
Explicit construction of a small epsilon-net for linear threshold
functions

Yuval Rabani∗ Amir Shpilka∗

November 16, 2008

Abstract

We give explicit constructions of epsilon nets for linear threshold functions on the binary cube and on
the unit sphere. The size of the constructed nets is polynomial in the dimension n and in 1

ε . To the best
of our knowledge no such constructions were previously known. Our results match, up to the exponent of
the polynomial, the bounds that are achieved by probabilistic arguments.

As a corollary we also construct subsets of the binary cube that have size polynomial in n and covering
radius of n

2 −c
√

n log n, for any constant c. This improves upon the well known construction of dual BCH
codes that only guarantee covering radius of n

2 − c
√

n.

∗Computer Science Department, Technion, Haifa 32000, Israel. Email: rabani,shpilka@cs.technion.ac.il.

1 Introduction

Influenced by the discovery of unexpected connections linking fundamental questions in geometric functional
analysis to problems in theoretical computer science, there has been a recent interest in explicit or algorithmic
construction of certain geometric objects that are known to exist via probabilistic arguments. For example, the
celebrated dimension reduction lemma of Johnson and Lindenstrauss [JL84] has been derandomized using
the method of conditional expectations [EIO02, Siv02]. Another example that is still mostly open is the
construction of high dimensional nearly-Euclidean linear subspaces of `n

1 [Ind07, GLR08, GLW08]. This
problem is related to the question of constructing compressed sensing schemes [Don06]; other probabilistic
compressed sensing schemes, using the restricted isometry property [CT06], also exhibit a geometric flavor.
All these geometric objects have numerous applications in areas such as coding theory and data compression,
communication complexity, nearest neighbor search, learning theory, and computational linear algebra (see,
e.g., the introduction of [GLR08]), hence the desire to discover explicit constructions.

In this paper we study what is perhaps the simplest such question. We construct ε-nets for linear threshold
functions on the binary cube Bn = {−1,+1}n as well as on the unit sphere Sn−1 ⊂ Rn. A function
f : Rn → {−1, 1} is called a linear threshold function (LTF) iff for some v ∈ Rn and θ ∈ R we have
that f(x) = 1 iff 〈v, x〉 ≥ θ. Notice that when restricted to Sn−1, a linear threshold function is simply
the indicator function of a closed spherical cap of Sn−1. Given a measurable set Ω ⊂ Rn endowed with a
measure µ and a familyF of measurable subsets of Ω, an ε-net forF is a set S ⊂ Ω such that for every F ∈ F
with µ(F) > ε, we have that |S ∩ F | > 0. Constructing ε-nets for natural set systems (Ω, µ,F) has been
studied extensively in some cases. For example, the case where Ω is the convex hall of a d-points set P and
F is the family of all convex halls of subsets of P received a lot of attention (see, e.g., [Cha94, AKN+08]).
The case where Ω = [m]d and the set F is the set of all combinatorial rectangles also received a lot of
attention [EGL+92, LLSZ97]. To the best of our knowledge, the case of linear threshold functions has not
been previously considered in this context.

We consider Ω which is either the binary cube or the unit sphere (endowed with the uniform measure),
and the family F includes the subsets Af = {x ∈ Ω : f(x) = 1}, for all linear threshold functions f . We
construct S ⊂ Ω of cardinality poly(n, 1/ε) that includes a point from Af for every linear threshold function
f that satisfies µ(Af) ≥ ε, where µ is the uniform measure on Ω. A random sample of O(n/ε) points is an
ε-net with high probability, and our goal is to construct such a set explicitly. We prove the following theorem.

Theorem 1.1. There exist two universal constants a, b > 0 such that for every ε > 0 there is an explicit
construction of an ε-net, Nε ⊂ Bn, for linear threshold functions of size |Nε| = O(ε−b · na).

Note that when ε = 1/ poly(n) the construction above yields a polynomial sized set. As a corollary of
our construction, we get a similar construction for the unit sphere.

Corollary 1.2. There exist two universal constants a, b > 0 such that for every ε = exp(−Ω(
√

n)) there is
an explicit construction of an ε-net, Sε ⊂ Sn−1, for spherical caps of size |Sε| = O(ε−b · na).

As another corollary of our construction we also construct a poly(n) size subset of Bn with covering
radius of n

2 − Ω(
√

n log n). The covering radius r of a set of points S ⊂ Bn is the smallest ρ such that for
every x ∈ Bn there is some s ∈ S with H(x, s) ≤ ρ, where H denotes Hamming distance. We note that this
construction improves upon the one guaranteed by dual BCH codes. This result was independently obtained
by Alon [Alo08].

Corollary 1.3. There exists a > 0 such that for every c > 0 there is an explicit construction of a set C ⊂ Bn

of size |C| = n2 · (nc)a such that for every z ∈ Bn there is some x ∈ C with H(z, x) ≤ n
2 −

√
cn log n.

We note that linear threshold functions play an important role in both theory and practice. For example,
bounded depth TC0 circuits, composed of a constant number of layers of threshold functions, received con-
siderable attention in complexity theory, and support vector machines use threshold functions as hypothesis in

1

many learning scenarios. Aside from the intrinsic interest in studying linear threshold functions, our work is
motivated by the desire to build methodically a theory of pseudorandom generators for geometric functions.
In the algebraic setting (over GF[2]), ε-biased sample spaces fool linear functions [NN93]; they were recently
composed to construct pseudorandom generators for low-degree polynomials [Vio08]. Analogously, we hope
that dealing with linear threshold functions is a good starting point for the gradual construction of more com-
plicated pseudorandom generators for non-linear geometric functions, which are needed to resolve some of
the questions mentioned earlier.

Our constructions use several ideas from derandomization theory. The first one is the notion of a k-wise
independent distribution. A set of m random variables on a sample space Ω is k-wise independent iff every
subset of the random variables of cardinality at most k is independent. There are numerous applications in
computer science for k-wise independent distributions with small support. In particular, poly(n) size k-wise
independent distributions on Bn give a construction of a cover code with covering radius n

2 − Ω(
√

n). We
improve the covering radius of a poly(n) size set to n

2 − Ω(
√

n log n). The idea is to concatenate O(log n)
samples from a 4-wise independent distribution with m = n/O(log n) random variables. In order to restrict
the size of the constructed set, we need to consider only a subset of all possible concatenations. We use a
constant degree expander graph on the sample space Ω (of the 4-wise independent distribution of length m)
and consider all the random walks of length O(log n) on it. Then, for each random walk we concatenate the
relevant vectors of length m to get a vector of length n. We then show that this set has the desired covering
radius. In order to show the more general goal of an ε-net for LTFs, we note that the construction above
works if all the coefficients defining a LTF f are roughly of the same magnitude. As this is not always the
case, the idea is to partition the set of coordinates into O(log n) “buckets” such that each of them contains
approximately the same weight of coefficients as the other sets. To get a small set of partitions, we use certain
explicit constructions of perfect hash functions. We then apply the above construction to each candidate
partition to get the desired ε-net.

Organization. In Section 2 we give some formal definitions and the necessary background on k-wise inde-
pendent distributions, expander graphs and perfect hash functions. We also give some concentration results
for threshold functions. In section 3 we give the construction of a cover code. In Section 4 we give our main
construction for linear threshold functions and in Section 5 we give the construction for spherical caps.

