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Abstract- Type-It quasi-cyclic (QC) LDPC codes are con-
structed from combinations of weight-O, weight-1 and weight-
2 circulant matrices. The structure of cycles of length 2n are
investigated, and necessary and sufficient conditions for a type-
II QC LDPC parity check matrix H to have girth at least
2(n + 1) are given. An explicit construction of type-It codes
which guarantees girth at least 6 is presented. A necessary and
sufficient condition for a QC matrix with one or more rows of
circulants, to be fullrank is derived.

I. INTRODUCTION

A QC LDPC code of index L and length N = pL over IF2
can be constructed as the nullspace of a low density parity
check matrix H which consist of J rows of p x p circulant
submatrices. Each circulant can be specified by the polynomial
corresponding to its top-row vector, and in this way the code
can be viewed as an R-submodule of RL where R = F2 [X]/I
and I = (xP -1). QC LDPC codes are known to have a
very efficient encoding algorithm [1] and due to their compact
representation have low storage requirements.

Type-I (where each circulant corresponds to a polynomial
of weight at most 1) and type-II (where each circulant cor-
responds to a polynomial of weight at most 2) classes of
binary QC LDPC codes are defined in [2]. The special case of
(J, L)-regular type-I QC LDPC codes where H comprises of
all monomial entries (that is, circulant permutation matrices)
was studied in detail by Fossorier in [3]. Special cases of
these codes were introduced in [4], [5], amongst others. Using
circulants with higher weight has been shown in [2] to allow
higher minimum distances to be achieved than one could
obtain with monomial entries alone. For small to medium
block lengths, type-II QC LDPC codes have been shown to
compare favorably, under the sum-product iterative decoding
algorithm, to randomly constructed LDPC codes, [2], [6].

Here we further study the type-II class, and note that type-
I is a subclass of type-II. It is well-known (e.g. see [6])
that trinomial and higher weight circulants lead to girth at
most 6 and are not considered here. We show that type-II
codes can be employed to achieve a wider range of rates and
minimum distances, even while maintaining (J, L)-regularity,
than type-I codes. Similar to the work presented in [3], we
give a comprehensive formulation of the structure of cycles of
length 2n, n > 2, and give necessary and sufficient conditions

for a type-II QC LDPC parity check matrix to have girth
at least 2(n + 1). These necessary and sufficient conditions
can be exhaustively checked to establish the girth of a given
code. Equivalent conditions were given in [7] which depend
on the computation of A', a power of the adjacency matrix.
A complex sufficient condition for a more general class of
codes was also given in [6, Prop. 4.1]. Here our simplified
formulation for the special case of type-II QC LDPC codes
depends only on the entries of H itself, and allows us to
enumerate all equations governing when cycles of length
4 occur. We then provide a explicit construction of type-
II codes (of any regular or irregular weight configuration
that exists within a J x L array) which guarantees girth at
least 6. Our construction method does not involve algorithmic
checking of randomly selected values for desirable girth, as the
construction techniques described in [6] and [7] involve. Here,
no computer search is required, as the matrix entries are pre-
specified by formulae, within any chosen weight configuration.
In this way our explicit construction defines a structured class
of QC LDPC codes with high girth.

In the final section we give a necessary and sufficient
condition for a QC parity check matrix H with one or more
rows of circulants to be fullrank. This condition can be
read directly from the choice of polynomials specifying the
circulants. We show that fullrank binary QC matrices with
non-uniform weight configurations, can be easily constructed
from a judicious choice of polynomial entries. Fullrank parity
check matrices have no redundant parity check equations and
thus the code achieves 'design rate' 1 -J/L.

II. STRUCTURE OF TYPE-II QC LDPC CODES

The parity check matrix H of a type-II QC LDPC code
C of length N = pL has the form (1) where J < L and
I(pIf ) ,0 < j < J -1,0 <1< L 1,i C {1,2}, is either
the p x p zero matrix 0, or represents the circulant permutation
matrix obtained by right-cyclically shifting each row of the
p x p identity matrix by p) C {0, 1, ... ,p -1} places. If

I (p11) 0 then we say that the value p(') is undefined.

