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Abstract. Using the characterization of unital operator algebras developed in
[6], we give explicit internal definitions of the free product and the maximal
operator-algebra tensor product of operator algebras and of the group operator
algebra OA(G) of a discrete semigroup G (if G is a discrete group, then
OA(G) coincides with the group C*-algebra C*(G)). This approach leads to
new factorization theorems for polynomials in one and two variables.

1. Introduction

There are many constructions in the theory of operator algebras (selfadjoint
or otherwise) which are described purely extrinsically, in terms of classes of
representations of the object under consideration. Three examples of this are
the maximal operator-algebra tensor product of two operator algebras [16], the
free product (or coproduct) of C*-algebras [3, 7, 8], and the group C*-algebra
C*(G) of a discrete group G [18]. In each of the above, the norm is defined as
a supremum over a class of representations on Hubert space; that is, we endow
an appropriate algebra with a norm which will make the completion into an
operator algebra with the correct universal property. Except in certain special
cases (for instance, if the group G is amenable), it has hitherto been impossible
to describe these constructions in any other way. In this note we give explicit
internal expressions for the norms. In addition, we define here the free product
of (not necessarily selfadjoint) operator algebras and the semigroup operator
algebra OA(C7) of a discrete semigroup G.

As a consequence of our norm formulae, we obtain rather remarkable factor-
ization theorems. For instance, we prove that, for a polynomial in two variables,
the norm supremum over the bidisc is less than 1 if and only if the polynomial
may be factored as a product of matrix-valued polynomials in a single variable
each of which has a norm supremum over the disc that is less than 1.
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840 D. P. BLECHER AND V. I. PAULSEN

Recall that if AY is a Hubert space, then the space Mn(B(%A)) of n x n
matrices with entries in B(AY) has a natural norm \\-\\n via the identification
of Mn(B(AY)) and B(JY{n]) ; if $A is a subalgebra of B(ßY), then by restricting
|| «II to Mn(sA) we obtain a sequence of norms {||-||„} called the matrix norms
of the operator algebra sY . We write Mn for Mn(C). More generally, we write
Mm n for m x n matrices and || • |lm „ for the natural norm on Mm n(sA).
We shall assume a certain familiarity with the theory of matrix norms and
completely bounded maps, as may be gleaned from [2, 15, 6, 9], for instance.

Throughout, by an "operator algebra" we shall mean an algebra of bounded
operators on a Hubert space together with its sequence of matrix norms or,
more loosely, any algebra that can be represented as such. We do not require the
algebra to be selfadjoint or uniformly closed. All operator algebras considered in
this paper are unital (contain an identity of norm 1). We identify two operator
algebras which are completely isometrically isomorphic—that is, if there is an
algebraic isomorphism between them which preserves the matrix norms.

The main aim of this paper is to give expressions for the matrix norms of the
three operator-algebra constructions mentioned in the first paragraph. Our re-
sults are obtained by the characterization of operator algebras given in [6]. This
continues the program (see [6, 5]) of studying operator-algebra constructions in
terms of their matricial structure.

It will become clear that the methods of this paper should be valid for other
categorical constructions. It is curious that even when the norms we write down
are C* -norms, it seems impossible to verify directly from the abstract C*-
condition that they are so: thus, in some situations it seems that the conditions
of [6] are more useful than the G.N.S. characterization.

2. The semigroup operator algebra

Because the group C*-algebra C*(G) of a discrete group G is well known,
and because the calculations here are in some ways the clearest, we begin by
describing this construction. We refer the reader to [18] for the usual (extrinsic)
description of C*(G).

Throughout this paper all the semigroups considered have an identity.
Let G be a discrete semigroup. By a contractive representation of G, we

shall mean a unital homomorphism of G into the semigroup of contraction
operators on a Hilbert space. We define the semigroup operator algebra OA(G)
of G to be an operator algebra with the following universal property: there is a
contractive representation ¿ of G into OA(C7) whose range generates OA(G),
and if n is a contractive representation of G on a Hilbert space AY then there
is a unique completely contractive unital homomorphism n~ from OA(G) into
B(AY) such that %~ o / = n. We now show that OA(C7) exists; clearly, if it
does, then the universal property characterizes OA(C7) up to unital complete
isometric isomorphism.