2 Preliminaries

We will use the following notation. The n-dimensional binary cube is Bn = {−1, 1}n. The (n − 1)-
dimensional unit sphere in Rn is Sn−1 = {x ∈ Rn : ‖x‖2 = 1}. The Hamming distance on Rn is denoted by
H, so H(x, y) is the number of coordinates i for which xi 6= yi. For x ∈ Rn and J = {i1, . . . , i|J |} ⊆ [n]
we denote xJ = (xi1 , . . . , xi|J|). We will abuse notation and use (for A ⊂ Rn) H(x,A) to denote
miny∈AH(x, y). For A ⊆ Bn and ρ > 0, we put Aρ = {x ∈ Bn : H(x,A) ≤ ρ}. The covering radius
of a set C ⊂ Bn is the minimum ρ such that Cρ = Bn. Namely, it is the minimal ρ such that for every x ∈ Bn

there is y ∈ A with H(x, y) ≤ ρ.
In this paper we focus on linear threshold functions. A vector v ∈ Rn and a real number θ ∈ R define a

linear threshold function Lv,θ : Bn → {−1, 1} by Lv,θ(x) = sign(〈v, x〉 − θ). In other words, Lv,θ(x) = 1
if 〈v, x〉 ≥ θ and Lv,θ(x) = −1 otherwise. For a linear function Lv,θ we define by Av,θ it set of accepting
inputs. Namely, Av,θ = L−1

v,θ(1) = {x ∈ Bn : 〈v, x〉 ≥ θ}. A spherical cap in Rn is a subset of Sn−1 that
is contained in a half-space. Namely, for every v ∈ Rn and θ > 0 the cap Cv,θ is defined as Cv,θ = {x ∈
Sn−1 : 〈v, x〉 ≥ θ}. Stated differently, Cv,θ = L−1

v,θ(1) ∩ Sn−1 (we now think of Lv,θ as a function from Rn

to {−1, 1}).

2

2.1 k-wise independent distributions

A multiset I ⊂ {−1, 1}n such that for every j ∈ {1, 2, . . . , k}, for every {i1, i2, . . . , ij} ⊂ {1, 2, . . . , n}, and
for every z1, z2, . . . , zj ∈ {−1, 1}, satisfy that∣∣{x ∈ I : (xi1 , xi2 , . . . , xij) = (z1, z2, . . . , zj)

}∣∣ = |I|
2j

,

is called a k-wise independent sample space. Many explicit constructions of small k-wise independent sample
spaces are known. For example, extended binary BCH codes of length n = 2m − 1 and designed distance
2t+2 can be used to construct a (2t+1)-wise independent sample space of size 2mt+1 = 2(n+1)t (see [AS08,
Chapter 16]).

Fact 2.1. For every integer k > 0 there exists an explicit construction of a sample space of size O(nk/2) that
is k-wise independent.

Let a multiset S ⊆ {−1, 1}n be a k-wise independent sample spaces. The following is an easy observa-
tion.

Observation 2.2. For i ∈ [n] and α ∈ {−1, 1}, the multiset Si,α := {x ∈ S : xi = α} is a k − 1-wise
independent sample space.

The following result was proved by Berger in [Ber97].

Lemma 2.3 (Lemma 3.1 in [Ber97]). Let S ⊂ {−1, 1}n be a 4-wise independent sample spaces. Then for
every x ∈ Sn−1 we have that E[〈s, x〉] = 0, E[〈s, x〉2] = 1 and E[〈s, x〉4] ≤ 3, where all expectation are with
respect to a uniform choice of s ∈ S. Moreover, for every x ∈ Rn we have that

Pr
s∈S

[
| 〈s, x〉 | > ‖x‖2√

3

]
≥ 2

11
.

The following lemma is a special case of a lemma of Alon et al [AGK04].

Lemma 2.4 (Lemma 3.2 in [AGK04]). Let X be a real random variable and suppose that its first, second and
forth moments satisfy E[X] = 0, E[X2] = 1 and E[X4] ≤ 3. Then Pr[X > 1/7] ≥ 1/20. Consequently, if
S ⊂ {−1, 1}n is a 4-wise independent sample spaces then for every x ∈ Sn−1 we have that Prs∈US [〈s, x〉 >
1/7] ≥ 1/20.

Next is an easy corollary of Observation 2.2 and Lemma 2.4.

Lemma 2.5. Let k > 4 be an integer, S ⊆ {−1, 1}n a k-wise independent sample space and v =
(v1, . . . , vn) ∈ Rn a unit vector. Let M ⊂ [n] be such that |M | = k− 4 and the entries of v corresponding to
the coordinates in M are the k − 4 largest entries of v (namely, for every j 6∈ M and every i ∈ M we have
that |vj | ≤ |vi|). Then

Pr
x∈S

[
〈x, v〉 ≥ ‖vM‖1 +

1
7
‖v[n]\M‖2

]
≥ 4

5
· 2−k.

Proof. Let S′ ⊂ S be the set of all s ∈ S such that sign si = sign vi for every i ∈ M . By definition we have
that |S′| = 2−|M | · |S| = |S|/2k−4. Moreover, by Observation 2.2 we get that S′ is 4-wise independent. Let
v′ = (v′1, . . . , v

′
n) be defined as v′i = 0 for i ∈ M and v′i = vi for i 6∈ M . By Lemma 2.4 we have that

Pr
s∈S′

[〈
s, v′

〉
>

1
7
‖v′‖2

]
>

1
20

.

By definition of v′ we get that 〈s, v〉 =
∑

i∈M si · vi + 〈s, v′〉 = ‖vM‖1 + 〈s, v′〉. Thus,

Pr
x∈S

[
〈x, v〉 ≥ ‖vM‖1 +

1
7
‖v[n]\M‖2

]
≥ 1

20 · 2k−4
=

4
5
· 2−k.

�

3

2.2 Expander graphs

An undirected graph G = (V,E) is called an (n, d, λ)-expander if |V | = n, the degree of each node is d,
and the second largest eigenvalue, in absolute value, of the adjacency matrix of G is λ. For every d = p + 1,
where p is a prime congruent to 1 modulo 4, there are explicit constructions for infinitely many n of (n, d, λ)-
expanders, where λ ≤ 2

√
d− 1 [Mar88, AL88].

A random walk of length ` on G is the following random process. First pick a vertex of G uniformly at
random. Denote this vertex with v1. At the i’th step (for 1 < i ≤ ` we pick a neighbor of vi−1 uniformly
at random and label it with vi. The walk is the ordered list (v1, v2, . . . , v`). We shall need the following is a
theorem of Alon et al. [AFWZ95]

Theorem 2.6. Let G be an [n, d, λ]-expander. Let W1, . . . ,W` ⊂ V (G) be some subsets of G, each of size
at least µn ≥ 6λn/d. The probability that a random walk of length ` stays inside W1,W2, . . . ,W` is at least
µ(µ− 2λ/d)`−1.

2.3 Perfect hash functions

A set H of functions h : {1, 2, . . . , n} → {1, 2, . . . ,m} such that for every S ⊂ {1, 2, . . . , n} with |S| = s
there exists h ∈ H such that |h(S)| = s is called an (n, m, s)-perfect hash family. For all n, s ∈ N, s ≤ n,
there are explicit constructions of (n, O(s), s)-perfect hash families H with |H| = 2O(s+log log n) [SS90]. We
shall need the following strengthening which is immediate corollary of the proofs of [FKS84, SS90].

Lemma 2.7 (Existence of perfect hash functions with the required properties). For every integer s, there is
an explicit family H of hash functions h : [n] → [8s] of cardinality |H| = 2(4+o(1))·s+log 2s log log n 1 such
that the following holds for every unit vector v ∈ Sn−1. Let i1, i2, . . . , in be an enumeration of [n] such that
|vi1 | ≥ |vi2 | ≥ · · · ≥ |vin |, and let It denote the set {i1, i2, . . . , it}. There exists some h ∈ H such that

1. The map h is an injection on Is.

2. Let t ∈ [s− 1]. If v2
it+1

≤ 1
64s · ‖v[n]\It

‖2
2, then

∑
r∈[8s]

min
{
‖vh−1(r)\It

‖2
2,

2
s
· ‖v[n]\It

‖2
2

}
≥ 1

2
· ‖v[n]\It

‖2
2. (1)

For completeness we give the proof in the appendix. The following is an easy corollary.

