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Abstract: We address the open question of performing an explicit stabilisation of all

closed string moduli (including dilaton, complex structure and Kähler moduli) in fluxed

type IIB Calabi-Yau compactifications with chiral matter. Using toric geometry we con-

struct Calabi-Yau manifolds with del Pezzo singularities. D-branes located at such singu-

larities can support the Standard Model gauge group and matter content or some close

extensions. In order to control complex structure moduli stabilisation we consider Calabi-

Yau manifolds which exhibit a discrete symmetry that reduces the effective number of

complex structure moduli. We calculate the corresponding periods in the symplectic basis

of invariant three-cycles and find explicit flux vacua for concrete examples. We compute

the values of the flux superpotential and the string coupling at these vacua. Starting from

these explicit complex structure solutions, we obtain AdS and dS minima where the Kähler

moduli are stabilised by a mixture of D-terms, non-perturbative and perturbative α′ cor-

rections as in the LARGE Volume Scenario. In the considered example the visible sector

lives at a dP6 singularity which can be higgsed to the phenomenologically interesting class

of models at the dP3 singularity.

Keywords: Flux compactifications, dS vacua in string theory, Superstring Vacua, Inter-

secting branes models
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1 Introduction

Constructing realistic string vacua is technically challenging as top-down consistency con-

ditions of string compactifications and bottom-up experimental constraints on the effective

field theory lead to strict limitations for any string model. In spite of the difficulty of the

task, the bottom-up approach to string model building [1] allows to address various re-

quirements once at a time. Moreover, over the past decade various successful mechanisms,

in particular in the context of type IIB string theory, have been established which allow to

address moduli stabilisation and realistic D-brane model building [2]. The former can be
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achieved by flux stabilisation of the complex structure moduli and the dilaton (following

for example [3]), and a mixture of perturbative and non-perturbative corrections in the

effective field theory can be used to stabilise the Kähler moduli [4, 5]. As far as model

building is concerned, D-branes at singularities provide an interesting avenue towards real-

istic models of particle physics which have been shown to realise extensions of the MSSM

with interesting flavour structure (see for instance [6–10]). Similarly local F-theory models

provide another interesting class of models with realistic properties [6, 11–14].

For a fully realistic string compactification, all of these successful mechanisms have

to be combined in a consistent string set-up. Recently [15–18] we addressed the question

of combining Kähler moduli stabilisation with D-brane model building and we continue

this program here by also implementing explicitly flux stabilisation of complex structure

moduli. Some of the previous accomplishments include:

• Using toric geometry, we constructed explicit compact Calabi-Yau (CY) orientifold

compactifications [19, 20].

• Chiral matter arises from fractional D3/D7-branes at del Pezzo singularities. These

singularities are mapped onto each other by the orientifold involution, realising an

invariant setting. The D-brane configuration at these singularities allows for a visible

sector including the Standard Model gauge group.

• The geometries contain an additional ‘small’ (del Pezzo) divisor to generate a non-

perturbative superpotential for moduli stabilisation.

• An additional four-cycle class controls the overall size of the compactification which,

overall, leads to CY manifolds with h1,1 ≥ 4.

• We performed a full classification of all models of this type with h1,2 ≥ 5 ≥ h1,1 ≥ 4.

• In explicit examples we showed that all known consistency conditions can be satisfied

(D-brane tadpole cancellation, Freed-Witten anomalies and K-theory constraints).

• The Kähler moduli can be stabilised as in the LARGE Volume Scenario (LVS), leading

to explicit realisations of de Sitter minima by including non-vanishing matter F-term

contributions induced by D-term fixing. Supersymmetry is softly broken and can

lead to TeV-scale soft masses.

The aim of this paper is to add an additional layer to the above: the explicit flux stabilisa-

tion of dilaton and complex structure moduli, while keeping the previously listed properties

of the compactification untouched. Typically the accessible CY manifolds in this class of

models have a few Kähler moduli but many complex structure moduli, rendering the anal-

ysis of the potential of the complex structure moduli very difficult. However, there can

be additional symmetries in the complex structure moduli space such that the effective

number of complex structure moduli is reduced [22, 23]. In particular we are interested in

a subclass of such CY manifolds: those that allow for the Greene-Plesser (GP) construction

of the mirror manifold [24].

– 2 –
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We actively search for such symmetries in the models we previously classified as phe-

nomenologically interesting and identify several examples that allow for this mechanism.

In these examples, we explicitly calculate the leading and sub-leading contribution to the

prepotential for the special Kähler complex structure moduli space (in the mirror space

language, these are polynomial terms and instanton corrections). In one of these examples,

we then search for flux minima which set two phenomenologically relevant parameters: the

vacuum expectation value (VEV) of the flux superpotential W0 and the string coupling gs.

Due to computational challenges we only have so far a small number of trustable solutions.

Nevertheless we find agreement with previous discussions on the approximately uniform

distribution of W0 and gs in the patch of moduli space with large complex structure mod-

uli [25–27]. We then combine these results with the explicit stabilisation of the Kähler

moduli. Hence we work out the first explicit example that allows for closed string moduli

stabilisation to de Sitter space and a visible sector on a dP6 singularity. We finally show

that the visible sector gauge theory can be related by appropriate VEVs to the interesting

class of gauge theories arising from the dP3 singularity.

The rest of this paper is organised as follows. In section 2 we discuss how to explicitly

calculate the dilaton and complex structure contribution to the effective supergravity po-

tential (i.e. the prepotential) and present an example for this calculation. For this example,

we present a chiral D-brane setup and check for UV consistency conditions in section 3. We

stabilise first the dilaton and complex structure moduli, including a short discussion on the

statistics of the flux minima, and then the Kähler moduli in section 4 before concluding

with section 5. In appendix A we present more details on the analysis of the complex

structure moduli space and in appendix B we list further examples that obey our search

criteria.

2 Effective field theory for complex structure moduli

In this section we explain how one can concretely calculate the Kähler potential and the

flux superpotential for the complex structure moduli.

