜀𝑦.(ℎ(𝑦), 𝑡)) : Σ𝑦 : 𝐴.𝐵(𝑦)
Σ-elim

◁𝑚𝑥𝑙𝑟 𝑐 =𝑠 𝑏 : Σ𝑥 : 𝐴.𝐵(𝑥)

Associated rewritings:

Ý(Û1(𝑟), Û2(𝑟)) ◁𝑚𝑥 𝑟

Û(𝑡, Ý1(𝑟), Ý2(𝑠)) ◁𝑚𝑥𝑥 𝑡

Ý(Ü(𝑟)) ◁𝑥𝑚𝑟 𝑟

Û(𝑠, Ý2(𝑟)) ◁𝑚𝑥𝑙𝑟 𝑠

Definition 4.12 (à and á (QUEIROZ; OLIVEIRA; RAMOS, 2016)).

Chapter 4. Computational Paths 79

𝑥 =𝑟 𝑦 : 𝐴 𝑦 =𝑠 𝑤 : 𝐴

𝑥 =á(𝑟,𝑠) 𝑤 : 𝐴

𝑤 =à(á(𝑟,𝑠)) 𝑥 : 𝐴
◁𝑠𝑡𝑠𝑠

𝑦 =𝑠 𝑤 : 𝐴

𝑤 =à(𝑠) 𝑦 : 𝐴

𝑥 =𝑟 𝑦 : 𝐴

𝑦 =à(𝑟) 𝑥 : 𝐴

𝑤 =á(à(𝑠),à(𝑟)) 𝑥 : 𝐴

Associated rewriting:

à(á(𝑟, 𝑠)) ◁𝑠𝑡𝑠𝑠 á(à(𝑠), à(𝑟))

Definition 4.13 (à and sub (QUEIROZ; OLIVEIRA; RAMOS, 2016)).

𝑥 =𝑟 𝒞[𝑦] : 𝐴 𝑦 =𝑠 𝑤 : 𝐴′

𝑥 =subL(𝑟,𝑠) 𝒞[𝑤] : 𝐴

𝒞[𝑤] =à(subL(𝑟,𝑠)) 𝑥 : 𝐴
◁𝑠𝑠𝑏𝑙

𝑦 =𝑠 𝑤 : 𝐴′

𝑤 =à(𝑠) 𝑦 : 𝐴′

𝑥 =𝑟 𝒞[𝑦] : 𝐴

𝒞[𝑦] =à(𝑟) 𝑥 : 𝐴

𝒞[𝑤] =subR(à(𝑠),à(𝑟)) 𝑥 : 𝐴

𝑥 =𝑟 𝑦 : 𝐴′ 𝒞[𝑦] =𝑠 𝑤 : 𝐴

𝒞[𝑥] =subR(𝑟,𝑠) 𝑤 : 𝐴

𝑤 =à(subR(𝑟,𝑠)) 𝒞[𝑥] : 𝐷
◁𝑠𝑠𝑏𝑟

𝒞[𝑦] =𝑠 𝑤 : 𝐴

𝑤 =à(𝑠) 𝒞[𝑦] : 𝐴

𝑥 =𝑟 𝑦 : 𝐴′

𝑦 =à(𝑟) 𝑥 : 𝐴′

𝑤 =subL(à(𝑠),à(𝑟)) 𝒞[𝑥] : 𝐴

Associated rewritings:

à(subL(𝑟, 𝑠)) ◁𝑠𝑠𝑏𝑙 subR(à(𝑠), à(𝑟))

à(subR(𝑟, 𝑠)) ◁𝑠𝑠𝑏𝑟 subL(à(𝑠), à(𝑟))

Definition 4.14 (à and Ý (QUEIROZ; OLIVEIRA; RAMOS, 2016)).

𝑥 =𝑟 𝑦 : 𝐴

𝑖(𝑥) =Ý1(𝑟) 𝑖(𝑦) : 𝐴+𝐵

𝑖(𝑦) =à(Ý1(𝑟)) 𝑖(𝑥) : 𝐴+𝐵
◁𝑠𝑥

𝑥 =𝑟 𝑦 : 𝐴

𝑦 =à(𝑟) 𝑥 : 𝐴

𝑖(𝑦) =Ý1(à(𝑟)) 𝑖(𝑥) : 𝐴+𝐵

𝑥 =𝑟 𝑦 : 𝐴 𝑧 =𝑠 𝑤 : 𝐵

⟨𝑥, 𝑧⟩ =Ý(𝑟,𝑠) ⟨𝑦, 𝑤⟩ : 𝐴×𝐵

⟨𝑦, 𝑤⟩ =à(Ý(𝑟,𝑠)) ⟨𝑥, 𝑧⟩ : 𝐴×𝐵
◁𝑠𝑥𝑠𝑠

𝑥 =𝑟 𝑦 : 𝐴

𝑦 =à(𝑟) 𝑥 : 𝐴

𝑧 =𝑠 𝑤 : 𝐵

𝑤 =à(𝑠) 𝑧 : 𝐵

⟨𝑦, 𝑤⟩ =Ý(à(𝑟),à(𝑠)) ⟨𝑥, 𝑧⟩ : 𝐴×𝐵

[𝑥 : 𝐴]

𝑓(𝑥) =𝑠 𝑔(𝑥) : 𝐵(𝑥)
Ú𝑥.𝑓(𝑥) =Ý(𝑠) Ú𝑥.𝑔(𝑥) : Π𝑥 : 𝐴.𝐵(𝑥)

Ú𝑥.𝑔(𝑥) =à(Ý(𝑠)) Ú𝑥.𝑓(𝑥) : Π𝑥 : 𝐴.𝐵(𝑥)
◁𝑠𝑚𝑠𝑠

[𝑥 : 𝐴]

𝑓(𝑥) =𝑠 𝑔(𝑥) : 𝐵(𝑥)
𝑔(𝑥) =à(𝑠) 𝑓(𝑥) : 𝐵(𝑥)

Ú𝑥.𝑔(𝑥) =Ý(à(𝑠)) Ú𝑥.𝑓(𝑥) : Π𝑥 : 𝐴.𝐵(𝑥)

Chapter 4. Computational Paths 80

Associated rewritings:

à(Ý(𝑟)) ◁𝑠𝑥 Ý(à(𝑟))

à(Ý(𝑟, 𝑠)) ◁𝑠𝑥𝑠𝑠 Ý(à(𝑟), à(𝑠))

à(Ý(𝑠) ◁𝑠𝑚𝑠𝑠 Ý(à(𝑠))

Definition 4.15 (à and Û (QUEIROZ; OLIVEIRA; RAMOS, 2016)).

𝑥 =𝑟 𝑦 : 𝐴×𝐵

𝐹𝑆𝑇 (𝑥) =Û1(𝑟) 𝐹𝑆𝑇 (𝑦) : 𝐴

𝐹𝑆𝑇 (𝑦) =à(Û1(𝑟)) 𝐹𝑆𝑇 (𝑥) : 𝐴
◁𝑠𝑚

𝑥 =𝑟 𝑦 : 𝐴×𝐵

𝑦 =à(𝑟) 𝑥 : 𝐴×𝐵

𝐹𝑆𝑇 (𝑦) =Û1(à(𝑟)) 𝐹𝑆𝑇 (𝑥) : 𝐴

𝑥 =𝑟 𝑦 : 𝐴×𝐵

𝑆𝑁𝐷(𝑥) =Û2(𝑟) 𝑆𝑁𝐷(𝑦) : 𝐴

𝑆𝑁𝐷(𝑦) =à(Û2(𝑟)) 𝑆𝑁𝐷(𝑥) : 𝐴
◁𝑠𝑚

𝑥 =𝑟 𝑦 : 𝐴×𝐵

𝑦 =à(𝑟) 𝑥 : 𝐴×𝐵

𝑆𝑁𝐷(𝑦) =Û2(à(𝑟)) 𝑆𝑁𝐷(𝑥) : 𝐴

𝑥 =𝑠 𝑦 : 𝐴 𝑓 =𝑟 𝑔 : 𝐴 ⊃ 𝐵

𝐴𝑃𝑃 (𝑓, 𝑥) =Û(𝑠,𝑟) 𝐴𝑃𝑃 (𝑔, 𝑦) : 𝐵

𝐴𝑃𝑃 (𝑔, 𝑦) =à(Û(𝑠,𝑟)) 𝐴𝑃𝑃 (𝑓, 𝑥) : 𝐵

◁𝑠𝑚𝑠𝑠

𝑥 =𝑠 𝑦 : 𝐴

𝑦 =à(𝑠) 𝑥 : 𝐴

𝑓 =𝑟 𝑔 : 𝐴 ⊃ 𝐵

𝑔 =à(𝑟) 𝑓 : 𝐴 ⊃ 𝐵

𝐴𝑃𝑃 (𝑔, 𝑦) =Û(à(𝑠),à(𝑟)) 𝐴𝑃𝑃 (𝑓, 𝑥) : 𝐵

𝑥 =𝑟 𝑦 : 𝐴+𝐵

[𝑠 : 𝐴]
...

𝑑(𝑠) =𝑢 𝑓(𝑠) : 𝐶

[𝑡 : 𝐵]
...

𝑒(𝑡) =𝑣 𝑔(𝑡) : 𝐶

𝐷(𝑥, 𝑠𝑑(𝑠), 𝑡𝑒(𝑡)) =Û(𝑟,𝑢,𝑣) 𝐷(𝑦, 𝑠𝑓(𝑠), 𝑡𝑔(𝑡)) : 𝐶

𝐷(𝑦, 𝑠𝑓(𝑠), 𝑡𝑔(𝑡)) : 𝐶 =à(Û(𝑟,𝑢,𝑣)) 𝐷(𝑥, 𝑠𝑑(𝑠), 𝑡𝑒(𝑡)) : 𝐶

◁𝑠𝑚𝑠𝑠𝑠

𝑥 =𝑟 𝑦 : 𝐴+𝐵
𝑦 =à(𝑟) 𝑥 : 𝐴+𝐵

[𝑠 : 𝐴]

𝑑(𝑠) =𝑢 𝑓(𝑠) : 𝐶
𝑓(𝑠) =à(𝑢) 𝑑(𝑠) : 𝐶

[𝑡 : 𝐵]

𝑒(𝑡) =𝑣 𝑔(𝑡) : 𝐶
𝑔(𝑡) =à(𝑣) 𝑒(𝑡) : 𝐶

𝐷(𝑦, 𝑠𝑓(𝑠), 𝑡𝑔(𝑡)) =Û(à(𝑟),à(𝑢),à(𝑣)) 𝐷(𝑥, 𝑠𝑑(𝑠), 𝑡𝑒(𝑡)) : 𝐶

𝑒 =𝑠 𝑏 : Σ𝑥 : 𝐴.𝐵(𝑥)

[𝑡 : 𝐴, 𝑔(𝑡) : 𝐵(𝑡)]

𝑑(𝑔, 𝑡) =𝑟 𝑓(𝑔, 𝑡) : 𝐶

𝐸(𝑒, 𝑔𝑡𝑑(𝑔, 𝑡)) =Û(𝑠,𝑟) 𝐸(𝑏, 𝑔𝑡𝑓(𝑔, 𝑡)) : 𝐶

𝐸(𝑏, 𝑔𝑡𝑓(𝑔, 𝑡)) =à(Û(𝑠,𝑟)) 𝐸(𝑒, 𝑔𝑡𝑑(𝑔, 𝑡)) : 𝐶

◁𝑠𝑚𝑠𝑠

𝑒 =𝑠 𝑏 : Σ𝑥 : 𝐴.𝐵(𝑥)
𝑏 =à(𝑠) 𝑒 : Σ𝑥 : 𝐴.𝐵(𝑥)

[𝑡 : 𝐴, 𝑔(𝑡) : 𝐵(𝑡)]

𝑑(𝑔, 𝑡) =𝑟 𝑓(𝑔, 𝑡) : 𝐶
𝑓(𝑔, 𝑡) =à(𝑟) 𝑑(𝑔, 𝑡) : 𝐶

𝐸(𝑏, 𝑔𝑡𝑓(𝑔, 𝑡)) =Û(à(𝑠),à(𝑟)) 𝐸(𝑒, 𝑔𝑡𝑑(𝑔, 𝑡)) : 𝐶

Associated rewritings:

à(Û1(𝑟)) ◁𝑠𝑚 Û1(à(𝑟))

Chapter 4. Computational Paths 81

à(Û2(𝑟)) ◁𝑠𝑚 Û2(à(𝑟))

à(Û(𝑠, 𝑟)) ◁𝑠𝑚𝑠𝑠 Û(à(𝑠), à(𝑟))

à(Û(𝑟, 𝑢, 𝑣)) ◁𝑠𝑚𝑠𝑠𝑠 Û(à(𝑟), à(𝑢), à(𝑣))

Definition 4.16 (á and sub (QUEIROZ; OLIVEIRA; RAMOS, 2016)).

𝑥 =𝑟 𝒞[𝑦] : 𝐴 𝑦 =𝑠 𝑤 : 𝐴′

𝑥 =subL(𝑟,𝑠) 𝒞[𝑤] : 𝐴 𝒞[𝑤] =𝑡 𝑧 : 𝐴

𝑥 =á(subL(𝑟,𝑠),𝑡) 𝑧 : 𝐴

◁𝑡𝑠𝑏𝑙𝑙

𝑥 =𝑟 𝒞[𝑦] : 𝐴

𝑦 =𝑠 𝑤 : 𝐴′ 𝒞[𝑤] =𝑡 𝑧 : 𝐴

𝒞[𝑦] =subR(𝑠,𝑡) 𝑧 : 𝐴

𝑥 =á(𝑟,subR(𝑠,𝑡)) 𝑧 : 𝐴

𝑦 =𝑠 𝑤 : 𝐴 𝒞[𝑤] =𝑡 𝑧 : 𝐴

𝒞[𝑦] =subR(𝑠,𝑡) 𝑧 : 𝐴 𝑧 =𝑢 𝑣 : 𝐴

𝒞[𝑦] =á(subR(𝑠,𝑡),𝑢) 𝑣 : 𝐴

◁𝑡𝑠𝑏𝑟𝑙

𝑦 =𝑠 𝑤 : 𝐷′

𝒞[𝑤] =𝑡 𝑧 : 𝐴 𝑧 =𝑢 𝑣 : 𝐴

𝒞[𝑤] =á(𝑡,𝑢) 𝑣 : 𝐴

𝒞[𝑦] =subR(𝑠,á(𝑡,𝑢)) 𝑣 : 𝐴

𝑥 =𝑟 𝒞[𝑧] : 𝐴

𝒞[𝑧] =𝜌 𝒞[𝑧] : 𝐴 𝑧 =𝑠 𝑤 : 𝐴′

𝒞[𝑧] =subL(𝜌,𝑠) 𝒞[𝑤] : 𝐴

𝑥 =á(𝑟,subL(𝜌,𝑠)) 𝒞[𝑤] : 𝐴

◁𝑡𝑠𝑏𝑙𝑟

𝑥 =𝑟 𝒞[𝑧] : 𝐴 𝑧 =𝑠 𝑤 : 𝐴′

𝑥 =subL(𝑟,𝑠) 𝒞[𝑤] : 𝐴

𝑥 =𝑟 𝒞[𝑤] : 𝐴

𝑤 =𝑠 𝑧 : 𝐴′ 𝒞[𝑧] =𝜌 𝒞[𝑧] : 𝐴

𝒞[𝑤] =subR(𝑠,𝜌) 𝒞[𝑧] : 𝐴

𝑥 =á(𝑟,subR(𝑠,𝜌)) 𝒞[𝑧] : 𝐴

◁𝑡𝑠𝑏𝑟𝑟

𝑥 =𝑟 𝒞[𝑤] : 𝐷 𝑤 =𝑠 𝑧 : 𝐴′

𝑥 =subL(𝑟,𝑠) 𝒞[𝑧] : 𝐴

Definition 4.17 (á and á (QUEIROZ; OLIVEIRA; RAMOS, 2016)).

𝑥 =𝑡 𝑦 : 𝐴 𝑦 =𝑟 𝑤 : 𝐴

𝑥 =á(𝑡,𝑟) 𝑤 : 𝐴 𝑤 =𝑠 𝑧 : 𝐴

𝑥 =á(á(𝑡,𝑟),𝑠) 𝑧 : 𝐴

◁𝑡𝑡

𝑥 =𝑡 𝑦 : 𝐴

𝑦 =𝑟 𝑤 : 𝐴 𝑤 =𝑠 𝑧 : 𝐴

𝑦 =á(𝑟,𝑠) 𝑧 : 𝐴

𝑥 =á(𝑡,á(𝑟,𝑠)) 𝑧 : 𝐴

Associated rewritings:

á(subL(𝑟, 𝑠), 𝑡) ◁𝑡𝑠𝑏𝑙𝑙 á(𝑟, subR(𝑠, 𝑡))

á(subR(𝑠, 𝑡), 𝑢)) ◁𝑡𝑠𝑏𝑟𝑙 subR(𝑠, á(𝑡, 𝑢))

Chapter 4. Computational Paths 82

á(𝑟, subL(á, 𝑠)) ◁𝑡𝑠𝑏𝑙𝑟 subL(𝑟, 𝑠)

á(𝑟, subR(𝑠, á)) ◁𝑡𝑠𝑏𝑟𝑟 subL(𝑟, 𝑠)

á(á(𝑡, 𝑟), 𝑠) ◁𝑡𝑡 á(𝑡, á(𝑟, 𝑠))

Thus, we put together all those rules to compose our rewrite system:

Definition 4.18 (𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆 (QUEIROZ; OLIVEIRA; RAMOS, 2016)).

1. à(𝜌) ◁𝑠𝑟 𝜌

2. à(à(𝑟)) ◁𝑠𝑠 𝑟

3. á(𝒞[𝑟], 𝒞[à(𝑟)]) ◁𝑡𝑟 𝒞[𝜌]

4. á(𝒞[à(𝑟)], 𝒞[𝑟]) ◁𝑡𝑠𝑟 𝒞[𝜌]

5. á(𝒞[𝑟], 𝒞[𝜌]) ◁𝑡𝑟𝑟 𝒞[𝑟]

6. á(𝒞[𝜌], 𝒞[𝑟]) ◁𝑡𝑙𝑟 𝒞[𝑟]

7. subL(𝒞[𝑟], 𝒞[𝜌]) ◁𝑠𝑙𝑟 𝒞[𝑟]

8. subR(𝒞[𝜌], 𝒞[𝑟]) ◁𝑠𝑟𝑟 𝒞[𝑟]

9. subL(subL(𝑠, 𝒞[𝑟]), 𝒞[à(𝑟)]) ◁𝑠𝑙𝑠 𝑠

10. subL(subL(𝑠, 𝒞[à(𝑟)]), 𝒞[𝑟]) ◁𝑠𝑙𝑠𝑠 𝑠

11. subR(𝒞[𝑠], subR(𝒞[à(𝑠)], 𝑟)) ◁𝑠𝑟𝑠 𝑟

12. subR(𝒞[à(𝑠)], subR(𝒞[𝑠], 𝑟)) ◁𝑠𝑟𝑟𝑟 𝑟

13. Û1(Ý1(𝑟)) ◁𝑚𝑥2𝑙1 𝑟

14. Û1(Ý∧(𝑟, 𝑠)) ◁𝑚𝑥2𝑙2 𝑟

15. Û2(Ý∧(𝑟, 𝑠)) ◁𝑚𝑥2𝑟1 𝑠

16. Û2(Ý2(𝑠)) ◁𝑚𝑥2𝑟2 𝑠

17. Û(Ý1(𝑟), 𝑠, 𝑢) ◁𝑚𝑥3𝑙 𝑠

18. Û(Ý2(𝑟), 𝑠, 𝑢) ◁𝑚𝑥3𝑟 𝑢

19. Ü(Ý(𝑟)) ◁𝑚𝑥𝑙 𝑟

20. Û(Ý2(𝑟), 𝑠) ◁𝑚𝑥𝑟 𝑠

21. Ý(Û1(𝑟), Û2(𝑟)) ◁𝑚𝑥 𝑟

22. Û(𝑡, Ý1(𝑟), Ý2(𝑠)) ◁𝑚𝑥𝑥 𝑡

23. Ý(Ü(𝑟)) ◁𝑥𝑚𝑟 𝑟

24. Û(𝑠, Ý2(𝑟)) ◁𝑚𝑥1𝑟 𝑠

25. à(á(𝑟, 𝑠)) ◁𝑠𝑡𝑠𝑠 á(à(𝑠), à(𝑟))

26. à(subL(𝑟, 𝑠)) ◁𝑠𝑠𝑏𝑙 subR(à(𝑠), à(𝑟))

27. à(subR(𝑟, 𝑠)) ◁𝑠𝑠𝑏𝑟 subL(à(𝑠), à(𝑟))

28. à(Ý(𝑟)) ◁𝑠𝑥 Ý(à(𝑟))

29. à(Ý(𝑠, 𝑟)) ◁𝑠𝑥𝑠𝑠 Ý(à(𝑠), à(𝑟))

30. à(Û(𝑟)) ◁𝑠𝑚 Û(à(𝑟))

31. à(Û(𝑠, 𝑟)) ◁𝑠𝑚𝑠𝑠 Û(à(𝑠), à(𝑟))

32. à(Û(𝑟, 𝑢, 𝑣)) ◁𝑠𝑚𝑠𝑠𝑠 Û(à(𝑟), à(𝑢), à(𝑣))

33. á(𝑟, subL(𝜌, 𝑠)) ◁𝑡𝑠𝑏𝑙𝑙 subL(𝑟, 𝑠)

Chapter 4. Computational Paths 83

34. á(𝑟, subR(𝑠, 𝜌)) ◁𝑡𝑠𝑏𝑟𝑙 subL(𝑟, 𝑠)

35. á(subL(𝑟, 𝑠), 𝑡) ◁𝑡𝑠𝑏𝑙𝑟 á(𝑟, subR(𝑠, 𝑡))

36. á(subR(𝑠, 𝑡), 𝑢) ◁𝑡𝑠𝑏𝑟𝑟 subR(𝑠, á(𝑡, 𝑢))

37. á(á(𝑡, 𝑟), 𝑠) ◁𝑡𝑡 á(𝑡, á(𝑟, 𝑠))

38. á(𝒞[𝑢], á(𝒞[à(𝑢)], 𝑣)) ◁𝑡𝑡𝑠 𝑣

39. á(𝒞[à(𝑢)], á(𝒞[𝑢], 𝑣)) ◁𝑡𝑠𝑡 𝑢.

4.2.2 Normalization

In the previous subsection, we have seen a system of rewrite rules that resolves reductions

in a computational path. When we talk about these kind of systems, two questions arise:

Every computational path has a normal form? And if a computational path has a normal

form, is it unique? To show that it has a normal form, one has to prove that every

computational path terminates, i.e., after a Ąnite number of rewrites, one will end up

with a path that does not have any additional reduction. To show that it is unique, one

needs to show that the system is conĆuent. In other words, if one has a path with 2 or

more reductions, one needs to show that the choice of the rewrite rule does not matter.

In the end, one will always obtain the same end-path without any redundancies.

4.2.2.1 Termination

We are interested in the following theorem (QUEIROZ; OLIVEIRA; GABBAY, 2011; QUEIROZ;

OLIVEIRA; RAMOS, 2016):

Theorem 4.1 (Termination property for 𝐿𝑁𝐷𝐸𝑄⊗𝑇𝑅𝑆). 𝐿𝑁𝐷𝐸𝑄⊗𝑇𝑅𝑆 is terminating.

The proofs uses a special kind of ordering, known as recursive parth ordering, proposed

by (DERSHOWITZ, 1982):

Definition 4.19 (Recursive path ordering (DERSHOWITZ, 1982; QUEIROZ; OLIVEIRA;

RAMOS, 2016)). Let > be a partial ordering on a set of operators F. The recursive path

ordering >* on the set T(F) of terms over F is defined recursively as follows:

𝑠 = 𝑓(𝑠1, . . . , 𝑠𝑚) >* 𝑔(𝑡1, . . . , 𝑡𝑛) = 𝑡,

if and only if

1. 𝑓 = 𝑔 and ¶𝑠1, . . . , 𝑠𝑚♢ ⪰* ¶𝑡1, . . . , 𝑡𝑛♢, or

2. 𝑓 > 𝑔 and ¶𝑠♢ ⪰* ¶𝑡1, . . . , 𝑡𝑛♢, or

3. 𝑓 � 𝑔 and ¶𝑠1, . . . , 𝑠𝑚♢ ⪰* or = ¶𝑡♢

where ⪰* is the extension of >* to multisets.

Chapter 4. Computational Paths 84

This deĄnition uses the notion of partial ordering in multisets. A given partial ordering

> on a set 𝑆 may be extended to a partial ordering ⪰ on Ąnite multisets of elements of

𝑆, wherein a multiset is reduced by removing one or more elements and replacing them

with any Ąnite number of elements, each oh which is smaller than one of the elements

removed (DERSHOWITZ, 1982).

Thus, one can proof the termination property by showing that all rules 𝑒 ⊃ 𝑑 of the

system, one has that 𝑒 >* 𝑑.

We also need to deĄne the precedence ordering on the rewrite operators. We deĄne as

follows (QUEIROZ; OLIVEIRA; RAMOS, 2016; QUEIROZ; OLIVEIRA; GABBAY, 2011):

à > á > 𝜌,

à > Ý,

à > Ý∧,

à > Ý1,

à > Ý2,

à > Û,

à > Û1,

à > Û2,

à > subL,

à > subR,

á > subL

Thus, one can prove the termination by showing that for every rule of 𝑒 ⊃ 𝑑 of

𝐿𝑁𝐷𝐸𝑄 ⊗𝑇𝑅𝑆, 𝑒 >* 𝑑. For almost every rule it is a straightforward and tedious process.

We are not going to show those steps in this work. One can check the full proof in

(QUEIROZ; OLIVEIRA; GABBAY, 2011).

4.2.2.2 Confluence

Before we go to the proof of conĆuence, one needs to notice that 𝐿𝑁𝐷𝐸𝑄⊗𝑇𝑅𝑆 is a condi-

tional term rewriting system. This means that some rules can only be applied if the terms

of the associated equation follow some rules. For example, for the rule Û1(Ý∧(𝑟, 𝑠))◁𝑚𝑥2𝑙2 𝑟,

it is necessary to have an Ñ-redex like 𝐹𝑆𝑇 ⟨𝑥, 𝑦⟩. With that in mind, one has the following

deĄnition (QUEIROZ; OLIVEIRA; GABBAY, 2011):

Definition 4.20 (Conditional term rewriting system). In conditional term rewriting sys-

tems, the rules have conditions attached, which must be true for the rewrite occur. For

example, a rewrite rule 𝑒 ⊃ 𝑑 with condition 𝐶 is expressed as:

𝐶♣𝑒 ⊃ 𝑑

Chapter 4. Computational Paths 85

To prove the conĆuence, one should analyze all possible critical pairs using the su-

perposition algorithm proposed by (KNUTH; BENDIX, 1970). Thus, there should not be

any divergent critical pair. For example, one can take the superposition of rules 1 and 2,

obtaining: à(à(𝜌)). We have two possible rewrites (QUEIROZ; OLIVEIRA; GABBAY, 2011):

• à(à(𝜌)) ⊲𝑠𝑟 à(𝜌) ⊲𝑠𝑟 𝜌

• à(à(𝜌)) ⊲𝑠𝑠 𝜌.

As one can see, we ended up with the same term 𝜌. Thus, no divergence has been

generated.

One should compare every pair of rules to Ąnd all critical pairs and see if there are di-

vergences. If some divergence happens, the superposition algorithm proposed by (KNUTH;

BENDIX, 1970) shows how to add new rules to the system in such a way that it be-

comes conĆuent. As a matter of fact, that was the reason why the rules 38 and 39 of

𝐿𝑁𝐷𝐸𝑄 ⊗𝑇𝑅𝑆 have been introduced to the system (QUEIROZ; OLIVEIRA; RAMOS, 2016):

38. á(𝒞[𝑢], á(𝒞[à(𝑢)], 𝑣)) ◁𝑡𝑡𝑠 𝑣

39. á(𝒞[à(𝑢)], á(𝒞[𝑢], 𝑣)) ◁𝑡𝑠𝑡 𝑢.

Those two rules introduced the following reductions to the system (QUEIROZ; OLIVEIRA;

GABBAY, 2011):

𝑥 =𝑠 𝑢 : 𝐷

𝑥 =𝑠 𝑢 : 𝐷
𝑢 =à(𝑠) 𝑥 : 𝐷 𝑥 =𝑣 𝑤 : 𝐷

𝑢 =á(à(𝑠),𝑣) 𝑤 : 𝐷
⊲𝑡𝑡𝑠 𝑥 =𝑣 𝑤

𝑥 =á(𝑠,á(à(𝑠),𝑣)) 𝑤 : 𝐷

𝑥 =𝑠 𝑤 : 𝐷
𝑤 =à(𝑠) 𝑥 : 𝐷

𝑥 =𝑠 𝑤 : 𝐷 𝑤 =𝑣 𝑧 : 𝐷
𝑥 =á(𝑠,𝑣) 𝑧 : 𝐷

⊲𝑠𝑠 𝑤 =𝑣 𝑧
𝑤 =á(à(𝑠),á(𝑠,𝑣)) 𝑧 : 𝐷

One can check a full proof of conĆuence in (OLIVEIRA, 1995; OLIVEIRA; QUEIROZ,

1994; OLIVEIRA; QUEIROZ, 1999; QUEIROZ; OLIVEIRA; GABBAY, 2011).

4.2.2.3 Normalization Procedure

We can now state two normalization theorems:

Theorem 4.2 (normalization (QUEIROZ; OLIVEIRA; GABBAY, 2011)). Every derivation

in the 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆 converts to a normal form.

Chapter 4. Computational Paths 86

Proof. Direct consequence of the termination property.

Theorem 4.3 (strong normalization (QUEIROZ; OLIVEIRA; GABBAY, 2011)). Every deriva-

tion in the 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆 converts to a unique normal form.

Proof. Direct consequence of the termination and conĆuence properties.