Corollary 2.8. Let 24 ≤ s ≤ n be integers and H the hash family guaranteed by Lemma 2.7. There exists
constants c1 and c2 such that one of the following conditions holds (using the same notation as in Lemma 2.7):

1. either
∑s−1

t=d2s/3e |vit+1 | ≥
√

s
32 ‖v[n]\Is

‖2 ;

2. or, there exists some h ∈ H such that h is an injection on Is and for at least c1 · 8s buckets it holds that
‖vh−1(r)\It

‖2
2 ≥ c2

s · ‖v[n]\It
‖2
2.

Proof. Let h ∈ H be the map guaranteed by Lemma 2.7 (we shall also use the notations of the lemma). We
are guaranteed that h is an injection on Is. We now consider two cases: Case 1: there is some t ∈ [s−1] such
that v2

it+1
≤ 1

64s · ‖v[n]\It
‖2
2. Case 2: for every t ∈ [s− 1] we have that v2

it+1
> 1

64s · ‖v[n]\It
‖2
2.

1The log 2s factor can be eliminated at the expense of a slight complication of the construction (adding a preliminary phase that
maps [n] to [s2] and replacing the maps from [n] in the two-phase construction by maps from [s2]). In our application, this does not
improve the exponent beyond a o(1) factor, as we use s = Θ(log n).

4

Consider case 1. We will show that for some constants c1, c2 at least c1 · 8s buckets satisfy that
‖vh−1(r)\It

‖2
2 ≥ c2

s · ‖v[n]\It
‖2
2. Assume for a contradiction that less than c1 · 8s buckets have high norm.

By the lemma we know that as there is some t ∈ [s− 1] such that v2
it+1

≤ 1
64s · ‖v[n]\It

‖2
2 then

∑
r∈[8s]

min
{
‖vh−1(r)\It

‖2
2,

2
s
· ‖v[n]\It

‖2
2

}
≥ 1

2
· ‖v[n]\It

‖2
2.

Hence,
1
2
· ‖v[n]\It

‖2
2 ≤

∑
r∈[8s]

min
{
‖vh−1(r)\It

‖2
2,

2
s
· ‖v[n]\It

‖2
2

}
≤

c1 · 8s · 2
s
· ‖v[n]\It

‖2
2 + 8s · c2

s
· ‖v[n]\It

‖2 = (16c1 + 8c2) · ‖v[n]\It
‖2
2.

Therefore, for c1 = 1
48 and c2 = 1

49 we get a contradiction, unless ‖v[n]\It
‖2
2 = 0. However, the claim is

trivial if this is the case.
Let us now assume that we are in case 2. It follows that

s−1∑
t=d2s/3e

|vit+1 | ≥
s−1∑

t=d2s/3e

1
8
√

s
· ‖v[n]\It

‖2 ≥
s−1∑

t=d2s/3e

1
8
√

s
· ‖v[n]\Is

‖2 ≥
√

s

32
‖v[n]\Is

‖2,

where in the last inequality we used the assumption that s ≥ 24. �

2.4 Concentration of Threshold functions

In order to construct an ε-net for linear threshold functions we need to understand for every linear threshold
function Lv,θ when does Prx∈Bn [Lv,θ(x) = 1] > ε.

Theorem 2.9. (Chernoff-Hoeffding) For v = (v1, . . . , vn) ∈ Rn and θ ∈ (0,∞) we have that

Pr
x∈Bn

[〈x, v〉 > θ] ≤ exp

(
−1

2

(
θ

‖v‖2

)2
)

.

Proof. Let x = (x1, . . . , xn). We get that for every t > 0

Pr
x∈Bn

[〈x, v〉 > θ] = Pr
x∈Bn

[exp(t · 〈x, v〉) > exp(t · θ)] ≤ E [exp(t · 〈x, v〉)]
exp(t · θ)

=

E [
∏n

i=1 exp(t · xi · vi)]
exp(t · θ)

=
∏n

i=1 E [exp(t · xi · vi)]
exp(t · θ)

=
∏n

i=1
1
2(exp(t · vi) + exp(−t · vi))

exp(t · θ)
≤∏n

i=1 exp((t · vi)2/2)
exp(t · θ)

= exp(t2‖v‖2
2/2− t · θ).

By picking t = θ
‖v‖22

we get that

Pr
x∈Bn

[〈x, v〉 > θ] ≤ exp

(
−1

2

(
θ

‖v‖2

)2
)

.

�

5

The following result will be used to determine how large θ can be, for a given v ∈ Rn so that Lv,θ accepts
an ε fraction of the inputs.

Corollary 2.10. Let v = (v1, . . . , vn) ∈ Rn and δ ∈ R+. Assume that |v1| ≥ |v2| ≥ . . . ≥ |vn|. Let
1 ≤ k ≤ n be an integer. Assume further that |vk| > 0. Then

Pr
x∈Bn

[
〈x, v〉 ≥ ‖v[d2k/3e]‖1 + δ · ‖v[n]\[k]‖2

]
≤ exp(−k/18) + exp(−δ2/2).

Proof. We have that
Pr

x∈Bn

[
〈x, v〉 ≥ ‖v[d2k/3e]‖1 + δ · ‖v[n]\[k]‖2

]
≤

Pr
x[k]∈Zk

2

[〈
x[k], v[k]

〉
≥ ‖v[d2k/3e]‖1

]
+ Pr

x[n]\[k]∈Z[n]\[k]
2

[〈
x[n]\[k], v[n]\[k]

〉
≥ δ · ‖v[n]\[k]‖2

]
.

As |v1| ≥ |v2| ≥ . . . ≥ |vk| > 0 we see that in order for the inequality〈
x[k], v[k]

〉
≥ ‖v[d2k/3e]‖1

to hold we must have that sign(xi) = sign(vi) for at least 2k/3 of the indices. Using the Chernoff-Hoeffding
bound we bound this probability with

Pr
x[k]∈Zk

2

[〈
x[k], v[k]

〉
≥ ‖v[d2k/3e]‖1

]
≤ exp(−k/18).

The upper estimate

Pr
x[n]\[k]∈Z[n]\[k]

2

[〈
x[n]\[k], v[n]\[k]

〉
≥ δ · ‖v[n]\[k]‖2

]
≤ exp(−δ2/2)

also follows immediately from the Chernoff-Hoeffding bound. �

When considering caps and not linear threshold functions the results are somewhat easier. Recall that Cv,θ

is defined as Cv,θ = {x ∈ Sn−1 : 〈v, x〉 ≥ θ}. For a proof of the next lemma see e.g. [Mat02].

Lemma 2.11. Let v ∈ Sn−1 be a unit vector. Then

Pr
x∈Sn−1

[x ∈ Cv,θ] ≤ exp
(
−1

2
nθ2

)
,

where we consider the uniform probability measure on Sn−1.

3 Construction of a covering code

As a warm up for the proof of Theorem 1.1 we give an explicit construction of a cover code of covering
radius n

2 − c
√

n log n for Bn. Later on we will build on the ideas of the proof to get the more general result.
For convenience we repeat the claim of Corollary 1.3 here.

Corollary 1.3: There exists a > 0 such that for every c > 0 there is an explicit construction of a set C ⊂ Bn

of size |C| = n2 · (nc)a such that for every z ∈ Bn there is some x ∈ C with H(z, x) ≤ n
2 −

√
cn log n.