As we review in the following, the computation of both quantities reduces to the

problem of finding the periods of a family of CY three-foldsM3. The periods are completely

encoded in the holomorphic prepotential F on the complex structure moduli space of

M3. The structure and computation of F is addressed most conveniently in the context

of mirror symmetry and N = 2 special geometry, of which we briefly review the basic

notions in section 2.1 and refer to appendix A for a more detailed summary. After general

remarks, we explicitly compute F and the periods for a concrete CY three-fold M3 in

section 2.2. This three-fold exhibits the necessary geometrical properties for constructing

a phenomenologically promising D-brane setup, cf. section 3, for which we perform moduli

stabilisation explicitly in section 4.

For an earlier discussion of the N = 2 special geometry perspective on type II flux

compactifications, that parallels parts of the presentation below, along with an analysis of

their flux vacua, at generic points and explicitly for certain fluxes at degeneration points

of the Calabi-Yau geometries, see [28].
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We consider Calabi-Yau three-folds M3 with a key property, i.e. the presence of a

symmetry on its complex structure moduli space, that allows to fix a large number of

complex structure moduli without doing any computation, as explained in section 2.2.1.

This makes the explicit computation of the periods of M3 (performed in section 2.2.2)

technically feasible. Explicit computations of periods for other examples of CY three-

folds with such symmetries on their complex structure moduli spaces are presented in

appendix B.

Before delving into the details of the computations, we begin by introducing some

notation and the basic idea behind the stabilisation of dilaton and complex structure moduli

which we denote as τ = C0 + ig−1
s and ui, i = 1, . . . , h1,2(M3). The quantised RR- and

NSNS-fluxes, F3 = dC2 and H3 = dB2, conveniently combined into G3 = F3− τH3, induce

the perturbative flux superpotential

Wflux(u
i, τ) =

∫

M3

Ω ∧G3 . (2.1)

It depends on the moduli τ , ui, where the dependence on the ui arises from the holomorphic

three-form Ω on M3. The Kähler potential for these moduli reads

K = − ln

(

i

∫

Ω ∧ Ω̄

)

− ln
(

− i(τ − τ̄)
)

. (2.2)

Further dependence on τ and ui appears in the Kähler and superpotential upon the inclu-

sion of open strings and α′-corrections. From the field theory analysis, these effects turn

out to be sub-leading in the process of moduli stabilisation, and so we shall neglect them

(see for instance [5]).

Solving the F-term conditions following from (2.1) and (2.2):

DuiW = (∂ui +Kui)W = 0 , DτW = (∂τ +Kτ )W = 0 (2.3)

generically fixes both τ and ui. We will demonstrate this explicitly in section 4 using the

results from section 2.2.2. Notice that even though these are h1,2 + 1 first order equations

with the same number of unknowns, there is no a priori guarantee of a solution since they

are non-holomorphic. However there are 2h1,2+2 flux parameters which generically implies

the existence of many solutions which need to be determined numerically. This is of course

the main source for the existence of the landscape of type IIB string vacua.

2.1 Kähler potential and flux superpotential

In this subsection, we present a brief review of the special geometry of the complex structure

moduli space of a CY three-fold and mirror symmetry, following mainly [29].

First, we notice that the complex structure moduli dependence in (2.1) and (2.2) is

captured entirely by the holomorphic three-form Ω. In order to compute the dependence

of Ω on the ui explicitly, we introduce the integral symplectic basis (αK , βK) of H3(M3,Z)

where K = 0, . . . , h2,1(M3). Then, we can expand the holomorphic three-form Ω as

Ω = XKαK −FKβK . (2.4)

– 4 –
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The coefficients are called periods of Ω. They are conveniently combined into the period

vector Πt = (XK ,FK). The XK ’s are projective coordinates on the complex structure

moduli space which has complex dimension h2,1. The periods FK ’s are functions of the

XK ’s. They can be obtained (in a proper symplectic frame) as the partial derivatives of a

single holomorphic function F , the projective prepotential, as

FL =
1

2

∂

∂XL
(XKFK) ≡ ∂

∂XL
F . (2.5)

The prepotential is a homogeneous function of degree two in the XK ’s.1 We introduce the

function

F (ui) = (X0)−2F(XK) , (2.6)

(that we still call ‘prepotential’) where we defined the flat coordinates:2

ui =
Xi

X0
, i 6= 0 . (2.7)

In terms of the prepotential, we can express the period vector as

Π =











X0

Xi

F0

Fi











∼=











1

ui

2F − ui∂iF

∂iF











, (2.8)

where we used the split I = (0, i) for i = 1, . . . , h1,2(M3) and in the second equality we

normalised Ω by choosing X0 = 1.

The superpotential and the Kähler potential Kcs for the complex structure moduli

(cf. (2.1) and (2.2)) can now be rewritten as

Wflux =

∫

G3 ∧ Ω = (f − τh)t ·Π , (2.9)

Kcs = − ln

(

i

∫

Ω ∧ Ω̄

)

= − ln
(

iΠ† · Σ ·Π
)

= − ln
(

2i Im(X̄KFK)
)

= − ln
(

i‖X0‖2
(

2F − 2F̄ − (u− ū)i(F + F̄ )i
)

)

,

where “ · ” is the ordinary scalar product and Σ is the standard symplectic matrix

Σ =

(

0 1

−1 0

)

. (2.10)

Moreover, the background fluxes can be expanded in the symplectic basis (αK , βK) as

G3 = (MK − τM̃K)αK − (NK − τÑK)βK . (2.11)

1Globally, F is a section of the square of the vacuum line bundle L2 over the complex structure moduli

space.
2We deviate here from the usual convention in the mirror symmetry literature, where the flat coordinates

are denoted by ti, in order to avoid confusions with the Kähler moduli of M3.
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We have introduced the vectors f = Σ · (MK , NK)t and h = Σ · (M̃K , ÑK)t which encode

the RR- and NSNS-fluxes. The flux contribution to the D3-tadpole reads

QD3 =
1

(2π)4(α′)2

∫

M3

H3 ∧ F3 = MKÑK − M̃KNK = −ht · Σ · f . (2.12)

From (2.8) it is now manifest that the key quantity encoding all the information of the

periods Π is the holomorphic prepotential F . Its expansion at large complex structure on

M3 in terms of the coordinates ui defined in (2.7) is given by (see for example [29])3

F = − 1

3!
Kijk u

iujuk − 1

2!
Kij u

iuj +Kiu
i +

1

2
K0 +

∑

β

nβ Li3(q
β) . (2.13)

It is useful to recall the interpretation of this general form for F from the point of view of

the mirror CY three-fold M̃3 and the A-model at large radius/large volume. Here F is the

prepotential on the quantum corrected Kähler moduli space of M̃3, with its Kähler moduli

related to the flat coordinates (2.7) on M3 via the mirror map

uiB-model ↔ tiA-model =

∫

βi

(J + iB2) . (2.14)

The two-form B2 denotes the NSNS B-field, J is the Kähler form on M̃3 and the βi are

the generators of H2(M̃3,Z). We note that the shift symmetry of B2 fixes the uiB-model

uniquely and, in particular, implies their familiar single-logarithmic leading order term.