In this sense, every proof can be reduced to a normal one. To do that, one should

identify the redundancies and, based on the rewrite rules, one can construct a proof

without any redundancies. We show that in an example. It is the following (QUEIROZ;

OLIVEIRA; GABBAY, 2011):

𝑓(𝑥, 𝑧) =𝑠 𝑓(𝑤, 𝑦) : 𝐷

𝑓(𝑤, 𝑦) =à(𝑠) 𝑓(𝑥, 𝑧) : 𝐷 𝑥 =𝑟 𝑐 : 𝐷

𝑓(𝑤, 𝑦) =𝑠𝑢𝑏L(à(𝑠),𝑟) 𝑓(𝑐, 𝑧) : 𝐷

𝑓(𝑐, 𝑧) =à(𝑠𝑢𝑏L(à(𝑠),𝑟)) 𝑓(𝑤, 𝑦) : 𝐷 𝑦 =𝑡 𝑏 : 𝐷

𝑓(𝑐, 𝑧) =𝑠𝑢𝑏L(à(𝑠𝑢𝑏L(à(𝑠),𝑟))) 𝑓(𝑤, 𝑏) : 𝐷

This deduction generates the following path: 𝑠𝑢𝑏𝐿(à(𝑠𝑢𝑏𝐿(à(𝑠), 𝑟))). This path is not

in normal form, having two redundancies (QUEIROZ; OLIVEIRA; GABBAY, 2011):

𝑠𝑢𝑏𝐿(à(𝑠𝑢𝑏𝐿(à(𝑠), 𝑟))) ⊲𝑠𝑠𝑏𝑙 𝑠𝑢𝑏𝐿(𝑠𝑢𝑏𝑅(à(𝑟), à(à(𝑠)), 𝑡)

𝑠𝑢𝑏𝐿(𝑠𝑢𝑏𝑅(à(𝑟), à(à(𝑠)), 𝑡) ⊲𝑠𝑠 𝑠𝑢𝑏𝐿(𝑠𝑢𝑏𝑅(à(𝑟), 𝑠), 𝑡)

Thus, one can identify those reductions and conceive a deduction without any redun-

dancies (QUEIROZ; OLIVEIRA; GABBAY, 2011):

𝑥 =𝑟 𝑐 : 𝐷
𝑐 =à(𝑟) 𝑥 : 𝐷 𝑓(𝑥, 𝑧) =𝑠 𝑓(𝑤, 𝑦) : 𝐷

𝑓(𝑐, 𝑧) =𝑠𝑢𝑏R(à(𝑟),𝑠) 𝑓(𝑤, 𝑦) : 𝐷 𝑦 =𝑡 𝑏 : 𝐷

𝑓(𝑐, 𝑧) =𝑠𝑢𝑏L(𝑠𝑢𝑏R(à(𝑟),𝑠),𝑡) 𝑓(𝑤, 𝑏) : 𝐷

4.2.3 Rewrite Equality

As we have just seen, the 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆 has 39 rewrite rules. We call each rule as a

rewrite rule (abbreviation: rw-rule). We have the following deĄnition:

Definition 4.21 (Rewrite Rule (RAMOS; QUEIROZ; OLIVEIRA, 2017)). An 𝑟𝑤-rule is any

of the rules defined in 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆.

Similarly to the Ñ-reduction of Ú-calculus, we have a deĄnition for rewrite reduction:

Chapter 4. Computational Paths 87

Definition 4.22 (Rewrite reduction (RAMOS; QUEIROZ; OLIVEIRA, 2017)). Let 𝑠 and 𝑡 be

computational paths. We say that 𝑠⊲1𝑟𝑤 𝑡 (read as: 𝑠 𝑟𝑤-contracts to 𝑡) iff we can obtain

𝑡 from 𝑠 by an application of only one 𝑟𝑤-rule. If 𝑠 can be reduced to 𝑡 by finite number

of 𝑟𝑤-contractions, then we say that 𝑠⊲𝑟𝑤 𝑡 (read as 𝑠 𝑟𝑤-reduces to 𝑡).

We also have rewrite contractions and equality:

Definition 4.23 (Rewrite contraction and equality (RAMOS; QUEIROZ; OLIVEIRA, 2017)).

Let 𝑠 and 𝑡 be computational paths. We say that 𝑠 =𝑟𝑤 𝑡 (read as: 𝑠 is 𝑟𝑤-equal to 𝑡) iff 𝑡

can be obtained from 𝑠 by a finite (perhaps empty) series of 𝑟𝑤-contractions and reversed

𝑟𝑤-contractions. In other words, 𝑠 =𝑟𝑤 𝑡 iff there exists a sequence 𝑅0,, 𝑅𝑛, with 𝑛 ⊙ 0,

such that

(∀𝑖 ⊘ 𝑛⊗ 1)(𝑅𝑖 ⊲1𝑟𝑤 𝑅𝑖+1 or 𝑅𝑖+1 ⊲1𝑟𝑤 𝑅𝑖)

𝑅0 ⊕ 𝑠, 𝑅𝑛 ⊕ 𝑡

A fundamental result is the fact that rewrite equality is an equivalence relation

(RAMOS; QUEIROZ; OLIVEIRA, 2017):

Proposition 4.1. Rewrite equality is transitive, symmetric and reflexive.

Proof. Comes directly from the fact that 𝑟𝑤-equality is the transitive, reĆexive and sym-

metric closure of 𝑟𝑤.

Rewrite reduction and equality play fundamental roles in the groupoid model of a type

based on computational paths, as we are going to see in the sequel.

4.2.4 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆2

Until now, this subsection has concluded that there exist redundancies which are resolved

by a system called 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆. This system establishes rules that reduces these

redundancies. Moreover, we concluded that these redundancies are just redundant uses

of the equality axioms showed in section 2. In fact, since these axioms just deĄne an

equality theory for type theory, one can specify and say that these are redundancies of

the equality of type theory. As we mentioned, the 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆 has a total of 39

rules(OLIVEIRA, 1995; QUEIROZ; OLIVEIRA; RAMOS, 2016). Since the 𝑟𝑤-equality is based

on the rules of 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆, one can just imagine the high number of redundancies

that 𝑟𝑤-equality could cause. In fact, a thoroughly study of all the redundancies caused

by these rules could generate an entire new work. Fortunately, we are only interested in

the redundancies caused by the fact that 𝑟𝑤-equality is transitive, reĆexive and symmetric

with the addition of only one speciĄc 𝑟𝑤2-rule. LetŠs say that we have a system, called

𝐿𝑁𝐷𝐸𝑄 ⊗𝑇𝑅𝑆2, that resolves all the redundancies caused by 𝑟𝑤-equality (the same way

that 𝐿𝑁𝐷𝐸𝑄⊗𝑇𝑅𝑆 resolves all the redundancies caused by equality). Since we know that

𝑟𝑤-equality is transitive, symmetric and reĆexive, it should have the same redundancies

Chapter 4. Computational Paths 88

that the equality had involving only these properties. Since 𝑟𝑤-equality is just a sequence

of 𝑟𝑤-rules (also similar to equality, since equality is just a computational path, i.e., a

sequence of identiĄers), then we could put a name on these sequences. For example, if 𝑠

and 𝑡 are 𝑟𝑤-equal because there exists a sequence 𝜃 : 𝑅0,, 𝑅𝑛 that justiĄes the 𝑟𝑤-

equality, then we can write that 𝑠 =𝑟𝑤θ
𝑡. Thus, we can rewrite, using 𝑟𝑤-equality, all

the rules that originated the rules involving á , à and 𝜌. For example, we have (RAMOS;

QUEIROZ; OLIVEIRA, 2017):

𝑥 =𝑟𝑤t
𝑦 : 𝐴 𝑦 =𝑟𝑤r

𝑤 : 𝐴
𝑥 =𝑟𝑤τ(t,r)

𝑤 : 𝐴 𝑤 =𝑟𝑤s
𝑧 : 𝐴

𝑥 =𝑟𝑤τ(τ(t,r),s)
𝑧 : 𝐴

𝑥 =𝑟𝑤t
𝑦 : 𝐴

𝑦 =𝑟𝑤r
𝑤 : 𝐴 𝑤 =𝑟𝑤s

𝑧 : 𝐴
𝑦 =𝑟𝑤τ(r,s)

𝑧 : 𝐴
⊲𝑡𝑡2 𝑥 =𝑟𝑤τ(t,τ(r,s))

𝑧 : 𝐴

Therefore, we obtain the rule 𝑡𝑡2, that resolves one of the redundancies caused by the

transitivity of 𝑟𝑤-equality (the 2 in 𝑡𝑡2 indicates that it is a rule that resolves a redundancy

of 𝑟𝑤-equality). In fact, using the same reasoning, we can obtain, for 𝑟𝑤-equality, all the

redundancies that we have shown in definition 4.18. In other words, we have 𝑡𝑟2, 𝑡𝑠𝑟2,

𝑡𝑟𝑟2, 𝑡𝑙𝑟2, 𝑠𝑟2, 𝑠𝑠2 and 𝑡𝑡2. Since we have now rules of 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆2, we can use all

the concepts that we have just deĄned for 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆. The only difference is that

instead of having 𝑟𝑤-rules and 𝑟𝑤-equality, we have 𝑟𝑤2-rules and 𝑟𝑤2-equality.

There is an important rule speciĄc to this system. It stems from the fact that transi-

tivity of reducible paths can be reduced in different ways, but generating the same result.

For example, consider the simple case of á(𝑠, 𝑡) and consider that it is possible to reduce

𝑠 to 𝑠′ and 𝑡 to 𝑡′. There is two possible 𝑟𝑤-sequences that reduces this case: The Ąrst one

is 𝜃 : á(𝑠, 𝑡) ⊲1𝑟𝑤 á(𝑠′, 𝑡) ⊲1𝑟𝑤 á(𝑠′, 𝑡′) and the second 𝜃′ : á(𝑠, 𝑡) ⊲1𝑟𝑤 á(𝑠, 𝑡′) ⊲1𝑟𝑤 á(𝑠′, 𝑡′).

Both 𝑟𝑤-sequences obtained the same result in similar ways, the only difference being the

choices that have been made at each step. Since the variables, when considered individ-

ually, followed the same reductions, these 𝑟𝑤-sequences should be considered redundant

relative to each other and, for that reason, there should be 𝑟𝑤2-rule that establishes this

reduction. This rule is called independence of choice and is denoted by 𝑐𝑑2. Since we

already understand the necessity of such a rule, we can deĄne it formally:

Definition 4.24 (Independence of choice (RAMOS; QUEIROZ; OLIVEIRA, 2017)). Let 𝜃

and ã be 𝑟𝑤-equalities expressed by two 𝑟𝑤-sequences: 𝜃 : 𝜃1, ..., 𝜃𝑛, with 𝑛 ⊙ 1, and

ã : ã1, ..., ã𝑚, with 𝑚 ⊙ 1. Let 𝑇 be the set of all possible 𝑟𝑤-equalities from á(𝜃1, ã1)

to á(𝜃𝑛, 𝜃𝑚) described by the following process: 𝑡 ∈ 𝑇 is of the form á(𝜃𝑙1 , ã𝑟1) ⊲1𝑟𝑤

á(𝜃𝑙2 , ã𝑟2) ⊲1𝑟𝑤 ... ⊲1𝑟𝑤 á(𝜃𝑙x , ã𝑟y
), with 𝑙1 = 1, 𝑟1 = 1, 𝑙𝑥 = 𝑛, 𝑟𝑦 = 𝑚 and 𝑙𝑖+1 = 1 + 𝑙𝑖

Chapter 4. Computational Paths 89

and 𝑟𝑖+1 = 𝑟𝑖 or 𝑙𝑖+1 = 𝑙𝑖 and 𝑟𝑖+1 = 1 + 𝑟𝑖. The independence of choice, denoted by 𝑐𝑑2,

is defined as the rule of 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆2 that establishes the equality between any two

different terms of 𝑇 . In other words, if 𝑥, 𝑦 ∈ 𝑇 and 𝑥 ̸= 𝑦, then 𝑥 =𝑐𝑑2 𝑦 and 𝑦 =𝑐𝑑2 𝑥.

Analogously to the 𝑟𝑤-equality, 𝑟𝑤2-equality is also an equivalence relation (RAMOS;

QUEIROZ; OLIVEIRA, 2017):

Proposition 4.2. 𝑟𝑤2-equality is transitive, symmetric and reflexive.

Proof. Analogous to Proposition 4.1.

4.3 GROUPOID MODEL

In this section, we use categorical concepts introduced in the previous chapter to show that

we can use computational paths to induce a groupoid structure of a type. Nevertheless,

before we do that, we show that computational paths form a globular structure.

4.3.1 Globular Structure

In the previous section, we have just shown the existence of paths between computational

paths. Such paths were originated from redundancies caused by 𝑟𝑤-equality. Analogously,

one could think of redundancies caused by 𝑟𝑤2-equality, which would be resolved by the

establishment of computational paths between two equivalent 𝑟𝑤2-equalities. With that

in mind, we can extend this process up to the inĄnity. That way, we obtain an inĄnite

number of 𝑟𝑤𝑛-equalities and 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆𝑛 systems. We have seen in the previous

chapter a mathematical entity suitable to express this fact. It is known as globular set.

With that in mind, we have the following deĄnition:

Definition 4.25 (Level of a path (RAMOS; QUEIROZ; OLIVEIRA, 2017)). The 𝑙𝑒𝑣𝑒𝑙 of a

path is defined as follows:

• If 𝑎, 𝑏 : 𝐴 are terms such that 𝑎 and 𝑏 are not 𝑟𝑤-equalities, then we say that a path

𝑎 =𝑠 𝑏 has level 1.

• If 𝑟, 𝑠 : 𝐴 are 𝑟𝑤𝑛-equalities, then a path 𝑟 =𝜃 𝑠 has level 𝑛+ 1.

The idea is that if we have two 𝑛-level paths 𝑟 and 𝑠 and if 𝑟 can be rewritten into 𝑠

by a sequence of rewrites established by 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆𝑛, then this sequence of rewrites

is a (𝑛+ 1)-level path that establishes 𝑟 =𝑟𝑤n
𝑠.

Computational paths can form a globular-set structure. To see this, consider 𝑋(𝑛)

as the set of 𝑛-level paths between two (𝑛 ⊗ 1)-level paths (for 𝑛 = 0, just consider two

non-path objects) and for any path 𝑥 =𝑚 𝑦, consider that 𝑠(𝑚) = 𝑥 and 𝑡(𝑚) = 𝑦. That

way, if 𝑛 ⊙ 2 and 𝑚 ∈ 𝑋(𝑛), then 𝑠(𝑚) ∈ 𝑋(𝑛 ⊗ 1) and 𝑡(𝑚) ∈ 𝑋(𝑛 ⊗ 1). Now, if we

Chapter 4. Computational Paths 90

consider two 𝑛-level paths 𝑡 =𝜃 𝑚, and 𝑡 =Ð 𝑚 and a (𝑛 + 1)-level path 𝜃 =ã Ð, the

following equations hold (RAMOS; QUEIROZ; OLIVEIRA, 2017):

𝑠(𝑠(ã)) = 𝑠(𝜃) = 𝑡 = 𝑠(Ð) = 𝑠(𝑡(ã)).

𝑡(𝑠(ã)) = 𝑡(𝜃) = 𝑚 = 𝑡(Ð) = 𝑡(𝑡(ã)).

All globular-set conditions hold. Then, we can think that computational paths form a

globular set structure all up to inĄnity, i.e., a ∞-globular-set.

4.3.2 The Induced Groupoid

The relation between the algebraic structure of groupoid and the identity type was Ąrst

noticed by(HOFMANN; STREICHER, 1994). In this work, the authors claim that it is pos-

sible to think of any type of type theory as having a groupoid structure. To do that, one

could think of the terms of a type as objects and the propositional identities between

these terms to be morphisms. Using 𝐽 ,(HOFMANN; STREICHER, 1994) showed that the

following types, which correspond to the groupoid equations, are inhabited:

• 𝐼𝑑𝐼𝑑A(𝑥,𝑧)(𝑡𝑟𝑎𝑛𝑠(𝑡𝑟𝑎𝑛𝑠(𝑝, 𝑞), 𝑟), 𝑡𝑟𝑎𝑛𝑠(𝑝, 𝑡𝑟𝑎𝑛𝑠(𝑞, 𝑟)))

• 𝐼𝑑𝐼𝑑A(𝑥,𝑦)(𝑡𝑟𝑎𝑛𝑠(𝑟𝑒𝑓𝑙(𝑥), 𝑟), 𝑟)

• 𝐼𝑑𝐼𝑑A(𝑥,𝑦)(𝑡𝑟𝑎𝑛𝑠(𝑟, 𝑟𝑒𝑓𝑙(𝑥)), 𝑟)

• 𝐼𝑑𝐼𝑑A(𝑦,𝑦)(𝑡𝑟𝑎𝑛𝑠(𝑠𝑦𝑚𝑚(𝑟), 𝑟), 𝑟𝑒𝑓𝑙(𝑥))

• 𝐼𝑑𝐼𝑑A(𝑥,𝑥)(𝑡𝑟𝑎𝑛𝑠(𝑟, 𝑠𝑦𝑚𝑚(𝑟)), 𝑟𝑒𝑓𝑙(𝑥))

• 𝐼𝑑𝐼𝑑A(𝑥,𝑦)(𝑠𝑦𝑚𝑚(𝑠𝑦𝑚𝑚(𝑟)), 𝑟)

After this important work, the authors further develop their ideas in (HOFMANN;

STREICHER, 1998), showing how 𝐽 can be interpreted categorically.

Since our approach is not based on 𝐽 , but on the fact that identities are established by

computational paths, our objective in this section is to show that computational paths,

together with the reduction rules discussed in the last section, are also capable of inducing

groupoidal structures.

Before we conclude that computational paths induces categories with groupoid prop-

erties, we need to make clear the difference between a strict and a weak category. As one

will see, the word weak will appear many times. This will be the case because some of

the categorical equalities will not hold Şon the nose", so to say. They will hold up to 𝑟𝑤-

equality or up to higher levels of 𝑟𝑤-equalities. This is similar to the groupoid model of

the identity type proposed by(HOFMANN; STREICHER, 1994). In (HOFMANN; STREICHER,

1994), the equalities do not hold Şon the nose ", they hold up to propositional equality (or

up to homotopy if one uses the homotopy interpretation). To indicate that these equalities

Chapter 4. Computational Paths 91

hold only up to some property, we say that the induced structure is a weak categorical

structure. This will be even more clear in the proof of the following proposition (RAMOS;

QUEIROZ; OLIVEIRA, 2017):

Proposition 4.3. For each type 𝐴, computational paths induces a weak categorical struc-

ture called 𝐴𝑟𝑤.

Proof. Since we are working with categories, a good understanding of the basic concept

of what is a category is essential. If one is not familiarized with the concept, one should

check the chapter 3 of this work. To sum up, a category is a structure with objects

and morphisms between these objects. These morphisms must obey two main laws: the

associative and identity laws. To deĄne a weak categorical structure 𝐴𝑟𝑤, the Ąrst step is

to deĄne the objects, the morphisms:

• Objects: The objects of 𝐴𝑟𝑤 are terms 𝑎 of the type 𝐴, i.e., 𝑎 : 𝐴.

• Morphisms: A morphism (arrow) between terms 𝑎 : 𝐴 and 𝑏 : 𝐴 are arrows 𝑠 : 𝑎 ⊃ 𝑏

such that 𝑠 is a computational path between the terms, i.e., 𝑎 =𝑠 𝑏 : 𝐴.

We need now to deĄne the composition of morphisms, the identity morphism and check

the associative and identity laws. Since we are working in a weak context, the associative

and identity law needs only to hold up to 𝑟𝑤-equality. Before we check all these conditions,

we can represent this structure in the following diagram:

𝑎 : 𝐴 𝑏 : 𝐴

𝑐 : 𝐴 𝑑 : 𝐴

ρ𝑎
s

τ(s,r)

ρ𝑏

r
τ(r,t)

ρ𝑐

t ρ𝑑

• Compositions: Given arrows (paths) 𝑠 : 𝑎 ⊃ 𝑏 and 𝑟 : 𝑏 ⊃ 𝑐, we need to Ąnd an

arrow 𝑡 : 𝑎 ⊃ 𝑐 such that 𝑡 = 𝑟 ◇ 𝑠. To do that, we Ąrst need to deĄne the meaning

of a composition of paths. Since equality has the transitive axiom, it is natural to

deĄne the composition as an application of the transitivity, i.e. 𝑡 = 𝑟 ◇ 𝑠 = á(𝑠, 𝑟).

Therefore, for any 𝑠 : 𝑎 ⊃ 𝑏 and 𝑟 : 𝑏 ⊃ 𝑐, we always have a 𝑡 = 𝑟 ◇ 𝑠 = á(𝑠, 𝑟).

• Associativity of the composition: Given arrows 𝑠 : 𝑎 ⊃ 𝑏, 𝑟 : 𝑏 ⊃ 𝑐 and 𝑡 : 𝑐 ⊃
𝑑, since we are working with a weak categorical structure, we need to conclude

that 𝑡 ◇ (𝑟 ◇ 𝑠) =𝑟𝑤 (𝑡 ◇ 𝑟) ◇ 𝑠. Substituting the compositions by the corresponding

transitivities, we need to conclude that á(á(𝑠, 𝑟), 𝑡) =𝑟𝑤 á(𝑠, á(𝑟, 𝑡)). This is a direct

Chapter 4. Computational Paths 92

consequence of the rule 𝑡𝑡: á(á(𝑠, 𝑟), 𝑡) ⊲𝑡𝑡 á(𝑠, á(𝑟, 𝑡)). Therefore, we conclude that

á(á(𝑠, 𝑟), 𝑡) =𝑟𝑤 á(𝑠, á(𝑟, 𝑡)).

• Identity morphism: For any object 𝑎, consider the reĆexive path 𝑎 =𝜌 𝑎 as the

identity arrow 1𝑎. LetŠs call this path as 𝜌𝑎 (to indicate that it is a reĆexive path of

𝑎).

• Identity law: For any arrows (paths) 𝑠 : 𝑎 ⊃ 𝑏, we need to show that 𝑠 ◇ 1𝑎 = 𝑠 =

1𝑏 ◇ 𝑠. This can be shown (also in a weak sense) with a straightforward application

of 𝑟𝑤-rules. We have that 𝑠 ◇ 1𝑎 = 𝑠 ◇ 𝜌𝑎 = á(𝜌𝑎, 𝑠) ⊲𝑡𝑙𝑟 𝑠, therefore á(𝜌𝑎, 𝑠) =𝑟𝑤 𝑠.

For the other equation, we have that 1𝑏 ◇ 𝑠 = 𝜌𝑏 ◇ 𝑠 = á(𝑠, 𝜌𝑏) ⊲𝑡𝑟𝑟 𝑠 and thus,

á(𝑠, 𝜌𝑏) =𝑟𝑤 𝑠.

Since all these conditions have been satisĄed, we conclude that the structure 𝐴𝑟𝑤 induced

by computational paths is a weak categorical structure.

Is it possible to induce a strict (i.e., one that the equalities will hold Şon the nose ")

using computational paths? The answer is yes. Since 𝑟𝑤-equality is transitive, symmetric

and reĆexive, 𝑟𝑤-equality is an equivalence relation. If we use equivalent classes of 𝑟𝑤-

equalities as arrows, the equalities will hold Şon the nose ". Since we are trying to prove

similar results to the ones obtained for identity types by(HOFMANN; STREICHER, 1994) (in

(HOFMANN; STREICHER, 1994), as mentioned before, the equalities only in a weak sense),

we are more interested in this weak categorical structure that we have just obtained.

We can now show that 𝐴𝑟𝑤 has a groupoid structure (RAMOS; QUEIROZ; OLIVEIRA,

2017):

Proposition 4.4. The induced structure 𝐴𝑟𝑤 has a weak groupoidal structure.

Proof. We need to show that every arrow is an isomorphism. Since we are working in

a weak sense, the isomorphism equalities need only to hold up to 𝑟𝑤-equality. To show

that, for every arrow 𝑠 : 𝑎 ⊃ 𝑏, we need to show a 𝑡 : 𝑏 ⊃ 𝑎 such that 𝑡 ◇ 𝑠 =𝑟𝑤 1𝑎 and

𝑠 ◇ 𝑡 =𝑟𝑤 1𝑏. To do that, recall that every computational path has an inverse path à(𝑠).

Put 𝑡 = à(𝑠). Thus, we have that 𝑠 ◇ 𝑡 = 𝑠 ◇ à(𝑠) = á(à(𝑠), 𝑠) ⊲𝑡𝑠𝑟 𝜌𝑏. Since 𝜌𝑏 = 1𝑏, we

conclude that 𝑠◇ 𝑡 =𝑟𝑤 1𝑏. We also have that 𝑡◇𝑠 = à(𝑠)◇𝑠 = á(𝑠, à(𝑠))⊲𝑡𝑟 𝜌𝑎. Therefore,

𝑡 ◇ 𝑠 = 1𝑎. We conclude that every arrow is a weak isomorphism and thus, 𝐴𝑟𝑤 is a weak

groupoidal structure.

If we work with classes of equivalences as arrows, we can obtain a groupoidal struc-

ture in the strict sense. With that, we Ąnally conclude that computational paths have a

groupoid model. As one could notice, we only needed to use the properties of computa-

tional paths, together with rules of the rewrites 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆. Having these concepts

and rules, we have just needed to show that computational paths induces simple structures

Chapter 4. Computational Paths 93

of category theory. The groupoidal model came naturally from the concept of computa-

tional paths, without the need of constructing any complex term of an identity type, as

done in (HOFMANN; STREICHER, 1994). The fact that computational paths have a natural

groupoidal model is an advantage, since it will automatically imply that the identity type

has a natural groupoidal model (without needing to build any term using a constructor,

like the constructor 𝐽 of the traditional identity type).

4.3.3 Higher Structures

We have just shown that computational paths induce a weak groupoidal structure known

as 𝐴𝑟𝑤. We also know that the arrows (or morphisms) of 𝐴𝑟𝑤 are computational paths

between two terms of a type 𝐴. As we saw in the previous subsection, sometimes a

computational path can be reduced to another by rules that we called 𝑟𝑤-rules. That way,

if we have terms 𝑎, 𝑏 : 𝐴 and paths between these terms, we can deĄne a new structure.

This new structure, called 𝐴2𝑟𝑤(𝑎, 𝑏), has objects as computational paths between 𝑎 and

𝑏 and there is a morphism between paths 𝑎 =𝑠 𝑏 and 𝑎 =𝑡 𝑏 iff 𝑠 =𝑟𝑤 𝑡. Since 𝑟𝑤-equality

is transitive, reĆexive and symmetric, 𝐴2𝑟𝑤 is a weak categorical structure which the

equalities hold up to 𝑟𝑤2-equality. The proof of this fact is analogous to the proposition

4.1. The sole difference is the fact that since the morphisms are 𝑟𝑤-equalities, instead

of computational paths, all the equalities will hold up to 𝑟𝑤2-equality. To see this, take

the example of the associativity. Looking at the 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆2 system, we have that

á(á(𝜃, à), ã) ⊲𝑡𝑡2 á(𝜃, á(à, ã)) (𝜃, à and ã represent 𝑟𝑤-equalities between paths from 𝑎

to 𝑏). Therefore, á(á(𝜃, à), ã) =𝑟𝑤2 á(𝜃, á(à, ã)). The associative law holds up to 𝑟𝑤2-

equality. As one can easily check, the identity law will also hold up to 𝑟𝑤2-equality.

Therefore, 𝐴2𝑟𝑤(𝑎, 𝑏) has a weak categorical structure. Analogous to proposition 4.4, the

groupoid law will also hold up to 𝑟𝑤2-equality.

Instead of considering 𝐴𝑟𝑤 and 𝐴2𝑟𝑤(𝑎, 𝑏) as separated structures, we can think of a

unique structure with 2-levels. The Ąrst level is 𝐴𝑟𝑤 and the second one is the structure

𝐴2𝑟𝑤(𝑎, 𝑏) between each pair of objects 𝑎, 𝑏 ∈ 𝐴𝑟𝑤. We call this structure 2 ⊗ 𝐴𝑟𝑤. The

morphisms of the Ąrst level are called 1-morphisms and the ones of the second level are

called 2-morphisms (also known as 2-arrows or 2-cells). Since it has multiple levels, it

is considered a higher structure. We want to prove that this structure is a categorical

structure known as weak 2-category. The main problem is the fact that in a weak 2-

category, the last level (i.e., the second level) needs to hold up in a strict sense. This is

not the case for 2⊗𝐴2𝑟𝑤, since each 𝐴2𝑟𝑤(𝑎, 𝑏) only holds up to 𝑟𝑤2-equality. Nevertheless,

there still a way to induce this weak 2-category. Since 𝑟𝑤-equality is an equivalence relation

(because it is transitive, symmetric and reĆexive), we can consider a special 𝐴2𝑟𝑤(𝑎, 𝑏),

where the arrows are the arrows of 𝐴2𝑟𝑤(𝑎, 𝑏) modulo 𝑟𝑤2-equality. That way, since the

equalities hold up to 𝑟𝑤2-equality in 𝐴2𝑟𝑤(𝑎, 𝑏), they will hold in a strict sense when we

consider the equivalence classes of 𝑟𝑤2-equality. We call this structure [𝐴2𝑟𝑤(𝑎, 𝑏)]. In this

Chapter 4. Computational Paths 94

structure, consider the composition of arrows deĄned as: [𝜃]𝑟𝑤2 ◇ [ã]𝑟𝑤2 = [𝜃 ◇ ã]𝑟𝑤2 . Now,

we can think of the structure [2⊗𝐴𝑟𝑤]. This structure is similar to 2⊗𝐴𝑟𝑤. The difference

is that the categories of the second level are [𝐴2𝑟𝑤(𝑎, 𝑏)] instead of 𝐴2𝑟𝑤(𝑎, 𝑏). We can now

prove that [2 ⊗ 𝐴𝑟𝑤] is a weak 2-category (RAMOS; QUEIROZ; OLIVEIRA, 2017):

Proposition 4.5. Computational paths induce a weak 2-category called [2 ⊗ 𝐴𝑟𝑤].