6

Proof. Fix c > 0, and let n ∈ N. Put t = dc1 log ne, for a sufficiently large constant c1 that will be later
determined. For simplicity we assume that t divides n. Let J1, J2, . . . , Jt be the partition of [n] defined by
Ji = {(i − 1) · n/t + 1, . . . , i · n/t} (in fact, we can take the Ji-s to be any partition of the coordinates into
t disjoint sets, each of size n/t). Let S ⊂ {−1, 1}n/t be a 4-wise independent distribution. Let m = |S| and
recall that by Fact 2.1 we can assume that m = O((n/t)2). Denote S = {s0, . . . , sm−1}. The set C is defined
as follows. For every sequence of signs α = (α1, . . . , αt) ∈ {−1, 1}t and every 0 ≤ j ≤ m−1, let xα,j ∈ Bn

be defined as the concatenation (α1 · sj) ◦ . . . ◦ (αt · s(j+t−1 mod m)). That is, xα,j
Ji

= αi · s(j+i−1 mod m).
In other words, we concatenate t consecutive elements of S for each of the 2t possible sign flips. The set C
is the collection of all the xα,j-s, i.e. C = {xα,j : α ∈ {−1, 1}t, 0 ≤ j < m}. Hence, the size of C is
2t ·m = O((n

t)2 · 2t) ≤ n2 · nc1 .
We now proceed with the analysis of this construction. As S is 4-wise independent we get by Lemma 2.3

that for every y ∈ {−1, 1}n/t

Pr
[
| 〈y, s〉 | >

√
n/3t

]
≥ 2

11
.

Fix z ∈ Bn. Denote the event that | 〈zJi , sj+i−1 mod m〉 | >
√

n/3t with Xi (where 0 ≤ j ≤ m − 1 is
picked uniformly at random). Recall that E[Xi] ≥ 2/11 and so, by linearity of expectation, we get that
E
[∑t

i=1 Xi

]
≥ 2t/11. Therefore, for every z ∈ Bn there exists jz ∈ {0, . . . ,m− 1} such that∣∣∣{i : | 〈zJi , sjz+i−1 mod m〉 | ≥

√
n/3t

}∣∣∣ ≥ 2t

11
.

Set α ∈ {−1, 1}t as αi = sign(〈zJi , sjz+i−1 mod m〉). It follows that

〈
z, xα,j

〉
=

t∑
i=1

| 〈zJi , sjz+i−1 mod m〉 | ≥
2t

11

√
n/3t ≥

2
√

c1

11
√

3

√
n log n.

To complete the proof, set c1 = 400c to get
〈
z, xα,j

〉
> 2

√
cn log n. We thus obtain that,

H(z, xα,j) =
n

2
− 1

2
〈
z, xα,j

〉
≤ n

2
−
√

cn log n.

Moreover, |C| ≤ n2 · nc1 = n2 · (nc)400, as required. �

4 The Main Construction

We now give an explicit construction of an ε-net set Nε ⊂ Bn for linear threshold functions. In particular we
will prove Theorem 1.1. For convenience we repeat it here.

Theorem 1.1 There exists two universal constants a, b > 0 such that for every ε > 0 there is an explicit
construction of an ε-net, Nε ⊂ Bn, for linear threshold functions of size |Nε| = O(ε−b · na).

Proof. Before giving the construction we explain what changes are needed from the earlier construction of the
covering code. Consider a unit vector v′ ∈ {−1, 1}n/ log n and let v be the unit vector in Rn having v′/‖v′‖2

in its first n/ log n coordinates and zeros elsewhere. Consider the linear function Lv,
√

log n : Bn → {−1, 1}.
It is not hard to see that with probability 1/ poly(n) over the choice of x ∈ Bn we have that Lv,

√
log n(x) = 1,

for every such v. On the other hand, there exists a v′ (and actually a random v′ will have the required
property) such that for every y ∈ C, where C is the cover code constructed in Section 3, we will have that
| 〈y, v〉 | = O(1). Thus, for every y ∈ C we have that Lv,

√
log n(y) = 0. Therefore C is not a 1/ poly(n)-

net. The reason for the failure of C is that all the large coordinates of v were concentrated on a set of size

7

n/ log n that was one of the sets in the partition of the coordinates with respect to which we constructed C.
To overcome this difficulty we construct sets in analogous way to the construction of C but with respect to
different partitions of the n coordinates. This partitions will come from the family of perfect hash functions
discussed in Section 2.3. Another change that we will have to make is in the way that we concatenate short
strings (of length O(n/ log n) in order to get length n strings. Previously we simply concatenated consecutive
strings. Now we will have to concatenate them according to an expander walk. The reason being that there will
be O(log n) sets in the partitions from which we will have to make sure that we get the “correct” contribution.
We now turn to the actual construction (also replacing 1/ poly(n) with ε).

Let ε > 0 be given. We assume that ε > 2−n/100 as otherwise we can pick N = Bn. Let t = dc log 2/εe,
for some absolute constant c that will be later determined. We assume w.l.o.g. that t ≥ 24. We will later
need this assumption (without explicitly referring to it) for applying the result of Corollary 2.8. Set k = 5
and d = 218. We assume again, for simplicity, that n/t is an integer. Similarly to the case of cover codes,
let S ⊂ {−1, 1}n/t be a k-wise independent sample space. Let m = |S|. By Fact 2.1 we can assume that
m = |S| = O(nk/2). Denote S = {si}m

i=1. As mentioned above we will need to consider many different
partitions of the coordinates, so let H be the (n, 8t, t)-perfect hash family guaranteed by Lemma 2.7. We
think of every h ∈ H as partitioning the coordinates to 8t sets {Jh,1, . . . , Jh,8t} with Jh,i = h−1(i). Let
Jh = {Jh,1, . . . , Jh,8t} be the collection of the sets in the partition. Note that the sets in Jh are not necessarily
of the same size. In order to concatenate elements of S to create a word in Bn we need to consider random
walks on an expander graph. Let G be an (m, d, d/100)-expander with node set S. In other words, we identify
the i-th node of G with si. In particular a random walk (w1, . . . , w`) on G is a sequence of ` elements from
S. We now explain how to mix all these ingredients together to get the final construction.

The set Nε contains all the points xh,w (that will be soon defined), where h ∈ H and w is a walk of length
8t in G. We now explain how to construct xh,w. Let h ∈ H be an hash function and w = (w1, . . . , w8t) ∈ S8t

be a random walk on G. Let i ∈ {1, 2, . . . , 8t}. Let w′
i be the first |Jh,i| bits of wi. The reason for this is that

it may be the case that |Jh,i| < n/t and so we need to cut the last bits of wi to get a vector of length exactly
|Jh,i|. We now define

xh,w|Jh,i
= w′

i = first |Jh,i| bits of wi.

As the collection {Jh,i}8t
i=1 is a partition of [n] we get that indeed xh,w ∈ Bn.

A good way to understand the construction is the following. We would like to define a point x = xh,w ∈
Nε. To do so we first map the coordinates of x to 8t buckets according to h. Assume that the set Jh,i was
mapped to the i’th bucket. Now, we would like to assign a value to xJh,i

from the k-wise independent set S,
and we would like to do so for every i ∈ [8t]. As there are m8t possibilities for such assignments we have to
pick a small subset of all possible assignments. We do so by taking an expander walk on an expander with m
vertices. Given a walk w = (w1, . . . , w8t) of length 8t we would like to consider the assignment xJh,i

= wi.
The final thing to notice is that |Jh,i| may be smaller than n/t and so we only consider the first |Jh,i| bits of
wi. Going over all i ∈ [8t] we get the vector xh,w. An easy bound on the size of Nε is

|Nε| = d8t−1 ·m = O(d7 · (2/ε)8c log d · nk/2) = O
(
na · (1/ε)b

)
,

where a = k/2 and b = 8c log d are absolute constants. We now show that Nε is an ε-net for linear threshold
functions. Let Lv,θ be a linear threshold function, where ‖v‖2 = 1, such that

Pr
x∈Bn

[Lv,θ(x) = 1] ≥ ε.