We write CG for the semigroup algebra of G, that is, the set of formal
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explicit construction of universal operator ALGEBRAS 841

linear combinations of elements of G with the obvious algebra structure. Each
contractive representation 8 of G induces a unital representation d~ of the
semigroup algebra CG. We may define a seminorm ||| • |||n on Mn(CG) by

III ["/J Wn= suP{ll[^~(Mi/)]|l: contractive representations 6 of G}.

If AY = {u £ CG: HI u \\\x= 0}, then AY is a linear subspace of CG and
|| • |||n induces a norm on Mn(CG/AY) which we also write as ||| • |||n. One

may use a direct sum argument or the characterization in [6] to show that
CG I AY, together with the sequence of matrix norms {||| • |||n} , is an operator
algebra. There is a contractive representation ¿ of G into (CG/AY, ||j • |||j);
of course, ¿ is a monomorphism if and only if there is a faithful contractive
representation of G on some Hilbert space. In any case it is clear that the
operator algebra (CG/AY, \\\ • |||n) has the correct universal property, and we
may identify (CG/AY, ||| • \\\n) and OA(G).

There are of course many semigroups (see [4] for a survey) for which AY =
{0}, and in the application that we give, this is always the case. For instance, if
G is a semigroup with left (right) cancellation then one may obtain a faithful
representation of CG as follows: We may regard G as an orthonormal basis
of 1 (G) ; then the left (right) regular representation of G on itself extends to
a representation 6 of G on 12(G). If G has left (right) cancellation, then
the range of 6 consists of isometries. It is clear that 6 extends to a faithful
representation 6 of CG on 1 (G). The matrix norms on CG determined
by 6 are dominated by the matrix norms {||| • |||n} ; thus ||| U \\\n= 0 implies
U = 0.

Proposition 2.1. 7/G is a discrete group, then OA(G) possesses a natural involu-
tion. With respect to this involution, the norm closure of OA(G) isa C*-algebra
which coincides with the group C*-algebra C*(G).
Proof. Any unital contractive representation of a group G is a unitary represen-
tation of G, and hence extends to a unital *-homomorphism on C*(G). Thus
C*(G) is completely isometrically isomorphic to the norm closure of OA(G).
Under this isomorphism the involution on C*(G) corresponds to the natural
involution on CG.

The following examples, all of which are cancellative semigroups, are of in-
terest to us:

Example 2.2. If G = (Nn, +), the natural numbers (including zero) with addi-
tion, then OA(G) is the universal operator algebra generated by a contraction.
That is, it has the following property: given a contraction T on a Hilbert space
%A, then there is a completely contractive homomorphism it from OA(G) into
B(AY) such that n(n) = Tn for each n e Nq . It is a well-known consequence
of Sz-Nagy's unitary dilation for contractions [20] that the universal (closed)
operator algebra generated by a contraction is the disc algebra A(D) com-
pletely isometrically. Thus the closure of OA((Nq, +)) is A(D) via the map
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842 D. P. BLECHER AND V. I. PAULSEN

n -* z" . Note that von Neumann's inequality [23] only identifies OA((Nq , +))
and A(D) isometrically.

Example 2.3. If G = (Nq x Nq , +), then OA(G) is the universal operator al-
gebra generated by two commuting contractions. That is, it has the following
property: given commuting contractions Tx and T2 on a Hilbert space AY,
then there is a completely contractive homomorphism n from OA(G) into
B(AY) such that n((n, m)) = T"T2 for each n, m £ Nq . It is a consequence
of Ando's simultaneous unitary dilation theorem for two commuting contrac-
tions [1] that the universal (closed) operator algebra generated by two commut-
ing contractions is the bidisc algebra A(D x D), completely isometrically. Thus
the closure of OA((Nq x Nq , +)) is A(D x D) via the map (n, m) —» znwm .