Proof. First of all, letŠs draw a diagram that represents [2 ⊗ 𝐴𝑟𝑤]:

𝑎 𝑏 𝑐 𝑑

𝑠

t

𝑥

𝑟

w

𝑦

𝑝

q

𝑧

[Ð]𝑟𝑤2

[ä]𝑟𝑤2

[𝜃]𝑟𝑤2

[𝜙]𝑟𝑤2

[𝜃]𝑟𝑤2 [å]𝑟𝑤2

[ã]𝑟𝑤2

In this diagram we represent 1-arrows and 2-arrows between these 1-arrows. The fact

that 2-arrows are equivalence classes is represented by the brackets.

Since we are working with a higher structures, some new properties should be checked.

One of these properties is the fact that 2-arrows can be composed horizontally(LEINSTER,

1998). In other words, given 1-morphisms 𝑠 : 𝑎 ⊃ 𝑏, 𝑟 : 𝑏 ⊃ 𝑐, 𝑡 : 𝑎 ⊃ 𝑏, 𝑤 : 𝑏 ⊃ 𝑐 and

2-morphisms [Ð]𝑟𝑤2 : 𝑠 ⊃ 𝑡 and [𝜃]𝑟𝑤2 : 𝑟 ⊃ 𝑤, one should be able to deĄne a horizontal

composition ◇ℎ: ([𝜃]𝑟𝑤2 ◇ℎ [Ð]𝑟𝑤2) : 𝑟 ◇ 𝑠 ⊃ 𝑤 ◇ 𝑡.
Given [Ð]𝑟𝑤2 : [𝑠 = Ð1, ..., Ð𝑛 = 𝑡] and [𝜃]𝑟𝑤2 : [𝑟 = 𝜃1, ..., 𝜃𝑚 = 𝑤], then we deĄne the

horizontal composition ([𝜃]𝑟𝑤2◇ℎ[Ð]𝑟𝑤2) as the sequence [á(𝑠 = Ð1, 𝑟 = 𝜃1), ..., á(Ð𝑛, 𝜃1)..., á(Ð𝑛 =

𝑡, 𝜃𝑚 = 𝑤)]𝑟𝑤2 .

We also need to verify the associative and identity law for ◇ℎ. Since we are working with

a weak 2-category, these laws should hold up to natural isomorphism (LEINSTER, 1998).

To verify these laws, the idea is that every 2-morphism of [𝐴𝑟𝑤2] is an isomorphism. To see

that, remember that 𝑟𝑤-equality is transitive, symmetric and reĆexive. Therefore, if we

have [𝜃]𝑟𝑤2 , we can think of the inverse [à(𝜃)]𝑟𝑤2 . If we compose them, we have that [𝜃]𝑟𝑤2 ◇
[à(𝜃)]𝑟𝑤2 = [𝜃◇à(𝜃)]𝑟𝑤2 . Since we have in 𝐿𝑁𝐷𝐸𝑄⊗𝑇𝑅𝑆2 that (𝜃◇à(𝜃)) = á(à(𝜃), 𝜃))⊲𝑡𝑠𝑟2

𝜌𝑟, then 𝜃 ◇à(𝜃) =𝑟𝑤2 𝜌𝑟 and thus, [𝜃 ◇à(𝜃)]𝑟𝑤2 = [𝜌𝑟]𝑟𝑤2 . Analogously, one can prove that

[à(𝜃) ◇ 𝜃]𝑟𝑤2 = [𝜌𝑤]𝑟𝑤2 . Therefore, every 2-morphism of [𝐴𝑟𝑤2] is an isomorphism. Since a

natural transformation is a natural isomorphism iff every component is an isomorphism

(as one can check in the chapter 3), we conclude that Ąnding isomorphisms for the

associative and identity laws is just a matter of Ąnding the correct morphisms.

For the associative law, we need to check that there is a natural isomorphism between

(([å]𝑟𝑤2 ◇ℎ [𝜃]𝑟𝑤2) ◇ℎ [Ð]𝑟𝑤2) and ([å]𝑟𝑤2 ◇ℎ ([𝜃]𝑟𝑤2 ◇ℎ [Ð]𝑟𝑤2)). To do this, by the deĄni-

tion of horizontal composition, a component of (([å]𝑟𝑤2 ◇ℎ [𝜃]𝑟𝑤2) is a term of the form

á(Ð𝑥, á(𝜃𝑦, å𝑧)), with 𝑥, 𝑦, and 𝑧 being suitable natural numbers that respect the order of

the horizontal composition. Analogously, the same component of ([å]𝑟𝑤2 ◇ℎ([𝜃]𝑟𝑤2 ◇ℎ[Ð]𝑟𝑤2))

Chapter 4. Computational Paths 95

is just a suitable term á(á(Ð𝑥, 𝜃𝑦), å𝑧). The isomorphism between these component is

clearly established by the inverse 𝑡𝑡 rule, i.e., á(Ð𝑥, á(𝜃𝑦, å𝑧)) =𝑟𝑤σ(tt)
á(á(Ð𝑥, 𝜃𝑦), å𝑧)

The identity laws use the same idea. We need to check that ([Ð]𝑟𝑤2 ◇ℎ [𝜌𝜌a
]𝑟𝑤2) = [Ð]𝑟𝑤2 .

To do that, we need to take components (𝜌𝜌a
, Ð𝑦) and Ð𝑦 and establish their isomorphism:

(𝜌𝜌a
, Ð𝑦) =𝑟𝑤tlr

Ð𝑦.

The other natural isomorphism, i.e., the isomorphism between ([𝜌𝜌b
]𝑟𝑤2 ◇ℎ [Ð]𝑟𝑤2) and

[Ð]𝑟𝑤2 can be established in an analogous way, just using the rule 𝑡𝑟𝑟 instead of 𝑡𝑙𝑟. Just

for purpose of clariĄcation, 𝜌𝜌a
comes from the reĆexive property of 𝑟𝑤-equality. Since 𝜌𝑎

is the identity path, using the reĆexivity we establish that 𝜌𝑎 =𝑟𝑤 𝜌𝑎, generating 𝜌𝜌a
.

We call the associative morphism generated by à(𝑡𝑡) as 𝑎𝑠𝑠𝑜𝑐 (sometimes also called

simply 𝑎), the morphism generate by 𝑡𝑙𝑟 as 𝑙*𝑠 and the one generated by 𝑡𝑟𝑟 as 𝑟*
𝑠 . With the

associative and identity isomorphisms established, we now need to check the interchange

law(LEINSTER, 1998). We need to check that:

([𝜙]𝑟𝑤2 ◇ [𝜃]𝑟𝑤2) ◇ℎ ([ä]𝑟𝑤2 ◇ [Ð]𝑟𝑤2) = ([𝜙]𝑟𝑤2 ◇ℎ [ä]𝑟𝑤2) ◇ ([𝜃]𝑟𝑤2 ◇ℎ [Ð]𝑟𝑤2)

From (([𝜙]𝑟𝑤2 ◇ [𝜃]𝑟𝑤2) ◇ℎ ([ä]𝑟𝑤2 ◇ [Ð]𝑟𝑤2)), we have:

(([𝜙]𝑟𝑤2 ◇ [𝜃]𝑟𝑤2) ◇ℎ ([ä]𝑟𝑤2 ◇ [Ð]𝑟𝑤2)) =

[á(𝜃, 𝜙)]𝑟𝑤2 ◇ℎ [á(Ð, ä)]𝑟𝑤2 =

[𝜃1, ..., 𝜃𝑛 = 𝜙1, ..., 𝜙𝑛′]𝑟𝑤2 ◇ℎ [(Ð1, ..., Ð𝑚 = ä1, ...ä𝑚′]𝑟𝑤2 =

[á(Ð1, 𝜃1), ..., á(Ð𝑚 = ä1, 𝜃1), ..., á(ä𝑛, 𝜃1), ..., á(ä𝑛, 𝜃𝑚′ = 𝜙1), ..., á(ä𝑛, 𝜙𝑛′)]𝑟𝑤2

From (([𝜙]𝑟𝑤2 ◇ℎ [ä]𝑟𝑤2) ◇ ([𝜃]𝑟𝑤2 ◇ℎ [Ð]𝑟𝑤2))):

(([𝜙]𝑟𝑤2 ◇ℎ [ä]𝑟𝑤2) ◇ ([𝜃]𝑟𝑤2 ◇ℎ [Ð]𝑟𝑤2))(𝑟 ◇ 𝑠) =

([á(ä1, 𝜙1), ..., á(ä𝑛, 𝜙1), ..., á(ä𝑛, 𝜙𝑛′)]𝑟𝑤2 ◇ [á(Ð1, 𝜃1), ..., á(Ð𝑚, 𝜃1), ..., á(Ð𝑚, 𝜃𝑚′)]𝑟𝑤2 =

[á(Ð1, 𝜃1), ..., á(Ð𝑚, 𝜃1), ..., á(Ð𝑚, 𝜃𝑚′), ..., á(ä1, 𝜙1), ..., á(ä𝑛, 𝜙1), ..., á(ä𝑛, 𝜙𝑛′)]𝑟𝑤2

If one looks closely, one can notice that this is a suitable to apply 𝑐𝑑2. Individu-

ally, every variable that appears in the sequence of transitivities follows the same expan-

sion in both cases. The only difference is how the choices have been made. That way,

if we construct 𝑇 , as deĄned in DeĄnition 4.6, one can check that á(Ð1, 𝜃1), ..., á(Ð𝑚 =

ä1, 𝜃1), ..., á(ä𝑛, 𝜃1), ..., á(ä𝑛, 𝜃𝑚′ = 𝜙1), ..., á(ä𝑛, 𝜙𝑛′) ∈ 𝑇 and á(Ð1, 𝜃1), ..., á(Ð𝑚, 𝜃1), ..., á(Ð𝑚, 𝜃𝑚′), ...,

𝑇 For that reason, we establish:

[á(Ð1, 𝜃1), ..., á(Ð𝑚 = ä1, 𝜃1), ..., á(ä𝑛, 𝜃1), ..., á(ä𝑛, 𝜃𝑚′ = 𝜙1), ..., á(ä𝑛, 𝜙𝑛′)]𝑟𝑤2 =𝑐𝑑2

[á(Ð1, 𝜃1), ..., á(Ð𝑚, 𝜃1), ..., á(Ð𝑚, 𝜃𝑚′), ..., á(ä1, 𝜙1), ..., á(ä𝑛, 𝜙1), ..., á(ä𝑛, 𝜙𝑛′)]𝑟𝑤2 .

Since we are working with equivalence classes, this equality holds strictly.

To end the proof, there is one more thing that we should verify. Since we are working

with a weak structure, there is some laws that should hold. These laws are known as

coherence laws. In a weak 2-category, the coherence laws are the following fact(LEINSTER,

1998):

Chapter 4. Computational Paths 96

Given the following diagram of 1 ⊗𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚𝑠:

𝑎 𝑏 𝑐 𝑑 𝑒𝑠 𝑟 𝑝 𝑢

The following diagrams should commute:

((𝑢 ◇ 𝑝) ◇ 𝑟) ◇ 𝑠

(𝑢 ◇ 𝑝) ◇ (𝑟 ◇ 𝑠)

(𝑢 ◇ (𝑝 ◇ 𝑟)) ◇ 𝑠

𝑢 ◇ ((𝑝 ◇ 𝑟) ◇ 𝑠)

𝑢 ◇ (𝑝 ◇ (𝑟 ◇ 𝑠))

𝑎𝑠𝑠𝑜𝑐

𝑎𝑠𝑠𝑜𝑐 ◇ℎ [𝜌𝑠]𝑟𝑤2

𝑎𝑠𝑠𝑜𝑐

𝑎𝑠𝑠𝑜𝑐 [𝜌𝑢]𝑟𝑤2 ◇ℎ 𝑎𝑠𝑠𝑜𝑐

(𝑟 ◇ 𝜌𝑏) ◇ 𝑠 𝑟 ◇ (𝜌𝑏 ◇ 𝑠)

𝑟 ◇ 𝑠

𝑎𝑠𝑠𝑜𝑐

𝑟*
𝑟 ◇ℎ [𝜌𝑠]𝑟𝑤2 [𝜌𝑟]𝑟𝑤2 ◇ℎ 𝑙

*
𝑠

The proofs are straightforward. Remember that 𝑎𝑠𝑠𝑜𝑐 is just an application of à(𝑡𝑡), 𝑟*
𝑟

is an application of 𝑡𝑟𝑟 and 𝑙*𝑠 an application of 𝑡𝑙𝑟. First, letŠs start with ((𝑢◇𝑝)◇ 𝑟)◇ 𝑠 =

á(𝑠, á(𝑟, á(𝑝, 𝑢))) going to the right of the diagram:

(𝑎𝑠𝑠𝑜𝑐 ◇ℎ [𝜌𝑠]𝑟𝑤2)(á(𝑠, á(𝑟, á(𝑝, 𝑢)))) = á(𝑠, 𝑎𝑠𝑠𝑜𝑐(á(𝑟, á(𝑝, 𝑢)))) =

á(𝑠, á(á(𝑟, 𝑝), 𝑢))

𝑎𝑠𝑠𝑜𝑐(á(𝑠, á(á(𝑟, 𝑝), 𝑢))) = á(á(𝑠, á(𝑟, 𝑝)), 𝑢)

([𝜌𝑢]𝑟𝑤2 ◇ℎ 𝑎𝑠𝑠𝑜𝑐)(á(á(𝑠, á(𝑟, 𝑝)), 𝑢)) = á(𝑎𝑠𝑠𝑜𝑐(á(𝑠, á(𝑟, 𝑝))), 𝑢) =

á(á(á(𝑠, 𝑟), 𝑝)), 𝑢) = 𝑢 ◇ (𝑝 ◇ (𝑟 ◇ 𝑠))

Now, starting from the same á(𝑠, á(𝑟, á(𝑝, 𝑢))) and going bottom left:

𝑎𝑠𝑠𝑜𝑐(á(𝑠, á(𝑟, á(𝑝, 𝑢)))) = á(á(𝑠, 𝑟), á(𝑝, 𝑢))

𝑎𝑠𝑠𝑜𝑐(á(á(𝑠, 𝑟), á(𝑝, 𝑢))) = á(á(á(𝑠, 𝑟), 𝑝), 𝑢) = 𝑢 ◇ (𝑝 ◇ (𝑟 ◇ 𝑠))

Therefore, the Ąrst diagram commutes. We now need to check the second one. LetŠs

start from ((𝑟 ◇ 𝜌𝑏) ◇ 𝑠) = á(𝑠, á(𝜌𝑏, 𝑟)) and going to the right of the diagram:

Chapter 4. Computational Paths 97

𝑎𝑠𝑠𝑜𝑐(á(𝑠, á(𝜌𝑏, 𝑟))) = á(á(𝑠, 𝜌𝑏), 𝑟)

([𝜌𝑟]𝑟𝑤2 ◇ℎ 𝑙
*
𝑠)á(á(𝑠, 𝜌𝑏), 𝑟) = á(𝑙*𝑠(á(𝑠, 𝜌𝑏)), 𝑟) =

á(𝑠, 𝑟) = 𝑟 ◇ 𝑠

Now, starting from the same á(𝑠, á(𝜌𝑏, 𝑟)) and going right bottom:

(𝑟*
𝑟 ◇ℎ [𝜌𝑠]𝑟𝑤2)á(𝑠, á(𝜌𝑏, 𝑟)) = á(𝑠, 𝑟*

𝑟(á(𝜌𝑏, 𝑟))) =

á(𝑠, 𝑟) = 𝑟 ◇ 𝑠

Thus, the second diagram commutes. The coherence laws hold. We Ąnally Ąnish the

proof that [2 ⊗ 𝐴𝑟𝑤] is a weak 2-category.

We can also conclude that [2 ⊗ 𝐴𝑟𝑤] has a weak 2-groupoid structure. That is the

case because we already know (from proposition 4.4) that the groupoid laws are satisĄed

by 1-morphisms up to the isomorphism of the next level, i.e., up to 𝑟𝑤-equality and the

2-morphisms, as we have just seen, are isomorphisms (that hold in a strict way, since the

second level is using classes of equivalence). With that, we showed that computational

paths induces a 2-weak groupoid. If one compares this groupoid with the one obtained

by the homotopy interpretation, this 2-weak category is similar to the fundamental weak

2-groupoid of a space 𝑆, denoted by Π2𝑆 (that Π2𝑆 forms a weak 2-category can be seen

in (LEINSTER, 2004)).

Since we could induce a weak 2-categorical structure using computational paths, would

be possible to induce even higher structures? The answer is 𝑦𝑒𝑠, since we have inĄnite

levels of 𝑟𝑤-rules established by inĄnite 𝐿𝑁𝐷𝐸𝑄 ⊗𝑇𝑅𝑆𝑛 systems. For example, we could

add a new level 𝐴3𝑟𝑤(𝜃, Ð). where 𝜃 and Ð are 2-morphisms. We would have a structure

with 3 levels and we could try to prove that this structure is a weak 3-category. The

problem is, as one could see in the proof of proposition 4.5, working with higher structures

can be difficult. A weak 3-weak category has more types of compositions than the 2-weak

one, since we have an additional level. Moreover, since it is weak, there are coherence

laws that must be checked. For a 3-weak category, these laws are much more complicated

than the ones for 2-weak categories. For that reason, we will leave the study of higher

structures induced by computational paths with more than 2 levels for the future, since it

is still work in progress. In fact, our aim is to prove, in a future work, that computational

path induces a weak category with inĄnite levels, known as weak æ-category. In fact,

we want to show that this weak inĄnite category forms a weak æ-groupoid. We believe

that it is possible to achieve these results, since it was proved by(LUMSDAINE, 2009;

BERG; GARNER, 2011) that the identity type induces such structure. Given the connection

between computational paths and terms of identity types, we should be able to prove that

computational paths also induces a weak æ-groupoid.

Chapter 4. Computational Paths 98

4.4 UNIQUENESS OF IDENTITY PROOFS

One of the main results that arises from the groupoid interpretation of(HOFMANN; STRE-

ICHER, 1998) is that it refutes the uniqueness of identity proofs, also known as 𝑈𝐼𝑃 .(HOFMANN;

STREICHER, 1998) deĄnes UIP as the following property:

Definition 4.26. Let 𝑎 and 𝑏 be objects of a type 𝐴. 𝑈𝐼𝑃 is the following property:

given any proofs 𝑝 and 𝑞 of proposition 𝑎 equals to 𝑏, then there is always another proof

establishing the equality of 𝑝 and 𝑞.

In terms of computational paths, 𝑈𝐼𝑃 asks if, for every pair of objects 𝑡 and 𝑠 between

𝑎 and 𝑏 of a type 𝐴, there is an 𝑟𝑤-equality 𝑡 =𝑟𝑤θ
𝑠. To better see this situation, a concrete

example is given by(QUEIROZ; OLIVEIRA; RAMOS, 2016):

Example 4.7. Consider the term (Ú𝑥.(Ú𝑦.𝑦𝑥)(Ú𝑤.𝑧𝑤))𝑣. We want to reduce this term to

the term 𝑧𝑣. To achieve this goal, we can follow 3 different paths:

• (Ú𝑥.(Ú𝑦.𝑦𝑥)(Ú𝑤.𝑧𝑤))𝑣 ⊲Ö (Ú𝑥.(Ú𝑦.𝑦𝑥)𝑧)𝑣 ⊲Ñ (Ú𝑦.𝑦𝑣)𝑧 ⊲Ñ 𝑧𝑣.

• (Ú𝑥.(Ú𝑦.𝑦𝑥)(Ú𝑤.𝑧𝑤))𝑣 ⊲Ñ (Ú𝑥.(Ú𝑤.𝑧𝑤)𝑥)𝑣 ⊲Ö (Ú𝑥.𝑧𝑥)𝑣 ⊲Ñ 𝑧𝑣.

• (Ú𝑥.(Ú𝑦.𝑦𝑥)(Ú𝑤.𝑧𝑤))𝑣 ⊲Ñ (Ú𝑥.(Ú𝑤.𝑧𝑤)𝑥)𝑣 ⊲Ñ (Ú𝑤.𝑧𝑤)𝑣 ⊲Ö 𝑧𝑣.

Thus, if 𝑈𝐼𝑃 holds, those 3 paths are just different ways of expressing the same thing.

In other words, it would be possible to Ąnd 𝑟𝑤-equalities establishing equalities between

them.

The objective of this section is to show that, similarly to the traditional approach for

the identity type, our path-based one also refutes 𝑈𝐼𝑃 . Given a type 𝐴, by the deĄnition

of 𝑈𝐼𝑃 , one can conceive a type 𝑈𝐼𝑃 (𝐴) that is inhabited iff for any terms 𝑎, 𝑏 : 𝐴 and

paths 𝑎 =𝑠 𝑏 and 𝑎 =𝑡 𝑏, then 𝑠 =𝑟𝑤 𝑡.

As stated by(HOFMANN; STREICHER, 1998), if 𝑈𝐼𝑃 holds, then every type 𝐴 is a trivial

groupoid structure in which there is only one morphism between every pair of objects. To

show that 𝑈𝐼𝑃 is false, one only needs to construct an 𝐴 such that there is more than

one morphism between a pair of objects (i.e., there is at least one pair of objects 𝑎, 𝑏 : 𝐴

and a pair of paths 𝑠 and 𝑡 between them such that 𝑠𝑡ℎ𝑎𝑡 𝑠 ̸=𝑟𝑤 𝑡). To achieve that,

we can take advantage of our previous example, and consider (Ú𝑥.(Ú𝑦.𝑦𝑥)(Ú𝑤.𝑧𝑤))𝑣 : 𝐴.

Therefore (RAMOS; QUEIROZ; OLIVEIRA, 2017; QUEIROZ; OLIVEIRA; RAMOS, 2016):

Theorem 4.4. The type 𝑈𝐼𝑃 is empty.

Proof. We construct 𝐴𝑟𝑤:

Chapter 4. Computational Paths 99

(Ú𝑥.(Ú𝑦.𝑦𝑥)(Ú𝑤.𝑧𝑤))𝑣

(Ú𝑥.(Ú𝑦.𝑦𝑥)𝑥)𝑣

(Ú𝑦.𝑦𝑣)𝑧

𝑧𝑣

(Ú𝑥.(Ú𝑤.𝑧𝑤)𝑥)𝑣

(Ú𝑤.𝑧𝑤)𝑣

Ö

Ñ

Ñ

á(á(Ö, Ñ), Ñ) á(á(Ñ, Ñ), Ö)

Ñ

Ñ

Ö

As depicted above, there are (at least) two possible paths between (Ú𝑥.(Ú𝑦.𝑦𝑥)(Ú𝑤.𝑧𝑤))𝑣

and 𝑧𝑣. The Ąrst path is given by á(á(Ö, Ñ), Ñ) and the second by á(á(Ñ, Ñ), Ö). Moreover,

looking at all 𝑟𝑤-rules (check definition 4.18), there is no rule that establishes the 𝑟𝑤-

equality between these two paths. That way, 𝐴𝑟𝑤 is not a trivial groupoid and thus, 𝑈𝐼𝑃

is empty.

With that, we conclude that our approach based on computational paths refutes the

uniqueness of identity proofs.

4.5 CONCLUSION

Inspired by a recent discovery that the propositional equality between terms can be inter-

preted as the type of homotopy paths, we have revisited the formulation of the intensional

identity type, proposing a approach based on an entity known as computational path. We

have proposed that a computational path 𝑎 =𝑠 𝑏 : 𝐴 gives grounds to building a term

𝑠(𝑎, 𝑏) of the identity type, i.e., 𝑠(𝑎, 𝑏) : 𝐼𝑑𝐴(𝑎, 𝑏), and is formed by a composition of

basic rewrites, each with their identiĄers taken as constants. We have also developed

our approach, showing how the path-based identity type can be rather straightforwardly

used in deductions. In particular, we have shown the simplicity of our elimination rule,

demonstrating that it is based on path constructions, which are built from applications

of simple axioms of the equality for type theory. To make our point even clearer, we have

exposed three path-based constructions. More speciĄcally, constructions that prove the

transitivity, reĆexivity and symmetry of the propositional equality. We have also argued

that, for these constructions, the process of Ąnding the reason that allows for building

the desired term was simple and straightforward in our approach. At the same time, in

Chapter 4. Computational Paths 100

the traditional (or pathless) approach, this is not entirely true, since Ąnding the correct

reason was a cumbersome process.

After establishing the foundations of our approach, we analyzed one important struc-

ture that the traditional identity type induces: the algebraic structure known as groupoid.

Our objective was to show that our approach is on a par with the pathless one, i.e., our

path-based identity also induces a groupoid structure. To prove that, we have shown that

the axioms of equality generate redundancies, which are resolved by paths between paths.

We mentioned that there already exists a system called 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆 that maps and

resolves these redundancies. We have gone further, proposing the existence of a higher

𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆2 which resolves redundancies generated by the 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆 system.

Using 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆, we have proved that a computational path is capable of induc-

ing a weak groupoid structure. Using the higher rewriting system, we have induced a

structure known as weak 2-groupoid. With that, we believe we have opened the way, in

a future work, for a possible proof establishing that computational paths induces a weak

æ-groupoid.

We have also shown that, using our groupoid of computational paths, it is possible

to refute the principle of uniqueness of identity proofs for the path-based approach. This

result ties in with the one obtained by (HOFMANN; STREICHER, 1998) for the traditional

identity type.

101

5 HOMOTOPY TYPE THEORY

In chapter 2, we said that one of the most interesting concepts of type theory is

the identity type. We have also said that the reason for that is the fact one can see

the identity type as a homotopical path between two points of a space, giving rise to

a homotopical interpretation of type theory. The connection between those two theories

created a whole new area of research known as homotopy type theory. In this work, we

introduced computational paths as the syntactic counterpart of those homotopical paths,

since they only exist in a semantical sense. Nevertheless, we have not talked yet how one

can use computational paths in homotopy type theory.

Thus, in this chapter, we develop one of the main objectives of this work.

We want to show that some of the foundational deĄnitions, propositions and theorems

of homotopy type theory still hold in our path-based approach. In other words, we use

our approach to construct the building blocks of more complex results.

One important fact to notice is that every proof that does not involve the identity type

is valid in the path-based approach. This is obvious, since the only difference between the

traditional approach and ours is the formulation of the identity type. If a proof uses it,

we need to reformulate this proof using our path-based approach, instead of using the

induction principle of the traditional one. Thus, every part of a proof that is not directly

or indirectly related to identity type is still valid in our approach.

In a path-based proof, we are going to use the formulation proposed in the previous

chapter. We also are going to use the reduction rules of 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆. In the process

of developing the theory of this section, we noticed that 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆, as proposed in

the previous chapter is still incomplete. We state this based on the fact that we found

new reduction rules that are not part of the original 𝐿𝑁𝐷𝐸𝑄 ⊗𝑇𝑅𝑆. That way, we added

these new rules to the system, expanding it.

5.1 GROUPOID LAWS

In the previous chapter we have seen that computational paths form a groupoid structure.

LetŠs check again those rules using our 𝑅𝐸𝑊𝑅 constructor directly:

Lemma 5.1. The type Π(𝑎:𝐴)𝐼𝑑𝐴(𝑎, 𝑎) is inhabited.

Proof. We construct an witness for the desired type:

Parts of this chapter were introduced by the author in the talk Computational paths, transport and

the univalence axiom at XVIII Brazilian Logic Conference in 2017. (RAMOS, 2017). This chapter
also yielded an still unpublished paper, "Explicit Computational Paths". Preprint version available in
(RAMOS; QUEIROZ; OLIVEIRA, 2018)

Chapter 5. Homotopy Type Theory 102

[𝑎 : 𝐴]
𝑎 =𝜌 𝑎 : 𝐴

𝐼𝑑⊗ 𝐼1
𝜌(𝑎, 𝑎) : 𝐼𝑑𝐴(𝑎, 𝑎)

Π ⊗ 𝐼
Ú𝑎.𝜌(𝑎, 𝑎) : Π(𝑎:𝐴)𝐼𝑑𝐴(𝑎, 𝑎)

Lemma 5.2. The type Π(𝑎:𝐴)Π(𝑏:𝐴)(𝐼𝑑𝐴(𝑎, 𝑏) ⊃ 𝐼𝑑𝐴(𝑏, 𝑎)) is inhabited.

Proof. Similar to the previous lemma, we construct an witness:

[𝑎 : 𝐴] [𝑏 : 𝐴]

[𝑝(𝑎, 𝑏) : 𝐼𝑑𝐴(𝑎, 𝑏)]

[𝑎 =𝑡 𝑏 : 𝐴]
𝑏 =à(𝑡) 𝑎 : 𝐴

𝐼𝑑⊗ 𝐼
(à(𝑡))(𝑏, 𝑎) : 𝐼𝑑𝐴(𝑏, 𝑎)

𝐼𝑑⊗ 𝐸
𝑅𝐸𝑊𝑅(𝑝(𝑎, 𝑏), 𝑡.(à(𝑡))(𝑏, 𝑎)) : 𝐼𝑑𝐴(𝑏, 𝑎)

Π ⊗ 𝐼
Ú𝑝.𝑅𝐸𝑊𝑅(𝑝(𝑎, 𝑏), 𝑡.(à(𝑡))(𝑏, 𝑎)) : 𝐼𝑑𝐴(𝑎, 𝑏) ⊃ 𝐼𝑑𝐴(𝑏, 𝑎)

Π ⊗ 𝐼
Ú𝑏.Ú𝑝.𝑅𝐸𝑊𝑅(𝑝(𝑎, 𝑏), 𝑡.(à(𝑡))(𝑏, 𝑎)) : Π(𝑏:𝐴)(𝐼𝑑𝐴(𝑎, 𝑏) ⊃ 𝐼𝑑𝐴(𝑏, 𝑎))

Π ⊗ 𝐼
Ú𝑎.Ú𝑏.Ú𝑝.𝑅𝐸𝑊𝑅(𝑝(𝑎, 𝑏), 𝑡.(à(𝑡))(𝑏, 𝑎)) : Π(𝑎:𝐴)Π(𝑏:𝐴)(𝐼𝑑𝐴(𝑎, 𝑏) ⊃ 𝐼𝑑𝐴(𝑏, 𝑎))

Lemma 5.3. The type Π(𝑎:𝐴)Π(𝑏:𝐴)Π(𝑐:𝐴)(𝐼𝑑𝐴(𝑎, 𝑏) ⊃ 𝐼𝑑𝐴(𝑏, 𝑐) ⊃ 𝐼𝑑𝐴(𝑎, 𝑐)) is inhabited.