Let i1, i2, . . . , in be an enumeration of [n] such that vi1 ≥ vi2 ≥ · · · ≥ vin , and let Ir denote the set
{i1, i2, . . . , ir}. We now show that there exists xh,w in Nε for which Lv,θ(xh,w) = 1 which implies that Nε is
an ε-net for linear threshold functions.

8

We analyze three different cases. The first is when the support of v is small. The second is when the
support is not too small, but most of the mass of v is concentrated on a few coordinates (this case corresponds
to the first bullet in Corollary 2.8). The last case is when the mass of v is “nicely” spread. We shall make
use of the following notations. Given the k-wise independent set S and an index i ∈ [8t], consider the first
Jh,i coordinates of every element in S. Denote this set with Sh,i. Clearly Sh,i is k-wise independent. We also
define, for every i ∈ [8t], J ′

h,i = h−1(i) \ It.

Case 1: Assume that the size of the support of v is at most t. Clearly, for every x ∈ Bn we have that
〈x, v〉 ≤ ‖v‖1. We now show that there is some xh,w ∈ Nε with 〈x, v〉 = ‖v‖1. This clearly implies that
Lv,θ(xh,w) = 1. Indeed, Lemma 2.7 guarantees that there is some h ∈ H that is injective on It. Namely,
it maps all the nonzero coordinates of v to different buckets. As a bucket now contains at most one nonzero
element, we see that for each i ∈ [8t] we have that

Pr
s∈Sh,i

[〈
s, vJh,i

〉
= ‖vIt∩Jh,i

‖1

]
≥ 1

2
, (2)

where we used the fact that each bucket contains at most one nonzero element so we only need s to have the
correct sign. For every i ∈ [8t] denote with Ai ⊆ Sh,i the set of s ∈ Sh,i that belong to the “good” sets defined
in Equation (2). Namely, those elements from Sh,i that have large inner product with vJh,i

. Clearly, for every
i we have that |Ai|/|Sh,i| ≥ 1

2 . We will now show that there exist a random walk on G such that for every i,
wi ∈ Ai. Indeed, G is an [n, d, λ]-expander and so Theorem 2.6 guarantees that if 1

2 > 2λ/d then there exists
a random walk that hits all the Ai’s. As we picked a graph G with λ ≤ d/100 we have the required property.
Thus, there exists a walk w = (w1, . . . , w8t) such that for every i, wi ∈ Ai. Calculating we get that

〈
xh,w, v

〉
=

8t∑
i=1

〈
wi, vJh,i

〉
=
∑

i∈h(It)

〈
wi, vJh,i

〉
=
∑

i∈h(It)

|vi| = ‖v‖1

as required. This completes the analysis of the first case.

Case 2: Assume that
∑t−1

r=d2t/3e |vit+1 | ≥
√

t
32 ‖v[n]\It

‖2 (this is the first bullet of Corollary 2.8). Similarly to
the first case we get that there is xh,w ∈ Nε such that〈

xh,w, v
〉
≥ ‖vIt‖1 ≥ ‖vId2t/3e‖1 +

√
t

32
‖v[n]\It

‖2. (3)

By Corollary 2.10 we get that

Pr
x∈Bn

[
〈x, v〉 ≥ ‖vId2t/3e‖1 +

√
t

32
‖v[n]\It

‖2

]
≤ exp(−t/18) + exp

(
−1

2

(√
t

32

)2
)

= exp(−γt),

for some absolute constant γ > 0. If we pick c large enough (i.e. c ≥ 1/γ) then for t = dc log(2/ε)e we get
that

Pr
x∈Bn

[
〈x, v〉 ≥ ‖vId2t/3e‖1 +

√
t

32
‖v[n]\It

‖2

]
≤ exp(−γt) < ε.

As we assumed that Prx∈Bn [Lv,θ(x) = 1] ≥ ε we have that

θ < ‖vId2t/3e‖1 +
√

t

32
‖v[n]\It

‖2. (4)

9

By Equation (3) it now follows that there is xh,w ∈ Nε such that〈
xh,w, v

〉
≥ ‖vId2t/3e‖1 +

√
t

32
‖v[n]\It

‖2 > θ.

Hence, for this xh,w we get that Lv,θ(xh,w) = 1 as required. This completes the analysis of the second case.

Case 3: We now assume that
∑t−1

r=d2t/3e |vit+1 | <
√

t
32 ‖v[n]\It

‖2. Hence, Corollary 2.8 implies that there
exists some h ∈ H such that h is an injection on It and for at least c1 · 8t buckets r ∈ [8t] it holds that
‖vh−1(r)\It

‖2
2 ≥ c2

t · ‖v[n]\It
‖2
2, for two universal constants c1 and c2. Denote the set of ≥ c1 · 8t “good”

buckets r with R ⊂ [8t]. It follows that for every i ∈ R

‖vJ ′h,i
‖2 ≥

√
c2

t
· ‖v[n]\It

‖2.

By Claim 2.5, specialized to k = 5, we get that for every i ∈ h(It)

Pr
s∈Sh,i

[〈
s, vJh,i

〉
≥ ‖vIt∩Jh,i

‖1 +
1
7
‖vJ ′h,i

‖2

]
≥ 4

5
· 2−5 =

1
40

, (5)

where we recall that by our assumption on h we have that |It∩Jh,i| = 1. In addition, Lemma 2.4 implies that
for i 6∈ h(It)

Pr
s∈Sh,i

[〈
s, vJh,i

〉
≥
‖vJh,i

‖2

7

]
≥ 1

20
. (6)

For every i ∈ [8t] denote with Ai ⊆ Sh,i the set of s ∈ Sh,i that belong to the “good” sets defined in
Equations (5), (6). Namely, those elements from Sh,i that have large inner product with vJh,i

. Clearly, for
every i we have that |Ai|/|Sh,i| ≥ min(1

40 , 1
20) = 1

40 . We will now show that there exist a random walk on
G such that for every i, wi ∈ Ai. Indeed, G is an [n, d, λ]-expander and so Theorem 2.6 guarantees that if
1
40 > 2λ/d then there exists a random walk that hits all the Ai’s. As we picked a graph G with λ ≤ d/100
we have the required property. Thus, there exists a walk w = (w1, . . . , w8t) such that for every i, wi ∈ Ai.
Calculating we get that

〈
xh,w, v

〉
=

8t∑
i=1

〈
wi, aJh,i

〉
=
∑

i∈h(It)

〈
wi, vJh,i

〉
+

∑
i6∈h(M)

〈
wi, vJh,i

〉
≥

∑
i∈h(It)

(‖vIt∩Jh,i
‖1 +

1
7
‖vJ ′h,i

‖2) +
∑

i6∈h(It)

‖vJh,i
‖2

7
= ‖vIt‖1 +

1
7

∑
i∈[8t]

‖vJ ′h,i
‖2

≥ ‖vIt‖1 +
1
7

∑
i∈R

‖vJ ′h,i
‖2 ≥ ‖vIt‖1 +

1
7

∑
i∈R

√
c2

t
· ‖v[n]\It

‖2 ≥‡

‖vIt‖1 +
8c1

√
c2

7
·
√

t · ‖v[n]\It
‖2 ≥ ‖vIt‖1 +

8c1
√

c · c2

7
·
√

log(2/ε) · ‖v[n]\It
‖2 ≥∗

‖vIt‖1 +
√

2 log(2/ε) · ‖v[n]\It
‖2 >† θ,

where inequality (‡) follows from the fact that |R| ≥ c1 · 8t, inequality (∗) holds for a large enough universal
constant c and inequality (†) holds by Equation (4) (the bound on θ from Case 2 also holds here of course).
Thus, Lv,θ(xh,w) = 1 as required. This concludes the proof of Theorem 1.1. �

10

5 Construction of ε-nets for Spherical Caps

In this section we show how to construct ε-nets for spherical caps. In particular we prove Corollary 1.2.