Example 2.4. Little is known about OA(Nq x Nq x Nq , +), the universal oper-
ator algebra generated by three commuting contractions, except that it is not the
tridisc algebra [10, 22] and is not even a uniform algebra. Unlike the previous
two examples, we are unable to say precisely what this operator algebra is. If
G = (N, x), the natural numbers with multiplication, then OA(G) is the uni-
versal operator algebra generated by countably many commuting contractions.

Remark. Given an operator algebra sY , we can form the universal C* -algebra
C*(sA) generated by sY : this has the property that every completely con-
tractive unital homomorphism of sY into a C*-algebra 3§ extends to a *-
homomorphism of C*(sA) into AÁ8 . For a semigroup G, we define STAR(G)
to be the universal "-semigroup generated by G; that is, STAR(G) is the
unique "-semigroup containing G as a subsemigroup with the following univer-
sal property: every unital semigroup homomorphism of G into a "-semigroup
77 extends to a "-homomorphism from STAR(G) into 77. If G°p is G with
reversed multiplication, then one may regard STAR(G) as the free product
Gop*G, with the obvious involution. Then we have C*(OA(G)) = C*(STAR(G)),
where C*(STAR(G)) is the enveloping C*-algebra of the Banach "-algebra
1 (STAR(G)). Indeed, both of these C*-algebras are equal to the universal
C*-algebra generated by G. It is clear that if G = (Nq , +), then C*(OA(G))
is the C*-algebra generated by a universal contraction studied in [14, 13], and
elsewhere.

We now proceed to define OA(G) intrinsically. We define for a matrix U
in Mn(CG) the following quantity:

||i^ = inf{M0IIMill-HMJI},
where the infimum is taken over all natural numbers m and k and all ways to
write U = A0GXAX ■ ■ • GmAm , with A0 eMnk,Ame Mkn , and A¡ £ Mk for
i = 1, ... , m-1, and with each Gj a k x k diagonal matrix with entries in G.
This quantity is easily seen to be the same as the infimum taken over all ways
to write U = A0GXAX ■ ■ ■ GmAm , where the Ai are rectangular matrices of any
size, and the G- are square diagonal matrices of any size, so that their product
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makes sense. It is not hard to see that any U in Mn(CG) can be expressed in
such a way (in fact with m = 3), and so || • ||n is well defined.

Lemma 2.5. The quantities \\ • \\n are seminorms which dominate \\\ ■ \\\n . More-
over, for [«..] £ Mn(CG), we have ||[w/;]||„ = 0 if and only if \\uij\\x = 0 for all
i, j = 1, ... , n.
Proof. This is similar to the corresponding calculation for the Haagerup norm;
see [11, 17]. Let U, V 6 M „(CG), with U = A0GXAX-■-GmAm and V =
B0HXBX ■ ■ ■ HmBm (by adding on identity matrices it is clear that we may as-
sume that the "lengths" of the representations are the same). Without loss of
generality, we may assume

Mill = U2\\ = ' • • = Mm-lll = llalli = H52ll = •• • = WBm-lW = » .
and that \\AA\\ = \\AJ and \\BQ\\ = ||*J|. Then

U+Y = [A0B0](Gx®Hx)(Ax®Bx)..AGm®Hm)[A'mB'J,
and so

\\U + V\\n < {\\AQ\\2 + ||7i0||2}1/2{|Mw||2 + ||7im||2}1/2

= \\A0\\\\Am\\ + \\B0\\\\BJ
= \\A0\\\\Aï\\---\\Aj + \\B0\\\\Bï\\...\\Bm\\,

which shows that \\U + V\\n < \\U\\n + \\V\\n . Thus || • ||B is a seminorm.
The second assertion follows after applying a unital representation 0~ of

the semigroup algebra CG determined by a contractive representation 6 of G
to an element U = A0GXAX ■ ■ ■ GmAm £ Mn(CG).

Write et for the usual basis of C" and ei¡ for the matrix units in Mn. Then
for [uu] £ Mn(CG), we have ukl = e'k[uij]el, so that \\ukl\\x < \\[uu]\\n . Also
IIK7]||„ = II EtjeulUtfajW,, < Eij \\eu[u,jlfijßH < Eij llMyll, > which proves
the final assertion.