Proof. We construct the following witness:

Chapter 5. Homotopy Type Theory 103

[𝑎
:
𝐴

]
[𝑏

:
𝐴

]

[𝑤
(𝑎
,𝑏

)
:
𝐼
𝑑

𝐴
(𝑎
,𝑏

)]

[𝑐
:
𝐴

]

[𝑠
(𝑏
,𝑐

)
:
𝐼
𝑑

𝐴
(𝑏
,𝑐

)]

[𝑎
=

𝑡
𝑏

:
𝐴

]
[𝑏

=
𝑢
𝑐

:
𝐴

]
𝑎

=
á

(𝑡
,𝑢

)
𝑐

:
𝐴

𝐼
𝑑

⊗
𝐼

(á
(𝑡
,𝑢

))
(𝑎
,𝑐

)
:
𝐼
𝑑

𝐴
(𝑎
,𝑐

)
𝐼
𝑑

⊗
𝐸

𝑅
𝐸
𝑊
𝑅

(𝑠
(𝑏
,𝑐

),
𝑢
(á

(𝑡
,𝑢

))
(𝑎
,𝑐

))
:
𝐼
𝑑

𝐴
(𝑎
,𝑐

)
𝐼
𝑑

⊗
𝐸

𝑅
𝐸
𝑊
𝑅

(𝑤
(𝑎
,𝑏

),
𝑡𝑅
𝐸
𝑊
𝑅

(𝑠
(𝑏
,𝑐

),
𝑢
(á

(𝑡
,𝑢

))
(𝑎
,𝑐

))
)

:
𝐼
𝑑

𝐴
(𝑎
,𝑐

)
Π

⊗
𝐼

Ú
𝑠.
𝑅
𝐸
𝑊
𝑅

(𝑤
(𝑎
,𝑏

),
𝑡𝑅
𝐸
𝑊
𝑅

(𝑠
(𝑏
,𝑐

),
𝑢
(á

(𝑡
,𝑢

))
(𝑎
,𝑐

))
)

:
𝐼
𝑑

𝐴
(𝑏
,𝑐

)
⊃

𝐼
𝑑

𝐴
(𝑎
,𝑐

)
Π

⊗
𝐼

Ú
𝑤
.Ú
𝑠.
𝑅
𝐸
𝑊
𝑅

(𝑤
(𝑎
,𝑏

),
𝑡𝑅
𝐸
𝑊
𝑅

(𝑠
(𝑏
,𝑐

),
𝑢
(á

(𝑡
,𝑢

))
(𝑎
,𝑐

))
)

:
𝐼
𝑑

𝐴
(𝑎
,𝑏

)
⊃

𝐼
𝑑

𝐴
(𝑏
,𝑐

)
⊃

𝐼
𝑑

𝐴
(𝑎
,𝑐

)
Π

⊗
𝐼

Ú
𝑐.
Ú
𝑤
.Ú
𝑠.
𝑅
𝐸
𝑊
𝑅

(𝑤
(𝑎
,𝑏

),
𝑡𝑅
𝐸
𝑊
𝑅

(𝑠
(𝑏
,𝑐

),
𝑢
(á

(𝑡
,𝑢

))
(𝑎
,𝑐

))
)

:
Π

(𝑐
:𝐴

)(
𝐼
𝑑

𝐴
(𝑎
,𝑏

)
⊃

𝐼
𝑑

𝐴
(𝑏
,𝑐

)
⊃

𝐼
𝑑

𝐴
(𝑎
,𝑐

))
Π

⊗
𝐼

Ú
𝑏.
Ú
𝑐.
Ú
𝑤
.Ú
𝑠.
𝑅
𝐸
𝑊
𝑅

(𝑤
(𝑎
,𝑏

),
𝑡𝑅
𝐸
𝑊
𝑅

(𝑠
(𝑏
,𝑐

),
𝑢
(á

(𝑡
,𝑢

))
(𝑎
,𝑐

))
)

:
Π

(𝑏
:𝐴

)Π
(𝑐

:𝐴
)(
𝐼
𝑑

𝐴
(𝑎
,𝑏

)
⊃

𝐼
𝑑

𝐴
(𝑏
,𝑐

)
⊃

𝐼
𝑑

𝐴
(𝑎
,𝑐

))
Π

⊗
𝐼

Ú
𝑎
.Ú
𝑏.
Ú
𝑐.
Ú
𝑤
.Ú
𝑠.
𝑅
𝐸
𝑊
𝑅

(𝑤
(𝑎
,𝑏

),
𝑡𝑅
𝐸
𝑊
𝑅

(𝑠
(𝑏
,𝑐

),
𝑢
(á

(𝑡
,𝑢

))
(𝑎
,𝑐

))
)

:
Π

(𝑎
:𝐴

)Π
(𝑏

:𝐴
)Π

(𝑐
:𝐴

)(
𝐼
𝑑

𝐴
(𝑎
,𝑏

)
⊃

𝐼
𝑑

𝐴
(𝑏
,𝑐

)
⊃

𝐼
𝑑

𝐴
(𝑎
,𝑐

))

Chapter 5. Homotopy Type Theory 104

Lemmas 1, 2 and 3 correspond respectively to the reĆexivity, symmetry and transitiv-

ity of the identity type. From now on, the reĆexivity will be represented by 𝜌, symmetry

by à and transitivity by á .

Lemma 5.4. For any type 𝐴, 𝑥, 𝑦, 𝑧, 𝑤 : 𝐴 and 𝑝 : 𝐼𝑑𝐴(𝑥, 𝑦) and 𝑞 : 𝐼𝑑𝐴(𝑦, 𝑧) and

𝑟 : 𝐼𝑑𝐴(𝑧, 𝑤), the following types are inhabited:

1. Π(𝑥,𝑦:𝐴)Π(𝑝:𝐼𝑑A(𝑥,𝑦))𝐼𝑑𝐼𝑑A(𝑥,𝑦)(𝑝, 𝜌𝑦 ◇ 𝑝) and Π(𝑥,𝑦:𝐴)Π(𝑝:𝐼𝑑A(𝑥,𝑦))𝐼𝑑𝐼𝑑A(𝑥,𝑦)(𝑝, 𝑝 ◇ 𝜌𝑥).

2. Π(𝑥,𝑦:𝐴)Π(𝑝:𝐼𝑑A(𝑥,𝑦))𝐼𝑑𝐼𝑑A(𝑥,𝑦)(à(𝑝)◇𝑝, 𝜌𝑥) and Π(𝑥,𝑦:𝐴)Π(𝑝:𝐼𝑑A(𝑥,𝑦))𝐼𝑑𝐼𝑑A(𝑥,𝑦)(𝑝◇à(𝑝), 𝜌𝑦)

3. Π(𝑥,𝑦:𝐴)Π(𝑝:𝐼𝑑A(𝑥,𝑦))𝐼𝑑𝐼𝑑A(𝑥,𝑦)(à(à(𝑝)), 𝑝)

4. Π(𝑥,𝑦,𝑧,𝑤:𝐴)Π(𝑝:𝐼𝑑A(𝑥,𝑦))Π(𝑞:𝐼𝑑A(𝑦,𝑧))Π(𝑟:𝐼𝑑A(𝑧,𝑤))𝐼𝑑𝐼𝑑A(𝑥,𝑤)(𝑟 ◇ (𝑞 ◇ 𝑝), (𝑟 ◇ 𝑞) ◇ 𝑝)

Proof. The proof of each statement follows from the same idea. We just need to look for

suitable reduction rules already present in the original 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆.

1. The Ąrst thing to notice is that a composition in our path-based approach corre-

sponds to a transitive operation, i.e., (𝑝 ◇ 𝜌𝑥) can be written as á(𝜌𝑥, 𝑝). The terms

follow from rules number 5 and 6:

𝑥 =𝑟 𝑦 : 𝐴 𝑦 =𝜌 𝑦 : 𝐴
⊲𝑡𝑟𝑟 𝑥 =𝑟 𝑦 : 𝐴

𝑥 =á(𝑟,𝜌) 𝑦 : 𝐴

𝑥 =𝜌 𝑥 : 𝐴 𝑥 =𝑟 𝑦 : 𝐴
⊲𝑡𝑙𝑟 𝑥 =𝑟 𝑦 : 𝐴

𝑥 =á(𝜌,𝑟) 𝑦 : 𝐴

Thus, we have:

á(𝑝, 𝜌𝑦) =𝑡𝑟𝑟 𝑝 : 𝐼𝑑𝐴(𝑥, 𝑦)

(𝑡𝑟𝑟)(á(𝑝, 𝜌𝑦), 𝑝) : 𝐼𝑑𝐼𝑑A(𝑥,𝑦)(𝑝, 𝜌𝑦 ◇ 𝑝)
Ú𝑥.Ú𝑦.Ú𝑝.(𝑡𝑟𝑟)(á(𝑝, 𝜌𝑦), 𝑝) : Π(𝑥,𝑦:𝐴)Π(𝑝:𝐼𝑑A(𝑥,𝑦))𝐼𝑑𝐼𝑑A(𝑥,𝑦)(𝑝, 𝜌𝑦 ◇ 𝑝)

á(𝜌𝑥, 𝑝) =𝑡𝑙𝑟 𝑝 : 𝐼𝑑𝐴(𝑥, 𝑦)

(𝑡𝑙𝑟)(á(𝜌𝑥, 𝑝), 𝑝) : 𝐼𝑑𝐼𝑑A(𝑥,𝑦)(𝑝, 𝑝 ◇ 𝜌𝑥)

Ú𝑥.Ú𝑦.Ú𝑝.(𝑡𝑙𝑟)(á(𝜌𝑥, 𝑝), 𝑝) : Π(𝑥,𝑦:𝐴)Π(𝑝:𝐼𝑑A(𝑥,𝑦))𝐼𝑑𝐼𝑑A(𝑥,𝑦)(𝑝, 𝑝 ◇ 𝜌𝑥)

Chapter 5. Homotopy Type Theory 105

2. We use rules 3 and 4:

𝑥 =𝑟 𝑦 : 𝐴 𝑦 =à(𝑟) 𝑥 : 𝐴
⊲𝑡𝑟 𝑥 =𝜌 𝑥 : 𝐴

𝑥 =á(𝑟,à(𝑟)) 𝑥 : 𝐴

𝑦 =à(𝑟) 𝑥 : 𝐴 𝑥 =𝑟 𝑦 : 𝐴
⊲𝑡𝑠𝑟 𝑦 =𝜌 𝑦 : 𝐴

𝑦 =á(à(𝑟),𝑟) 𝑦 : 𝐴

Thus:

á(𝑝, à(𝑝)) =𝑡𝑟 𝜌𝑥 : 𝐼𝑑𝐴(𝑥, 𝑦)

(𝑡𝑟)(á(𝑝, à(𝑝)), 𝜌𝑥) : 𝐼𝑑𝐼𝑑A(𝑥,𝑦)(à(𝑝) ◇ 𝑝, 𝜌𝑥)

Ú𝑥.Ú𝑦.Ú𝑝.(𝑡𝑟)(á(𝑝, à(𝑝), 𝜌𝑥) : Π(𝑥,𝑦:𝐴)Π(𝑝:𝐼𝑑A(𝑥,𝑦))𝐼𝑑𝐼𝑑A(𝑥,𝑦)(à(𝑝) ◇ 𝑝, 𝜌𝑥)

á(à(𝑝), 𝑝) =𝑡𝑠𝑟 𝜌𝑦 : 𝐼𝑑𝐴(𝑥, 𝑦)

(𝑡𝑠𝑟)(á(à(𝑝), 𝑝), 𝜌𝑦) : 𝐼𝑑𝐼𝑑A(𝑥,𝑦)(𝑝 ◇ à(𝑝), 𝜌𝑦)

Ú𝑥.Ú𝑦.Ú𝑝.(𝑡𝑠𝑟)(á(𝑝, à(𝑝), 𝜌𝑦) : Π(𝑥,𝑦:𝐴)Π(𝑝:𝐼𝑑A(𝑥,𝑦))𝐼𝑑𝐼𝑑A(𝑥,𝑦)(𝑝 ◇ à(𝑝), 𝜌𝑦)

3. We use rule 2:

𝑥 =𝑟 𝑦 : 𝐴
𝑦 =à(𝑟) 𝑥 : 𝐴

⊲𝑠𝑠 𝑥 =𝑟 𝑦 : 𝐴
𝑥 =à(à(𝑟)) 𝑦 : 𝐴

Thus:

à(à(𝑝)) =𝑠𝑠 𝑝 : 𝐼𝑑𝐴(𝑥, 𝑦)

(𝑠𝑠)(à(à(𝑝), 𝑝)) : 𝐼𝑑𝐼𝑑A(𝑥,𝑦)(à(à(𝑝)), 𝑝)

Ú𝑥.Ú𝑦.Ú𝑝.(𝑠𝑠)(à(à(𝑝), 𝑝)) : Π(𝑥,𝑦:𝐴)Π(𝑝:𝐼𝑑A(𝑥,𝑦))𝐼𝑑𝐼𝑑A(𝑥,𝑦)(à(à(𝑝)), 𝑝)

4. We use rule 37:

𝑥 =𝑡 𝑦 : 𝐴 𝑦 =𝑟 𝑤 : 𝐴
𝑥 =á(𝑡,𝑟) 𝑤 : 𝐴 𝑤 =𝑠 𝑧 : 𝐴

𝑥 =á(á(𝑡,𝑟),𝑠) 𝑧 : 𝐴

𝑥 =𝑡 𝑦 : 𝐴
𝑦 =𝑟 𝑤 : 𝐴 𝑤 =𝑠 𝑧 : 𝐴

𝑦 =á(𝑟,𝑠) 𝑧 : 𝐴
⊲𝑡𝑡

𝑥 =á(𝑡,á(𝑟,𝑠)) 𝑧 : 𝐴

Thus:

Chapter 5. Homotopy Type Theory 106

á
(á

(𝑝
,𝑞

),
𝑟)

=
𝑡𝑡
á
(𝑝
,á

(𝑞
,𝑟

))
:
𝐼
𝑑

𝐴
(𝑥
,𝑤

)

(𝑡
𝑡)

(á
(á

(𝑝
,𝑞

),
𝑟)

=
𝑡𝑡
á
(𝑝
,á

(𝑞
,𝑟

))
)

:
𝐼
𝑑

𝐼
𝑑

A
(𝑥

,𝑤
)(
𝑟

◇(
𝑞

◇𝑝
),

(𝑟
◇𝑞

)
◇𝑝

)

Ú
𝑥
.Ú
𝑦
.Ú
𝑧.
Ú
𝑤
.Ú
𝑝.
Ú
𝑞.
Ú
𝑟.

(𝑠
𝑠)

(à
(à

(𝑝
),
𝑝)

)
:
Π

(𝑝
:𝐼

𝑑
A

(𝑥
,𝑦

))
Π

(𝑞
:𝐼

𝑑
A

(𝑦
,𝑧

))
Π

(𝑟
:𝐼

𝑑
A

(𝑧
,𝑤

))
𝐼
𝑑

𝐼
𝑑

A
(𝑥

,𝑤
)(
𝑟

◇(
𝑞

◇𝑝
),

(𝑟
◇𝑞

)
◇𝑝

)

With the previous lemma, we showed that our path-based approach yields the groupoid

structure of a type up to propositional equality using the syntax introduced in the previous

chapter.

Chapter 5. Homotopy Type Theory 107

5.2 FUNCTORIALITY

We want to show that functions preserve equality(Univalent Foundations Program, 2013).

Lemma 5.5. The type Π(𝑥,𝑦:𝐴)Π(𝑓 :𝐴⊃𝐵)(𝐼𝑑𝐴(𝑥, 𝑦) ⊃ 𝐼𝑑𝐵(𝑓(𝑥), 𝑓(𝑦))) is inhabited.

Proof. It is a straightforward construction:

[𝑥 =𝑠 𝑦 : 𝐴] [𝑓 : 𝐴 ⊃ 𝐵]

𝑓(𝑥) =Ûf (𝑠) 𝑓(𝑦) : 𝐵

Û𝑓 (𝑠)(𝑓(𝑥), 𝑓(𝑦)) : 𝐼𝑑𝐵(𝑓(𝑥), 𝑓(𝑦)) [𝑝 : 𝐼𝑑𝐴(𝑥, 𝑦)]

𝑅𝐸𝑊𝑅(𝑝, Ú𝑠.Û𝑓 (𝑠)(𝑓(𝑥), 𝑓(𝑦))) : 𝐼𝑑𝐵(𝑓(𝑥), 𝑓(𝑦))

Ú𝑥.Ú𝑦.Ú𝑓.Ú𝑝.𝑅𝐸𝑊𝑅(𝑝, Ú𝑠.Û𝑓 (𝑠)(𝑓(𝑥), 𝑓(𝑦))) : Π(𝑥,𝑦:𝐴)Π(𝑓 :𝐴⊃𝐵)(𝐼𝑑𝐴(𝑥, 𝑦) ⊃ 𝐼𝑑𝐵(𝑓(𝑥), 𝑓(𝑦)))

Lemma 5.6. For any functions 𝑓 : 𝐴 ⊃ 𝐵 and 𝑔 : 𝐵 ⊃ 𝐶 and paths 𝑝 : 𝑥 =𝐴 𝑦 and

𝑞 : 𝑦 =𝐴 𝑧, we have:

1. Û𝑓 (á(𝑝, 𝑞)) = á(Û𝑓 (𝑝), Û𝑓 (𝑞))

2. Û𝑓 (à(𝑝)) = à(Û𝑓 (𝑝))

3. Û𝑔(Û𝑓 (𝑝)) = Û𝑔◇𝑓 (𝑝)

4. Û𝐼𝑑A
(𝑝) = 𝑝

Proof. 1. For the Ąrst time, we need to add a new rule to the original 39 rules of

𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆. We introduce rule 40:

𝑥 =𝑝 𝑦 : 𝐴 [𝑓 : 𝐴 ⊃ 𝐵]

𝑓(𝑥) =Ûf (𝑝) 𝑓(𝑦) : 𝐵

𝑦 =𝑞 𝑧 : 𝐴 [𝑓 : 𝐴 ⊃ 𝐵]

𝑓(𝑦) =Ûf (𝑞) 𝑓(𝑧) : 𝐵

𝑓(𝑥) = á(Û𝑓 (𝑝), Û𝑓 (𝑞))𝑓(𝑧) : 𝐵

𝑥 =𝑝 𝑦 : 𝐴 𝑦 =𝑞 𝑧 : 𝐴
⊲𝑡𝑓

𝑥 =á(𝑝,𝑞) 𝑧 : 𝐴 𝑓 : 𝐴 ⊃ 𝐵

𝑓(𝑥) =Ûf (á(𝑝,𝑞)) 𝑓(𝑧) : 𝐵

Thus, we have Û𝑓 (á(𝑝, 𝑞)) =à(𝑡𝑓) á(Û𝑓 (𝑝), Û𝑓 (𝑞))

2. This one follows from rule 30:

Chapter 5. Homotopy Type Theory 108

𝑥 =𝑝 𝑦 : 𝐴 [𝑓 : 𝐴 ⊃ 𝐵]

𝑓(𝑥) =Ûf (𝑝) 𝑓(𝑦) : 𝐵

𝑓(𝑦) =à(Ûf (𝑝)) 𝑓(𝑥) : 𝐵

𝑥 =𝑝 𝑦 : 𝐴
⊲𝑠𝑚

𝑦 =à(𝑝) 𝑥 : 𝐴 [𝑓 : 𝐴 ⊃ 𝐵]

𝑓(𝑦) =Ûf (à(𝑝)) 𝑓(𝑥) : 𝐵

We have Û𝑓 (à(𝑝)) =à(𝑠𝑚) à(Û𝑓 (𝑝))

3. We introduce rule 41:

𝑥 =𝑝 𝑦 : 𝐴 [𝑓 : 𝐴 ⊃ 𝐵]

𝑓(𝑥) =Ûf (𝑝) 𝑓(𝑦) : 𝐵 [𝑔 : 𝐵 ⊃ 𝐶]

𝑔(𝑓(𝑥)) =Ûg(Ûf (𝑝)) 𝑔(𝑓(𝑦)) : 𝐶

𝑥 =𝑝 𝑦 : 𝐴

[𝑥 : 𝐴] [𝑓 : 𝐴 ⊃ 𝐵]

𝑓(𝑥) : 𝐵 [𝑔 : 𝐵 ⊃ 𝐶]

𝑔(𝑓(𝑥)) : 𝐶

Ú𝑥.𝑔(𝑓(𝑥)) ⊕ (𝑔 ◇ 𝑓) : 𝐴 ⊃ 𝐶
⊲𝑐𝑓

𝑔(𝑓(𝑥)) =Ûg◇f (𝑝) 𝑔(𝑓(𝑦)) : 𝐶

Then, Û𝑔(Û𝑓 (𝑝)) =𝑐𝑓 Û𝑔◇𝑓 (𝑝)

4. We introduce rule 42:

𝑥 =𝑝 𝑦 : 𝐴 [𝐼𝑑𝐴 : 𝐴 ⊃ 𝐴]

𝐼𝑑𝐴(𝑥) = Û𝐼𝑑A(𝑝)𝐼𝑑𝐴(𝑦) : 𝐴
⊲𝑐𝑖 𝑥 =𝑝 𝑦 : 𝐴

𝑥 =ÛIdA
(𝑝) 𝑦 : 𝐴

It follows that Û𝐼𝑑A
(𝑝) =𝑐𝑖 𝑝

Chapter 5. Homotopy Type Theory 109

5.3 TRANSPORT

As stated in (QUEIROZ; OLIVEIRA, 2014a), substitution can take place when no quantiĄer

is involved. In this sense, there is a ŠquantiĄer-lessŠ notion of substitution. In type theory,

this ŠquantiĄer-lessŠ substitution is given by a operation known as transport (Univalent

Foundations Program, 2013). In our path-based approach, we formulate a new inference rule

of ŠquantiĄer-lessŠ substitution (QUEIROZ; OLIVEIRA, 2014a):

𝑥 =𝑝 𝑦 : 𝐴 𝑓(𝑥) : 𝑃 (𝑥)

𝑝(𝑥, 𝑦) ◇ 𝑓(𝑥) : 𝑃 (𝑦)

We use this transport operation to solve one essential issue of our path-based approach.

We know that given a path 𝑥 =𝑝 𝑦 : 𝐴 and function 𝑓 : 𝐴 ⊃ 𝐵, the application of axiom

Û yields the path 𝑓(𝑥) =Ûf (𝑝) 𝑓(𝑦) : 𝐵. The problem arises when we try to apply the same

axiom for a dependent function 𝑓 : Π(𝑥:𝐴)𝑃 (𝑥). In that case, we want 𝑓(𝑥) = 𝑓(𝑦), but we

cannot guarantee that the type of 𝑓(𝑥) : 𝑃 (𝑥) is the same as 𝑓(𝑦) : 𝑃 (𝑦). The solution is

to apply the transport operation and thus, we can guarantee that the types are the same:

𝑥 =𝑝 𝑦 : 𝐴 𝑓 : Π(𝑥:𝐴)𝑃 (𝑥)

𝑝(𝑥, 𝑦) ◇ 𝑓(𝑥) =Ûf (𝑝) 𝑓(𝑦) : 𝑃 (𝑦)

Lemma 5.7. (Leibniz’s Law) The type Π(𝑥,𝑦:𝐴)(𝐼𝑑𝐴(𝑥, 𝑦) ⊃ 𝑃 (𝑥) ⊃ 𝑃 (𝑦)) is inhabited.

Proof. We construct the following tree:

[𝑥 =𝑝 𝑦 : 𝐴] [𝑓(𝑥) : 𝑃 (𝑥)]

𝑝(𝑥, 𝑦) ◇ 𝑓(𝑥) : 𝑃 (𝑦)

Ú𝑓(𝑥).𝑝(𝑥, 𝑦) ◇ 𝑓(𝑥) : 𝑃 (𝑥) ⊃ 𝑃 (𝑦) [𝑧 : 𝐼𝑑𝐴(𝑥, 𝑦)]

𝑅𝐸𝑊𝑅(𝑧, Ú𝑝.Ú𝑓(𝑥).𝑝(𝑥, 𝑦) ◇ 𝑓(𝑥)) : 𝑃 (𝑥) ⊃ 𝑃 (𝑦)

Ú𝑥.Ú𝑦.Ú𝑧.𝑅𝐸𝑊𝑅(𝑧, Ú𝑝.Ú𝑓(𝑥).𝑝(𝑥, 𝑦) ◇ 𝑓(𝑥)) : Π(𝑥,𝑦:𝐴)(𝐼𝑑𝐴(𝑥, 𝑦) ⊃ 𝑃 (𝑥) ⊃ 𝑃 (𝑦))

The function Ú𝑓(𝑥).𝑝(𝑥, 𝑦)◇𝑓(𝑥) : 𝑃 (𝑥) ⊃ 𝑃 (𝑦) is usually written as 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑝(𝑝,⊗)

and 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑝(𝑝, 𝑓(𝑥)) : 𝑃 (𝑦) is usually written as 𝑝*(𝑓(𝑥)).

Lemma 5.8. For any 𝑃 (𝑥) ⊕ 𝐵, 𝑥 =𝑝 𝑦 : 𝐴 and 𝑏 : 𝐵, there is a path 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑃 (𝑝, 𝑏) =

𝑏.

Chapter 5. Homotopy Type Theory 110

Proof. The Ąrst to notice is the fact that in our formulation of transport, we always need

a functional expression 𝑓(𝑥), and in this case we have only a constant term 𝑏. To address

this problem, we consider a function 𝑓 = Ú.𝑏 and then, we transport over 𝑓(𝑥) ⊕ 𝑏:

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑃 (𝑝, 𝑓(𝑥) ⊕ 𝑏) =Û(𝑝) (𝑓(𝑦) ⊕ 𝑏).

Thus, 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑃 (𝑝, 𝑏) =Û(𝑝) 𝑏. We sometimes call this path 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑐𝑜𝑛𝑠𝑡𝐵𝑝 (𝑏).