Corollary 1.2 There exists two universal constants a, b > 0 such that for every ε > 0 there is an explicit
construction of an ε-net, Sε ⊂ Sn−1, for spherical caps of size |Sε| = O(ε−b · na).

A first natural attempt is to check whether the ε-net for threshold functions is also an ε-net for spherical
caps. As we are looking for subsets of the sphere Sn−1 we consider the natural embedding of Bn in Sn−1

that shrinks every vector by a factor of
√

n. Namely, set Bn = {−1/
√

n, 1/
√

n}n. In this section whenever
we discuss the boolean cube we will refer to the set Bn. In particular we will view every subset of Bn as a
subset of Bn. To see that the boolean cube (as a subset of Sn−1) is not an ε-net for a polynomially small ε
consider the cap defined by v = (1, 0, . . . , 0) and θ =

√
log(1/ε)/n. We see that Lv,θ(Bn) = 0 whereas

the cap Cv,θ = L−1
v,θ(1) ∩ Sn−1 has measure poly(ε). However, it turns out that if an ε-net for LTFs does not

hit a large enough cap, then a “rotation” of it does hit the cap. Therefore, the union of an ε′-net for linear
threshold functions and its rotation yields an ε-net for spherical caps. Indeed, the reason that v = (1, 0, . . . , 0)
and θ =

√
log(1/ε)/n show that the boolean cube is not an ε-net is that all the mass of v is concentrated on a

few coordinates (actually only 1 coordinate). On the other hand, if it was the case that no set of O(log(1/ε))
coordinates contains more than, say, 1/4 of the total mass of v then the set Nε guaranteed by Theorem 1.1,
will hit the cap C

v,
√

2 log(1/ε1/16)/n
which by Lemma 2.11 is of weight at most ε1/16. Indeed, repeating the

proof of Theorem 1.1 we see that there is an element x ∈ Nε such that if M ⊂ [n] is the set of O(log 1/ε)
largest coordinates of v then

〈x, v〉 >
√

2 log(1/ε)/n · ‖v[n]\M‖2 ≥(∗) (1/4) ·
√

2 log(1/ε)/n =
√

2 log(1/ε1/16)/n,

where inequality (∗) follows from the fact that at least 1/4 of the mass of v is supported on the set of coordi-
nates [n] \M . Hence, all that we have to do is to find a way of spreading out the coordinates of v so that the
mass is “nicely” distributed on many coordinates. Our approach to solving this problem is the following: We
show that for the Fourier matrix F , either Fv has the property that its mass is “well spread” or v itself is well
spread. Then we simply let Sε = Nε′ ∪ F (Nε′) for some ε′ = poly(ε) where Nε′ is an ε′-net for LTF’s. We
now give the formal proof.

Proof of Corollary 1.2. As before we let i1, i2, . . . , in be an enumeration of [n] such that vi1 ≥ vi2 ≥ · · · ≥
vin , and Ir denote the set {i1, i2, . . . , ir}. Assume that 2 n = 2k for some integer k. Let F be the n × n
Fourier matrix. In other words, each coordinate of F is in {−1/

√
n, 1/

√
n} and the rows of F are orthogonal.

The following lemma shows that Fv or v are “well spread”.

Lemma 5.1. For every two subset M1,M2 ⊂ [n] of size |M1|, |M2| ≤
√

n/20 and any unit vector v ∈ Rn

we have that ‖(Fv)M‖2 ≤ 3/4 or ‖vM‖2 ≤ 3/4.

Proof. The proof follows the following lemma of [Ind07] (specialized for L = 2).

Lemma 5.2 (Lemma 4.2 of [Ind07]). Let T be a matrix obtained by concatenating rows of two unitary n×n
matrices H1 and H2 with coherence3 δ. Then, for any set of coordinates M ⊂ [2n] of size |M | = s, and any
unit vector v ∈ Rn we have that ‖(Tv)M‖2

2 ≤ 1
2(1 + δs) · ‖Tv‖2

2.

2If it is not the case then we can work with n′ = 2k such that n < n′ < 2n.
3The coherence of H1 and H2 is the largest inner product between a row of H1 and a row of H2.

11

Indeed, let T be the matrix whose first n rows are the identity matrix and the last n rows are F . Then, the
coherence of T is δ = 1/

√
n. Given two subsets M1,M2 ⊂ [n] of size |M1|, |M2| ≤

√
n/20, let M ′

2 be the
subset of {n + 1, . . . , 2n} obtained by adding n to each element of M2. Let M = M1 ∪ M ′

2. Then for any
unit vector v ∈ Rn it holds that

‖(Tv)M‖2 ≤
√

1
2
(1 + δ|M |) · ‖Tv‖2 ≤

√
1.1/2 · ‖Tv‖2 < 3/4.

This completes the proof of Lemma 5.1. �

Let Nε′ ⊂ {−1/
√

n, 1/
√

n}n be an ε′-net for linear threshold functions, for some ε′ that will be later
determined. Define Sε = Nε′ ∪ F (Nε′). In other words, Sε is the union of Nε′ with the rotation of Nε′ by
F . Note that as F is unitary we have that indeed Sε ⊂ Sn−1. We now show that Sε is indeed an ε-net for
spherical caps. Let Cv,θ be a spherical cap of weight ε. By Lemma 2.11 we see that θ ≤

√
2 log(1/ε)/n. Let

u = Tv, where T is the matrix defined in the proof of Lemma 5.1. By Lemma 5.1 we get that no set of
√

n/10
coordinates of u contains more than 3/4 of the total mass of u. As u = Tv = (v, Fv) (the concatenation of
v and Fv) and ‖v‖ = ‖Fv‖ we get that either in v or in Fv, no set of

√
n/20 coordinates contains more than

3/4 of the total mass. Assume w.l.o.g. that in Fv no set of
√

n/20 coordinates contains more than 3/4 of
the total mass (the analysis for v is similar). Let It ⊂ [n] be the set of largest4 t = dc log(1/ε′)e ≤

√
n/20

coordinates of Fv (note that c, t and It are chosen as in the proof of Theorem 1.1). In particular, no coordinate
in It is the zero coordinate. Following the proof of Theorem 1.1, we note that we are either in Case 2 or Case
3 there and hence, for a large enough c, Nε′ contains an element x ∈ Nε′ such that5

〈x, Fv〉 ≥ 1√
n
·
√

2 log(1/ε′) · ‖(Fv)[n]\It
‖2 ≥(∗) 1√

n
·
√

2 log(1/ε′) · 1
4

=
√

2 log(1/ε′1/16)/n,

where inequality (∗) follows from the fact that dc log(1/ε′)e <
√

n/20 and the assumption that every subset
of
√

n/20 coordinates of Fv contains at most 3/4 of the mass of Fv. Hence, Fx ∈ F (Nε′) ⊂ Sε and

〈Fx, v〉 = 〈x, Fv〉 ≥
√

2 log(1/ε′1/16)/n =
√

2 log(1/ε)/n ≥ θ,

for ε′ = ε16. This shows that Sε is indeed an ε-net for spherical caps. Moreover, we have that

|Sε| ≤ 2|Nε′ | ≤ O(ε′−b · na) = O(ε−b′ · na),

for absolute constants a and b′. This completes the proof of Corollary 1.3. �

Acknowledgement

We thank Noga Alon and Avi Wigderson for helpful discussions and for bringing [SS90] to our attention. We
also thank Noga for sharing his proof of corollary 1.3 with us.