The classical terms in (2.13) are determined by the classical intersections on M̃3 according

to [30] (see also [31] for generalisations to higher dimensions):

Kijk =

∫

M̃3

Ji ∧ Jj ∧ Jk , Kij = −1

2

∫

M̃3

Ji ∧ J2
j modZ , (2.15)

Kj =
1

223!

∫

M̃3

c2(M̃3) ∧ Jj modZ , K0 =
ζ(3)

(2πi)3

∫

M̃3

c3(M̃3) .

Here Ji denote (1, 1)-forms that are dual to the generators Ki of the Kähler cone of M̃3 and

c2,3(M̃3) denote the second (third) Chern class of the mirror CY. Note that the coefficients

Kij and Ki of the sub-leading terms in the ui are only fixed modulo integers. Fixing

them corresponds to a particular choice of integral symplectic basis (αK , βL).4 We refer

to appendix A for more details on the derivation of (2.15). The last term in (2.13) are the

string worldsheet instanton corrections to the A-model. Here we employed the notation

qβ = e2πidju
j
for a class β = diβ

i with degrees di ∈ Z≥0. The integers nβ are labeled by the

class β and are the genus zero Gopakumar-Vafa invariants and the poly-logarithm Li3(x)

is defined as Lid(x) =
∑

n>0
xn

nd for an integer d.

3We refer to Equations (A.15) and (A.16) in appendix A for explicit expressions for Π and Wflux in terms

of the quantities appearing in (2.13).
4The freedom in the choice of such a basis is given by the symplectic transformations Sp(2 + 2h1,2,Z),

w.r.t. which the period vector Π transforms in the fundamental representation. For the prepotential (2.13)

with the classical terms (2.15) the period vector Π is obtained in one particular choice of basis.

– 6 –
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On the B-model side of M3 the prepotential is classical and, thus, exactly calculable.

Both F and the periods, that follow from (2.8), are solutions to the Picard-Fuchs (PF)

differential system associated to the family of CY three-folds M3 obtained by variation

of its complex structure moduli. We refer to appendix A for the construction of the PF

system that is straightforward for concrete toric examples. The knowledge of the coefficients

in (2.15) is necessary to identify the linear combination of solutions to the PF system that

is the prepotential F and for which the expression in (2.8) yields periods on M3 in an

integral symplectic basis. The instanton corrections of the A-model side are then readily

extracted from this solution of the PF system in combination with the mirror map (2.14),

which we compute using the Mathematica package Instanton [32].

2.2 Calculations on explicit CY examples

In this section we choose a concrete CY three-fold. We explicitly compute the Kähler

potential and flux superpotential from the corresponding prepotential F . Before delving

into the details of these computations, we discuss a general strategy to reduce the typically

large complex structure moduli space to a sub-sector of a technically feasible size.

2.2.1 Reducing the complex structure moduli by discrete symmetries

As discussed before, a typical phenomenologically interesting CY three-fold features a

small number of Kähler moduli and a large number of complex structure moduli. Since

it is technically unfeasible to obtain the full period vector for geometries with such a

large number of complex structure moduli, we will fix most of the u-moduli by a general

principle, i.e. without doing a computation. A mechanism to achieve this was suggested

and applied in [22, 23, 26]. The basic idea is to consider a CY three-fold5 X3 which admits

subsets of its complex structure moduli space that are invariant under the action of an

appropriate discrete symmetry group.6 The symmetry group also acts on the periods of

X3. Switching on fluxes along the invariant three-forms allows to dynamically set the

non-invariant complex structure moduli to their fixed point under the group, e.g. zero, by

solving the F-term conditions as in (2.3).

In the following, we provide a systematic proof of this argument.7 Let us consider a

finitely generated symmetry group G, as we will do in the rest of this work. Consider a

group element g in G that acts non-trivially on a single modulus us, for simplicity, while

leaving all other moduli ui, i 6= s invariant. Denoting the group action by g·, G-invariant

periods and the Kähler potential K obey

Π(g · us) = ef(u
s)Π(us) , K(g · us) = K(us)− 2Re

(

f(us)
)

, (2.16)

where we suppressed the dependence on ui for convenience. Here we demand no strict

invariance but allow for a non-trivial gauge transformation ef , with an appropriate holo-

morphic function f(us). We differentiate both equations in (2.16) with respect to us to

5In order to avoid confusion, we denote the CY three-fold and its mirror considered here and in concrete

examples by X3, X̃3.
6As a necessary condition, this symmetry group has to preserve the CY-condition.
7Arguments similar to the following have been carried out independently by A. Klemm.
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obtain the following elementary relations:

g(∂usΠ)(g · x) = ef(x)[(∂usΠ)(x) + (∂usf)(x)Π(x)] , (2.17)

g(∂usK)(g · x) = (∂usK)(x)− (∂usf)(x) ,

where x is any value for the variable us. Equipped with these equations it is straightforward

to show for the covariant derivative that

g(DusΠ)(g · x) = ef(x)(DusΠ)(x) . (2.18)

Thus, we infer that (DusΠ)(x̂) = 0 at every fixed point x̂ of the action by g, i.e. at points

with g · x̂ = x̂, as claimed. This is clear since g 6= 1, which is the case as we are assuming

that g acts non-trivially on us, and since ef(x̂) = 1, as follows from (2.16) at us = x̂.8

In summary, this argument shows that a solution to DusWflux = 0 for a flux super-

potential Wflux with fluxes switched on only along invariant three-cycles is given by going

to the fixed set under the action of G. In other words, for these fluxes the complex struc-

ture moduli of X3 can be dynamically driven to this G-symmetric locus.9 Furthermore,

the invariant periods, restricted to the G-fixed subspace of complex structure moduli, are

closed under the PF operators also restricted to this subspace, since they commute with

the group G. The complex structure moduli space obtained in this way agrees with the

one of the CY-quotient X3/G.