Lemma 5.9. For any 𝑓 : 𝐴 ⊃ 𝐵 and 𝑥 =𝑝 𝑦 : 𝐴, we have

Û(𝑝)(𝑝*(𝑓(𝑥)), 𝑓(𝑦)) = á(𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑐𝑜𝑛𝑠𝑡𝐵𝑝 , Û𝑓 (𝑝))(𝑝*(𝑓(𝑥)), 𝑓(𝑦))

Proof. The Ąrst thing to notice is that in this case, 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑐𝑜𝑛𝑠𝑡𝐵𝑝 is the path Û(𝑝)(𝑝 *
(𝑓(𝑥), 𝑓(𝑥)) by lemma 8. As we did to the rules of 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆, we establishes this

equality by getting to the same conclusion from the same premises by two different trees:

In the Ąrst tree, we consider 𝑓(𝑥) ⊕ 𝑏 : 𝐵 and transport over 𝑏 : 𝐵:

𝑥 =𝑝 𝑦 : 𝐴 𝑓(𝑥) ⊕ 𝑏 : 𝐵

𝑝(𝑥, 𝑦) ◇ (𝑓(𝑥) ⊕ 𝑏) : 𝐵

𝑝*(𝑓(𝑥)) =Ûf (𝑝) 𝑏 ⊕ 𝑓(𝑥)

𝑥 =𝑝 𝑦 : 𝐴 𝑓 : 𝐴 ⊃ 𝐵

𝑓(𝑥) =Ûf (𝑝) 𝑓(𝑦) : 𝐵

𝑝*(𝑓(𝑥)) =á(Ûf (𝑝),Ûf (𝑝)) 𝑓(𝑦) : 𝐵

In the second one, we consider 𝑓(𝑥) as an usual functional expression and thus, we

transport the usual way:

𝑥 =𝑝 𝑦 : 𝐴 𝑓(𝑥) : 𝐵

𝑝(𝑥, 𝑦) ◇ 𝑓(𝑥) : 𝐵

𝑝*(𝑓(𝑥)) =Ûf (𝑝) 𝑓(𝑦) : 𝐵

Lemma 5.10. For any 𝑥 =𝑝 𝑦 : 𝐴 and 𝑞 : 𝑦 =𝐴 𝑧 : 𝐴, 𝑓(𝑥) : 𝑃 (𝑥), we have

𝑞*(𝑝*(𝑓(𝑥))) = (𝑝 ◇ 𝑞)*(𝑓(𝑥))

Proof. We develop both sides of the equation and wind up with the same result:

𝑞*(𝑝*𝑓(𝑥)) =Û(𝑝) 𝑞*(𝑓(𝑦)) =Û(𝑞) 𝑓(𝑧)

(𝑝 ◇ 𝑞)*(𝑓(𝑥)) =Û(𝑝◇𝑞) 𝑓(𝑧)

Lemma 5.11. For any 𝑓 : 𝐴 ⊃ 𝐵, 𝑥 =𝑝 𝑦 : 𝐴 and 𝑢 : 𝑃 (𝑓(𝑥)), we have:

Chapter 5. Homotopy Type Theory 111

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑃 ◇𝑓 (𝑝, 𝑢) = 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑃 (Û𝑓 (𝑝), 𝑢)

Proof. This lemma hinges on the fact that there is two possible interpretations of 𝑢 that

stems from the fact that (𝑔 ◇𝑓)(𝑥) ⊕ 𝑔(𝑓(𝑥)). Thus, we can see 𝑢 as functional expression

𝑔 on 𝑓(𝑥) or an expression 𝑔 ◇ 𝑓 on 𝑥:

Chapter 5. Homotopy Type Theory 112

𝑥
=

𝑝
𝑦

:
𝐴

𝑢
⊕

(𝑔
◇𝑓

)(
𝑥
)

:
(𝑃

◇𝑓
)(
𝑥
)

𝑝(
𝑥
,𝑦

)
◇(
𝑔

◇𝑓
)(
𝑥
)

:
(𝑃

◇𝑓
)(
𝑦
)

𝑝(
𝑥
,𝑦

)
◇(
𝑔

◇𝑓
)(
𝑥
)

=
Û

(𝑝
)

(𝑔
◇𝑓

)(
𝑦
)

:
(𝑃

◇𝑓
)(
𝑦
)

𝑝(
𝑥
,𝑦

)
◇(
𝑔

◇𝑓
)(
𝑥
)

=
Û

(𝑝
)
𝑔
(𝑓

(𝑦
))

:
𝑃

(𝑓
(𝑦

))

𝑥
=

𝑝
𝑦

:
𝐴

𝑓
(𝑥

)
=

𝑢
f

(𝑝
)
𝑓

(𝑦
)

:
𝐵

𝑢
⊕
𝑔
(𝑓

(𝑥
))

:
𝑃

(𝑓
(𝑥

))

Û
𝑓
(𝑝

)(
𝑓

(𝑥
),
𝑓

(𝑦
))

◇𝑔
(𝑓

(𝑥
))

:
𝑃

(𝑓
(𝑦

))

Û
𝑓
(𝑝

)(
𝑓

(𝑥
),
𝑓

(𝑦
))

◇𝑔
(𝑓

(𝑥
))

=
Û

(𝑝
)
𝑔
(𝑓

(𝑦
))

:
𝑃

(𝑓
(𝑦

))

𝑔
(𝑓

(𝑦
))

=
à

(Û
(𝑝

))
Û

𝑓
(𝑝

)(
𝑓

(𝑥
),
𝑓

(𝑦
))

◇𝑔
(𝑓

(𝑥
))

:
𝑃

(𝑓
(𝑦

))

𝑝(
𝑥
,𝑦

)
◇(
𝑔

◇𝑓
)(
𝑥
)

=
á

(Û
(𝑝

),
à

(Û
(𝑝

))
)
Û

𝑓
(𝑝

)(
𝑓

(𝑥
),
𝑓

(𝑦
))

◇𝑔
(𝑓

(𝑥
))

:
𝑃

(𝑓
(𝑦

))

𝑡𝑟
𝑎
𝑛
𝑠𝑝
𝑜𝑟
𝑡𝑃

◇𝑓
(𝑝
,𝑢

)
=

á
(Û

(𝑝
),

à
(Û

(𝑝
))

)
𝑡𝑟
𝑎
𝑛
𝑠𝑝
𝑜𝑟
𝑡𝑃

(Û
𝑓
(𝑝

),
𝑢
)

Chapter 5. Homotopy Type Theory 113

Lemma 5.12. For any 𝑓 : Π(𝑥:𝐴)𝑃 (𝑥) ⊃ 𝑄(𝑥), 𝑥 =𝑝 𝑦 : 𝐴 and 𝑢(𝑥) : 𝑃 (𝑥), we have:

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑄(𝑝, 𝑓(𝑢(𝑥))) = 𝑓(𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑃 (𝑝, 𝑢(𝑥)))

Proof. We proceed the usual way, constructing a derivation tree that establishes the equal-

ity:

𝑥 =𝑝 𝑦 : 𝐴 𝑓(𝑢(𝑥)) : 𝑄(𝑥)

𝑝(𝑥, 𝑦) ◇ 𝑓(𝑢(𝑥)) : 𝑄(𝑦)

𝑝(𝑥, 𝑦) ◇ 𝑓(𝑢(𝑥)) =Û(𝑝) 𝑓(𝑢(𝑦)) : 𝑄(𝑦)

𝑥 =𝑝 𝑦 : 𝐴 𝑢(𝑥) : 𝑃 (𝑥)

𝑝(𝑥, 𝑦) ◇ 𝑢(𝑥) : 𝑃 (𝑦)

𝑝(𝑥, 𝑦) ◇ 𝑢(𝑥) =Û(𝑝) 𝑢(𝑦) : 𝑃 (𝑦) 𝑓 : Π(𝑥:𝐴)𝑃 (𝑥) ⊃ 𝑄(𝑥)

𝑓(𝑝(𝑥, 𝑦) ◇ 𝑢(𝑥)) =Ûf (Û(𝑝)) 𝑓(𝑢(𝑦)) : 𝑄(𝑦)

𝑓(𝑢(𝑦)) =à(Ûf (Û(𝑝))) 𝑓(𝑝(𝑥, 𝑦) ◇ 𝑢(𝑥)) : 𝑄(𝑦)

𝑝(𝑥, 𝑦) ◇ 𝑓(𝑢(𝑥)) =á(Û(𝑝),à(Ûf (Û(𝑝)))) 𝑓(𝑝(𝑥, 𝑦) ◇ 𝑢(𝑥))

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑄(𝑝, 𝑓(𝑢(𝑥))) =á(Û(𝑝),à(Ûf (Û(𝑝)))) 𝑓(𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑃 (𝑝, 𝑢(𝑥)))

5.4 HOMOTOPIES

In Homotopy Type Theory, a homotopy is deĄned as follows (Univalent Foundations Program,

2013):

Definition 5.1. For any 𝑓, 𝑔 : Π(𝑥:𝐴)𝑃 (𝑥), a homotopy from 𝑓 to 𝑔 is a dependent function

of type:

(𝑓 ≍ 𝑔) ⊕ Π(𝑥:𝐴)(𝑓(𝑥) = 𝑔(𝑥))

In our path-based approach, we have a homotopy 𝑓, 𝑔 : Π(𝑥:𝐴)𝑃 (𝑥) if for every 𝑥 : 𝐴

we have a computational path between 𝑓(𝑥) = 𝑔(𝑥). Thus, if we have a homotopy 𝐻𝑓,𝑔 :

𝑓 ≍ 𝑔, we derive the following rule:

𝐻𝑓,𝑔 : 𝑓 ≍ 𝑔 𝑓, 𝑔 : Π(𝑥:𝐴)𝑃 (𝑥) 𝑥 : 𝐴

𝑓(𝑥) =𝐻f,g(𝑥) 𝑔(𝑥) : 𝑃 (𝑥)

And:

𝑓, 𝑔 : Π(𝑥:𝐴)𝑃 (𝑥) 𝑥 : 𝐴

[𝑓, 𝑔 : Π(𝑥:𝐴)𝑃 (𝑥), 𝑥 : 𝐴]

𝑓(𝑥) =𝑝 𝑔(𝑥)

𝐻𝑝
𝑓,𝑔 : 𝑓 ≍ 𝑔

Chapter 5. Homotopy Type Theory 114

Lemma 5.13. For any 𝑓, 𝑔, ℎ : 𝐴 ⊃ 𝐵, the following types are inhabited:

1. 𝑓 ≍ 𝑓

2. (𝑓 ≍ 𝑔) ⊃ (𝑔 ≍ 𝑓)

3. (𝑓 ≍ 𝑔) ⊃ (𝑔 ≍ ℎ) ⊃ (𝑓 ≍ ℎ)

Proof. 1. We construct the following term:

𝑓 : 𝐴 ⊃ 𝐵 𝑥 : 𝐴

[𝑥 : 𝐴]
𝑥 =𝜌 𝑥 [𝑓 : 𝐴 ⊃ 𝐵]

𝑓(𝑥) =Ûf (𝜌) 𝑓(𝑥) : 𝐵

𝐻
Ûf (𝜌)
𝑓,𝑓 : 𝑓 ≍ 𝑓

2. We construct:

𝑓, 𝑔 : 𝐴 ⊃ 𝐵 𝑥 : 𝐴

[𝐻𝑓,𝑔 : 𝑓 ≍ 𝑔] [𝑓, 𝑔 : 𝐴 ⊃ 𝐵] [𝑥 : 𝐴]

𝑓(𝑥) =𝐻f,g(𝑥) 𝑔(𝑥) : 𝐵

𝑔(𝑥) =à(𝐻f,g(𝑥)) 𝑓(𝑥) : 𝐵

𝐻
à(𝐻f,g(𝑥))
𝑔,𝑓 : 𝑔 ≍ 𝑓

Ú𝐻𝑓,𝑔.𝐻
à(𝐻f,g(𝑥))
𝑔,𝑓 : (𝑓 ≍ 𝑔) ⊃ (𝑔 ≍ 𝑓)

3. We construct:

f, h : A ⊃ B x : A

[H𝑓,𝑔 : f ≍ g] [f, g : A ⊃ B] [x : A]

f(x) =𝐻f,g(𝑥) g(x) : B

[H𝑔,ℎ : g ≍ h] [g, h : A

g(x) =𝐻g,h(𝑥) h(

f(x) =á(𝐻f,g(𝑥),𝐻g,z(𝑥)) h(x) : B

H
á(𝐻f,g(𝑥),𝐻g,z(𝑥))
𝑓,ℎ : f ≍ h

λH𝑓,𝑔.λH𝑔,ℎ.H
á(𝐻f,g(𝑥),𝐻g,z(𝑥))
𝑓,ℎ : (f ≍ g) ⊃ (g ≍ h) ⊃ (f ≍ h)

Lemma 5.14. For any 𝐻𝑓,𝑔 : 𝑓 ≍ 𝑔 and functions 𝑓, 𝑔 : 𝐴 ⊃ 𝐵 and a path 𝑥 =𝑝 𝑦 : 𝐴

we have:

á(𝐻𝑓,𝑔(𝑥), Û𝑔(𝑝)) = á(Û𝑓 (𝑝), 𝐻𝑓,𝑔(𝑦))

Chapter 5. Homotopy Type Theory 115

Proof. To establish this equality, we need to add a new rule to our 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆. We

introduce rule 43:

𝐻𝑓,𝑔 : 𝑓 ≍ 𝑔 𝑥 : 𝐴 𝑓, 𝑔 : 𝐴 ⊃ 𝐵

𝑓(𝑥) =𝐻f,g(𝑥) 𝑔(𝑥) : 𝐵

𝑥 =𝑝 𝑦 : 𝐴

𝑔(𝑥) =Ûg(𝑝) 𝑔(𝑦) : 𝐵

𝑓(𝑥) =á(𝐻f,g(𝑥),Ûg(𝑝)) 𝑔(𝑦) : 𝐵

⊲ℎ𝑝

𝑥 =𝑝 𝑦 : 𝐴

𝑓(𝑥) =Ûf (𝑝) 𝑓(𝑦) : 𝐵

𝐻𝑓,𝑔 : 𝑓 ≍ 𝑔 𝑥 : 𝐴 𝑓, 𝑔 : 𝐴 ⊃ 𝐵

𝑓(𝑦) =𝐻f,g(𝑦) 𝑔(𝑦) : 𝐵

𝑓(𝑥) =á(Ûf (𝑝),𝐻f,g(𝑦) 𝑔(𝑦) : 𝐵

And thus:

á(𝐻𝑓,𝑔(𝑥), Û𝑔(𝑝)) =ℎ𝑝 á(Û𝑓 (𝑝), 𝐻𝑓,𝑔(𝑦))

After this section, we start to study speciĄc lemmas and theorems involving basic

types of type theory. Nevertheless, several of those theorems are statements about the

notion of equivalence (notation: ♠). Before we deĄne equivalence, we need the following

deĄnition (Univalent Foundations Program, 2013):

Definition 5.2. A quasi-inverse of a function 𝑓 : 𝐴 ⊃ 𝐵 is a triple (𝑔, Ð, Ñ) such that

𝑔 is a function 𝑔 : 𝐵 ⊃ 𝐴 and Ð and Ñ are homotopies such that Ð : 𝑓 ◇ 𝑔 ≍ 𝐼𝑑𝐵 and

Ñ : 𝑔 ◇ 𝑓 ≍ 𝐼𝑑𝐴

A quasi-inverse of 𝑓 is usually written as 𝑞𝑖𝑛𝑣(𝑓).

Definition 5.3. A function 𝑓 : 𝐴 ⊃ 𝐵 is an equivalence if there is a quasi-inverse

𝑞𝑖𝑛𝑣(𝑓) : 𝐵 ⊃ 𝐴.

5.5 CARTESIAN PRODUCT

We start proving some important lemmas and theorems for the Cartesian product type.

As we did in previous subsections, we proceed using our path-based approach. Before we

prove our Ąrst theorem, it is important to remember that given a term 𝑥 : 𝐴×𝐵, we can

extract two projections, 𝐹𝑆𝑇 (𝑥) : 𝐴 and 𝑆𝑁𝐷(𝑥) : 𝐵. Thus, given a path 𝑥 =𝑝 𝑦 : 𝐴×𝐵,

we extract paths 𝐹𝑆𝑇 (𝑥) = 𝑆𝑁𝐷(𝑦) : 𝐴 and 𝑆𝑁𝐷(𝑥) = 𝑆𝑁𝐷(𝑦) : 𝐵.

Theorem 5.1. The function (𝑥 =𝑝 𝑦 : 𝐴×𝐵) ⊃ (𝐹𝑆𝑇 (𝑥) = 𝐹𝑆𝑇 (𝑦) : 𝐴) × (𝑆𝑁𝐷(𝑥) =

𝑆𝑁𝐷(𝑦) : 𝐵) is an equivalence for any 𝑥 and 𝑦.

Proof. To show the equivalence, we need to show the following

Chapter 5. Homotopy Type Theory 116

1. From 𝑥 =𝑝 𝑦 : 𝐴 × 𝐵 we want to obtain (𝐹𝑆𝑇 (𝑥) = 𝐹𝑆𝑇 (𝑦) : 𝐴) × (𝑆𝑁𝐷(𝑥) =

𝑆𝑁𝐷(𝑦) : 𝐵) and from that, we want to go back to 𝑥 =𝑝 𝑦 : 𝐴×𝐵.

2. We want to do the inverse process. From (𝐹𝑆𝑇 (𝑥) = 𝐹𝑆𝑇 (𝑦) : 𝐴) × (𝑆𝑁𝐷(𝑥) =

𝑆𝑁𝐷(𝑦) : 𝐵) we want to obtain 𝑥 =𝑝 𝑦 : 𝐴 × 𝐵 and then go back to (𝐹𝑆𝑇 (𝑥) =

𝐹𝑆𝑇 (𝑦) : 𝐴) × (𝑆𝑁𝐷(𝑥) = 𝑆𝑁𝐷(𝑦) : 𝐵).

To show the Ąrst part, we need rule 21:

𝑥 =𝑝 𝑦 : 𝐴×𝐵

𝐹𝑆𝑇 (𝑥) =Û1(𝑝) 𝐹𝑆𝑇 (𝑦) : 𝐴

𝑥 =𝑝 𝑦 : 𝐴×𝐵

𝑆𝑁𝐷(𝑥) =Û2(𝑝) 𝑆𝑁𝐷(𝑦) : 𝐵

⟨𝐹𝑆𝑇 (𝑥), 𝑆𝑁𝐷(𝑥)⟩ =𝜖(Û1(𝑝),Û2(𝑝)) ⟨𝐹𝑆𝑇 (𝑦), 𝑆𝑁𝐷(𝑦)⟩ : 𝐴×𝐵

⊲𝑚𝑥 𝑥 =𝑝 𝑦 : 𝐴×𝐵.

Thus, applying rule 𝑚𝑥 we showed the Ąrst part of our proof. For the second part, we

need rules 14 and 15:

𝑥 =𝑟 𝑥
′ : 𝐴 𝑦 =𝑠 𝑧 : 𝐵

⟨𝑥, 𝑦⟩ =𝜖∧(𝑟,𝑠) ⟨𝑥′, 𝑧⟩ : 𝐴×𝐵

𝐹𝑆𝑇 (⟨𝑥, 𝑦⟩) =Û1(𝜖∧(𝑟,𝑠)) 𝐹𝑆𝑇 (⟨𝑥′, 𝑧⟩) : 𝐴

⊲𝑚𝑥2𝑙 𝑥 =𝑟 𝑥
′ : 𝐴.

And:

𝑥 =𝑟 𝑦 : 𝐴 𝑧 =𝑠 𝑤 : 𝐵
⟨𝑥, 𝑧⟩ =𝜖∧(𝑟,𝑠) ⟨𝑦, 𝑤⟩ : 𝐴×𝐵

𝐹𝑆𝑇 (⟨𝑥, 𝑧⟩) =Û2(𝜖∧(𝑟,𝑠)) 𝐹𝑆𝑇 (⟨𝑦, 𝑤⟩) : 𝐵

⊲𝑚𝑥2𝑟 𝑧 =𝑠 𝑤 : 𝐵.

We also use the Ö-reduction for the Cartesian product:

⟨𝐹𝑆𝑇 (𝑥), 𝑆𝑁𝐷(𝑥)⟩ : 𝐴×𝐵 ⊲Ö 𝑥 : 𝐴×𝐵

We construct the following derivation tree:

⟨𝐹𝑆𝑇 (𝑥) =𝑠 𝐹𝑆𝑇 (𝑦), 𝑆𝑁𝐷(𝑥) =𝑡 𝑆𝑁𝐷(𝑦)⟩
𝐹𝑆𝑇 (𝑥) =𝑠 𝐹𝑆𝑇 (𝑦) : 𝐴

⟨𝐹𝑆𝑇 (𝑥) =𝑠 𝐹𝑆𝑇 (𝑦), 𝑆𝑁𝐷(𝑥) =𝑡 𝑆𝑁𝐷(𝑦)⟩
𝑆𝑁𝐷(𝑥) =𝑡 𝑆𝑁𝐷(𝑦) : 𝐵

⟨𝐹𝑆𝑇 (𝑥), 𝑆𝑁𝐷(𝑥)⟩ =𝜖∧(𝑠,𝑡) ⟨𝐹𝑆𝑇 (𝑦), 𝑆𝑁𝐷(𝑦)⟩ : 𝐴×𝐵
⊲Ö

𝑥 =𝜖(𝑠,𝑡) 𝑦 : 𝐴×𝐵

Chapter 5. Homotopy Type Theory 117

From 𝑥 =𝜖(𝑠,𝑡) 𝑦 : 𝐴×𝐵, we have:

𝑥 =𝜖(𝑠,𝑡) 𝑦 : 𝐴×𝐵

𝐹𝑆𝑇 (𝑥) =Û1(𝜖∧(𝑠,𝑡) 𝐹𝑆𝑇 (𝑦) : 𝐴

𝑥 =𝜖(𝑠,𝑡) 𝑦 : 𝐴×𝐵

𝑆𝑁𝐷(𝑥) =Û2(𝜖∧(𝑠,𝑡) 𝑆𝑁𝐷(𝑦) : 𝐵
∧ ⊗ 𝐼⟨𝐹𝑆𝑇 (𝑥) =Û1(𝜖∧(𝑠,𝑡) 𝐹𝑆𝑇 (𝑦), 𝑆𝑁𝐷(𝑥) =Û2(𝜖∧(𝑠,𝑡) 𝑆𝑁𝐷(𝑦)⟩

⊲𝑚𝑥2𝑙,𝑚𝑥2𝑟⟨𝐹𝑆𝑇 (𝑥) =𝑠 𝐹𝑆𝑇 (𝑦), 𝑆𝑁𝐷(𝑥) =𝑡 𝑆𝑁𝐷(𝑦)⟩

Thus, we showed part 2 and concluded the proof of this theorem.

Theorem 5.2. For any type families Π(𝑧:𝑍)𝐴,Π(𝑧:𝑍)𝐵 and a type family defined by (𝐴×
𝐵)(𝑧) ⊕ 𝐴(𝑧) ×𝐵(𝑧), a path 𝑧 =𝑝 𝑤 : 𝑍 and 𝑓(𝑧) : 𝐴(𝑧) ×𝐵(𝑧), we have:

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝐴×𝐵(𝑝, 𝑓(𝑧)) = ⟨𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝐴(𝑝, 𝐹𝑆𝑇 (𝑓(𝑧))), 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝐵(𝑝, 𝑆𝑁𝐷(𝑓(𝑧)))⟩ :

𝐴(𝑤) ×𝐵(𝑤)

Proof. We construct a derivation tree that establishes the equality:

Chapter 5. Homotopy Type Theory 118

𝑧
=

𝑝
𝑤

:
𝑍

𝑓
(𝑧

)
:
𝐴

(𝑧
)

×
𝐵

(𝑧
)

𝑝(
𝑧
,𝑤

)
◇𝑓

(𝑧
)

:
𝐴

(𝑤
)

×
𝐵

(𝑤
)

𝑝(
𝑧
,𝑤

)
◇𝑓

(𝑧
)

=
Û

(𝑝
)
𝑓

(𝑤
)

:
𝐴

(𝑤
)

×
𝐵

(𝑤
)

𝑝(
𝑧
,𝑤

)
◇𝑓

(𝑧
)

=
á

(Û
(𝑝

),
Ö

)
⟨𝐹
𝑆
𝑇

(𝑓
(𝑤

))
,𝑆
𝑁
𝐷

(𝑓
(𝑤

))
⟩:
𝐴

(𝑤
)

×
𝐵

(𝑤
)

𝑧
=

𝑝
𝑤

:
𝑍

𝐹
𝑆
𝑇

(𝑓
(𝑧

))
:
𝐴

(𝑧
)

𝑝(
𝑧
,𝑤

)
◇𝐹

𝑆
𝑇

(𝑓
(𝑧

))
:
𝐴

(𝑤
)

𝑧
=

𝑝
𝑤

:
𝑍

𝑆
𝑁
𝐷

(𝑓
(𝑧

))
:
𝐵

(𝑧
)

𝑝(
𝑧
,𝑤

)
◇𝑆

𝑁
𝐷

(𝑓
(𝑧

))
:
𝐵

(𝑤
)

⟨𝑝
(𝑧
,𝑤

)
◇𝐹

𝑆
𝑇

(𝑓
(𝑧

))
,𝑝

(𝑧
,𝑤

)
◇𝑆

𝑁
𝐷

(𝑓
(𝑧

))
⟩:
𝐴

(𝑤
)

×
𝐵

(𝑤
)

⟨𝑝
(𝑧
,𝑤

)
◇𝐹

𝑆
𝑇

(𝑓
(𝑧

))
,𝑝

(𝑧
,𝑤

)
◇𝑆

𝑁
𝐷

(𝑓
(𝑧

))
⟩=

Û
(𝑝

)
⟨𝐹
𝑆
𝑇

(𝑓
(𝑤

))
,𝑆
𝑁
𝐷

(𝑓
(𝑤

))
⟩

⟨𝐹
𝑆
𝑇

(𝑓
(𝑤

))
,𝑆
𝑁
𝐷

(𝑓
(𝑤

))
⟩=

à
(Û

(𝑝
))

⟨𝑝
(𝑧
,𝑤

)
◇𝐹

𝑆
𝑇

(𝑓
(𝑧

))
,𝑝

(𝑧
,𝑤

)
◇𝑆

𝑁
𝐷

(𝑓
(𝑧

))
⟩

𝑝(
𝑧
,𝑤

)
◇𝑓

(𝑧
)

=
á

(á
(Û

(𝑝
),

Ö
),

à
(Û

(𝑝
))

)
⟨𝑝

(𝑧
,𝑤

)
◇𝐹

𝑆
𝑇

(𝑓
(𝑧

))
,𝑝

(𝑧
,𝑤

)
◇𝑆

𝑁
𝐷

(𝑓
(𝑧

))
⟩:
𝐴

(𝑤
)

×
𝐵

(𝑤
)

𝑡𝑟
𝑎
𝑛
𝑠𝑝
𝑜𝑟
𝑡𝐴

×
𝐵

(𝑝
,𝑓

(𝑧
))

=
á

(á
(Û

(𝑝
),

Ö
),

à
(Û

(𝑝
))

)
⟨𝑡𝑟
𝑎
𝑛
𝑠𝑝
𝑜𝑟
𝑡𝐴

(𝑝
,𝐹
𝑆
𝑇

(𝑓
(𝑧

))
),
𝑡𝑟
𝑎
𝑛
𝑠𝑝
𝑜𝑟
𝑡𝐵

(𝑝
,𝑆
𝑁
𝐷

(𝑓
(𝑧

))
)⟩

:
𝐴

(𝑤
)

×
𝐵

(𝑤
)

Chapter 5. Homotopy Type Theory 119

Theorem 5.3. For any 𝑥, 𝑦 : 𝐴×𝐵, 𝐹𝑆𝑇 (𝑥) =𝑝 𝐹𝑆𝑇 (𝑦) : 𝐴, 𝑆𝑁𝐷(𝑥) =𝑞 𝑆𝑁𝐷(𝑦) : 𝐵,

functions 𝑔 : 𝐴 ⊃ 𝐴′, ℎ : 𝐵 ⊃ 𝐵′ and 𝑓 : 𝐴 × 𝐵 ⊃ 𝐴′ × 𝐵′ defined by 𝑓(𝑥) ⊕
⟨𝑔(𝐹𝑆𝑇 (𝑥)), ℎ(𝑆𝑁𝐷(𝑥)⟩, we have:

Û𝑓 (𝜖∧(𝑝, 𝑞)) = 𝜖∧(Û𝑔(𝑝), Ûℎ(𝑞))

Proof. We introduce rule 44:

𝐹𝑆𝑇 (𝑥) =𝑝 𝐹𝑆𝑇 (𝑦) : 𝐴 𝑆𝑁𝐷(𝑥) =𝑞 𝑆𝑁𝐷(𝑦) : 𝐵

⟨𝐹𝑆𝑇 (𝑥), 𝑆𝑁𝐷(𝑥)⟩ =𝜖∧(𝑝,𝑞) ⟨𝐹𝑆𝑇 (𝑦), 𝑆𝑁𝐷(𝑦)⟩ : 𝐴×𝐵
=Ö

𝑥 =𝜖∧(𝑝,𝑞) 𝑦 : 𝐴×𝐵

𝑓(𝑥) =Ûf (𝜖∧(𝑝,𝑞)) 𝑓(𝑦) : 𝐴′ ×𝐵′

⊲𝑚𝑥𝑐

𝐹𝑆𝑇 (𝑥) =𝑝 𝐹𝑆𝑇 (𝑦) : 𝐴

𝑔(𝐹𝑆𝑇 (𝑥)) =Ûg(𝑝) 𝑔(𝐹𝑆𝑇 (𝑦)) : 𝐴′

𝑆𝑁𝐷(𝑥) =𝑞 𝑆𝑁𝐷(𝑦) : 𝐵

ℎ(𝑆𝑁𝐷(𝑥)) =Ûh(𝑞) ℎ(𝑆𝑁𝐷(𝑦)) : 𝐵′

⟨𝑔(𝐹𝑆𝑇 (𝑥), ℎ(𝑆𝑁𝐷(𝑥))⟩ =𝜖∧(Ûg(𝑝),Ûh(𝑞)) ⟨𝑔(𝐹𝑆𝑇 (𝑦)), ℎ(𝑆𝑁𝐷(𝑦))⟩ : 𝐴′ ×𝐵′

𝑓(𝑥) =𝜖∧(Ûg(𝑝),Ûh(𝑞)) 𝑓(𝑦) : 𝐴′ ×𝐵′

And thus:

Û𝑓 (𝜖∧(𝑝, 𝑞)) =𝑚𝑥𝑐 𝜖∧(Û𝑔(𝑝), Ûℎ(𝑞))

5.6 UNIT TYPE

For the unit type 1, our objective is to show the following theorem:

Theorem 5.4. For any 𝑥, 𝑦 : 1, there is a path 𝑡 such that 𝑥 =𝑡 𝑦. Moreover, 𝑡 = 𝜌.

Proof. To show that there is such 𝑡, we need to use the induction for the unit type

(Univalent Foundations Program, 2013):

* ⊲Ö 𝑥 : 1

Therefore, given 𝑥, 𝑦 : 1, we have:

𝑥 =à(Ö) * : 1 * =Ö 𝑦 : 1
𝑥 =á(à(Ö),Ö) 𝑦 : 1

Chapter 5. Homotopy Type Theory 120

Moreover, by rule 4, we have:

á(à(Ö), Ö) =𝑡𝑠𝑟 𝜌.

Thus, 𝑡 ⊕ á(à(Ö), Ö) and 𝑡 =𝑡𝑠𝑟 𝜌.

5.7 FUNCTION EXTENSIONALITY

In this subsection, we are interested in the property of function extensionality. In other

words, we want to conclude that given any two functions 𝑓, 𝑔, if for any 𝑥 we have that

𝑓(𝑥) = 𝑔(𝑥), then 𝑓 = 𝑔. That 𝑓 = 𝑔 implies 𝑓(𝑥) = 𝑔(𝑥) by rules of basic type theory

is shown in the sequel. Nonetheless, basic type theory is insufficient to derive function

extensionality (Univalent Foundations Program, 2013). Our approach using computational

paths also cannot derive full function extensionality. Nevertheless, we end up proving a

weakened version which says that if 𝐴 is non-empty, then the above principle of function

extensionality over 𝐴 ⊃ 𝐵 holds (QUEIROZ; OLIVEIRA; RAMOS, 2016):

𝐴 ⊃ (Π𝑓𝐴⊃𝐵Π𝑔𝐴⊃𝐵(Π𝑥𝐴
Id𝐵(𝐴𝑃𝑃 (𝑓, 𝑥), 𝐴𝑃𝑃 (𝑔, 𝑥)) ⊃ Id𝐴⊃𝐵(𝑓, 𝑔)))

The proof is as follows (QUEIROZ; OLIVEIRA; RAMOS, 2016):

Chapter 5. Homotopy Type Theory 121

[𝑓
:
𝐴

⊃
𝐵

]

[𝑔
:
𝐴

⊃
𝐵

]

:
Π
𝑥

𝐴
𝐼
𝑑

𝐵
(𝐴
𝑃
𝑃

(𝑓
,𝑥

),
𝐴
𝑃
𝑃

(𝑔
,𝑥

))
]

𝑧)
:
𝐼
𝑑

𝐵
(𝐴
𝑃
𝑃

(𝑓
,𝑧

),
𝐴
𝑃
𝑃

(𝑔
,𝑧

))

[𝑓
:
𝐴

⊃
𝐵

]

Ú
𝑧𝐴
𝑃
𝑃

(𝑓
,𝑧

)
=

Ö
𝑓

:
𝐴

⊃
𝐵

𝑓
=

à
(Ö

)
Ú
𝑧
.𝐴
𝑃
𝑃

(𝑓
,𝑧

)
:
𝐴

⊃
𝐵

[𝐴
𝑃
𝑃

(𝑓
,𝑧

)
=

𝑡
𝐴
𝑃
𝑃

(𝑔
,𝑧

)
:
𝐵

]

Ú
𝑧𝐴
𝑃
𝑃

(𝑓
,𝑧

)
=

Ý
(𝑡

)
Ú
𝑧.
𝐴
𝑃
𝑃

(𝑔
,𝑧

)
:
𝐴

⊃
𝐵

𝑓
=

á
(à

(Ö
),

Ý
(𝑡

))
Ú
𝑧
.𝐴
𝑃
𝑃

(𝑔
,𝑧

)
:
𝐴

⊃
𝐵

[𝑔
:
𝐴

⊃
𝐵

]

Ú
𝑧
.𝐴
𝑃
𝑃

(𝑔
,𝑧

)
=

Ö
𝑔

:
𝐴

⊃
𝐵

𝑓
=

á
(á

(à
(Ö

),
Ý
(𝑡

))
,Ö

)
𝑔

:
𝐴

⊃
𝐵

(á
(á

(à
(Ö

),
Ý(
𝑡)

),
Ö
))

(𝑓
,𝑔

)
:
𝐼
𝑑

𝐴
⊃

𝐵
(𝑓
,𝑔

)

𝑅
𝐸
𝑊
𝑅

(𝐴
𝑃
𝑃

(𝑣
,𝑧

),
𝑡.