References

[AFWZ95] N. Alon, U. Feige, A. Wigderson, and D. Zuckerman. Derandomized graph products. Computa-
tional Complexity, 5(1):60–75, 1995.

4Recall that we assume that ε > exp(−Ω(
√

n)).
5The factor of 1√

n
comes from viewing Bn as a subset of Sn−1. In fact, we can get a much better inner product but we do not try

to optimize.

12

[AGK04] N. Alon, G. Gutin, and M. Krivelevich. Algorithms with large domination ratio. J. Algorithms,
50(1):118–131, 2004.

[AKN+08] N. Alon, H. Kaplan, G. Nivasch, M. Sharir, and S. Smorodinsky. Weak ε-nets and interval chains.
In Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms (SODA),
pages 1194–1203, 2008.

[AL88] and P.Sarnak A. Lubotzky, R. Phillips. Ramanujan graphs. Combinatorica, 8(3):261–277, 1988.

[Alo08] N. Alon. Private communication, 2008.

[AS08] N. Alon and J. Spencer. the probabilistic method. J. Wiley, 3 edition, 2008.

[Ber97] B. Berger. The fourth moment method. SIAM J. Comput., 26(4):1188–1207, 1997.

[Cha94] B. Chazelle. Computational geometry: a retrospective. In Proceedings of the twenty-sixth annual
ACM symposium on Theory of computing (STOC), pages 75–94, 1994.

[CT06] E. J. Candés and T. Tao. Near-optimal signal recovery from random projections: universal en-
coding strategies. IEEE Trans. Inform. Theory, 52(12):5406–5425, 2006.

[CW79] J. L. Carter and M. N. Wegman. Universal classes of hash functions. J. Comput. Syst. Sci.,
18:143–154, 1979.

[Don06] D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–
1306, 2006.

[EGL+92] G. Even, O. Goldreich, M. Luby, N. Nisan, and B. Velickovic. Approximations of general inde-
pendent distributions. In Proceedings of the 24th Annual ACM Symposium on Theory of Com-
puting, pages 10–16, 1992.

[EIO02] L. Engebretsen, P. Indyk, and R. O’Donnell. Derandomized dimensionality reduction with appli-
cations. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 705–712, 2002.

[FKS84] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with 0(1) worst case access
time. J. ACM, 31(3):538–544, 1984.

[GLR08] V. Guruswami, J. R. Lee, and A. A. Razborov. Almost euclidean subspaces of ln1 via expander
codes. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 353–362, 2008.

[GLW08] V. Guruswami, J. R. Lee, and A. Wigderson. Euclidean sections of with sublinear randomness
and error-correction over the reals. In Approximation, Randomization and Combinatorial Op-
timization. Algorithms and Techniques, 11th International Workshop, APPROX 2008, and 12th
International Workshop, RANDOM 2008, pages 444–454, 2008.

[Ind07] P. Indyk. Uncertainty principles, extractors, and explicit embeddings of l2 into l1. In Proceedings
of the 39th Annual ACM Symposium on Theory of Computing (STOC), pages 615–620, 2007.

[JL84] W. B. Johnson and J. Lindenstrauss. Extensions of lipschitz maps into a hilbert space. Contem-
porary Mathematics, 26:189206, 1984.

13

[LLSZ97] N. Linial, M. Luby, M. E. Saks, and D. Zuckerman. Efficient construction of a small hitting set
for combinatorial rectangles in high dimension. Combinatorica, 17(2):215–234, 1997.

[Mar88] G. A. Margulis. Explicit group-theoretic constructions of combinatorial schemes and their appli-
cations in the construction of expanders and concentrators. Problems of Information Transmis-
sion, 24(1):39–46, 1988.

[Mat02] J. Matousek. Lectures on discrete Geometry. GTM. springer, 2002.

[NN93] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and applications.
SIAM J. on Computing, 22(4):838–856, 1993.

[Siv02] D. Sivakumar. Algorithmic derandomization via complexity theory. In Proceedings on 34th
Annual ACM Symposium on Theory of Computing (STOC), pages 619–626, 2002.

[SS90] J. P. Schmidt and A. Siegel. The analysis of closed hashing under limited randomness (extended
abstract). In Proceedings of the Twenty Second Annual ACM Symposium on Theory of Computing
(STOC), pages 224–234, 1990.

[Vio08] E. Viola. The sum of d small-bias generators fools polynomials of degree d. In Proceedings of
the 23rd Annual IEEE Conference on Computational Complexity (CCC), pages 124–127, 2008.

A Perfect Hashing

Proof of Lemma 2.7. Our proof uses the construction of perfect hash families due to Schmidt and
Siegel [SS90]. The construction is a clever oblivious implementation of the Fredman, Komlós, and Szemerédi
adaptive hashing scheme [FKS84].

The FKS scheme proceeds in two phases. The first phase of Schmidt and Siegel’s construction is identical
to the first phase of the FKS scheme. It applies a map f : [n] → [s], taken from a pairwise independent family
of hash functions F . There are known explicit constructions of F with |F| = 2log s+log log n+O(1) [CW79].
A pairwise independent family of hash functions F has the following property. If f is chosen uniformly at
random from F , then for every x, y ∈ [n], x 6= y, it holds that f(x) is distributed uniformly in [s], even when
conditioned on f(y). In particular, Pr[f(x) = f(y)] = 1

s .
Let S ⊂ {1, 2, . . . , n} be an arbitrary set of size |S| ≤ s. Consider the following event.

s∑
j=1

|f−1(j) ∩ S|2 < 4s. (7)

We now show that the probability of this event, when f is chosen uniformly at random from F , is more than
1
2 . Indeed, denoting by χp the indicator of an event p, we have that

E

 s∑
j=1

|f−1(j) ∩ S|2
 = E

 ∑
x,y∈S

χf(x)=f(y)

 =
∑

x,y∈S

E
[
χf(x)=f(y)

]
≤ 2s− 1.

By applying Markov’s inequality we conclude that

Pr

 s∑
j=1

|f−1(j) ∩ S|2 ≥ 4s

 <
1
2
. (8)

14

The second phase of the FKS hashing scheme is adaptive, and depends on the hashed set S. The idea
is the following. If ci elements of S landed in bucket i ∈ [s], then by mapping this bucket to c2

i buckets
using a pairwise independent family of hash functions, it is likely that no collision between the elements
of S occurs. As the first phase guarantees that

∑
i∈[s] c

2
i = O(s), we end up with a hash table of size

O(s). The Schmidt and Siegel implementation proceeds as follows. It uses a pairwise independent family
of hash functions G. Here it will be convenient to assume that g ∈ G maps [n] to bit vectors. So every
g ∈ G is a function g : [n] → {0, 1}2+log s. We can take |G| = 2log s+log log n+O(1). The second phase
uses a selection of s (not necessarily distinct) hash functions from G. The hash functions are selected and
used as follows. Take a sequence of log s hash functions g1, g2, . . . , glog s ∈ G. Notice that there are at
most |G|log s = 2log2 s+log s log log n+O(log s) such sequences. Also take a sequence of s non-negative integers
c1, c2, . . . , cs that satisfy

∑s
j=1 cj = s and

∑s
j=1 c2

j < 4s. There are at most 22s such sequences (easily
bounded by writing the sequence elements in unary notation, separated by zeros). This sequence is our guess
of the bucket loads due to S after the first phase. Also use an assignment a : [s] → [log s] such that 1 is
assigned to s

2 elements of [s], 2 is assigned to s
4 elements of [s], and in general i is assigned to s