Concrete examples of such symmetry groups are the Greene-Plesser (GP) orbifold

groups Γ of the GP construction [24]. This construction provides mirror pairs of CY three-

folds formed by the three-fold X3 and its quotient X̃3 = X3/Γ with all fixed points resolved.

The complex structure moduli space of X̃3 is embedded into the complex structure moduli

space of X3 as the Γ-invariant subspace and all of the above requirements on G are met by

G ≡ Γ. In particular, the invariant periods restricted to the invariant subspace are simply

the periods of the mirror X̃3.

In the following, we will consider a phenomenologically appealing CY three-fold X3

with four Kähler moduli and with mirror symmetry realised by the GP construction. We

then compute the periods of its quotient CY three-fold M3 ≡ X̃3 = X3/Γ (cf. the notation

of section 2.1) from its PF-system that depends on only four complex structure moduli.

We stabilise all non-invariant complex structure moduli of X3 at their fixed point under

the GP-group Γ by the above mechanism. The remaining periods agree with those of the

mirror X̃3. Then, stabilisation of complex structure moduli of X3 at the Γ-symmetric point

reduces to stabilising explicitly the remaining invariant u-moduli.

2.2.2 An explicit example

The example we consider is a mirror pair of CY hypersurfaces (X3, X̃3) in four-dimensional

toric varieties denoted P∆ and P∆̃. These toric varieties are specified by their reflexive

8ef(x̂) = 1 holds whenever the period Π(x̂) 6= 0. If Π(x̂) = 0, then (2.17) still implies (DusΠ)(x̂) = 0 for

g 6= ef(x̂). In addition, if the invariant subset under G of the complex structure moduli space is not only a

point, there always has to be a different invariant period with Π′(x̂) 6= 0 which we can consider.
9There might be other solutions to the F-term equations for the us, that we do not consider here.
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polytopes that we denote by ∆X
4 and ∆X̃

4 for its dual. The vertices of these polytopes are

given by the rows of the following matrices:

∆X
4 =





























z1 1 1 0 −1 D1

z2 1 1 −1 0 D2

z3 1 0 0 0 D3

z4 1 0 −1 1 D4

z5 0 1 0 0 D5

z6 0 0 1 0 D6

z7 0 0 0 1 D7

z8 −1 −1 0 0 D8





























, ∆X̃
4 =





























−1 −1 −1 −1 D̃1

2 −1 −1 2 D̃2

2 −1 2 2 D̃3

−1 2 −1 2 D̃4

−1 2 2 2 D̃5

2 −1 −1 −1 D̃6

2 −1 2 −1 D̃7

−1 2 −1 −1 D̃8





























. (2.19)

Here we have introduced the toric divisors Di = {zi = 0} (and D̃i) corresponding to

the vertices in ∆X
4 (and ∆X̃

4 ) in the last column. Note that the polytopes ∆X
4 and ∆X̃

4

are congruent. Thus the corresponding toric varieties P∆ and P∆̃ differ only by the action

of an orbifold group Γ = Z
3
3, and the mirror construction agrees with the GP orbifold

construction.

We want to calculate the periods on the complex structure moduli space of the CY

three-fold X3. Its Hodge data and Euler number read

h1,1(X3) = 4 , h2,1(X3) = 70 , χ(X3) = −132 . (2.20)

The subspace that is invariant under the GP orbifold group is only four-dimensional and

the invariant periods at this Γ-symmetric point precisely agree with the periods of the

mirror X̃3. By application of the argument of section 2.2.1 we reduce the u-moduli of X3

to this invariant subspace, which agrees with the complex structure moduli space of X̃3.

Thus, we present in the remainder of this section the computation of the ten periods on X̃3.

First, we note that there are 16 different star-triangulations of ∆X
4 that give rise to

eight different CY phases on X3, some of which correspond to multiple phases of the toric

variety and others only to one. This can be checked by calculating and comparing the triple

intersections on X3 for all these 16 toric phases. The triangulations, the intersections and

the following calculations were done by means of PALP [33, 34] and Sage with the toric

geometry package [35]. The Mori cone of a given CY phase is calculated as the intersection

of the Mori cones of the corresponding phases of the ambient space, which are related by

flops away from the CY hypersurface. For simplicity, we choose a CY phase which arises

from only one phase of the ambient toric variety and has a simplicial Mori cone. It is

generated by the ℓ(i)-vectors

ℓ(1) = (−1, 1, 1,−1, 0, 0, 0, 0) , ℓ(2) = (0,−1, 0, 1, 1, 0,−1, 0) , (2.21)

ℓ(3) = (0, 0,−1, 1, 0, 1,−1, 0) , ℓ(4) = (1, 0, 0, 0, 0, 0, 1, 1) .

The PF-system for X̃3 will be constructed using (A.8) from these ℓ(i)-vectors. The Stanley-

Reissner ideal in terms of the coordinates zi in (2.19) in this phase reads

SR-ideal : {z2z3, z2z6, z4z5, z4z6, z3z5, z1z7z8} . (2.22)
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By duality between curves and divisor:

Ki · ℓ(j) = δji , (2.23)

the ℓ(i)-vectors (2.21) also fix the generators Ki of the Kähler cone. In the chosen triangu-

lation, the Kähler cone is spanned by the generators

K1 = D2+D3+D4 , K2 = D5 , K3 = D2+D4 , K4 = D1+D3+D6 , (2.24)

in terms of the toric divisors Di introduced in (2.19).

As a cross-check, we confirm explicitly that there exists a CY phase of the mirror X̃3

that contains this chosen topological phase of X3 as a sub-sector of its Kähler moduli space.