(á
(á

(à
(Ö

),
Ý(
𝑡)

),
Ö
))

(𝑓
,𝑔

))
:
𝐼
𝑑

𝐴
⊃

𝐵
(𝑓
,𝑔

)

Ú
𝑣
.𝑅
𝐸
𝑊
𝑅

(𝐴
𝑃
𝑃

(𝑣
,𝑧

),
𝑡.

(á
(á

(à
(Ö

),
Ý(
𝑡)

),
Ö
))

(𝑓
,𝑔

))
:
Π
𝑥

𝐴
.𝐼
𝑑

𝐵
(𝐴
𝑃
𝑃

(𝑓
,𝑥

),
𝐴
𝑃

(𝑔
,𝑥

))
⊃

𝐼
𝑑

𝐴
⊃

𝐵
(𝑓
,𝑔

)

Ú
𝑔
.Ú
𝑣
.𝑅
𝐸
𝑊
𝑅

(𝐴
𝑃
𝑃

(𝑣
,𝑧

),
𝑡.

(á
(á

(à
(Ö

),
Ý(
𝑡)

),
Ö
))

(𝑓
,𝑔

))
:
Π
𝑔

𝐴
⊃

𝐵
(Π
𝑥

𝐴
.𝐼
𝑑

𝐵
(𝐴
𝑃
𝑃

(𝑓
,𝑥

),
𝐴
𝑃

(𝑔
,𝑥

))
⊃

𝐼
𝑑

𝐴
⊃

𝐵
(𝑓
,𝑔

))

.Ú
𝑔
.Ú
𝑣
.𝑅
𝐸
𝑊
𝑅

(𝐴
𝑃

(𝑣
,𝑧

),
𝑡.

(á
(á

(à
(Ö

),
Ý(
𝑡)

),
Ö
))

(𝑓
,𝑔

))
:
Π
𝑓

𝐴
⊃

𝐵
Π
𝑔

𝐴
⊃

𝐵
(Π
𝑥

𝐴
.𝐼
𝑑

𝐵
(𝐴
𝑃
𝑃

(𝑓
,𝑥

),
𝐴
𝑃

(𝑔
,𝑥

))
⊃

𝐼
𝑑

𝐴
⊃

𝐵
(𝑓
,𝑔

))

.Ú
𝑣
.𝑅
𝐸
𝑊
𝑅

(𝐴
𝑃
𝑃

(𝑣
,𝑧

),
𝑡.

(á
(á

(à
(Ö

),
Ý(
𝑡)

),
Ö
))

(𝑓
,𝑔

))
:
𝐴

⊃
(Π
𝑓

𝐴
⊃

𝐵
Π
𝑔

𝐴
⊃

𝐵
(Π
𝑥

𝐴
.𝐼
𝑑

𝐵
(𝐴
𝑃
𝑃

(𝑓
,𝑥

),
𝐴
𝑃

(𝑔
,𝑥

))
⊃

𝐼
𝑑

𝐴
⊃

𝐵
(𝑓
,𝑔

))
)

Chapter 5. Homotopy Type Theory 122

Nevertheless, if we want full function extensionality and not just a weak version, we

need to add a new rule to type theory. First, we letŠs prove the following lemma:

Lemma 5.15. The following function exists:

(𝑓 = 𝑔) ⊃ Π(𝑥:𝐴)(𝑓(𝑥) = 𝑔(𝑥) : 𝐵(𝑥))

Proof. The construction is straightforward:

[𝑓 =𝑠 𝑔] [𝑥 : 𝐴]

𝑓(𝑥) =Ü(𝑠) 𝑔(𝑥) : 𝐵(𝑥)

Ú𝑠.Ú𝑥.(𝑓(𝑥) =Ü(𝑠) 𝑔(𝑥)) : (𝑓 = 𝑔) ⊃ Π(𝑥:𝐴)(𝑓(𝑥) = 𝑔(𝑥) : 𝐵(𝑥))

Now, to add function extensionality to our system, we need to add the following

inference rule:

Ú𝑥.(𝑓(𝑥) =𝑡 𝑔(𝑥)) : Π(𝑥:𝐴)𝐵
𝑒𝑥𝑡

𝑓 =𝑒𝑥𝑡(𝑡) 𝑔

This rule is only needed if one wants to work with an extensional system. In that case,

together with this inference rule, we also need to introduce two important reduction rules

related to extensionality:

𝑒𝑥𝑡(Ü(𝑠)) =𝑒𝑥𝑡𝑟 𝑠

Ü(𝑒𝑥𝑡(𝑡)) =𝑒𝑥𝑡𝑙 𝑡

Since these rules are connected only to extensionality, we do not consider them as part

of the basic rules of our rewriting system. Nevertheless, we can now prove the following:

Lemma 5.16. (𝑓 = 𝑔) ♠ Π(𝑥:𝐴)(𝑓(𝑥) = 𝑔(𝑥) : 𝐵(𝑥))

Proof. This theorem is the direct application of the aforementioned extensionality rules.

We have:

𝑓 =𝑠 𝑔 : Π(𝑥:𝐴)𝐵 𝑥 : 𝐴

𝑓(𝑥) =Ü(𝑠) 𝑔(𝑥) : 𝐵(𝑥)
⊲𝑒𝑥𝑡𝑟 𝑓 =𝑠 𝑔 : Π(𝑥:𝐴)𝐵

Ú𝑥.(𝑓(𝑥) =Ü(𝑠) 𝑔(𝑥)) : Π(𝑥:𝐴)𝐵

𝑓 =𝑒𝑥𝑡(Ü(𝑠)) 𝑔 : Π(𝑥:𝐴)𝐵

Chapter 5. Homotopy Type Theory 123

We also have:

Ú𝑥.(𝑓(𝑥) =𝑡 𝑔(𝑥)) : Π(𝑥:𝐴)𝐵

𝑓 =𝑒𝑥𝑡(𝑡) 𝑔 : Π(𝑥:𝐴)𝐵 [𝑥 : 𝐴]
⊲𝑒𝑥𝑡𝑙 Ú𝑥.(𝑓(𝑥) =𝑡 𝑔(𝑥)) : Π(𝑥:𝐴)𝐵

𝑓(𝑥) =Ü(𝑒𝑥𝑡(𝑡)) 𝑔(𝑥) : 𝐵(𝑥)

Ú𝑥.(𝑓(𝑥) =Ü(𝑒𝑥𝑡(𝑡)) 𝑔(𝑥)) : Π(𝑥:𝐴)𝐵

Those two derivations tree establish the equivalence.

Before we prove the next theorem, we need to revisit transport. For any function

𝑓 : 𝐴(𝑥) ⊃ 𝐵(𝑥), it is possible to transport along this function 𝑓 , resulting in 𝑝*(𝑓) :

𝐴(𝑦) ⊃ 𝐵(𝑦). In our approach, one should think of 𝑝*(𝑓) as a function that has transport

of a term 𝑎 : 𝐴(𝑥) as input, i.e., 𝑝*(𝑎) : 𝐴(𝑦). Thus, we deĄne 𝑝*(𝑓) point-wise:

𝑝*(𝑓)(𝑝*(𝑎)) ⊕ 𝑝*(𝑓(𝑎))

Lemma 5.17. For any path 𝑥 =𝑝 𝑦 : 𝑋 and functions 𝑓 : 𝐴(𝑥) ⊃ 𝐵(𝑥) and 𝑔 : 𝐴(𝑦) ⊃
𝐵(𝑦), we have the following equivalence:

(𝑝*(𝑓) = 𝑔) ♠ Π(𝑎:𝐴(𝑥))(𝑝*(𝑓(𝑎)) = 𝑔(𝑝*(𝑎)))

Proof. We give two derivations tree, using the rules that we have established in the pre-

vious theorem:

𝑝*(𝑓) =𝑝 𝑔 [𝑎 : 𝐴(𝑥)]

𝑝*(𝑓)(𝑝*(𝑎)) =Ü(𝑝) 𝑔(𝑝*(𝑎)) : 𝐵(𝑦)

Ú𝑎.(𝑝*(𝑓)(𝑝*(𝑎) ⊕ 𝑓(𝑎)) =Ü(𝑝) 𝑔(𝑝*(𝑎))) : Π(𝑎:𝐴(𝑥))(𝑝*(𝑓(𝑎)) = 𝑔(𝑝*(𝑎)))

𝑝*(𝑓) =𝑒𝑥𝑡(Ü(𝑝)) 𝑔
⊲𝑒𝑥𝑡𝑙

𝑝*(𝑓) =𝑝 𝑔

And:

Ú𝑎.(𝑝*(𝑓(𝑎)) =𝑡 𝑔(𝑝*(𝑎)))

Ú𝑎.(𝑝*(𝑓)(𝑝*(𝑎)) =𝑡 𝑔(𝑝*(𝑎)))

𝑝*(𝑓) =𝑒𝑥𝑡(𝑡) 𝑔 [𝑎 : 𝐴(𝑥)]

𝑝*(𝑓)(𝑝*(𝑎)) =Ü(𝑒𝑥𝑡(𝑡)) 𝑔(𝑝*(𝑎))

𝑝*(𝑓(𝑎)) =Ü(𝑒𝑥𝑡(𝑡)) 𝑔(𝑝*(𝑎))
⊲𝑒𝑥𝑡𝑟

𝑝*(𝑓(𝑎)) =𝑡 𝑔(𝑝*(𝑎))

Ú𝑎.(𝑝*(𝑓(𝑎)) =𝑡 𝑔(𝑝*(𝑎)))

Chapter 5. Homotopy Type Theory 124

5.8 UNIVALENCE AXIOM

The Ąrst thing to notice is that in our approach the following lemma holds:

Lemma 5.18. For any types 𝐴 and 𝐵, the following function exists:

𝑖𝑑𝑡𝑜𝑒𝑞𝑣 : (𝐴 = 𝐵) ⊃ (𝐴 ♠ 𝐵)

Proof. The idea of the proof is similar to the one shown in (Univalent Foundations Program,

2013). We deĄne 𝑖𝑑𝑡𝑜𝑒𝑞𝑣 to be 𝑝* : 𝐴 ⊃ 𝐵. Thus, to end this proof, we just need to show

that 𝑝* is an equivalence.

For any path 𝑝, we can form a path à(𝑝) and thus, we have (à(𝑝))* : 𝐵 ⊃ 𝐴. Now,

we show that (à(𝑝)))* is a quasi-inverse of 𝑝*.

We need to check that:

1. 𝑝*((à(𝑝)*(𝑏)) = 𝑏

2. (à(𝑝))*(𝑝*(𝑎)) = 𝑎

Both equations can be shown by an application of lemma 5.10:

1. 𝑝*((à(𝑝)*(𝑏)) = (à(𝑝) ◇ 𝑝)*(𝑏) = á(𝑝, à(𝑝))*(𝑏) =𝑡𝑟 𝜌*(𝑏) =Û(𝑝) 𝑏.

2. (à(𝑝))*(𝑝*(𝑎)) = (𝑝 ◇ à(𝑝))ť*(𝑎) = á(à(𝑝), 𝑝)*(𝑎) =𝑡𝑠𝑟 𝜌*(𝑎) =Û(𝑝) 𝑎

As we did in the previous section in lemma 5.15, we showed that a function exists, but

we did not show that it is an equivalence. In fact, basic type theory cannot conclude that

𝑖𝑑𝑡𝑜𝑒𝑞𝑣 is an equivalence(Univalent Foundations Program, 2013). If we want this equivalence

to be a property of our system, we must add a new axiom. This axiom is known as

VoevodskyŠs univalence axiom(Univalent Foundations Program, 2013):

Axiom 5.1. For any types 𝐴,𝐵, 𝑖𝑑𝑡𝑜𝑒𝑞𝑣 is an equivalence, i.e., we have:

(𝐴 = 𝐵) ♠ (𝐴 ♠ 𝐵)

Lemma 5.19. For any 𝑥, 𝑦 : 𝐴, 𝑢(𝑥) : 𝐵(𝑥) and path 𝑥 =𝑝 𝑦 : 𝐴, we have:

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝐵(𝑝, 𝑢(𝑥)) = 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑋⊃𝑋(Û𝐵(𝑝), 𝑢(𝑥)) = 𝑖𝑑𝑡𝑜𝑒𝑞𝑣(Û𝐵(𝑝))(𝑢(𝑥))

Proof. We develop every term of the equation and show that they arrive at the same

conclusion:

Chapter 5. Homotopy Type Theory 125

𝑥 =𝑝 𝑦 : 𝐴 𝑢(𝑥) : 𝐵(𝑥)

𝑝(𝑥, 𝑦) ◇ 𝑢(𝑥) : 𝐵(𝑦)

𝑝(𝑥, 𝑦) ◇ 𝑢(𝑥) =Û(𝑝) 𝑢(𝑦) : 𝐵(𝑦)

𝐵(𝑥) =ÛB(𝑝) 𝐵(𝑦) 𝑢(𝑥) : 𝐵(𝑥)

Û𝐵(𝑝)(𝐵(𝑥), 𝐵(𝑦)) ◇ 𝑢(𝑥) : 𝐵(𝑦)

Û𝐵(𝑝)(𝐵(𝑥), 𝐵(𝑦)) ◇ 𝑢(𝑥) =Û(𝑝) 𝑢(𝑦) : 𝐵(𝑦)

Since 𝑖𝑑𝑡𝑜𝑒𝑞𝑣 ⊕ 𝑝*, we have that 𝑖𝑑𝑡𝑜𝑒𝑞𝑣(Û𝐵(𝑝))(𝑢(𝑥)) is the same as 𝑝*(Û𝐵(𝑝))(𝑢(𝑥))

that is the same as 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑋⊃𝑋(Û𝐵(𝑝), 𝑢(𝑥)).

5.9 IDENTITY TYPE

In this section, we investigate speciĄc lemmas and theorems related to the identity type.

We start with the following theorem:

Theorem 5.5. if 𝑓 : 𝐴 ⊃ 𝐵 is an equivalence, then for 𝑥, 𝑦 : 𝐴 we have:

Û𝑓 : (𝑥 = 𝑦 : 𝐴) ⊃ (𝑓(𝑥) = 𝑓(𝑦) : 𝐵)

Proof. We will omit the speciĄc details of this proof, since it is equal to the one of

theorem 2.11.1 presented in (Univalent Foundations Program, 2013). This is the case because

this proof is independent of the usage of the induction principle of the identity type. The

only difference is that at some steps we need to cancel inverse paths. In our approach,

this is done by straightforward applications of rules 3,4,5 and 6.

Lemma 5.20. For any 𝑎 : 𝐴, with 𝑥1 =𝑝 𝑥2

1. 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑥⊃(𝑎=𝑥)(𝑝, 𝑞(𝑥1)) = á(𝑞(𝑥1), 𝑝), for 𝑞(𝑥1) : 𝑎 = 𝑥1

2. 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑥⊃(𝑥=𝑎)(𝑝, 𝑞(𝑥1)) = á(à(𝑝), 𝑞(𝑥1), for 𝑞(𝑥1) : 𝑥1 = 𝑎

3. 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑥⊃(𝑥=𝑥)(𝑝, 𝑞(𝑥1)) = á(à(𝑝), á(𝑞(𝑥1), 𝑝)) for 𝑞(𝑥1) : 𝑥1 = 𝑥1

Proof. 1. We start establishing the following reduction:

𝑎 =𝑞(𝑥1) 𝑥1 𝑥1 =𝑝 𝑥2
⊲ 𝑎 =𝑞(𝑥2) 𝑥2𝑎 =á(𝑞(𝑥1,𝑝)) 𝑥2

Thus, we just need to show that 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑥⊃(𝑎=𝑥)(𝑝, 𝑞(𝑥1)) also reduces to 𝑎 =𝑞(𝑥(2))

𝑥2:

Chapter 5. Homotopy Type Theory 126

𝑥1 =𝑝 𝑥2 𝑞(𝑥1) : 𝑎 = 𝑥1 =Û(𝑝) (𝑎 =𝑞(𝑥2) 𝑥2)
𝑝(𝑥1, 𝑥2) ◇ 𝑞(𝑥1) : 𝑎 = 𝑥2

2. We use the same idea:

𝑥2 =à(𝑝) 𝑥1 𝑥1 =𝑞(𝑥1) 𝑎
⊲ 𝑥2 =𝑞(𝑥2) 𝑎𝑥2 =á(à(𝑝),𝑞(𝑥1)) 𝑎

𝑥1 =𝑝 𝑥2 𝑞(𝑥1) : 𝑥1 = 𝑎
=Û(𝑝) (𝑥2 =𝑞(𝑥2) 𝑎)

𝑝(𝑥1, 𝑥2) ◇ 𝑞(𝑥1) : 𝑥2 = 𝑎

3. Same as the previous cases:

𝑥2 =à(𝑝) 𝑥1 𝑥1 =𝑞(𝑥1) 𝑥1

𝑥2 =á(à(𝑝),𝑞(𝑥1)) 𝑥1 𝑥1 =𝑝 𝑥2
⊲ 𝑥2 =𝑞(𝑥2) 𝑥2𝑥2 =á(á(à(𝑝),𝑞(𝑥1)),𝑝) 𝑥2

𝑥1 =𝑝 𝑥2 𝑞(𝑥1) : 𝑥1 = 𝑥1 =Û(𝑝) (𝑥2 =𝑞(𝑥2) 𝑥2)
𝑝(𝑥1, 𝑥2) ◇ 𝑞(𝑥1) : 𝑥2 = 𝑥2

Theorem 5.6. For any 𝑓, 𝑔 : 𝐴 ⊃ 𝐵, with 𝑎 =𝑝 𝑎
′ : 𝐴 and 𝑓(𝑎) =𝑞(𝑎) 𝑔(𝑎) : 𝐵, we have:

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑥⊃(𝑓(𝑥)=𝑔(𝑥)):𝐵(𝑝, 𝑞) = á(á(à(Û𝑓(𝑝)), 𝑞(𝑎)), Û𝑔(𝑝)) : 𝑓(𝑎′) = 𝑔(𝑎′)

Proof. This proof is analogous to the proof of the previous lemma:

𝑎 =𝑝 𝑎
′ : 𝐴

𝑓(𝑎) =Ûf (𝑝) 𝑓(𝑎′)

𝑓(𝑎′) =à(Ûf (𝑝)) 𝑓(𝑎) 𝑓(𝑎) =𝑞(𝑎)𝑔(𝑎)

𝑓(𝑎) =á(à(Ûf (𝑝)),𝑞(𝑎)) 𝑔(𝑎)

𝑎 =𝑝 𝑎
′

𝑔(𝑎) =Ûg(𝑝) 𝑔(𝑎′)
⊲ 𝑓(𝑎′) =𝑞(𝑎′) 𝑔(𝑎′)

𝑓(𝑎′) =á(á(à(Û𝑓(𝑝)),𝑞(𝑎)),Ûg(𝑝)) 𝑔(𝑎′)

And:

Chapter 5. Homotopy Type Theory 127

𝑎 =𝑝 𝑎
′ 𝑞(𝑎) : 𝑓(𝑎) = 𝑔(𝑎)

=Û(𝑝) (𝑓(𝑎′) =𝑞(𝑎′) 𝑔(𝑎′))
𝑝(𝑎, 𝑎′) ◇ 𝑞(𝑎) : 𝑓(𝑎′) = 𝑔(𝑎′)

Theorem 5.7. For any 𝑓, 𝑔 : Π(𝑥:𝐴)𝐵(𝑥), with 𝑎 =𝑝 𝑎
′ : 𝐴 and 𝑓(𝑎) =𝑞(𝑎) 𝑔(𝑎) : 𝐵(𝑎), we

have:

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑥⊃(𝑓(𝑥)=𝑔(𝑥):𝐵(𝑥))(𝑝, 𝑞) = á(á(à(𝑎𝑝𝑑𝑓 (𝑝)), Û𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡B𝑝(𝑞)), 𝑎𝑝𝑑𝑔(𝑝))

where 𝑎𝑝𝑑𝑓 (𝑝) ⊕ (𝑝(𝑎, 𝑎′) ◇ 𝑓(𝑎) =Û(𝑝) 𝑓(𝑎′)) and 𝑎𝑝𝑑𝑔 ⊕ (𝑝(𝑎, 𝑎′) ◇ 𝑔(𝑎) =Û(𝑝) 𝑔(𝑎′))

Proof. Similar to previous theorem:

𝑝(𝑎, 𝑎′) ◇ 𝑓(𝑎) =Û(𝑝) 𝑓(𝑎′)

𝑓(𝑎′) =à(Û(𝑝)) 𝑝(𝑎, 𝑎′) ◇ 𝑓(𝑎)

𝑓(𝑎) =𝑞(𝑎) 𝑔(𝑎)

𝑝(𝑎, 𝑎′) ◇ 𝑓(𝑎) =Û
transBp

(𝑞(𝑎)) 𝑝(𝑎, 𝑎′) ◇ 𝑔(𝑎)

𝑓(𝑎′) =á(à(Û(𝑝)),Û
transBp

(𝑞(𝑎))) 𝑝(𝑎, 𝑎′) ◇ 𝑔(𝑎) 𝑝(𝑎, 𝑎′) ◇ 𝑔(𝑎) =Û(𝑝) 𝑔(𝑎)

𝑓(𝑎′) =á(á(à(Û(𝑝)),Û
transBp

(𝑞(𝑎))),Û(𝑝) 𝑔(𝑎′)

⊲ 𝑓(𝑎′) =𝑞(𝑎′) 𝑔(𝑎′)

And:

𝑎 =𝑝 𝑎
′ 𝑞(𝑎) : 𝑓(𝑎) = 𝑔(𝑎)

⊲Û(𝑝) 𝑓(𝑎′) =𝑞(𝑎′) 𝑔(𝑎′)
𝑝(𝑎, 𝑎′) ◇ 𝑞(𝑎) : 𝑓(𝑎′) = 𝑔(𝑎′)

Theorem 5.8. For any 𝑎 =𝑝 𝑎
′ : 𝐴, 𝑎 =𝑞 𝑎 and 𝑎′ =𝑟 𝑎

′, we have:

(𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑥⊃(𝑥=𝑥)(𝑝, 𝑞) = 𝑟) ♠ (á(𝑞, 𝑝) = á(𝑝, 𝑟))

Proof. We use lemma 5.20 to prove this theorem, together with rules 3,4,5,6 and 37. We

also consider functions 𝑓(𝑥) ⊕ á(𝑝, 𝑥) : (𝑎′ = 𝑧) ⊃ (𝑎 = 𝑧) and 𝑓⊗1(𝑥) ⊕ á(à(𝑝), 𝑥) : (𝑎 =

𝑧) ⊃ (𝑎′ = 𝑧). We proceed the same way as we have done to prove previous equivalences.

In other words, we show two derivations trees. They are as follows:

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑥⊃(𝑥=𝑥)(𝑝, 𝑞) = 𝑟
lemma 5.20

á(à(𝑝), á(𝑞, 𝑝)) = 𝑟
Û𝑓

á(𝑝, á(à(𝑝), á(𝑞, 𝑝))) = á(𝑝, 𝑟)

á(á(𝑝, à(𝑝)), á(𝑞, 𝑝)) = á(𝑝, 𝑟)

á(𝜌, á(𝑞, 𝑝)) = á(𝑝, 𝑟)

á(𝑞, 𝑝) = á(𝑞, 𝑝)

Chapter 5. Homotopy Type Theory 128

And:

á(𝑞, 𝑝) = á(𝑝, 𝑟)
Û𝑓⊗1

á(à(𝑝), á(𝑞, 𝑝)) = á(à(𝑝), á(𝑝, 𝑟))

á(à(𝑝), á(𝑞, 𝑝)) = á(á(à(𝑝), 𝑝), 𝑟)

á(à(𝑝), á(𝑞, 𝑝)) = á(á(𝜌, 𝑟)

á(à(𝑝), á(𝑞, 𝑝)) = 𝑟
lemma 5.20

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑥⊃(𝑥=𝑥)(𝑝, 𝑞) = 𝑟

5.10 COPRODUCT

One essential thing to remember is that a product𝐴+𝐵 has a left injection 𝑖𝑛𝑙 : 𝐴 ⊃ 𝐴+𝐵

and 𝑖𝑛𝑟 : 𝐵 ⊃ 𝐴+𝐵. As described in (Univalent Foundations Program, 2013), it is expected

that 𝐴+𝐵 contains copies of 𝐴 and 𝐵 disjointly. In our path based approach, we achieve

this by constructing every path 𝑖𝑛𝑙(𝑎) = 𝑖𝑛𝑙(𝑏) and 𝑖𝑛𝑟(𝑎) = 𝑖𝑛𝑟(𝑏) by applications of

axiom Û on paths 𝑎 = 𝑏. Thus we show that we get the following equivalences:

1. (𝑖𝑛𝑙(𝑎1) = 𝑖𝑛𝑙(𝑎2)) ♠ (𝑎1 = 𝑎2)

2. (𝑖𝑛𝑟(𝑏1) = 𝑖𝑛𝑟(𝑏2)) ♠ (𝑏1 = 𝑏2)

3. (𝑖𝑛𝑙(𝑎) = 𝑖𝑛𝑟(𝑏)) ♠ 0

To prove this, we use the same idea as in (Univalent Foundations Program, 2013). We

characterize the type:

(𝑥 ⊃ (𝑖𝑛𝑙(𝑎0) = 𝑥)) : Π(𝑥:𝐴+𝐵)(𝑖𝑛𝑙(𝑎0 = 𝑥))

To do this, we deĄne a type 𝑐𝑜𝑑𝑒:

𝑥 : 𝐴+𝐵 ⊢ 𝑐𝑜𝑑𝑒(𝑥) type

Our main objective is to prove the equivalence Π(𝑥:𝐴+𝐵)((𝑖𝑛𝑙(𝑎0) = 𝑥) ♠ 𝑐𝑜𝑑𝑒(𝑥)).

Using the recursion principle of the coproduct, we can deĄne 𝑐𝑜𝑑𝑒 by two equations:

𝑐𝑜𝑑𝑒(𝑖𝑛𝑙(𝑎)) ⊕ (𝑎0 = 𝑎)

𝑐𝑜𝑑𝑒(𝑖𝑛𝑟(𝑏)) ⊕ 0

Theorem 5.9. For any 𝑥 : 𝐴+𝐵, we have 𝑖𝑛𝑙(𝑎0 = 𝑥) ♠ 𝑐𝑜𝑑𝑒(𝑥)

Proof. To show this equivalence, we use the same method as the one shown in (Univalent

Foundations Program, 2013). The main idea is to deĄne functions

Chapter 5. Homotopy Type Theory 129

𝑒𝑛𝑐𝑜𝑑𝑒 : Π(𝑥:𝐴+𝐵)Π(𝑝:𝑖𝑛𝑙(𝑎0)=𝑥)𝑐𝑜𝑑𝑒(𝑥)

𝑑𝑒𝑐𝑜𝑑𝑒 : Π(𝑥:𝐴+𝐵)Π(𝑐:𝑐𝑜𝑑𝑒(𝑥))(𝑖𝑛𝑙(𝑎0) = 𝑥))

such that 𝑑𝑒𝑐𝑜𝑑𝑒 acts as a quasi-inverse of 𝑒𝑛𝑐𝑜𝑑𝑒.

We start deĄning 𝑒𝑛𝑐𝑜𝑑𝑒:

𝑒𝑛𝑐𝑜𝑑𝑒(𝑥, 𝑠) ⊕ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑐𝑜𝑑𝑒(𝑠, 𝜌𝑎0)

We notice that 𝜌𝑎0 : 𝑐𝑜𝑑𝑒(𝑖𝑛𝑙(𝑎0)), since 𝑐𝑜𝑑𝑒(𝑖𝑛𝑙(𝑎0)) ⊕ (𝑎0 =𝜌 𝑎0) We also notice

that for 𝑒𝑛𝑐𝑜𝑑𝑒, it is only possible for the argument 𝑥 to be of the form 𝑥 ⊕ 𝑖𝑛𝑙(𝑎), since

the other possibility is 𝑥 ⊕ 𝑖𝑛𝑟(𝑎), but that case is not possible, because we would have

a function to 𝑐𝑜𝑑𝑒(𝑖𝑛𝑟(𝑏)) ⊕ 0.

For 𝑑𝑒𝑐𝑜𝑑𝑒, when 𝑥 ⊕ 𝑖𝑛𝑙(𝑎), we have that 𝑐𝑜𝑑𝑒(𝑥) ⊕ 𝑎0 =𝑐 𝑎 and thus, we deĄne

decode as (𝑖𝑛𝑙(𝑎0) =Û(𝑐) 𝑖𝑛𝑙(𝑎)). When 𝑥 ⊕ 𝑖𝑛𝑟(𝑎), then 𝑐𝑜𝑑𝑒(𝑥) ⊕ 0 and thus, we deĄne

𝑑𝑒𝑐𝑜𝑑𝑒 as having any value, given by the elimination of the type 0. Now, we can Ąnally

prove the equivalence.