2i elements
of [s]. (Exceptionally log s is assigned to 2 elements of [s].) The number of such assignments is at most
2s·(1+

Plog s
i=1 2−i) < 22s (write the s assigned values in unary, separated by zeros). The assignment a is our

guess as to which of the log s selected hash functions should be used for each bucket.
Each setting of f , g, c and a defines a hash function h ∈ H as follows. For every x ∈ [n],

h(x) =
∑

i<f(x)

2d2 log cie + ḡa(f(x))(x),

where ḡa(i)(x) is the first d2 log cie bits of ga(i)(x). Notice that |H| ≤ 24s+log2 s+log 2s log log n+O(log s), imply-
ing the claim in the lemma.6 Also notice that each h ∈ H maps [n] to

s∑
i=1

2d2 log cie ≤ 2 ·
s∑

i=1

c2
i < 8s,

as required.
Consider a vector v ∈ Sn−1. Let S = Is. For this set S, Equation (7) holds for at least half of the choices

of f (by Equation (8)). Fix any such choice f . For i = 1, 2, . . . , s, let Ci = {x ∈ S : f(x) = i}. Consider the
choice of ci = |Ci|, for i = 1, 2, . . . , s. Fix i. For every g ∈ G and x ∈ [n], let ḡ(x) denote the first d2 log cie
bits of g(x). Consider the “bad” event Ai = Ai(g) = ∃x, y ∈ Ci, x 6= y : ḡ(x) = ḡ(y). As G is a pairwise
independent family of hash functions, if g is chosen uniformly at random in G, then Pr [Ai] ≤

(
ci
2

)
· 1

c2i
< 1

2 .
Therefore, there exists a choice of g1 that is good for a set J1 ⊂ [s] of buckets of cardinality |J1| = s

2 .
Similarly, for j = 2, 3, . . . , log s− 1, there exists a choice of gj that is good for a set Jj ⊂ [s] \

⋃
j′<j Jj′ of

cardinality |Jj | = s
2j . Similarly, there exists a choice of glog s that is good for both elements in [s]\

⋃
j<log s Jj .

So, for every f that satisfies Equation (7), there is a choice of g, c, and a such that the resulting hash function
h is an injection on Is.

Finally, we show that if there exists t ∈ [s−1] such that v2
it+1

≤ 1
64s ·‖v[n]\It

‖2
2, then with high probability

f satisfies ∑
r∈[s]

min
{
‖vf−1(r)\It

‖2
2,

2
s
· ‖v[n]\It

‖2
2

}
≥ 1

2
· ‖v[n]\It

‖2
2. (9)

Equation (9) implies Equation (1), as the gi-s only further split hash buckets.
6The factor of log 2s can be saved by adding, prior to the application of f , a preliminary mapping of [n] to [s2] using another

pairwise independent family of hash functions. The maps f and g1, g2, . . . , glog s then need to be modified to have domain [s2]
instead of [n]. In our application, this does not affect the asymptotic bounds beyond lower order terms.

15

Let Xi
j be the indicator random variable for the event that f(j) = i. As Pr[f(j) = i] = 1

s , we have that

E
[
‖vf−1(i)\It

‖2
2

]
= E

 n∑
j=t+1

Xi
jv

2
j

 =
1
s
·

n∑
j=t+1

v2
j =

1
s
· ‖v[n]\It

‖2
2.

Moreover, as f comes from a pairwise independent family of hash functions, for fixed i the random variables
Xi

j are pairwise independent, so

σ2
[
‖vf−1(i)\It

‖2
2

]
= σ2

 n∑
j=t+1

Xi
jv

2
j

 =
n∑

j=t+1

σ2[Xi
j] · v4

j =
(

1− 1
s

)
· 1
s
·

n∑
j=t+1

v4
j .

Thus, as v2
j ≤ 1

64s · ‖v[n]\It
‖2
2 for all j > t (since the |vj |-s are non-increasing), we have that

σ
[
‖vf−1(i)\It

‖2
2

]
≤ 1√

s
·

√√√√ n∑
j=t+1

v4
j ≤

1√
s
· 1
8
√

s
· ‖v[n]\It

‖2 ·

√√√√ n∑
j=t+1

v2
j =

1
8s

· ‖v[n]\It
‖2
2.

Using Chebyshev’s inequality, we have that

Pr
[
‖vf−1(i)\It

‖2
2 ≥

r

s
· ‖v[n]\It

‖2
2

]
≤ 1

64(r − 1)2
.

It follows that ∫ 2r+1

λ=2r

λ · Pr
[
‖vf−1(i)\It

‖2
2 =

λ

s
· ‖v[n]\It

‖2
2

]
dλ ≤ 2r+1

64(2r − 1)2
.

Thus,

E
[
max

{
0, ‖vf−1(i)\It

‖2
2 −

2
s
· ‖v[n]\It

‖2
2

}]
≤ 1

64s
· ‖v[n]\It

‖2
2 ·

∞∑
r=1

2r+1

(2r − 1)2

=
1

16s
· ‖v[n]\It

‖2
2 ·

∞∑
r=1

2r−1

(2r − 1)2

<
1

16s
· ‖v[n]\It

‖2
2 ·

∞∑
r=1

1
2r − 1

<
1
8s

· ‖v[n]\It
‖2
2.

Let Y i = max
{
0, ‖vf−1(i)\It

‖2
2 − 2

s · ‖v[n]\It
‖2
2

}
. We have that E

[∑
i∈[s] Y

i
]

< 1
8 · ‖v[n]\It

‖2
2, so by

Markov’s Inequality, Pr
[∑

i∈[s] Y
i > 1

2 · ‖v[n]\It
‖2
2

]
< 1

2 . We now show that when
∑

i∈[s] Y
i ≤ 1

2 ·‖v[n]\It
‖2
2

then Equation (9) holds. Let m be the number of i ∈ [s] such that ‖vf−1(i)\It
‖2
2 > 2

s · ‖v[n]\It
‖2
2. We now get

that
1
2
‖v[n]\It

‖2
2 ≥

∑
i∈[s]

Y i =
∑
i∈[s]

max
{

0, ‖vf−1(i)\It
‖2
2 −

2
s
· ‖v[n]\It

‖2
2

}
=

∑
i:‖vf−1(i)\It

‖22> 2
s
·‖v[n]\It

‖22

(
‖vf−1(i)\It

‖2
2 −

2
s
· ‖v[n]\It

‖2
2

)
=

16

∑
i:‖vf−1(i)\It

‖22> 2
s
·‖v[n]\It

‖22

‖vf−1(i)\It
‖2
2 −

2m

s
· ‖v[n]\It

‖2
2.

Hence,

s∑
i=1

min
{
‖vh−1(i)\It

‖2
2,

2
s
· ‖v[n]\It

‖2
2

}
=

∑
i:‖vf−1(i)\It

‖22≤
2
s
·‖v[n]\It

‖22

‖vh−1(i)\It
‖2
2 +

2m

s
· ‖v[n]\It

‖2
2 =

‖v[n]\It
‖2
2 −

∑
i:‖vf−1(i)\It

‖22> 2
s
·‖v[n]\It

‖22

‖vh−1(i)\It
‖2
2 +

2m

s
· ‖v[n]\It

‖2
2 ≥

1
2
‖v[n]\It

‖2
2,

and Equation (9) holds. Thus, there exists f ∈ F that satisfies both Equation (7) and Equation (9). This
completes the proof. �

17

	Introduction
	Preliminaries
	k-wise independent distributions
	Expander graphs
	Perfect hash functions
	Concentration of Threshold functions

	Construction of a covering code
	The Main Construction
	Construction of -nets for Spherical Caps
	Perfect Hashing