Let JA = {u£ CG: \\u\\x = 0}. Then, by the lemma, JA is a linear subspace
of CG, and AY D JA. By the third assertion of the lemma, || • ||n induces a
norm on Mn(CG/Jt), which we also write as || • \\n. Of course if AY = {0},
then JA = {0}, and this is the case we are interested in for the applications.

Theorem 2.6. The algebra CG/JA, together with the matrix norms \\ ■ \\n , is an
operator algebra.
Proof. We use the characterization of an operator algebra given in [6]. For
elements U, V e Mn(CG), it is clear that \\UV\\n < \\U\\„\\V\\n, so it only
remains to verify the (L°°) condition ||C/e Y\\p+q = max{\\U\\p, \\V\\q} for
elements U e M (CG) and V e M (CG). Suppose e > 0 is given and we
write U = A0GXAX ■ ■ • GmAm and V = B0HXBX ■ ■ ■ HmBm as before, but with
M,ll = M2II = ••• = WAmW = W\ = \\B2\\ =■= \\BJ = 1, M0|| < \\U\\p + e,
and ||Ä0|| <||F||i + e. Then

U © V = (A0 e 7?0)(G, 0 77, ) • • • (Gm © 77J(^m © BJ ,
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and so

\\U®Y\\p+q<\\A0®B0\\...\\Am(BBJ
= max{\\A0\\,\\B0\\}
<max{\\U\\p + e,\\V\\q + e},

which proves that \\U © V\\p+q < max{\\U\\p, \\V\\q} ■ Finally, if U © V is
written as CQKXCX-■ KmCm, then  U = [I0]C0KxCx--KmCm[I0]', and so
\\U\\p<\\[IO]CJ\\Cx\\---\\Cm_x\\\\Cm[IO]'\\<\\C0\\---\\CJ,whichshowsthat
\\U\\p < \\U®V\\p+q. Similarly, \\V\\p < \\U © V\\p+q, and so ||C/© K|L,+i =
max{||«J||p,||F||J.

Theorem 2.7. 7/ G « a discrete semigroup then AY = JA and \\ • \\n =||| • |||n (as
norms or as seminorms). Thus the semigroup operator algebra OA(G) of G is
the operator algebra (CG/JA, \\ • \\n).
Proof. Since (CG/JA, ||-||„) is an operator algebra, the canonical map j from
G into CG/JA is a contractive representation of G and extends to a completely
contractive unital representation f from (CG/aY, \\\ • \\\n) into (CG/JA,
II-ID- Thus

IIK-11L, = |IK7 +JT]Wn = \\U~(Uij +^)]\\n < IHK, +^]lll„=lll[«y]lll„.
for [Ujj] £ Mn(CG), which together with the lemma shows that aY = JA and
that || • ||„ =||| • |||„ •

Corollary 2.8. If G is a discrete group, then the completion of (CG, \\-\\n) is the
group C*-algebra C*(G). In particular, the norm on C*(G) is given explicitly
by 11-11,.

The theorem above has surprising geometrical applications. The observations
contained in examples 2.2 and 2.3, together with the internal characterizations
of the matrix norms on OA(G), lead to the following factorization theorems:

Corollary 2.9. Let P(z) = [pt Az)] be a matrix-valued polynomial. Then
sup{||[p¿.(z)J||: z e D} < 1 if and only if there exists a positive integer m
such that P(z) can be factored as

P(z) = A0Dx(z)AxD2(z)---DJz)Am,

where the A0, ... , Am are scalar matrices, each of norm less than 1, and Dx (z),
... , Dm(z) are diagonal matrices with powers of z as the diagonal entries.