When M = 0 the circulant I (0) is the identity matrix Ip.
By convention, we take to indicate the position of the
left-most 1 in the top row of any non-zero circulant entry
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(1)
P1, L-1 1,tlL- 1 1

..**I(J_1,L-1) + I[ (J-1,L-1)

of H. It follows that each entry hjl of H takes one of the
following forms: the weight-O circulant 0, the weight-I circu-
lant I (p(1)) or the weight-2 circulant I(p-1 ) + I

with p(1) < pj2). In polynomial notation, each circulant entry
corresponds to a polynomial hjl (x) C F2 [X], of degree at most
p -1, and can have the form: the 0 polynomial, the monomial

p(1) (1) (2)
x j or the binomial xPti + xpI . Let Awt = [ajlIJXL, where
aj, = wt(hjj(x)), be the (hamming) weight configuration
matrix corresponding to H, as defined in [2]. We note that the
matrix H does not necessarily define a regular LDPC code,
as H can have any non-negative row or column weight up to
2L or 2J respectively, depending on the number and position
of the zero, monomial or binomial entries in H. The code C
is a (2J, 2L)-regular type-II QC LDPC code if and only if
all entries in H are binomial, that is, weight-2 circulants. The
special case of (J, L)-regular type-I QC LDPC codes where
H comprises of all monomial entries was studied in [3].

A. Rate

From [3], [4] it is known that the parity check matrix of a
(J, L)-regular type-I QC LDPC code with J > 2 has rank at
most pJ-(J-1). Similarly it can be easily seen that the parity
check matrix of a (2J, 2L)-regular type-II QC LDPC code has
rank at most pJ -J, since the p binary rows within each row
of circulants in H sum to the all-zero row, and so the code C
has rate at least pL-(pJ- J) = 1- J(p 1) However many type-has ~~~pL Lp
II codes with non-uniform weight configurations (even while
maintaining regularity) can facilitate a wider range of rates
within a given J x L array. For example, consider the (3,4)-
regular QC LDPC type-II code with weight configuration

r2 0 1 11
Awt 1 2 0 1i (2)L° 1 2 1-

No subset of rows in this weight configuration sum to the all-
zero vector modulo 2. It is therefore possible for a parity check
matrix H with this weight configuration to have fullrank pJ
and thus for the code to achieve 'design rate' 1 -J/L.

B. Minimum Distance

A (J, L)-regular type-I QC LDPC code has minimum
distance upper bounded by dmin < (J + 1)!, [2], [8]. As
described in [2], higher minimum distances within a given
J x L array can be achieved by constructing type-Il codes,
even while the (J, L)-regularity is maintained. In general, for
a given value of J, employing weight configurations with many
higher weight entries allow higher minimum distances to be
obtained.

Proposition 1: A type-Il QC LDPC code has minimum
distance upper bounded by dmin < (J + 1)!2J.
We further observe that the value of p also determines

an upper bound on the minimum distance of our code. A
(J, L)-regular type-I QC LDPC has dmin < 2p, since the 2p
binary columns within any 2 columns of circulants in H sum
to the all-zero column. Similarly a (2J,2L)-regular type-Il
QC LDPC code has dmin < p, since the p binary columns
within any single column of circulants sum to the all-zero
column, as each circulant is weight-2. More generally, if t is
the smallest number of columns in the weight configuration
matrix AWt which sum to 0 modulo 2, then C has dmin < tp.
It follows that we should choose the value of p to be large,
not only to ensure a low density of Is, but also to enable
large minimum distances. Furthermore a non-uniform weight
configuration (even when (J, L)-regularity is maintained) can
often allow higher minimum distances for a given value of p.
Example 2: A (3,4)-regular QC LDPC type-II code with

weight configuration given by (2), has no less than 3 columns
which sum to 0 modulo 2. Therefore dmin < 3p.