This confirms, invoking mirror symmetry, that the complex structure moduli space of X̃3

is indeed a sub-sector of the complex structure moduli space of X3, as guaranteed by the

GP construction.

In the basis (2.24) of the Kähler cone on X3 we calculate the triple intersections Kijk.

We summarise these intersections on X3 in a formal polynomial C0 = 1
6!KijkJiJjJk in the

dual (1,1)-forms Ji that reads:
10

C0 =
3

2
J2
1J4 + 3J1J2J4 + 3J1J3J4 + 3J2J3J4 +

9

2
J1J

2
4 + 3J2J

2
4 + 3J3J

2
4 +

5

2
J3
4 . (2.25)

Analogously we calculate the other classical intersections in (2.15) to be

K14 = −9

2
, K24 = −3 , K34 = −3 , K44 = −15

2
, K41 = −3

2
, (2.26)

KjJj =
3

2
J1 + J2 + J3 +

33

12
J4 , K0 = − ζ(3)

(2πi)3
132 , (2.27)

with all other Kij = 0. We note that, as before, these relations hold up to integers and the

Kij are symmetric modulo integers.

Finally we obtain the prepotential (2.13) on X̃3 using the intersections (2.25) and (2.26):

F = −3

2
(u1)2u4 − 3u1u2u4 − 3u1u3u4 − 3u2u3u4 − 9

2
u1(u4)2 − 3u2(u4)2 − 3u3(u4)2

−5

2
(u4)3 + 3u1u4 +

3

2
u2u4 +

3

2
u3u4 +

15

4
(u4)2 +

3

2
u1 + u2 + u3 +

33

12
u4 − iζ(3)

33

4π3

+
∑

β

n0
β Li3(q

β) , (2.28)

where β = (d1, d2, d3, d4) in the basis βi of effective curves of H2(X3,Z) corresponding to

the charge vectors (2.21) and qβ = e2πidiu
i
. We also introduced the flat coordinates ui

on X̃3, that are identified with the Kähler moduli of X3 via the mirror map (2.14). The

instanton corrections in (2.28) are determined by solving the PF equations on X̃3 that

follow from (2.21). First we calculated explicitly the mirror map (2.14) and then identified

the prepotential F among the solutions of the PF system by matching the above classical

terms (2.25) and (2.26). Then the worldsheet instanton corrections at large volume are

10We have not chosen the intersection form I3 here as C0 is directly related to the cubic terms in F .
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uniquely determined and read off by comparing to the general large-volume expansion of

F in (2.13).11

Equipped with (2.28) we readily compute the full period vector according to (2.4)

and the Kähler potential K as well as the flux superpotential for arbitrary flux choices

from (2.9). We refer to appendix A, in particular (A.15) and (A.16), for more explicit

formulae of Π and Wflux in terms of the prepotential F . The explicit stabilisation of

dilaton and complex structure moduli on X3 at the Γ-invariant locus is performed in

section 4.

3 Explicit model

On the three-fold X3 introduced in the previous section, we now construct an explicit chiral

D-brane setup which satisfies all stringy consistency requirements, allows for a chiral visible

sector and gives rise to a hidden sector suitable for Kähler moduli stabilisation. For this

construction of a chiral global model we follow the same philosophy as in [16, 17].

In section 3.1 we study the properties of X3 and find that it has three dP6 divisors,

and two of these divisors can be exchanged by an orientifold involution with O3/O7 planes.

On these exchangeable dP6 divisors, which will be stabilised at zero size, we place a visible

sector setup with fractional D3-branes. In section 3.2 we analyse the gauge theory which

arises in this sector. For simplicity we concentrate on a setup with no flavour D7-branes.

Equipped with this visible sector, we then construct a minimal hidden sector D-brane setup

in section 3.3 compatible with all stringy consistency conditions and suitable for moduli

stabilisation.

3.1 Geometric setup and orientifold involution

The weight matrix for ∆X
4 given in (2.19) reads as follows:12

z1 z2 z3 z4 z5 z6 z7 z8 DeqZ

1 0 0 1 1 1 0 2 6

1 0 0 0 0 0 1 1 3

0 1 0 0 0 1 0 1 3

0 0 1 0 1 0 0 1 3

. (3.1)

The Stanley-Reisner ideal for the chosen triangulation of the ambient four-fold is:13

SR-ideal : {z2 z3, z3 z5, z2 z6, z2 z7, z3 z7, z4 z5 z6, z1 z7 z8, z1 z4 z5 z8, z1 z4 z6 z8} (3.2)

Each column in (3.1) denotes the scaling behaviour of each homogeneous coordinate zi
under the four C∗-actions of the ambient fourfold. The last column of the table determines

11The explicit instanton corrections can be found in the accompanying material of this paper on the

arXiv.
12The triangulation used here is the one relevant for the construction of the CY orientifold of X3. It

differs from the one in (2.21). The periods on X3 are, however, unaffected by this change of triangulation.
13Note that out of the 16 triangulations of ∆X

4 there are three more which give the same intersection ring

on the CY hypersurface.
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the CY hypersurface by fixing its defining equation to be of the form

X3 : P6,3,3,3(zi) = 0 , (3.3)

with P6,3,3,3(zi) a polynomial of degrees (6, 3, 3, 3) with respect to the (C∗)4-action of (3.1).