Corollary 2.10. Let P(z, w) = [p¡ (z, w)] be a matrix-valued polynomial. Then
sup{\\[p.:(z, u>)]||: z, w £ D} < 1 if and only if there exists a positive integer
m such that P(z, w) can be factored as

P(z, w) = A0Dx(z, w)AxD2(z, w)---Dm(z, w)A
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where the A0, ... , Am are scalar matrices, each of norm less than 1,
and Dx(z, w), ... , Dm(z, w) are diagonal matrices with monomials (terms
of form zpwq) as the diagonal entries.
Remark. Corollaries 2.9 and 2.10 are equivalent to Sz-Nagy's and Ando's the-
orems, respectively. It is therefore possible that they may yield analytic proofs
of these theorems.

By the remarks in 2.4, the corresponding result for polynomials in three
variables does not hold. However, this method gives

Corollary 2.11. For any positive integer k and any matrix-valued polynomial p
in k variables, we have

sup{\\p(Tx, ... , Tk)\\ : all k-tuples of commuting contractions Tx, ... ,Tk}
= M{\\aa]\\\ax\\---\\aj},

where the infimum is taken over positive integers m, and all ways to write

P(zx ,...,zk) = A0Dx(zx,..., zk)AxD2(zx ,...,zk)--- DJzl,..., zk)Am ,

where A0, ... , Am are scalar matrices and the T>i(zx, ... , zk) are diagonal
matrices with monomials as the diagonal entries.

3. The maximal operator algebra tensor product

We recall [ 16] that, if sY and 3§ are unital operator algebras, then one may
define the maximal operator-algebra norm || • ||max on tne algebraic tensor prod-
uct sY ®3§ as follows: If n and 8 are completely contractive representations
of sY and â§, respectively, on a Hilbert space YY, with commuting ranges,
then we may define a representation it® 8 of sY ® 3§ by

(n®8)(a®b) = n(a)8(b),

for a £ sY and b £ 3§ . For U = [wy] e Mn(s>Y rg 38), we define

llC/llmax = SUP{ll[(^®ö)(M;.)]||},
where the supremum is taken over all Hilbert spaces AY and all pairs n and
8 of completely contractive representations of sY and â§ , respectively, on S(A
with commuting ranges. If sA and 3§ are C* -algebras, then this coincides
with the projective C*-tensor norm [21], and in this case there is an alternative
way of describing the norm in terms of states [12], but again no purely internal
descriptions as far as we know. We now proceed to describe this norm internally;
most of the calculation follows the method of the previous section, so we shall
be brief.

Following the notation of [17], if A = [a¡j] € Mn m(sY), then we write
A ® 1 for the matrix [a,. <8> 1] in Mn m(sY ® A2B ); similarly 1 % B has the
obvious meaning. If Ax e Mn k(sY) and A2, ... , AmeMk(sY), and if Bm e
Mk n(sY), and Bx, ... , Bm_x e Mk(sY), then the product

(Ax®l)(l®Bx)(A2®l)(l®B2)--AAm®l)(l®BJ
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is an element of Mn(sY ®AY2). Any element of Mn(sY ® âê) may be written
in such a way [11, 17] (indeed, with m = 2). For Ù £ Mn(sY ®3§), define a
quantity

Il c/||„ = infini y 115,11 M2u---iKjipyi}
taken over all positive integers m and over all ways to write U in the form
described above. This quantity is the same as the infimum taken over all ways
to write

U = (Ax®l)(l®Bx)(A2®l)(l®B2)---(Am®l)(l®BJ,

where Ax is an n x kx matrix with entries in sY , Bx is a kx x k2 matrix with
entries in AÁ8 , A2 is a k2 x k3 matrix with entries in sY , and so on.

Theorem 3.1. The quantities || • ||n are norms, and sY®S§ together with these
matrix norms is an operator algebra.
Proof. By applying a representation n ® 8 to an expression

(Ax®l)(l®Bx)---(Am®l)(l®Bm),

it is clear that the maximal operator-algebra tensor-product matrix norms on
sY ®AY¡ are dominated by the matrix norms {|| • ||B} . Thus ||£/||n = 0 implies
that U = 0. The remainder of the proof follows the argument in §2.