III. ANALYSIS OF GIRTH

Using a similar notation to that developed in [3], a cycle
of length 2n, n > 2, in H can be represented by an ordered
sequence of non-zero circulant permutation matrices

I ( )'i0) 'i (iSL2) ' (pS0L)

I2k,i2k±1 C {1, 2}, where jn =Jo 1I lo,1 2r =o. Given
that the circulant entries of H can have up to two is in each
row and column, it is possible for two consecutive positions
in a cycle to belong to the same circulant, and thus, unlike
the type-I scenario, we can have = jk± and 12 1k1
However, since positions in a cycle are all distinct (except first
and last), if jk =jkl in our sequence, then then we must
havei2 # i2k±1, and similarly if 1 = 1k±1 then we must
havet2k±1 7 i2k±2. In particular when completing the cycle,
ifn 1 =cIn = lotheni2to sai2nu=i a ,

Defining
At2k ,i2kc(Io ) ha(i2kv ) _=(i2k+1 )

the matrix H contains a cycle of length 2n, n > 2, if and only
if a sequence of non-zero circulants, given by (3), exists in H
which satisfies

n-1
ZA 2k,i2k+l (I )
J:Ok,Jk

k=O
Omodp

2372

H = | Sl °8 t l,ot I tpl t + I
I (PJ (1,) + _I (2()1,) I (P()1 ) + _I ((2)11)
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where j3n = 30/i2k i2k+l whenever Jk =J±l, andk2k±1 #

i2k+2 whenever 1k 1k+1.
Theorem 3: A necessary and sufficient condition for the

Tanner graph representation of the matrix H to have girth
at least 2 (n + 1) is

m-I
S i2kJi2k+1 (1k) 74 0 mod p

k=o

for all m,2 < m < n, all jk,O<Jjk < J-1, all jk+l1,O <
jk+l < J -1, all lk,O < lk < L -1, all i2k,i2k+l C {1,2},
for which p(ik) and p(ik+l ) are defined, with jm = Jo, im
10, i2m = iO, i2k 74 i2k+l whenever Jk = jk+l, and i2k+1 7

i2k+2 whenever 1k = 1k+1±
Corollary 4: If the matrix H contains a binomial entry, that

is, a p x p weight-2 circulant, then it has girth at most 2p.
Proof: The difference p() -p(2) added to itself p timespj,l PJ,l

specifies a 2p-cycle.
Corollary 5: If the matrix H contains a 2 x 2 submatrix

with a p x p circulant of at least weight-I in each position,
then it has girth at most 4p.

Proof: The sum p(1) -P(1) 1 + (1)1-p(O 11 added to
itself p times specifies a 4p-cycle. 0

It follows that we should choose the value of p to be large
enough to allow girth to be high. A QC LDPC matrix H with
more than one binomial entry in a row or column has girth
g < 8, since an 8-cycle exists in every weight (2, 2) or (2, 2)T
submatrix of H, [6].

IV. GIRTH g > 6
A 4-cycle can be represented as a sequence of non-zero

circulants

I ((io°)0 IT (pil0,I (il2)l T (pio3)1) I pi°

with O < k < 2, 0 <_ jk <_ J- 1, 0 < lk < L-1, i2k i i2k+1C
{1, 2}, j2 = io,12 = 10, i4 = io, i2k 74 i2k+l whenever jk
jk+l, and i2k+1 74 i2k+2 whenever 1k = 1k+1, which satisfies

AZ°07Z1 (lo) + AZ2,ZS(11)
(io) (i,) (i2) _ (i3) Omodp.pj0o10o Pu2'0 +P,iPJ01,-ol,

It follows that a 4-cycle can only occur in one of the following
ways:

1) When jo = jl and 1o = 11, in a single weight-2 circulant,
that is, a 1 x 1 submatrix of H with a binomial entry,
which satisfies p )010) p(0'10 +PjOl)O-pio2> o = 0 modp,

2) When jo = ji and l0 74 11, in a I x 2 submatrix of H
with weight configuration [2, 2], which satisfies (1)

(2),lo i (P,1) o,2) = Omodp,
3) When lo = 11 and jo 74jl, in a 2 x I submatrix of H

with weight configuration [2, 2] T, which satisfies p(l) -

(2) i(2(2) Omodp,

4) When jo :4 ji and l 11, in a 2 x 2 submatrix of
H with at least weight-I entry in each position, which
satisfies any one of the following 16 equalities:

p(io) _ p(ii) + (i2 ) _ p(i3) = 0 modp

with it c {1,2},00< t < 3.

Let di,l = p 2) _ p() when both values pj2) and p() are
defined. We recall that pill < pill and so di,l is always a
positive integer. We consider the value di,l in a weight-0 or
weight-I entry to be undefined. We now give the following
necessary and sufficient conditions for a type-II QC LDPC
matrix H to have girth at least 6.