The CY three-fold X3 has three dP6 divisors at z2 = 0, z3 = 0 and z7 = 0. We can

take these three divisors as part of an integral ‘diagonal’ basis of H1,1(X3):

Dq1 = D2 , Dq2 = D3 , Db = D1 +D2 +D3 , Ds = D7 , (3.4)

i.e. a basis for which the intersection form I3 has no cross-terms:

I3 = 3D3
q1 + 3D3

q2 + 3D3
b + 3D3

s . (3.5)

Expanding the Kähler form J in the basis (3.4) as14

J = tbDb + tq1Dq1 + tq2Dq2 + tsDs ,

the volumes of the four divisors take the form:

Vol(Di) ≡ τi =
1

2

∫

Di

J ∧ J =
3

2
t2i , (3.6)

while the CY volume becomes of strong ‘Swiss-cheese’ type:

Vol(X3) ≡ V =
1

6

∫

X3

J ∧ J ∧ J =
∑

i

t3i
2

=
1

3

√

2

3

[

τ
3/2
b − (τ3/2q1 + τ3/2q2 + τ3/2s )

]

. (3.7)

Note that the minus sign in (3.7) is due to the fact that the Kähler cone conditions for the

three dP6 divisors are

tq1 < 0 , tq2 < 0 , ts < 0 . (3.8)

The additional conditions involving tb read as follows:

tb + ts + tq1 > 0 , tb + ts + tq2 > 0 , tb + tq1 + tq2 > 0 . (3.9)

This Kähler cone is obtained by the union of the four Kähler cones corresponding to the tri-

angulations of ∆X
4 which give the same toric intersection numbers on the CY hypersurface.

Since this cone is identical to the cone generated by the curves coming from intersections

of the hypersurface equation with two toric divisors, we conclude that (3.8) and (3.9) span

indeed the Kähler cone of the CY hypersurface [36].

The involution which exchanges the two dP6 divisors Dq1 and Dq2 is given by:

σ : (z2 , z5) ↔ (z3 , z6) . (3.10)

It is readily checked that it is a symmetry of the weight matrix (3.1). In the following we

take the limit in Kähler moduli space in which these two dP6’s shrink to zero size. The

two singularities generated in this way are exchanged under the orientifold involution, as

14By abuse of notation, we denote the (1, 1)-forms dual to the divisors (3.4) by the same symbol.
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required. The remaining dP6 surfaces at z7 = 0 (Ds) is kept at finite size. Note that

this desired structure of the Kähler moduli arises in the process of moduli stabilisation

discussed in section 4.

The equation defining the CY hypersurface must be symmetric under the orientifold

involution. This gives the following restricted equation

P sym
6,3,3,3(zi) ≡ P6,3,3,3(z1, z2, z3, z4, z5, z6, z7, z8) + P6,3,3,3(z1, z3, z2, z4, z6, z5, z7, z8) = 0 .

(3.11)

The fixed point set of the involution (3.10) can be determined by considering the (anti-)

invariant combinations yi of the homogeneous coordinates z2, z3, z5 and z5:

y2 ≡ z2z3 , y3 ≡ z5z6 , y5 ≡ z2z5 + z3z6 , y6 ≡ z2z5 − z3z6 . (3.12)

They are all invariant under the orientifold involution, except y6 which transforms as

y6 7→ −y6. Hence, the hypersurface y6 = 0 belongs to the fixed locus of (3.10). Its

intersection with X3 gives the following O7-plane:

O7 : z2 z5 − z3 z6 = 0 with DO7 = Db −Ds , (3.13)

and χ(DO7) = 36. There are also other points in the fixed point set. In fact, we can

compensate the minus one factor of y6 by using the scaling relations of the toric coordi-

nates (3.1). Taking this into account, we find a codimension-three and a codimension-four

fixed locus in the ambient space. The codimension-three locus is

{z1 = 0, z4 = 0, y5 ≡ z2 z5 + z3 z6 = 0} , (3.14)

that, once intersected with X3, gives three O3-planes.15 The codimension-four locus is

{z4 = 0, y5 ≡ z2 z5 + z3 z6 = 0, z7 = 0, z8 = 0} . (3.15)

This is one point in the ambient space which lies on the symmetric CY hypersurface given

by P sym
6,3,3,3(zi) = 0 and, therefore, gives one O3-plane.16 Thus, in total we have one O7-

plane and four O3-planes. For the details of the determination of the O3- and O7-planes we

refer to [16, 19, 20], where the fixed-point locus of a holomorphic involution for a different

CY three-fold has been determined using identical techniques.

After having derived the fixed point set of our involution, we can calculate, by means

of Lefschetz fixed point theorem [37],17 the number of complex structure deformations

after imposing invariance under (3.10), i.e. h1,2− . The fixed point theorem states that the

differences between the alternating sum over the odd and the even Betti numbers is just

the Euler characteristics of the fixed point set of the involution:
∑

i

(−1)i(bi+ − bi−) = χ(Oσ) with bi± =
∑

p+q=i

hp,q± . (3.16)

15If we intersect (3.14) with the hypersurface equation of X3, it reduces to a degree three polynomial

which has three solutions each of which is an O3-plane.
16The relations (3.15) are four equations in the ambient four-fold that automatically solve the orientifold

symmetric equation of the CY three-fold P sym
6,3,3,3(zi) = 0.

17For applications of this theorem in the physics literature see for instance [38–40].
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Our fixed point set Oσ is given by one O7-plane with χ(O7) = 36 and four O3-planes with

each χ(O3) = 1 which gives in total 40 for the Euler number of Oσ. In addition, we know

that h1,1− = 1, h1,1+ = 3, h2,1 = 70, h3,0 = h3,0− = 1 (Ω ∈ H3,0
− (X3)) and that we are dealing

with a proper CY three-fold, i.e. h1,0 = h2,0 = 0. These data together with (3.16) give us

h2,1− = 43 and h2,1+ = 27.

Next, we consider in more detail the GP orbifold group Γ used for the construction

of the mirror X̃3. This is essential in order to understand the complex structure moduli

space of X3 that is both invariant under Γ and the orientifold involution (3.10). The GP

group Γ = Z
3
3 has the following generators:

γ1 : (z1, z2, z3, z4, z5, z6, z7, z8) 7→ (z1, z2, z3, z4, z5, z6, e
2πi/3z7, e

4πi/3z8)

γ2 : (z1, z2, z3, z4, z5, z6, z7, z8) 7→ (z1, z2, z3, z4, e
2πi/3z5, z6, ez7, e

4πi/3z8) (3.17)

γ3 : (z1, z2, z3, z4, z5, z6, z7, z8) 7→ (z1, z2, z3, z4, z5, e
4πi/3z6, e

2πi/3z7, z8)

From this, we infer that the orientifold invariant CY equation P sym
6,3,3,3 = 0 in (3.11) takes

the following restricted form, if (3.17) is imposed to be a symmetry as well:

P rd
6,3,3,3(zi) = z31 z

3
2 z

3
5 + z31 z

3
3 z

3
6 + z32 z

3
4 z

3
5 z

3
7 + z33 z

3
4 z

3
6 z

3
7 + z35 z

3
6 z

3
7 + z38

+ ρ1 z
3
2 z

3
3 z

6
4 z

3
7 + ρ2 z

3
1 z

3
2 z

3
3 z

3
4 + ρ3 z1 z2 z3 z4 z5 z6 z7 z8 .