Theorem 3.2. The maximal operator-algebra tensor-product matrix norms on
sY ®A3§ coincide with the matrix norms {|| • ||„}. In particular, if sY and A%
are C*-algebras, then the projective C*-tensor norm ||-||max = IHIi on sY ®S§.

Proof. From Theorem 3.1 we see sY ®AY¡ with the matrix norms {|| • ||^} is an
operator algebra, and consequently has a completely isometric representation.
Thus the matrix norms {|| • ||„} are dominated by the matrix norms from the
maximal operator algebra tensor product [16], and are consequently equal by
the first sentence of the proof of Theorem 3.1.

Corollary 3.3. Let P(z, w) = [p,,(z, w)] be an n x n matrix-valued polyno-
mial. Then sup{\\P(z, w)\\: z, w e D} < 1 ifand only if the following condition
is met: there exists a positive integer m, and matrices Px, ... , Pm, Qx, ... , Qm,
whose entries are polynomials in one variable, such that supfj/^z)!! : z e D} < 1
and sup{||ô(-(z)|| : z e D} < 1 for each i = 1, ... , m, and such that

P(z,w) = Px(z)Qx(w)P2(z)---QJw).

We may suppose that all the matrices above are kxk matrices for some positive
integer k, except Px  which is n x k and Qm which is k x n.

Proof. This follows directly from the theorem above and Ando's theorem ([1]
and [16, Proposition 2.5]) that the bidisk algebra ^(D x D) is completely iso-
metrically isomorphic to A(D)®     A(D).
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Remark. Corollary 3.3 also follows immediately from Corollary 2.10. It is also
equivalent to Ando's theorem.

4. The free product of operator algebras

The free product of C*-algebras has been studied by many authors ([3], [5],
[8],[24], and others) but still remains mysterious. We discuss here the so-called
"biggest" free-product construction, or coproduct, and not "small" or spatial
free products.

Let sY and 38 he unital operator algebras, and let sY *c 38 denote their
algebraic free product amalgamated over the identity (in fact, the same approach
is applicable in the case of amalgamation over any common unital subalgebra,
but for simplicity we stick to the scalar case). This is the unique unital algebra
sY *c38 , which has the following universal property: there are unital imbeddings
i and j of sY and 38 respectively into sY *c 38 such that the images of sY
and 38 under i and j respectively generate sY *c38, and if n and 8 are
unital homomorphisms from sY and 3§ , respectively, into a third algebra fê,
then there is a unique unital homomorphism it * 8 of sY *c 38 into ^ with
(it * 8) o / = n and (it * 8) o j = 8. It is folklore (and can be deduced from
a result in [3]) that if sY and 38 are unital C*-algebras, then the algebraic
amalgamated free product is a "-algebra with a faithful "-representation on
Hilbert space.

We define the amalgamated free-product operator algebra, which we also
denote as sA *c AY!, to be the operator algebra which has the same univer-
sal property but with the imbeddings i and j complete isometric isomor-
phisms, the algebra W an operator algebra, and the maps it and 8 unital
completely contractive homomorphisms. We need to prove that such an algebra
exists. If it does, it is obviously unique up to complete isometric isomorphism.
For convenience, in what follows, we identify sY and 38 with subalgebras of
sY *c A$ and write, for instance, ab for the element i(a)j(b), if a £ sY and
b£38.

For U e Mn(sY *c 38), define a quantity

||C/||„ = inf{P1||||/31||M2||...pm||||/iw||}
taken over all positive integers m and over all ways to write

U = AxBxA2B2.-AmBm,
where Ax is an n x kx matrix with entries in sA , Bx is a kx x k2 matrix with
entries in 33, A2 is a k2 x k3 matrix with entries in sY , and so on.

Theorem 4.1. The quantities \\-\\n are well defined norms, and sY *c38, together
with these matrix norms, is an operator algebra.
Proof. First we need to see that each U e Mn(sY *c38) has a representation
of the type described above.