Theorem 6: The Tanner graph representation of the matrix
H given in (1) has girth at least 6 if and only if, for all
jo,ji,O < Jo 7 ji < J -1,all loIl1I0 < lo 74 11 < L -1,
all it C {1, 2}, 0 < t < 3, each of the following inequalities
holds true,

(i) djo,10 74-djO0lO modp
(ii) djo,lo 74 ±djo,1, modp
(iii) dJO,lO 74 i l modp
(io)()

T

74 pf,) i3 modp,
whenever all values in an inequality are defined.

Given any type-II QC LDPC matrix we can exhaustively
check the above conditions to determine if girth is at least 6.
We note that ifmore lower weight entries are present in H then
fewer such equations are defined, and thus fewer conditions
need to be satisfied.

Corollary 7: A necessary condition for a regular (2J, 2L)
type-II QC LDPC matrix H to have girth g > 6 is p > 2L.

Proof: In any row j, the set of all di,l and
-di, modp,l = O, ... , L- 1, must be distinct positive
integers in Z/. U

If H has girth at least 6 then we can employ well-known
lower bounds on minimum distance [1]. If H (regular or
irregular) has at least weight J' < 2J in each column, and
girth g > 6, then the code has dmin > J' + 1. In this case,
more high weight entries in each column ofH ensures higher
minimum distance.

A. Explicit Construction with Girth g > 6

We now present a method of constructing a parity check
matrix H for a type-II QC LDPC code of length pL, with any
regular or irregular weight configuration that exists in a J x L
array, which guarantees girth g > 6. We start by outlining
the construction for a (2J, 2L)-regular (that is, one with all
binomial entries) type-II QC LDPC code. We then describe
how this construction technique can be easily modified to
obtain any regular or irregular type-II QC LDPC code, which
also guarantees girth g > 6. Restrictions on the value of p
apply in each case.

Suppose all entries in H are binomial circulants, that is, both
I (p1)) and I (p2)) are non-zero and distinct circulants, for
all j,0 < j < J -1, and all 1,0 < < L- 1. In the first row,
j = 0, we choose do,l, I 0, ... ,L -1, be to a sequence of
L distinct positive integers. For each j = 1, ... 1.J-1, we let
dill, 1 = O,. .. ., L-1, be apermutation of do,1, = 0, ... I,L-1,
such that djo,l 74 dj,,1 when jo 74 jl. For example, this can be
easily achieved by setting di,l to be the (j + 1, l + 1)-element
of a Latin square of size L. Let d = maxo<l<LTl {don1}.

2373
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1ao (1 + Xdo,o) Sa, (I+XdoIl)

H(x) =
xao (1 + Xdl,o) xal+± (1 + Xdi,)

L
xao (1 + Xdj-,io) Xal+(J-1)f (1 + Xdj-,,i)

Choosing p > 2d then ensures that all inequalities defined in
parts (i)-(iii) of Theorem 6 hold true.
We now consider inequalities defined in part (iv). Without

loss of generality, we can take jo < j, and 1o < 11. The 2 x 2
submatrix of H specified by these rows and columns has the
form

1-
Let pjl) and p(l) be some non-negative integers. We will
choose Pjl),O and pyl)11 in such a way that mjk1 (1)

plk' k = 0, 1, are positive values, and > m The
16 inequalities in part (iv) of Theorem 6 hold true if and only
if

Mi1 lm°l- {°, dyxo-djo,lo, d1,10 - djo,1o

+{0, -dl,ll, +djo,ll, -dj1,l + djo,ll } mod p.
(5)

Since all the dj,l are positive integers and p > 2d, the elements
in the above set range from -djo,10 -dl,ll > -2dmodp to
dj1,lo + dj0,11 < 2d mod p. If we choose Mr1.jm> and
p large enough so that

2d < ml,O j- mi° < p-2d (6)

then (5) holds true.
Choosing the entries of H satisfying (6) for all jo, jl, 0 <

jo < j, < J -1, and all 10,11,0 < 1o < 11 < L -1, will
ensure that no 4-cycles can occur. To this aim we set each
p0(),O< 1 < L -1, in the top row, to be any non-negative
integer a,. We choose f be any integer such that f > 2d + 1,
and set m l I, j = 0, 1,. .., 2, 0 < < L -1.J,j±1=
It follows that mj,1i -m>o,j1 = (ji -jo)(1-l o)y > f >
2d as required. We then choose p large enough so that p >
(J -1)(L -1)k + 2d and this completes our requirements
for (6). Finally, to ensure that p is greater than all values of
pM, (and thus each is already reduced mod p) we must have
p > (J -1)(L -1) + d + maxo<l<L-1 {al}.