Starting with 𝑒𝑛𝑐𝑜𝑑𝑒, we have 𝑥 ⊕ 𝑖𝑛𝑙(𝑎), 𝑖𝑛𝑙(𝑎0) =𝑠 𝑥. Since

𝑒𝑛𝑐𝑜𝑑𝑒(𝑥, 𝑠) ⊕ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑐𝑜𝑑𝑒(𝑠, 𝜌𝑎0), we have:

𝑖𝑛𝑙(𝑎0) =𝑠 𝑖𝑛𝑙(𝑎) 𝜌𝑎0 : 𝑐𝑜𝑑𝑒(𝑖𝑛𝑙(𝑎0))

𝑠(𝑖𝑛𝑙(𝑎0), 𝑖𝑛𝑙(𝑎)) ◇ 𝜌𝑎0 : 𝑐𝑜𝑑𝑒(𝑖𝑛𝑙(𝑎)) =Û(𝑠)
𝜌𝑎 : 𝑐𝑜𝑑𝑒(𝑖𝑛𝑙(𝑎)) ⊕ 𝑐𝑜𝑑𝑒(𝑥)

Now, we can go back to 𝑖𝑛𝑙(𝑎0) = 𝑖𝑛𝑙(𝑎) by an application of 𝑑𝑒𝑐𝑜𝑑𝑒, since:

𝑑𝑒𝑐𝑜𝑑𝑒(𝜌𝑎 : 𝑐𝑜𝑑𝑒(𝑥)) ⊕ 𝑖𝑛𝑙(𝑎0) =Ûinl
𝑖𝑛𝑙(𝑎)

And we conclude this part, since in our approach 𝑖𝑛𝑙(𝑎0) =𝑠 𝑖𝑛𝑙(𝑎) is constructed by

applications of axiom Û.

Now, we start from decode. Let 𝑐 : 𝑐𝑜𝑑𝑒(𝑥). If 𝑥 ⊕ 𝑖𝑛𝑙(𝑎), then 𝑐 : 𝑎0 = 𝑎 and thus,

𝑑𝑒𝑐𝑜𝑑𝑒(𝑐) ⊕ 𝑖𝑛𝑙(𝑎0) =Û(𝑐) 𝑖𝑛𝑙(𝑎). Now, we apply 𝑒𝑛𝑐𝑜𝑑𝑒. We have:

𝑒𝑛𝑐𝑜𝑑𝑒(𝑥, Û𝑐) = 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑐𝑜𝑑𝑒(Û𝑐, 𝜌𝑎0)

= 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎⊃(𝑎0=𝑎)(𝑐, 𝜌𝑎0) (Lemma 11)

= á(𝜌𝑎0 , 𝑐) (Lemma 20)

= 𝑐 (Rule 6)

If 𝑥 ⊕ 𝑖𝑛𝑟(𝑏), we have that 𝑐 : 0 and thus, as stated in (Univalent Foundations Program,

2013), we can conclude anything we wish.

Chapter 5. Homotopy Type Theory 130

5.11 REFLEXIVITY

In this section, our objective is to conclude an important result related to the reĆexive

path 𝜌:

Theorem 5.10. For any type A and a path 𝑥 =𝜌 𝑥 : 𝐴, if a path 𝑠 is obtained by a series

(perhaps empty) of applications of axioms and rules of inference of ÚÑÖ-equality theory

for type theory to the path 𝜌, then there is a path 𝑡′ such that 𝑠 =𝑡′ 𝜌.

Proof. • Base Case:

We can start only with a path 𝑥 =𝜌. In that case, it is easy, since we have 𝜌 =𝜌 𝜌.

Now, we consider the inductive steps. Starting from a path 𝑠 and applying á , à, we

already have rules yield the desired path:

• 𝑠 = à(𝑠′), with 𝑠′ =𝑡′ 𝜌.

In this case, we have 𝑠 = à(𝑠′) = à(𝜌) =𝑠𝑟 𝜌.

• 𝑠 = á(𝑠′, 𝑠′′), with 𝑠′ =𝑡′ 𝜌 and 𝑠′′ =𝑡′′ 𝜌.

We have that 𝑠 = á(𝑠′, 𝑠′′) = á(𝜌, 𝜌) =𝑡𝑟𝑟 𝜌

The cases for applications of Û, Ü and Ý remain to be proved. We introduce three

new rules that handle these cases.

• 𝑠 = Û(𝑠′), with 𝑠′ =𝑡′ 𝜌.

We introduce rule 45:

𝑥 =𝜌x
𝑥 : 𝐴 [𝑓 : 𝐴 ⊃ 𝐵]

⊲𝑚𝑥𝑝 𝑓(𝑥) =𝜌f(x)
𝑓(𝑥) : 𝐵(𝑥)

𝑓(𝑥) =Û(𝜌x) 𝑓(𝑥) : 𝐵(𝑥)

This rule is also valid for the dependent case:

𝑥 =𝜌x
𝑥 : 𝐴 [𝑓 : Π(𝑥:𝐴)𝐵(𝑥)]

⊲𝑚𝑥𝑝 𝑓(𝑥) =𝜌f(x)
𝑓(𝑥) : 𝐵(𝑥)

𝑝(𝑥, 𝑥) ◇ 𝑓(𝑥) =Û(𝜌x) 𝑓(𝑥) : 𝐵(𝑥)

Thus, we have 𝑠 = Û(𝑠′) = Û(𝜌) =𝑚𝑥𝑝 𝜌.

• 𝑠 = Ü(𝑠′), with 𝑠′ =𝑡′ 𝜌.

We introduce rule 46:

𝑓 =𝜌 𝑓 : Π(𝑥:𝐴)𝐵(𝑥)
⊲𝑛𝑥𝑝 𝑓(𝑥) =𝜌f(x)

𝑓(𝑥)
𝑓(𝑥) =Ü(𝜌x) 𝑓(𝑥) : 𝐵(𝑥)

Chapter 5. Homotopy Type Theory 131

Thus, 𝑠 = Ü(𝑠′) = Ü(𝜌) =𝑛𝑥𝑝 𝜌.

• 𝑠 = Ý(𝑠′), with 𝑠′ =𝑡′ 𝜌.

We introduce rule 47:

𝑏(𝑥) =𝜌 𝑏(𝑥) : 𝐵 𝑥 : 𝐴
⊲𝑥𝑥𝑝 Ú𝑥.𝑏(𝑥) =𝜌 Ú𝑥.𝑏(𝑥)

Ú𝑥.𝑏(𝑥) =Ý(𝜌) Ú𝑥.𝑏(𝑥) : 𝐴 ⊃ 𝐵

Thus, 𝑠 = Ý(𝑠′) = Ý(𝜌) =𝑥𝑥𝑝 𝜌.

If we consider function extensionality, this theorem still holds:

• 𝑠 = 𝑒𝑥𝑡(𝑠′), with 𝑠′ =𝑡′ 𝜌.

We introduce a new rule to handle this case. Since it is related only to extensionality

(i.e., when one admits the inference rule 𝑒𝑥𝑡 to the system), we do not add this to

the basic rules of our system.

Ú𝑥.(𝑓(𝑥) =𝜌 𝑓(𝑥)) : Π(𝑥:𝐴)𝐵(𝑥)
⊲𝑒𝑥𝑝 𝑓 =𝜌 𝑓

𝑓 =𝑒𝑥𝑡(𝜌) 𝑓

Thus, 𝑠 = 𝑒𝑥𝑡(𝑠′) = 𝑒𝑥𝑡(𝜌) =𝑒𝑥𝑝 𝜌.

5.12 NATURAL NUMBERS

The Natural Numbers is a type deĄned inductively by an element 0 : N and a function

𝑠𝑢𝑐𝑐 : N ⊃ N. In our approach, the path space of the naturals is also characterized

inductively. We start from the reĆexive path 0 =𝜌 0. All subsequent paths are constructed

by applications of the inference rules of ÚÑÖ-equality. We show that this characterization

is similar to the one constructed in (Univalent Foundations Program, 2013). To do this, we use

𝑐𝑜𝑑𝑒, 𝑒𝑛𝑐𝑜𝑑𝑒 and 𝑑𝑒𝑐𝑜𝑑𝑒. For N, we deĄne 𝑐𝑜𝑑𝑒 recursively (Univalent Foundations Program,

2013):

𝑐𝑜𝑑𝑒(0, 0) ⊕ 1

𝑐𝑜𝑑𝑒(𝑠𝑢𝑐𝑐(𝑚), 0) ⊕ 0

𝑐𝑜𝑑𝑒(0, 𝑠𝑢𝑐𝑐(𝑚)) ⊕ 0

𝑐𝑜𝑑𝑒(𝑠𝑢𝑐𝑐(𝑚), 𝑠𝑢𝑐𝑐(𝑛)) ⊕ 𝑐𝑜𝑑𝑒(𝑚,𝑛)

We also deĄne a dependent function 𝑟 : Π(𝑛:N)𝑐𝑜𝑑𝑒(𝑚,𝑛), with:

Chapter 5. Homotopy Type Theory 132

𝑟(0) ⊕ *
𝑟(𝑠𝑢𝑐𝑐(𝑛)) ⊕ 𝑟(𝑛)

Theorem 5.11. For any 𝑚,𝑛 : N, if there is a path 𝑚 =𝑡 𝑛 : N, then 𝑡⊲ 𝜌.

Proof. Since all paths are constructed from the reĆexive path 0 =𝜌 0, this is a direct

application of theorem 5.10.

Theorem 5.12. For any 𝑚,𝑛 : N, we have (𝑚 = 𝑛) ♠ 𝑐𝑜𝑑𝑒(𝑚,𝑛)

Proof. We need to deĄne 𝑒𝑛𝑐𝑜𝑑𝑒 and 𝑑𝑒𝑐𝑜𝑑𝑒 and prove that they are quasi-inverses. We

deĄne 𝑒𝑛𝑐𝑜𝑑𝑒 : Π(𝑚,𝑛:N)(𝑚 = 𝑛) ⊃ 𝑐𝑜𝑑𝑒(𝑚,𝑛) as:

𝑒𝑛𝑐𝑜𝑑𝑒(𝑚,𝑛, 𝑝) ⊕ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑐𝑜𝑑𝑒(𝑚,⊗)(𝑝, 𝑟(𝑚))

We deĄne 𝑑𝑒𝑐𝑜𝑑𝑒 : Π(𝑚,𝑛:N)𝑐𝑜𝑑𝑒(𝑚,𝑛) ⊃ (𝑚 = 𝑛) recursively:

𝑑𝑒𝑐𝑜𝑑𝑒(0, 0, 𝑐) ⊕ 0 =𝜌 0

𝑑𝑒𝑐𝑜𝑑𝑒(𝑠𝑢𝑐𝑐(𝑚), 0, 𝑐) ⊕ 0

𝑑𝑒𝑐𝑜𝑑𝑒(0, 𝑠𝑢𝑐𝑐(𝑚), 𝑐) ⊕ 0)

𝑑𝑒𝑐𝑜𝑑𝑒(𝑠𝑢𝑐𝑐(𝑚), 𝑠𝑢𝑐𝑐(𝑛), 𝑐) ⊕ Û𝑠𝑢𝑐𝑐(𝑑𝑒𝑐𝑜𝑑𝑒(𝑚,𝑛, 𝑐))

We now prove that if 𝑚 =𝑝 𝑛, then 𝑑𝑒𝑐𝑜𝑑𝑒(𝑐𝑜𝑑𝑒(𝑚,𝑛)) = 𝜌. We prove by induction.

The base is trivial, since 𝑑𝑒𝑐𝑜𝑑𝑒(0, 0, 𝑐) ⊕ 𝜌. Now, consider 𝑑𝑒𝑐𝑜𝑑𝑒(𝑠𝑢𝑐𝑐(𝑚), 𝑠𝑢𝑐𝑐(𝑛), 𝑐).

We have that 𝑑𝑒𝑐𝑜𝑑𝑒(𝑠𝑢𝑐𝑐(𝑚), 𝑠𝑢𝑐𝑐(𝑛), 𝑐) ⊕ Û𝑠𝑢𝑐𝑐(𝑑𝑒𝑐𝑜𝑑𝑒(𝑚,𝑛, 𝑐)). By the inductive hy-

pothesis, 𝑑𝑒𝑐𝑜𝑑𝑒(𝑚,𝑛, 𝑐) ⊕ 𝜌. Thus, we need to prove that Û𝑠𝑢𝑐𝑐 = 𝜌. This last step is a

straightforward application of rule 47. Therefore, Û𝑠𝑢𝑐𝑐 =𝑚𝑥𝑝 𝜌. With this information,

we can start the proof of the equivalence.

For any 𝑚 =𝑝 𝑛, we have:

𝑒𝑛𝑐𝑜𝑑𝑒(𝑚,𝑛, 𝑝) ⊕ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑐𝑜𝑑𝑒(𝑚,⊗)(𝑝, 𝑟(𝑚))

Thus:

𝑚 =𝑝 𝑛 𝑟(𝑚) : 𝑐𝑜𝑑𝑒(𝑚,𝑚)
=Û(𝑝) (𝑟(𝑛) : 𝑐𝑜𝑑𝑒(𝑚,𝑛))

𝑝(𝑚,𝑛) ◇ 𝑟(𝑚) : 𝑐𝑜𝑑𝑒(𝑚,𝑛)

Now, we know that 𝑑𝑒𝑐𝑜𝑑𝑒(𝑟(𝑛) : 𝑐𝑜𝑑𝑒(𝑚,𝑛)) = 𝜌 and,by theorem 5.11, 𝑝 = 𝜌.

The proof starting from a 𝑐 : 𝑐𝑜𝑑𝑒(𝑚,𝑛) is equal to the one presented in (Univalent

Foundations Program, 2013). We prove by induction. If 𝑚 and 𝑛 are 0, we have the trivial

path 0 =𝜌 0, thus 𝑑𝑒𝑐𝑜𝑑𝑒(0, 0, 𝑐) = 𝜌0, whereas 𝑒𝑛𝑐𝑜𝑑𝑒(0, 0, 𝜌0) ⊕ 𝑟(0) ⊕ *. We con-

clude this part recalling that every 𝑥 : 1 is equal to *, since we have 𝑥 =à(Ö) * : 1. In

the case of 𝑑𝑒𝑐𝑜𝑑𝑒(𝑠𝑢𝑐𝑐(𝑚), 0, 𝑐) or 𝑑𝑒𝑐𝑜𝑑𝑒(0, 𝑠𝑢𝑐𝑐(𝑛), 𝑐), 𝑐 : 0. The only case left is for

𝑑𝑒𝑐𝑜𝑑𝑒(𝑠𝑢𝑐𝑐(𝑚), 𝑠𝑢𝑐𝑐(𝑛), 𝑐). Similar to (Univalent Foundations Program, 2013), we prove by

induction:

Chapter 5. Homotopy Type Theory 133

𝑒𝑛𝑐𝑜𝑑𝑒(𝑠𝑢𝑐𝑐(𝑚), 𝑠𝑢𝑐𝑐(𝑛), 𝑑𝑒𝑐𝑜𝑑𝑒(𝑠𝑢𝑐𝑐(𝑚), 𝑠𝑢𝑐𝑐(𝑛), 𝑐))

= 𝑒𝑛𝑐𝑜𝑑𝑒(𝑠𝑢𝑐𝑐(𝑚), 𝑠𝑢𝑐𝑐(𝑛), Û𝑠𝑢𝑐𝑐(𝑑𝑒𝑐𝑜𝑑𝑒(𝑚,𝑛, 𝑐))

= 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑐𝑜𝑑𝑒(𝑠𝑢𝑐𝑐(𝑚),⊗)(Û𝑠𝑢𝑐𝑐(𝑑𝑒𝑐𝑜𝑑𝑒(𝑚,𝑛, 𝑐)), 𝑟(𝑠𝑢𝑐𝑐(𝑚))

= 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑐𝑜𝑑𝑒(𝑠𝑢𝑐𝑐(𝑚),𝑠𝑢𝑐𝑐(⊗)(𝑑𝑒𝑐𝑜𝑑𝑒(𝑚,𝑛, 𝑐), 𝑟(𝑠𝑢𝑐𝑐(𝑚)))

= 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑐𝑜𝑑𝑒(𝑚,⊗)(𝑑𝑒𝑐𝑜𝑑𝑒(𝑚,𝑛, 𝑐), 𝑟(𝑚))

= 𝑒𝑛𝑐𝑜𝑑𝑒(𝑚,𝑛, 𝑑𝑒𝑐𝑜𝑑𝑒(𝑚,𝑛, 𝑐))

= 𝑐

5.13 SETS AND AXIOM K

In this subsection, our objective is to prove, using our computational path approach,

important results related to sets. First, We deĄne the concept of set as done traditionally

in Homotopy Type Theory. Then, we show that the connection between the axiom K and

sets is also valid in our approach. We use these results to show that the naturals numbers

are a set. We also prove HedbergŠs theorem is valid in our theory, since only a few steps

of its proof differs from method developed in (Univalent Foundations Program, 2013).

We start with the deĄnition of set (Univalent Foundations Program, 2013):

Definition 5.4. A type 𝐴 is a set if for all 𝑥, 𝑦 : 𝐴 and all 𝑝, 𝑞 : 𝑥 = 𝑦, we have 𝑝 = 𝑞.

In type theory, if a type is a set, we also say that it has the uniqueness of identity

proof (UIP) property, since all proofs of the equality of two terms 𝑥 = 𝑦 are equal.

We now introduce the following axiom, known as axiom K(HOFMANN; STREICHER,

1994):

For all 𝑥 : 𝑋 and 𝑝 : (𝑥 =𝑋 𝑥), we have 𝑝 = 𝑟𝑒𝑓𝑙𝑥.

Of course, this previous formulation is one familiar to classic type theory. In our

approach, axiom K can be understood as the following formulation:

Axiom 5.2. For all 𝑥 : 𝑋 and 𝑥 =𝑡 𝑥 : 𝑋, we have 𝑡 = 𝜌𝑥.

Our objective is to establish a connection between sets and axiom K. The following

lemma has proved to be useful:

Lemma 5.21. For every path 𝑡, there is a path 𝑡⊗1 such that 𝑡 ◇ 𝑡⊗1 = 𝜌 and 𝑡⊗1 ◇ 𝑡 = 𝜌.

Furthermore, 𝑡⊗1 is unique up to propositional identity.

Proof. We claim that 𝑡⊗1 = à(𝑡). The identities are straightforward. First, we have that

𝑡 ◇ 𝑡⊗1 ⊕ á(à(𝑡), 𝑡) =𝑡𝑠𝑟 𝜌. We also have 𝑡⊗1 ◇ 𝑡 ⊕ á(𝑡, à(𝑡)) =𝑡𝑟 𝜌. Now, suppose we

have 𝑠 such that á(𝑡, 𝑠) =𝑠′ 𝜌. Thus, we have that á(𝑡, à(𝑡)) =á(𝑡𝑟,à(𝑠′)) á(𝑡, 𝑠) and thus,

à(𝑡) = 𝑠.

Theorem 5.13. A type 𝑋 is a set iff it satisfies axiom K.

Chapter 5. Homotopy Type Theory 134

Proof. First, If 𝑋 is a set, we want to show that it satisĄes axiom K. Suppose we have

a path 𝑥 =𝑡 𝑥. From the axioms of ÚÑÖ-equality, we also have that 𝑥 =𝜌 𝑥. Since 𝑋 is a

path, it is always the case that 𝑡 = 𝜌 and thus, 𝑋 satisĄes axiom K.

If𝑋 satisĄes axiom K, we want to show that𝑋 is a set. To do this, we want to show that

given paths 𝑝, 𝑞 : 𝑥 = 𝑦, then we have 𝑝 = 𝑞. We show this in the following manner. From a

path 𝑥 =𝑞 𝑦, we apply à to obtain the inverse path 𝑦 =à(𝑞)𝑥 𝑥. Then, we can concatenate 𝑝

and à(𝑞), obtaining a path 𝑥 =á(𝑝,à(𝑞)) 𝑥. By axiom K, we have á(𝑝, à(𝑞)) = 𝜌. Analogously,

á(à(𝑞), 𝑝) = 𝜌. Thus, by the previous lemma, à(𝑞) = 𝑝⊗1 = à(𝑝) and thus, 𝑞 = 𝑝. Thus,

by an application of à, 𝑝 = 𝑞.

Theorem 5.14. N is a set.

Proof. That N satisĄes axiom K is a direct consequence of theorem 5.11. Thus, from

theorem 5.13, we conclude that N is a set.

In classic homotopy type theory, one can achieve the previous result by following a

different path. Firstly, one should be aware of the following concept (Univalent Foundations

Program, 2013):

Definition 5.5. A type 𝑋 has decidable equality if for all 𝑥, 𝑦 : 𝑋, the following type

is inhabited:

(𝑥 = 𝑦 : 𝑋) + ¬(𝑥 = 𝑦 : 𝑋)

Theorem 5.15. If 𝑋 has decidable equality, then 𝑋 is a set.

This theorem is known as HedbergŠs theorem . We will not show a full proof of it,

since one can follow exactly the steps established in (Univalent Foundations Program, 2013).

One should only be careful to notice that the path 𝑎𝑝𝑑 of classic homotopy type theory

is just our application of axiom Û on a dependent function 𝑓 and that lemma 2.9.6 of

(Univalent Foundations Program, 2013) has already been proved in this work, in the form of

lemma 5.17.

We can also use HedbergŠs theorem to give an alternative proof of theorem 5.14, one

similar to the one given in classic type theory:

Theorem 5.16. N has decidable equality and thus, is a set.

Proof. For any 𝑥, 𝑦 : N, we want to show that (𝑥 = 𝑦) + ¬(𝑥 = 𝑦) is inhabited. We

proceed by induction in 𝑥. For the base case, we have 𝑥 = 0. If 𝑦 = 0, then we have

0 =𝜌 0. If 𝑦 = 𝑠𝑢𝑐𝑐(𝑛), we use the 𝑒𝑛𝑐𝑜𝑑𝑒 type for N. We have that 𝑒𝑛𝑐𝑜𝑑𝑒(0, 𝑠𝑢𝑐𝑐(𝑛)) :

(0 = 𝑠𝑢𝑐𝑐(𝑛)) ⊃ 0 and thus, 𝑒𝑛𝑐𝑜𝑑𝑒(0, 𝑠𝑢𝑐𝑐(𝑛)) : ¬(0 = 𝑠𝑢𝑐𝑐(𝑛)).

For the inductive step, we consider 𝑥 = 𝑠𝑢𝑐𝑐(𝑚). If 𝑦 = 0, then we can use 𝑒𝑛𝑐𝑜𝑑𝑒 again

to obtain ¬(𝑠𝑢𝑐𝑐(𝑚) = 0). If 𝑦 = 𝑠𝑢𝑐𝑐(𝑛), by the inductive hypothesis, we have two more

Chapter 5. Homotopy Type Theory 135

cases to consider. If 𝑚 = 𝑛, then we apply axiom Û, and thus 𝑠𝑢𝑐𝑐(𝑚) =Ûsucc
𝑠𝑢𝑐𝑐(𝑛).

If ¬(𝑚 = 𝑛), then we just need to show that 𝑠𝑢𝑐𝑐 is injective to obtain ¬(𝑠𝑢𝑐𝑐(𝑚) =

𝑠𝑢𝑐𝑐(𝑛)). But that 𝑠𝑢𝑐𝑐 is injective is a direct consequence of applying encode and then

decode to 𝑠𝑢𝑐𝑐(𝑚) = 𝑠𝑢𝑐𝑐(𝑛), since from that we conclude 𝑚 = 𝑛. Therefore, from

¬(𝑠𝑢𝑐𝑐(𝑚) = 𝑠𝑢𝑐𝑐(𝑛)) we conclude ¬(𝑚 = 𝑛).

5.14 FUNDAMENTAL GROUP OF A CIRCLE

The objective of this section is to show that it is possible to use computational paths to

obtain one of the main results of homotopy theory, the fact that the fundamental group

of a circle is isomorphic to the integers group. First, we deĄne a circle as follows:

Definition 5.6 (The circle 𝑆1). A circle is the type generated by:

• A point 𝑏𝑎𝑠𝑒 : 𝑆1

• A computational path 𝑏𝑎𝑠𝑒 =𝑙𝑜𝑜𝑝 𝑏𝑎𝑠𝑒 : 𝑆1.

The Ąrst thing one should notice is that this deĄnition doest not use only the points

of the type 𝑆1, but also a computational path 𝑙𝑜𝑜𝑝 between those points. That is way it

is called a higher inductive type (Univalent Foundations Program, 2013). Our approach differs

from the classic one on the fact that we do not need to simulate the path-space between

those points, since computational paths exist in the syntax of the theory. Thus, if one

starts with a path 𝑏𝑎𝑠𝑒 =𝑙𝑜𝑜𝑝 𝑏𝑎𝑠𝑒 : 𝑆1., one can naturally obtain additional paths applying

the path-axioms 𝜌, á and à. Thus, one has a path à(𝑙𝑜𝑜𝑝) = 𝑙𝑜𝑜𝑝⊗1, á(𝑙𝑜𝑜𝑝, 𝑙𝑜𝑜𝑝), etc. In

classic type theory, the existence of those additional paths comes from establishing that

the paths should be freely generated by the constructors (Univalent Foundations Program,

2013). In our approach, we do not have to appeal for this kind of argument, since all

paths comes naturally from direct applications of the axioms.

With that in mind, one can deĄne the fundamental group of a circle. In homotopy the-

ory, the fundamental group is the one formed by all equivalence classes up to homotopy of

paths (loops) starting from a point 𝑎 and also ending at 𝑎. Since the we use computational

paths as the syntax counterpart in type theory of homotopic paths, we use it to propose

the following deĄnition:

Definition 5.7 (Π1(𝐴, 𝑎) structure). Π1(𝐴, 𝑎) is a structure defined as follows:

Π1(𝐴, 𝑎) = ¶[𝑝𝑎𝑡ℎ]𝑟𝑤 ♣ 𝑎 =𝑝𝑎𝑡ℎ 𝑎 : 𝐴♢

We use this structure to deĄne the fundamental group of a circle. We also need to

show that it is indeed a group.

Proposition 5.1. (Π1(𝑆, 𝑎), ◇) is a group.

Chapter 5. Homotopy Type Theory 136

Proof. The Ąrst thing to deĄne is the group operation ◇. Given any 𝑎 =𝑟 𝑎 : 𝑆1 and

𝑎 =𝑡 𝑎 : 𝑆1, we deĄne 𝑟 ◇ 𝑠 as á(𝑠, 𝑟). Thus, we now need to check the group conditions:

• Closure: Given 𝑎 =𝑟 𝑎 : 𝑆1 and 𝑎 =𝑡 𝑎 : 𝑆1, 𝑟 ◇ 𝑠 must be a member of the group.

Indeed, 𝑟 ◇ 𝑠 = á(𝑠, 𝑟) is a computational path 𝑎 =á(𝑠,𝑟) 𝑎 : 𝑆1.

• Inverse: Every member of the group must have an inverse. Indeed, if we have a path

𝑟, we can apply à(𝑟). We claim that à(𝑟) is the inverse of 𝑟, since we have:

à(𝑟) ◇ 𝑟 = á(𝑟, à(𝑟)) =𝑡𝑟 𝜌

𝑟 ◇ à(𝑟) = á(à(𝑟), 𝑟) =𝑡𝑠𝑟 𝜌

Since we are working up to 𝑟𝑤-equality, the equalities hold strictly.

• Identity: We use the path 𝑎 =𝜌 𝑎 : 𝑆1 as the identity. Indeed, we have:

𝑟 ◇ 𝜌 = á(𝜌, 𝑟) =𝑡𝑙𝑟 𝑟

𝜌 ◇ 𝑟 = á(𝑟, 𝜌) =𝑡𝑟𝑟 𝑟.

• Associativity: Given any members of the group 𝑎 =𝑟 𝑎 : 𝑆1, 𝑎 =𝑡 𝑎 and 𝑎 =𝑠 𝑎, we

want that 𝑟 ◇ (𝑠 ◇ 𝑡) = (𝑟 ◇ 𝑠) ◇ 𝑡:

𝑟 ◇ (𝑠 ◇ 𝑡) = á(á(𝑡, 𝑠), 𝑟) =𝑡𝑡 á(𝑡, á(𝑠, 𝑟)) = (𝑟 ◇ 𝑠) ◇ 𝑡

All conditions have been satisĄed. (Π1(𝑆, 𝑎), ◇) is a group.

Thus, (Π1(𝑆, 𝑎), ◇) is indeed a group. We call this group the fundamental group of 𝑆1.

Therefore, the objective of this section is to show that Π1(𝑆, 𝑎) ≍= Z.

Before we start developing this proof, the following lemma will prove to be useful:

Lemma 5.22. All paths generated by a path 𝑎 =𝑙𝑜𝑜𝑝 𝑎 : 𝑆 are 𝑟𝑤-equal to a path 𝑙𝑜𝑜𝑝𝑛,

for a 𝑛 ∈ Z.

We have said that from a 𝑙𝑜𝑜𝑝, one freely generate different paths applying the com-

position á and the symmetry. Thus, one can, for example, obtain something such as

𝑙𝑜𝑜𝑝 ◇ 𝑙𝑜𝑜𝑝 ◇ 𝑙𝑜𝑜𝑝⊗1 ◇ 𝑙𝑜𝑜𝑝.... Our objective with this lemma is to show that, in fact, this

path can be reduced to a path of the form 𝑙𝑜𝑜𝑝𝑛, for 𝑛 ∈ Z.

Proof. The idea is to proceed by induction on the number 𝑛 of loops, i.e., 𝑙𝑜𝑜𝑝𝑛. We start

from a base 𝜌. For the base case, it is trivially true, since we deĄne it to be equal to 𝑙𝑜𝑜𝑝0.

From 𝜌, one can construct more complex paths by composing with 𝑙𝑜𝑜𝑝 or à(𝑙𝑜𝑜𝑝) on

each step. We have the following induction steps:

Chapter 5. Homotopy Type Theory 137

• A path of the form 𝜌 concatenated with 𝑙𝑜𝑜𝑝: We have 𝜌 ◇ 𝑙𝑜𝑜𝑝 = á(𝑙𝑜𝑜𝑝, 𝜌) =𝑡𝑟𝑟

𝑙𝑜𝑜𝑝 = 𝑙𝑜𝑜𝑝1;

• A path of the form 𝜌 concatenated with à(𝑙𝑜𝑜𝑝): We have 𝜌◇à(𝑙𝑜𝑜𝑝) = á(à(𝑙𝑜𝑜𝑝), 𝜌) =𝑡𝑟𝑟=

à(𝑙𝑜𝑜𝑝) = 𝑙𝑜𝑜𝑝⊗1

• A path of the form 𝑙𝑜𝑜𝑝𝑛 concatenated with 𝑙𝑜𝑜𝑝: We have 𝑙𝑜𝑜𝑝𝑛 ◇ 𝑙𝑜𝑜𝑝 = 𝑙𝑜𝑜𝑝𝑛+1.