If u £ sY *c38 , then u has a representation as a sum of words formed by
alternatively juxtaposing elements of sY and 38 . By adding l's we may ensure
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848 D. P. BLECHER AND V. I. PAULSEN

that all the words have the same length. Thus u has a representation which may
be considered as an element of the tensor product sY®38®sY®---sY®33
of a finite number of copies of sY and 38 . So if U £ Mn(sY *c38), then
U has a representation which may be considered as an element of the space
Mn(sY ®38®sY ® ---sY ®38). The fact that U has a representation U =
AXBXA2B2 ■ ■ ■ AmBm now follows from the analogous result for tensor products
[11,17].

Suppose sY and 38 are unital subalgebras of C*-algebras sYx and 38x,
and let sYx*c33x be the amalgamated free-product C*-algebra of sYx and 38x .
This contains sY *c33 as a unital subalgebra in a 1 -to-1 fashion. If n and 8
are ^-representations of sYx and 33x, respectively, on the same Hilbert space,
then ||(7r * 8)n(AxBx ■ ■ ■ AmBJ\\ < \\AXBX ■ ■■AmBJn , and so it is clear that the
amalgamated free-product C*-algebra matrix norms restricted to sY *c33 are
dominated by the matrix norms {|| • \\n} ; thus, \\U\\n = 0 implies that U = 0.
The remainder of the proof is as in §2.
Theorem 4.2. If sY and A¡8 are operator algebras, then the operator algebra
(sY *c&, || • \\n) is the amalgamated free-product operator algebra; that is, it
has the universal property described above. If si and 38 are C*-algebras, then
the amalgamated free-product C*-algebra matrix norms on the algebraic free
product sY *c38 coincide with the matrix norms {|| • ||„}.

The proof of the above theorem is just as in the previous sections.
Finally we give some brief generalities about free-product operator algebras.

4.3. The nonamalgamated free product sY *33 of unital operator algebras sY
and 38 may be described as follows: Let sY and 33 be the operator algebras
obtained by adding an identity to each algebra. (It is not hard to see that there
is a unique way to extend the matrix norm structure to the unitizations which
makes them again operator algebras.) Then sY *33 may be identified completely
isometrically with the codimension-1 subalgebra of sYx *c33x generated by sY
and 33 . This has the desired universal property (the same statement as for the
amalgamated free product but dropping the word "unital" throughout). This is
because a completely contractive homomorphism from a unital operator algebra
into B(YY) extends to a unital completely contractive homomorphism between
the unitizations.

4.4. It follows immediately from our formulas from §§3 and 4 that the com-
pleted maximal operator algebra tensor product of two unital operator algebras
is completely isometrically isomorphic to a quotient of the completed amalga-
mated free product of the algebras.
4.5. It is possible to see from the above theorem and the expression given in §2
that OA(G[) *c OA(G2) = OA(Gj * G2) for discrete semigroups G, and G2.
Of course, this also follows directly from the universal properties.
4.6. The amalgamated free product sY *c38 of unital operator algebras sY
and 38  is completely isometrically isomorphic to the obvious subalgebra of
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the amalgamated free product C*(sY) *c C*(38) of the universal C*-algebras
which they generate.

4.7. F. Boca has proved [25] that if <P and *F are unital completely positive
maps from C*-algebras sY and 33 , respectively, into B(YY), then they have a
common completely positive extension 5>*CVI/ from sY*c33 into B(YY). Using
this, together with the extension theorem for completely bounded maps and the
fact that a unital completely contractive map on a C*-algebra is completely
positive, it follows that 4.6 above is true with C*(sY) and C*(38) replaced by
any containing C*-algebra. Thus, the free product is completely injective; that
is, if sYx and 33x are unital subalgebras of unital operator algebras sY2 and
382, respectively, then sYx *c 33x is a unital subalgebra of sY2 *c Ai82 completely
isometrically. The same statement with obvious modifications holds for the
nonamalgamated free product of unital operator algebras. Now one can see that
Boca's result generalizes to operator algebras: if sY and 38 are unital operator
algebras, and if O and ¥ are unital completely contractive linear maps, then
there is a common completely contractive linear extension to sY *QAA8 . We do
not see how to deduce this last result directly from our characterization of the
norm.
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