Construction: We can now define the entries of H by the
following formulae:

(1) = a, + jlf,
(2) = a, + jlf + dj,,

0 < j < J -1,0 < < L- 1,wherea,,0 < < L- 1,
are chosen as any non-negative integers, the dj,l are chosen
as described earlier, d = maxo<l<L-1 {do,1}, f > 2d + 1 and
p > (J -1)(L -1) + max{2d, d + maxo<l<L- {ail}}. In

*aL- (I +Xdo,L-1 )

1±aLJ1+(L-l) (1+ Xdl ,L-1 )

aL-,+(J-1)(L-1)f (I + Xdj_ 1,L-1)_

(4)

polynomial notation H has the form given by (4). The Tanner
graph ofH is guaranteed to have girth at least 6. We note that
the code is equivalent by row and column permutations within
each circulant block (and thus has an equivalent Tanner graph)
to the code generated when ao = a1 = = aL-1 = 0.
Example 8: Let J = 3, L = 4, do,1 = I + 1,1 = 0, . . ., 3

and dj,j = dj 1,l±lmod4, i = 1, 2. Then d = 4. Let f = 9 >
2d + 1,a, = 0,0 < 1 < 3,p = 63 > max{61+ 2d,61+ d +
maxo<1<LT1 {ai}} = 62. The matrix H has the form

Fl + x1

1 + x2
L1 + x3

1 + x2
x9 + x12
x18 + 22

1 + x3
x18 + 22

x36 +x37

1+ x4

x27 + 28

x54 +x56 J

and defines a [N = 252, k > 63] linear (6, 8)-regular code
with girth at least 6.

The construction described above can be easily modified to
obtain a type-II QC LDPC code with girth g > 6, for any
regular or irregular weight configuration that exists in a J x L
array. For any choice of J and L, we use the same formulae
outlined above to specify entries, but now simply omit the 2nd
or both terms in a circulant entry ofH where weight less than
2 is required in that position. In this case the value of a, is
first required in the formula specifying the topmost non-zero
circulant in the lth column, and can be chosen as before as any
non-negative integer (or as 0 to obtain an equivalent standard
form). Further modifications can be made to reduce the lower
bounds on p and X, by adjusting the values of the dj,l for
this new weight configuration. The values of dj,l required to
specify the weight-2 entries in each row, can be chosen as a
subset of t distinct positive integers, where t is the maximum
number of weight-2 entries in any row or column of the new
weight configuration. As before we must ensure that for any
defined values, dj0,1 :4 dj1,1 when jo :4 ji. Now we set d
to be the maximum of all such defined values of dj,1. The
necessary lower bounds of f and p have the same form as
earlier, but give lower values when fewer dj,l are needed.
With these modifications all inequalities of Theorem 6 still
hold true, whenever such inequalities are defined by non-zero
entries in the matrix. It follows as before that the girth is
guaranteed to be at least 6.
Example 9: Let J = 3, L = 4. For the weight configuration

given in (2), we can choose all defined values of dj,l to be 1,
since there is only one binomial entry in each row and column.
Hence d = 1. Let f = 3. For any non-negative integers a,, 0 <
l < 3 and any p > max{20J19+maxo<l<L-1 {al}}, the
matrix H has the form

xao + xao+l
xao

0

0
al +3 + Xal +4

xal +6

Xa2 Xa3

0 Xa3 +9
a2+12 + Xa2+13 xa3 +18

_

2374
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and defines a [N = p x 4, k > p] linear (3,4)-regular code
with girth at least 6.