(3.18)

In this equation, we have fixed completely the reparametrisation invariance. Hence, the

remaining undetermined three coefficients are related to the complex structure moduli

that survive both the orientifold and the discrete symmetry projection. Note that before

imposing the orientifold projection we have four of them, as expected from section 2.2.2.

3.2 Visible sector D-branes

Let us discuss the field theory on the D3-branes at the dP6 singularity of X3/σ. We

construct the visible sector of our model by placing ND3 D3-branes on top of the dP6

singularity at z2 = 0 (plus their ND3 images at the singularity at z3 = 0) of X3. As

explained above, these singularities are generated by shrinking the two dP6 divisors, Dq1

and Dq1 , exchanged by the orientifold involution. We do not consider additional flavour

D7-branes for simplicity, because their presence would also affect the hidden D7-brane

setup described in the next section.18

Let us briefly comment on how this dP6 singularity can be the basis for model building.

As pointed out in [42] there exists a gauge theory description of the dP6 singularity which

locally is a C
3/Z3×Z3 orbifold singularity. We use this gauge theory description in terms of

the C3/Z3×Z3 orbifold as the starting point for our model building discussion. Using dimer

techniques, we find the dimer and quiver diagram as shown in figure 1. Nodes in the quiver

correspond to U(Ni) gauge theories, arrows to bi-fundamental fields. The dimer can be

18If the local gauge theory construction involves flavour D7-branes, one has also to add some D7-branes

which can play their rôle in the global configuration. In this case, the D7-tadpole induced by the O7-plane

should not be completed saturated by the stack of D7-branes on top of the O7 (see [17, 18, 41]). In the

presence of flavour D7-branes, we might keep N < 4 D7-branes on top of the O7-plane and the form of the

FI-term in (3.31) would still be the same, only the rank of the U(N) gauge group would differ.
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Figure 1. From left to right, the quiver diagram, the toric diagram and the dimer diagram for the

C
3/Z3 × Z3 orbifold singularity.

obtained from the toric diagram using various inverse algorithms (e.g. [43–45]). Numbered

faces in the dimer correspond to gauge groups, common nodes of faces to bi-fundamental

matter, and the “±” faces correspond to superpotential terms. From the dimer in figure 1

we can then read off the following superpotential

W = X14Y47Z71 −X14Y49Z91 −X15Y57Z71 +X15Y58Z81 −X16Y68Z81

+X16Y69Z91 −X24Y47Z72 +X24Y48Z82 −X25Y58Z82 +X25Y59Z92

+X26Y67Z72 −X26Y69Z92 −X34Y48Z83 +X34Y49Z93 +X35Y57Z73

−X35Y59Z93 −X36Y67Z73 +X36Y68Z83 . (3.19)

The fields Xij , Ykl, Zmn are labelled by different letters for each of the three different

arrows in the quiver in figure 1 and the indices in their labelling denote the transformation

behaviour as bi-fundamental fields (Ni, N̄j). This gauge theory can be related to phe-

nomenologically interesting gauge theories via higgsing. In particular by assigning a VEV

to X14, Y58, and Z73, we find the following superpotential after integrating out all states

with superpotential mass terms:

W = −X16X21Y59Y65Z32Z93 +X16X31Y69Z93 +X21Y15Y59Z92

+X26Y65Z32Z53 −X26Y69Z92 −X31Y15Z53 (3.20)

This process is also visualised in figure 2 which shows the dimer diagram after assigning

these VEVs and the associated quiver diagram.

This gauge theory is the gauge theory of dP3 which has proven to be phenomeno-

logically very appealing [10]. Models based on the Pati-Salam gauge group have been

constructed in [10] where it was shown that they can, in the presence of flavour D7-branes,

give rise to a breakdown to the SM gauge group, an appealing flavour structure for quarks

and leptons, the absence (respectively sufficient suppression) of proton decay and a viable

µ term.

3.3 Hidden sector D-branes

In this section we discuss the D-brane setup away from the dP6-singularity. This includes

a discussion of both the D7-branes necessary for D7 tadpole cancellation as well as possible

non-perturbative effects from D3-brane instantons and gaugino condensates.

– 15 –



J
H
E
P
0
5
(
2
0
1
4
)
0
0
1

5

61

2

3 9

1

6

5

2

6

6

2 1

3

3

1

1 9

9

3

3
+ +

+++

+

+

-

-

-

---

+ -

Figure 2. After assigning VEVs for the fields X14, Y58, Z73 the matter content shown in the quiver

diagram on the left side remains. The resulting dimer after the higgsing is shown on the right side.

The remaining gauge theory is that of dP3.

E3 instantons. We need to consider D-branes which generate non-vanishing terms in

the non-perturbative superpotential. This is relevant in order to fix some of the Kähler

moduli as we will see in section 4.2. The non-perturbative superpotential is generated by

E3-instantons and/or gaugino condensation on stacks of D7-branes wrapping four-cycles in

the CY three-fold (see for instance [46] for a review). In the LVS the leading contribution

comes from a shrinkable rigid divisor (e.g. del Pezzo), if this can support non-perturbative

effects.