• A path of the form 𝑙𝑜𝑜𝑝𝑛 concatenated with à(𝑙𝑜𝑜𝑝): We have 𝑙𝑜𝑜𝑝𝑛 ◇ à(𝑙𝑜𝑜𝑝) =

(𝑙𝑜𝑜𝑝𝑛⊗1◇𝑙𝑜𝑜𝑝)◇à(𝑙𝑜𝑜𝑝) =𝑡𝑡 𝑙𝑜𝑜𝑝
𝑛⊗1◇(𝑙𝑜𝑜𝑝◇à(𝑙𝑜𝑜𝑝)) = 𝑙𝑜𝑜𝑝𝑛⊗1◇(á(à(𝑙𝑜𝑜𝑝), 𝑙𝑜𝑜𝑝)) =𝑡𝑠𝑟=

𝑙𝑜𝑜𝑝𝑛⊗1 ◇ 𝜌 = á(𝜌, 𝑙𝑜𝑜𝑝𝑛⊗1) =𝑡𝑙𝑟 𝑙𝑜𝑜𝑝
𝑛⊗1

• A path of the form 𝑙𝑜𝑜𝑝⊗𝑛 concatenated with 𝑙𝑜𝑜𝑝: We have 𝑙𝑜𝑜𝑝⊗𝑛 = 𝑙𝑜𝑜𝑝⊗(𝑛⊗1) ◇
𝑙𝑜𝑜𝑝⊗1 = 𝑙𝑜𝑜𝑝⊗(𝑛⊗1)◇à(𝑙𝑜𝑜𝑝). Thus, we have (𝑙𝑜𝑜𝑝⊗(𝑛⊗1)◇à(𝑙𝑜𝑜𝑝))◇𝑙𝑜𝑜𝑝=𝑡𝑡 𝑙𝑜𝑜𝑝

⊗(𝑛⊗1)◇
(à(𝑙𝑜𝑜𝑝)◇𝑙𝑜𝑜𝑝) = 𝑙𝑜𝑜𝑝⊗(𝑛⊗1)◇á(𝑙𝑜𝑜𝑝, à(𝑙𝑜𝑜𝑝)) =𝑡𝑟 = 𝑙𝑜𝑜𝑝⊗(𝑛⊗1)◇𝜌 = á(𝜌, 𝑙𝑜𝑜𝑝⊗(𝑛⊗1)) =𝑡𝑙𝑟

𝑙𝑜𝑜𝑝⊗(𝑛⊗1).

• a path of the form 𝑙𝑜𝑜𝑝⊗𝑛 concatenated with à(𝑙𝑜𝑜𝑝): We have 𝑙𝑜𝑜𝑝⊗𝑛 ◇ 𝑙𝑜𝑜𝑝⊗1 =

𝑙𝑜𝑜𝑝⊗(𝑛+1)

Thus, every path is of the form 𝑙𝑜𝑜𝑝𝑛, with 𝑛 ∈ Z.

This lemma shows that every path of the fundamental group can be represented by a

path of the form 𝑙𝑜𝑜𝑝𝑛, with 𝑛 ∈ Z.

Theorem 5.17. Π1(𝑆, 𝑎) ≍= Z

To prove this theorem, one could use the approach proposed in (Univalent Foundations

Program, 2013), deĄning an encode and decode functions. Nevertheless, since our compu-

tational paths are part of the syntax, one does not need to rely on this kind of approach

to simulate a path-space, we can work directly with the concept of path.

Proof. The proof is done by establishing a function from Π1(𝑆, 𝑎) to Z and then an

inverse from Z to Π1(𝑆, 𝑎). Since we have access to the previous lemma, this task is not

too difficult. The main idea is that the 𝑛 on 𝑙𝑜𝑜𝑝𝑛 means the amount of times one goes

around the circle, while the sign gives the direction (clockwise or anti-clockwise). In other

words, it is the 𝑤𝑖𝑛𝑑𝑖𝑛𝑔 number. Since we have shown that every path of the fundamental

group is of the form 𝑙𝑜𝑜𝑝𝑛, with 𝑛 ∈ Z, then we just need to translate 𝑙𝑜𝑜𝑝𝑛 to an integer

𝑛 and an integer 𝑛 to a path 𝑙𝑜𝑜𝑝𝑛. We deĄne two functions, 𝑡𝑜𝐼𝑛𝑡𝑒𝑔𝑒𝑟 : Π1(𝑆, 𝑎) ⊃ Z

and 𝑡𝑜𝑃𝑎𝑡ℎ : Z ⊃ Π1(𝑆, 𝑎):

Chapter 5. Homotopy Type Theory 138

• 𝑡𝑜𝐼𝑛𝑡𝑒𝑔𝑒𝑟: To deĄne this function, we use the help of two functions deĄned in Z:

the successor function 𝑠𝑢𝑐𝑐 and the predecessor function 𝑝𝑟𝑒𝑑. We deĄne 𝑡𝑜𝐼𝑛𝑡𝑒𝑔𝑒𝑟

as follows. Of course, we use directly the fact that every loop of 𝑆 is of the form

𝑙𝑜𝑜𝑝𝑛 with 𝑛 ∈ Z:

𝑡𝑜𝐼𝑛𝑡𝑒𝑔𝑒𝑟 :

∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

𝑡𝑜𝐼𝑛𝑡𝑒𝑔𝑒𝑟([𝑙𝑜𝑜𝑝𝑛]𝑟𝑤 ⊕ [𝜌]𝑟𝑤) = 0 𝑛 = 0

𝑡𝑜𝐼𝑛𝑡𝑒𝑔𝑒𝑟([𝑙𝑜𝑜𝑝𝑛]𝑟𝑤) = 𝑠𝑢𝑐𝑐(𝑡𝑜𝐼𝑛𝑡𝑒𝑔𝑒𝑟([𝑙𝑜𝑜𝑝𝑛⊗1]𝑟𝑤)) 𝑛 > 0

𝑡𝑜𝐼𝑛𝑡𝑒𝑔𝑒𝑟([𝑙𝑜𝑜𝑝𝑛]𝑟𝑤) = 𝑝𝑟𝑒𝑑(𝑡𝑜𝐼𝑛𝑡𝑒𝑔𝑒𝑟([𝑙𝑜𝑜𝑝𝑛+1)]𝑟𝑤) 𝑛 < 0

• 𝑡𝑜𝑃𝑎𝑡ℎ: We just need to transform an integer 𝑛 into a path 𝑙𝑜𝑜𝑝𝑛:

𝑡𝑜𝑃𝑎𝑡ℎ :

∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

𝑡𝑜𝑃𝑎𝑡ℎ(𝑛) = [𝜌]𝑟𝑤 𝑛 = 0

𝑡𝑜𝑃𝑎𝑡ℎ(𝑛) = 𝑡𝑜𝑃𝑎𝑡ℎ(𝑛⊗ 1) ◇ [𝑙𝑜𝑜𝑝]𝑟𝑤 𝑛 > 0

𝑡𝑜𝑃𝑎𝑡ℎ(𝑛) = 𝑡𝑜𝑃𝑎𝑡ℎ(𝑛+ 1) ◇ [à(𝑙𝑜𝑜𝑝)]𝑟𝑤 𝑛 < 0

Now we just need to show that they are inverses. To do this, we have to check two

equations:

1. 𝑡𝑜𝑃𝑎𝑡ℎ(𝑡𝑜𝐼𝑛𝑡𝑒𝑔𝑒𝑟([𝑥]𝑟𝑤)) = [𝑥]𝑟𝑤

2. 𝑡𝑜𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝑡𝑜𝑃𝑎𝑡ℎ(𝑛)) = 𝑛

From a path [𝑥]𝑟𝑤, we apply lemma 5.22 to obtain [𝑥]𝑟𝑤 = [𝑙𝑜𝑜𝑝𝑛]𝑟𝑤 for some integer n.

Thus, we have 𝑡𝑜𝑃𝑎𝑡ℎ(𝑡𝑜𝐼𝑛𝑡𝑒𝑔𝑒𝑟([𝑥]𝑟𝑤)) = 𝑡𝑜𝑃𝑎𝑡ℎ(𝑡𝑜𝐼𝑛𝑡𝑒𝑔𝑒𝑟([𝑙𝑜𝑜𝑝𝑛]𝑟𝑤)) = 𝑡𝑜𝑃𝑎𝑡ℎ(𝑛) =

[𝑙𝑜𝑜𝑝𝑛]𝑟𝑤 = [𝑥]𝑟𝑤. The opposite direction is straightforward: 𝑡𝑜𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝑡𝑜𝑃𝑎𝑡ℎ(𝑛)) =

𝑡𝑜𝐼𝑛𝑡𝑒𝑔𝑒𝑟([𝑙𝑜𝑜𝑝𝑛]𝑟𝑤) = 𝑛. Thus, we conclude that they are inverses. Also, the map be-

tween the operations of the groups is direct, since we can easily map ◇ to +. This is due to

the fact that 𝑙𝑜𝑜𝑝𝑛 ◇ 𝑙𝑜𝑜𝑝𝑚 = 𝑙𝑜𝑜𝑝𝑛+𝑚 and thus, 𝑡𝑜𝐼𝑛𝑡𝑒𝑔𝑒𝑟[[𝑙𝑜𝑜𝑝𝑛+𝑚]𝑟𝑤 = 𝑛+𝑚. It is also

straightforward that 𝑡𝑜𝑃𝑎𝑡ℎ(𝑛 + 𝑚) = [𝑙𝑜𝑜𝑝𝑛+𝑚]𝑟𝑤. Thus, we establish the isomorphism

Π1(𝑆, 𝑎) ≍= Z.

5.15 RULES ADDED TO 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆

In this chapter, we have introduced 7 new rules to the 𝐿𝑁𝐷𝐸𝑄 ⊗ 𝑇𝑅𝑆 system. It is the

following list of rules:

40. á(Û(𝑟), Û(𝑠)) =𝑡𝑓 Û(á(𝑟, 𝑠))

41. Û𝑔(Û𝑓 (𝑝)) =𝑐𝑓 Û𝑔◇𝑓 (𝑝)

42. Û𝐼𝑑A
(𝑝) =𝑐𝑖 𝑝

43. á(𝐻𝑓,𝑔(𝑥), Û𝑔(𝑝)) =ℎ𝑝 á(Û𝑓 (𝑝), 𝐻𝑓,𝑔(𝑦))

44. Û𝑓 (𝜖∧(𝑝, 𝑞)) =𝑚𝑥𝑐 𝜖∧(Û𝑔(𝑝), Ûℎ(𝑞))

Chapter 5. Homotopy Type Theory 139

45. Û𝑓 (𝜌𝑥) =𝑚𝑥𝑝 𝜌𝑓(𝑥)

46. Ü(𝜌𝑥) =𝑛𝑥𝑝 𝜌𝑓(𝑥)

47. Ý(𝜌) =𝑥𝑥𝑝 𝜌

Moreover, if one adds extensionality to the theory, one winds up with three additional

rules:

Ü(𝑒𝑥𝑡(𝑡)) =𝑒𝑥𝑡𝑙 𝑡

Û𝑓 (𝜌𝑥) =𝑚𝑥𝑝 𝜌𝑓(𝑥)

𝑒𝑥𝑡(𝜌) =𝑒𝑥𝑝 𝜌.

Thus, we end this work with a total of 47 rewrites rules + 3 optional ones. Of course,

to be formal we need to show that the system will terminate and is still conĆuent. Indeed,

the conĆuence process can even yield new rules to solve some critical pair divergence. We

leave this veriĄcation out of the scope of this work, but given the importance of these

proofs, we plan to Ąnish them in a future work.

5.16 CONCLUSION

In this chapter we have developed one of the main objectives of this work. We connected

our computational path approach to homotopy type theory. Using the algebra of compu-

tational paths, we have established important results of Homotopy Type Theory. That

way, we have shown that our approach yields the main building blocks of Homotopy Type

Theory, on par with the classic approach. We have also improved the rewrite system,

adding new reduction rules. Indeed, we have ended this chapter with one of the most

classic results of algebraic topology, the fact that the fundamental group of the circle is

isomorphic to the group of the integers.

In view of all results achieved in this chapter, we have developed a valid alternative

approach to the identity type and homotopy type theory, based on this algebra of paths.

We also believe that we have opened the way, in future works, for possible expansions

of this results, formulating and proving even more intricate concepts and theorems of

homotopy type theory using computational paths. In fact, based on the concepts developed

in this chapter, we have constructed the fundamental group of many structures, including

the Möbius band, the cylinder, torus and the projective plane. These results appear in a

still unpublished work "On the Calculation of Fundamental Groups in Homotopy Type

Theory by Means of Computational Paths". A preprint version is available in (VERAS et

al., 2018).

140

6 CONCLUSION

Motivated by seeing the equality between two computational objects as a sequence of

rewrites between then, we have proposed in this work a entity known as computational

paths. We have also accomplished 3 main objectives. The Ąrst one was the proposal

of computational paths as an new entity of type theory. In this proposal, we pointed

out the fact that computational paths should be seen as the syntax counterpart of the

homotopical paths between terms of a type. We have also proposed a formalization of

the identity type using computational paths. The second objective was the proposal of a

mathematical structure for a type using computational paths. We have shown that using

categorical semantics it was possible to induce a groupoid structure for a type and also

a higher groupoid structure, using computational paths and a rewrite system. We have

used this groupoid structure to show that computational paths also refutes the uniqueness

of identity proofs. The last objective was to formulate and prove the main concepts and

building blocks of homotopy type theory. We ended this last objective with a proof of the

isomorphism between the fundamental group of the circle and the group of the integers.

The introduction of this work was focused on giving a brief introduction to the foun-

dations of mathematics and a brief explanation why axiomatic set theory, 𝑍𝐹𝐶, is not

suitable of working as a foundation of computation. Thus, we have said that homotopy

type theory is a suitable alternative, since it can be used as a foundation of mathematics

and computation at the same time. We have also pointed out that the identity type is the

main concept of homotopy type theory, since it is responsible for the homotopical inter-

pretation of a type. Nevertheless, we said that this interpretation is limited to a semantical

interpretation, since there is no entity in the syntax of type theory that represents those

paths. Thus, we said that the focus of this work is to add such entity to type theory,

which is known as computational path.

The second chapter has been focused on introducing the basic concepts of type theory.

In this chapter we have introduced the constructions of the main types, showing the for-

mation, introduction, elimination and computation rules. We have also shown the current

approach for the identity type using the constructor 𝐽 . We have also shown the use of

those rules in practice, showing how one can use 𝐽 to construct basic types of type theory,

such as the symmetry and transitivity properties of the identity type.

The third chapter focused on introducing the basic concepts of category theory. We

have said that one of the objectives achieved here was the proposal of a mathematical

structure for computational paths. To achieve that, we have used the framework of cate-

gory theory. Thus, the needed concepts of this theory has been introduced in chapter 3.

We have also shown some concepts of higher category theory, since we use then in chapter

4 to construct a higher groupoid.

Chapter 6. Conclusion 141

The fourth chapter has been focused on introducing a new entity known as com-

putational paths to the syntax of type theory. To achieve that, we have used concepts

developed in chapter 2 and some basic concepts of Ú-calculus. After introducing the con-

cept of computational paths, we have shown how one can formally deĄne the identity

type using this entity. To do that, we show the formation, introduction, elimination and

computation rules for the identity type. To make our approach clearer, we have used this

newly introduced rules to construct three basic types of equality, the reĆexivity, symmetry

and transitivity. We also showed that the process of obtaining those constructions was

easier than using 𝐽 . After that, we have shown the existence of a rewrite system that es-

tablishes equalities between two computational paths. We have also said that this system

does that by mapping all possible redundancies that can appear in a computational path.

We also pointed out that this system is conĆuent and terminates. Thus, we have said that

it is possible to think of a strong normal form for a computational path. In the sequel,

we have used the concepts of chapter 3 to construct a groupoid model for those compu-

tational paths. We also have gone one step further, showing that it is possible to think

of a higher groupoid structure. Moreover, we have put this groupoid structure together

with the existence of a strong normal form to show that this approach also refutes the

uniqueness of identity proofs.

The Ąfth chapter has been focused on accomplishing the third objective of this work.

In this chapter we have developed the main building blocks of homotopy theory using

computational paths. Instead of using path-induction in our proofs, we have used our al-

gebra of paths based on our rewrite system. Proceeding that way, we have shown dozens

of lemmas and theorems of homotopy type theory. Thus, we have shown that computa-

tional paths are capable of developing this theory. We Ąnished this chapter showing one

of the most classic proofs of algebraic topology: the fundamental group of the circle is

isomorphic to the group of integers.

6.1 FUTURE WORK

Since we have successfully accomplished our main objectives, we hope that we have made

a strong case for the power of computational paths in homotopy type theory. This ap-

proach seems promising, since it has been possible to prove many lemmas and theorems of

homotopy type theory. Also, another promising aspect is that our mathematical structure

mirrors the one obtained using the traditional identity type.

Thus, with those results in mind, it is possible to obtain further results in two fronts:

we can focus on the mathematical interpretation of computational paths. In this work, we

have limited our scope to bicategories, but it is possible, in the future, to go even further,

adding more dimensions, eventually obtaining an important result: computational paths

should be able of inducing a weak ∞-groupoid. We expect this fact, since this has been

recently achieved using the traditional approach of the identity type (LUMSDAINE, 2009;

Chapter 6. Conclusion 142

BERG; GARNER, 2011). The other direction is to continue to develop the main concepts

and theorems of homotopy theory. We have shown dozens in chapter 5, but there are

many more results. Thus, we could focus on this and use our algebra of computational

paths to obtain further results. In fact, based on the concepts developed in chapter 5, we

have constructed the fundamental group of many structures, including the Möbius band,

the cylinder, torus and the projective plane. These results appear in a still unpublished

work "On the Calculation of Fundamental Groups in Homotopy Type Theory by Means

of Computational Paths". A preprint version is available in (VERAS et al., 2018).

143

REFERENCES

ALAMA, J. The lambda calculus. In: ZALTA, E. N. (Ed.). The Stanford Encyclopedia
of Philosophy. Spring 2015. [S.l.: s.n.], 2015.

AVIGAD, J. Philosophy of mathematics. In: BOUNDAS, C. (Ed.). The Edinburgh
Companion to Twentieth-Century Philosophies. [S.l.]: Edinburgh University Press, 2007.
p. 234Ű251.

AWODEY, S. Category theory. 2nd. ed. [S.l.]: Oxford University Press, 2010.

AWODEY, S. Category Theory Foundations. 2012. Category Theory Foundations,
Lecture at Oregon Programming Languages Summer School, Eugene, Oregon.

BARKER-PLUMMER, D. Turing machines. In: ZALTA, E. N. (Ed.). The Stanford
Encyclopedia of Philosophy. Summer 2013. [S.l.: s.n.], 2013.

BERG, B. van den; GARNER, R. Types are weak æ-groupoids. Proceedings of the
London Mathematical Society, Oxford University Press, v. 102, n. 2, p. 370Ű394, 2011.

BRIDGES, D.; PALMGREN, E. Constructive mathematics. In: ZALTA, E. N. (Ed.).
The Stanford Encyclopedia of Philosophy. Winter 2013. [S.l.: s.n.], 2013.

CHENADEC, P. L. On the logic of uniĄcation. Journal of Symbolic computation,
Elsevier, v. 8, n. 1, p. 141Ű199, 1989.

DERSHOWITZ, N. Orderings for term-rewriting systems. Theoretical computer science,
Elsevier, v. 17, n. 3, p. 279Ű301, 1982.

DUMMETT, M. Elements of Intuitionism. [S.l.]: Oxford, 1977. (Oxford Logic Guides,
v. 39). ISBN 978-0198505242.

HARPER, R. Type Theory Foundations. 2012. Type Theory Foundations, Lecture at
Oregon Programming Languages Summer School, Eugene, Oregon.

HINDLEY, J. R.; SELDIN, J. P. Lambda-calculus and combinators: an introduction.
[S.l.]: Cambridge University Press, 2008.

HOFMANN, M.; STREICHER, T. The groupoid model refutes uniqueness of identity
proofs. In: Logic in Computer Science, 1994. LICS’94. Proceedings., Symposium on.
[S.l.]: IEEE, 1994. p. 208Ű212.

HOFMANN, M.; STREICHER, T. The groupoid interpretation of type theory. In:
Twenty-five years of constructive type theory (Venice, 1995). New York: Oxford Univ.
Press, 1998, (Oxford Logic Guides, v. 36). p. 83Ű111.

HORSTEN, L. Philosophy of mathematics. In: ZALTA, E. N. (Ed.). The Stanford
Encyclopedia of Philosophy. Spring 2015. [S.l.: s.n.], 2015.

HOWARD, W. A. The formulas-as-types notion of construction. In: SELDIN, J. P.;
HINDLEY, J. R. (Ed.). To H. B. Curry: Essays on Combinatory Logic, Lambda
Calculus, and Formalism. [S.l.]: Academic Press, 1980. p. 479Ű490. Reprint of 1969
article.

References 144

HRBACEK, K.; JECH, T. Introduction to Set Theory, Revised and Expanded. [S.l.]:
Chapman & Hall/CRC, 1999. (Pure and Applied Mathematics, v. 220).

IRVINE, A. D. Bertrand russell. In: ZALTA, E. N. (Ed.). The Stanford Encyclopedia of
Philosophy. Winter 2014. [S.l.: s.n.], 2014.

KNUTH, D. E.; BENDIX, P. B. Simple word problems in universal algebras. In:
Computational problems in abstract algebra. [S.l.: s.n.], 1970. p. 263Ű297.

LEINSTER, T. Basic bicategories. arXiv preprint math.CT/9810017, Citeseer, 1998.

LEINSTER, T. Higher Operads, Higher Categories. [S.l.]: Cambridge University
Press, 2004. (London Mathematical Society Lecture Note Series (Book 298)). Also
http://arxiv.org/abs/math/0305049, May, 2003. ISBN 0-521-53215-9.

LUMSDAINE, P. L. Weak æ-categories from intensional type theory. In: Typed lambda
calculi and applications. [S.l.]: Springer, 2009. (LNCS, v. 5608), p. 172Ű187.

MARQUIS, J.-P. Category theory. In: ZALTA, E. N. (Ed.). The Stanford Encyclopedia
of Philosophy. Winter 2014. [S.l.: s.n.], 2014.

MARTIN-LÖF, P. An intuitionistic theory of types: Predicative part. In: ROSE, H.;
SHEPHERDSON, J. (Ed.). Logic Colloquium ’73 Proceedings of the Logic Colloquium.
Elsevier, 1975, (Studies in Logic and the Foundations of Mathematics, v. 80). p. 73 Ű 118.
Available at: <http://www.sciencedirect.com/science/article/pii/S0049237X08719451>.

MARTIN-LÖF, P. Constructive mathematics and computer programming. In: COHEN,
L.; LOS, J.; PFEIFFER, H.; PODEWSKI, K.-P. (Ed.). Logic, Methodology and
Philosophy of Science VI, Hannover, 1979. [S.l.]: North-Holland, 1982, (Studies in Logic
and the Foundations of Mathematics, v. 104). p. 153Ű175.

MARTIN-LÖF, P. Intuitionistic Type Theory. Notes by Giovanni Sambin of a series of
lectures given in Padua, June 1980. [S.l.]: Bibliopolis, Napoli, 1984. xii+92pp p.

MARTIN-LÖF, P. An intuitionistic theory of types. In: SAMBIN, G.; SMITH, J. (Ed.).
Twenty-five years of constructive type theory. [S.l.]: Oxford University Press, 1998,
(Oxford Logic Guides, v. 36). p. 127Ű172. ISBN 978-0198501275.

NLAB. product. 2014. Http://ncatlab.org/nlab/show/product (Versão 19). Last Review
by Urs Schreiber in July 19, 2014. Access in March 24, 2015.

NLAB. monoids. 2017. Https://ncatlab.org/nlab/history/monoid (Versão 34). Last
review by Urs Schreiber in May 26, 2017. Access in June 19, 2017.

OLIVEIRA, A. G. de. Proof transformations for labelled natural deduction via term
rewriting. 1995. MasterŠs thesis, Depto. de Informática, Universidade Federal de
Pernambuco, Recife, Brazil, April 1995.

OLIVEIRA, A. G. de; QUEIROZ, R. J. G. B. de. Term rewriting with labelled deductive
systems. In: Proceedings of Brazilian Symposium on Artificial Intelligence (SBIA’94).
[S.l.: s.n.], 1994. p. 59Ű72.

OLIVEIRA, A. G. de; QUEIROZ, R. J. G. B. de. A normalization procedure for the
equational fragment of labelled natural deduction. Logic Journal of IGPL, Oxford Univ
Press, v. 3, n. (2Ű3), p. 243Ű290, 1999.

http://www.sciencedirect.com/science/article/pii/S0049237X08719451

References 145

QUEIROZ, R. J. G. B. de; GABBAY, D. The functional interpretation of the existential
quantiĄer. Bulletin of the IGPL, Oxford Univ Press, v. 7, n. 2, p. 173Ű215, 1995. (Special
Issue on Deduction and Language, Guest Editor: Ruth Kempson). Full version of a paper
presented at Logic Colloquium Š91, Uppsala. Abstract in JSL 58(2):753Ű754, 1993.

QUEIROZ, R. J. G. B. de; GABBAY, D. M. Equality in labelled deductive systems and
the functional interpretation of propositional equality. In: DEKKER, P.; STOCKHOF,
M. (Ed.). Proceedings of the 9th Amsterdam Colloquium. [S.l.], 1994. p. 547Ű565.

QUEIROZ, R. J. G. B. de; OLIVEIRA, A. G. de. Natural deduction for equality: The
missing entity. In: PEREIRA, L.; HAEUSLER, E.; PAIVA, V. de (Ed.). Advances in
Natural Deduction. [S.l.]: Springer, 2014. p. 63Ű91.

QUEIROZ, R. J. G. B. de; OLIVEIRA, A. G. de. Propositional Equality, Identity
Types and Reversible Rewriting Sequences as Homotopies. 2014. Propositional Equality,
Identity Types and Reversible Rewriting Sequences as Homotopies, Talk at Logic
Workshop, Universidade Federal do Ceará, Fortaleza, CE, Brazil.

QUEIROZ, R. J. G. B. de; OLIVEIRA, A. G. de; GABBAY, D. M. The Functional
Interpretation of Logical Deduction. [S.l.]: World ScientiĄc, 2011.

QUEIROZ, R. J. G. B. de; OLIVEIRA, A. G. de; RAMOS, A. F. Propositional equality,
identity types, and direct computational paths. South American Journal of Logic, v. 2,
n. 2, p. 245Ű296, 2016. Special Issue: A Festschrift for Francisco Miraglia.

RAMOS, A. F. Identity Type as the Type of Computational Paths. 2015. MasterŠs thesis,
Depto. de Informática, Universidade Federal de Pernambuco, Recife, Brazil, July, 2015.

RAMOS, A. F. Computational paths, transport and the univalence axiom. 2017. Talk at
XVIII Brazilian Logic Conference, Pirenópolis, Goiás, May 2017.

RAMOS, A. F.; QUEIROZ, R. J. G. B. de; OLIVEIRA, A. G. de. On the identity type
as the type of computational paths. Logic Journal of IGPL, Oxford Univ Press, v. 3, n.
(2Ű3), p. 243Ű290, 2017.

RAMOS, A. F.; QUEIROZ, R. J. G. B. de; OLIVEIRA, A. G. de. Explicit Computational
Paths. 2018. Https://arxiv.org/abs/1609.05079.

Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. Institute for Advanced Study: <http://homotopytypetheory.org/book>,
2013.

VERAS, T. M. L. de; RAMOS, A. F.; QUEIROZ, R. J. G. B. de; OLIVEIRA, A. G.
de. On the Calculation of Fundamental Groups in Homotopy Type Theory by Means of
Computational Paths. 2018. Https://arxiv.org/abs/1804.01413.

VOEVODSKY, V. Univalent Foundations and Set Theory. 2014. Univalent Foundations
and Set Theory, Lecture at IAS, Princeton, New Jersey, Mar 2014.

http://homotopytypetheory.org/book

	Title page
	
	Acknowledgements
	Abstract
	Resumo
	List of Tables
	Contents
	Introduction
	Foundations of Mathematics and ZFC
	The Identity Type
	Objectives
	Structure

	Type Theory
	Basic Concepts
	Definitional Equality vs Propositional Equality
	Type Families
	Function Type
	Dependent Function Type()
	Product type ()
	Coproduct (+)
	Dependent Pair Type ()
	Alternative Formulation for the Dependent Pair
	The Natural Numbers
	Additional Information

	Identity Type
	Formal Definition of The Identity Type
	Basic Constructions
	Extensionality vs Intensionality

	Conclusion

	Category Theory
	Basic Concepts
	Categories
	Isomorphism
	Groupoid
	Functors
	Duality
	Commutativity
	Product between two categories
	Hom and Small Categories

	Product in a Category
	Product in Type Theory and Category Theory
	Coproduct

	Natural Transformations
	Adjoints

	Higher Categories
	Globular Sets
	Horizontal Composition
	Bicategories

	Conclusion

	Computational Paths
	Introducing Computational Paths
	Formal Definition
	Equality Equations
	Identity Type
	Path-based Examples
	Reflexivity
	Symmetry
	Transitivity

	Term Rewrite System
	LNDEQ-TRS
	Subterm Substitution
	Rewriting Rules

	Normalization
	Termination
	Confluence
	Normalization Procedure

	Rewrite Equality
	LNDEQ-TRS2

	Groupoid Model
	Globular Structure
	The Induced Groupoid
	Higher Structures

	Uniqueness of Identity Proofs
	Conclusion

	Homotopy Type Theory
	Groupoid Laws
	Functoriality
	Transport
	Homotopies
	Cartesian Product
	Unit Type
	Function Extensionality
	Univalence Axiom
	Identity Type
	Coproduct
	Reflexivity
	Natural Numbers
	Sets and Axiom K
	Fundamental Group of a Circle
	Rules Added to LNDEQ-TRS
	Conclusion

	Conclusion
	Future Work

	References