Codes in the special class of (J, L)-regular type-I QC LDPC
codes, (where all entries are circulant permutation matrices),
with guaranteed girth g > 6, can also be obtained by our
explicit construction. In this case, no values of djl are defined,
and so we take d = 0. For any non-negative integers a,, 0 <
<Lh - 1, any f > and p > (J-r1)(L-I), the parity

check matrix

ao Xa, ...

Xao ,a,+1± ...

H(x) =

,ao , al+(J-1)f

XaL-I

XaL- 1+(L-1)

XaL-1+(J-1)(L-l)i

has girth g > 6. We note that the array codes defined in [5]
are a special case of the structured class of codes defined by
H above. Table I shows the smallest values p = (J -1) (L-
1) + 1 for which a (J, L)-regular type-I QC LDPC code of
this form exists. Table II shows smallest values of p for which
a (2J, 2L)-regular type-II QC LDPC code is obtained by our
construction. In this case taking d = L and f = 2L + 1, we
can choose p = (J -1) (L -1) (2L+ 1) + 2L+ 1. The smallest
values ofp for which codes, with any other regular or irregular
weight configuration in a J x L array, can be obtained by our
construction, is upper bounded by the values in Table II.

TABLE I
Smallest value of p for which (J, L)-regular Type-I QC LDPC
code with girth g > 6 are obtained by explicit construction.

L 3 4 5 6 7 8 9 10 11 12

2 3 4 5 6 7 8 9 10 11 12
3 5 7 9 11 13 15 17 19 21 23
4 10 13 16 19 22 25 28 31 34
5 17 21 25 29 33 37 41 45

TABLE II
Smallest value of p for which (2J, 2L)-reg Type-II QC LDPC
code with girth g > 6 are obtained by explicit construction.
L 3 4 5 6 7 8 9 10 11 12
J
2 21 36 55 78 105 136 171 210 253 300
3 35 63 99 143 195 255 323 399 483 575
4 90 143 208 285 374 475 588 713 850
5 187 273 375 493 627 777 943 1125

V. FULLRANK MULTI-GENERATOR QC MATRICES

When J = 1 a QC matrix H consists of one row of circulant
submatrices, and the rank can be determined directly from the
polynomials specifying these circulants, using a formula given
in [9]. Here we give a similar formula for ensuring fullrank
for the multi-generator (J > 1) case, which can be read
straightforwardly from the full-size minors in the polynomial
matrix H(x). We note that this result applies when any weight
polynomials are present in H(x), and applies equally to the
generator matrix of a QC code in circulant form.

Theorem 10: Let J < L. A pJ x pL QC matrix H over IF
has fullrank k = pJ if and only if

gcd(Al, A2,. A* ,tL,XP -1) 1,

where Ai C IF[x],i = 1,2,...,(L), are the determinants of
the (L) distinct J x J submatrices (that is, the fullsize minors)
of the corresponding polynomial matrix H (x) = [hj1 (X)] J x L
We note that at least one fullsize minor of H(x) must

be non-zero if gcd(Ai,A2,...,A(L),XP -1) = 1. When
F = F2, if we choose polynomial entries such that
gcd(A , A2, ..., A(L)) is not divisible by x+1, then the value
of p can be adjusted to ensure gcd(,A2, ... ,A(L),XP
1) = 1 and thus construct a fullrank matrix.
Example 11: Let aO = a, = a3 = 0 and a2 = 1 in example

9. Then
1+x

H(x) = 1

0
x3 + x4

x 6

x I1
0 x9

x13 + x14 x18

is a parity check matrix for a (3, 4)-regular type-II QC LDPC
code. If p > 20 then the code has girth g > 6. The
determinants of the 4 distinct 3 x 3 submatrices are

A1 = x7 +x16 + x17 + x18 + x19
A2 = X6 + x15 + x16 + x21 + x23

A3 = X13 + x14 + x19 + x22 + x24

A4 = X18 + x22 + x23

and gcd(Ai,A2,A3,A4) X6 + 7 + 8. If p 21 then
gcd(Al, A2,A3,A4,X21 -1) = x2 +x+ 1. Let p = 22. Then
gcd(Ai, A2, A3, A4, X22 1) = 1 and the quasi-cyclic matrix
H of order 66 x 88 has fullrank, and defines a [88, 221 linear
code with design rate 1 -J/L = 1/4.
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