In our model based on the CY orientifold X3/σ, we do not have D7-branes wrapping

the (orientifold invariant) del Pezzo divisor Ds, because the O7-plane charge on the divi-

sor (3.13) cannot compensate the D7 tadpole of these D7-branes. Hence the possible leading

non-perturbative effect arises from O(1) E3-instantons wrapping the divisor Ds which is

mapped to itself under the orientifold involution σ. Since the fermionic zero modes of such

instantons are projected out, whether the E3’s contribute to the superpotential depends

only on their world-volume fluxes. The divisor Ds is non-spin and hence Freed-Witten

(FW) anomaly cancellation enforces a non-zero gauge flux [47]:

FE3 +
c1(Ds)

2
∈ H2(Ds,Z) . (3.21)

This quantisation implies that the gauge invariant field strength FE3 = FE3 − i∗Ds
B is

non-zero, if the pullback i∗Ds
B of the NSNS B-field to the world-volume Ds of the brane

is zero. Hence, an O(1) E3-instanton wrapping such a divisor is not invariant under the

orientifold involution and is projected out.19

If we insisted on having ι∗Ds
B = 0, the leading contribution to the superpotential arises

from a rank-two E3-instanton [48], which we will however not consider in the following. In

fact, in the LVS a leading non-perturbative contribution to the superpotential from rank-

one E3-instantons is phenomenologically preferred compared to rank-two E3-instantons.

The volume in this minimum is fixed to be V ∼ |W0|eaτs . For a rank-one E3-instanton we

have a = 2π, while for a rank-two E3-instanton a = 4π. Since τs > 1 and |W0| ∼ O(1),

19A two-form FE3 satisfying (3.21) is always even when Ds has zero intersection numbers with the odd

h1,1
−

divisors, as it happens in the considered example.
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the second option would fix the volume of the CY at a too large value, rendering the

phenomenologically relevant scale too small. We will comment on this in section 4.2.

Thus we choose a non-zero B-field

i∗Ds
B =

Ds

2
, (3.22)

so that we can pick a gauge flux FE3 such that FE3 = 0 [49]. In this case the O(1)

E3-instanton is invariant and survives the orientifold projection.

All other possible E3-instantons wrap divisors that, in the LVS minimum, have a larger

size compared to Ds. Thus, their contributions to the superpotential are exponentially

suppressed and can be consistently neglected.

Hidden D7-branes. To cancel the D7-tadpole introduced by the O7-plane, we place

four D7-branes (plus their images) on top of the O7-plane locus DO7 given in (3.13). This

generates a hidden SO(8) gauge group. The number of deformation moduli of such D7-

branes is h0,2(DO7) = 2. There are no Wilson-line moduli as h0,1(DO7) = 0.

If the B-field is zero, this group is broken to U(4) by a properly quantised non-zero

gauge flux. In fact, FW anomaly cancellation implies the flux to be quantised such that

FD7 +
c1(DD7)

2
∈ H2(DD7,Z) . (3.23)

Since DD7 = DO7 is an odd cycle, the flux is necessary non-zero.20

We choose in the following the minimal choice for the B-field that satisfies (3.22):

B = −c1(Ds)

2
=

Ds

2
. (3.25)

We consider a gauge flux FD7 on the brane world-volume which is a linear combination of

pulled back two-forms from the CY three-fold. Since the intersections of X3, cf. (3.2), im-

ply that i∗DO7
Dq1 = i∗DO7

Dq2 = 0, the flux can only be a linear combination of i∗DO7
Db

and i∗DO7
Ds which we still call Db and Ds by abuse of notation. By taking into ac-

count (3.23), (3.25) and c1(DO7) = −Db + Ds, the generic invariant and quantised flux

on the brane is:

FD7 = FD7 − i∗DO7
B =

(

nb +
1

2

)

Db + (ns − 1)Ds , (3.26)

with nb, ns ∈ Z. On the image stack the flux is the opposite. Given that the flux along Db

cannot be cancelled due to our B-field choice, FD7 is different from zero. This has a few

consequences:

20Alternatively, if we choose the B-field to be (consistently with (3.22)):

B = −
c1(DO7)

2
=

Db

2
−

Ds

2
, (3.24)

the gauge invariant flux can be set to zero, FD7 = FD7 − i∗DO7
B = 0. Thus, the SO(8) gauge group is

unbroken. By switching on a proper rigidifying flux, we could lift the deformation moduli [26, 50, 51].

Hence, for the B-field (3.24), we have a pure super Yang-Mills theory in the hidden sector which undergoes

gaugino condensation. However, as we shall see in section 4.2, this setup would not give rise to any D-term

associated to an anomalous U(1) living on DD7 which is a necessary ingredient to obtain de Sitter vacua.
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• FD7 6= 0 breaks SO(8) → SU(4) × U(1) where the anomalous U(1) factor gives rise

to a D-term contribution to the scalar potential. The corresponding Fayet-Iliopoulos

(FI) term reads [52]:

ξD7 =
1

V

∫

DD7

J ∧ FD7 =
3

V

[

(2nb + 1)
tb
2
+ (1− ns)ts

]

. (3.27)

• FD7 6= 0 generates massless chiral matter living on the hidden sector D7-branes.

The number of chiral fields in the antisymmetric representation of U(4) is (see for

instance [53]):

IU(4) =
1

2
ID7−D7′ + ID7−O7 , (3.28)

where:

ID7−D7′ =

∫

DD7∩DD7′

(FD7−FD7′) = 2

∫

X3

DD7∧DD7∧FD7 = 3(2nb+1)−6(1−ns) ,

since DD7′ = DD7 and FD7′ = −FD7, while:

ID7−O7 =

∫

DD7∩DO7

FD7 =
1

2
ID7−D7′ , (3.29)

as DO7 = DD7. Hence (3.28) reduces to IU(4) = ID7−D7′ .

• FD7 6= 0 induces chiral states between the D7-stack and the E3-instanton. The

number of E3 zero-modes in the fundamental representation of the hidden U(4) gauge

group is [46, 54–56]:

ID7−E3 =

∫

DD7∩Ds

(FD7 − FE3) =

∫

DD7∩Ds

FD7 = 3(1− ns) . (3.30)

The presence of chiral E3 zero-modes can prevent the contribution of the E3 instan-

ton to the superpotential. When such chiral states are present, we only obtain a non-zero

instanton contribution to the superpotential when the scalar component of the chiral super-

field prefactor obtains a non-zero VEV [57, 58]. Therefore, to avoid this possible problem,

we consider ns = 1 so that ID7−E3 vanishes. We finally have:

ID7−E3 = 0 , IU(4) = 3(2nb + 1) and ξD7 =
IU(4)

2

tb
V . (3.31)

The D3-charge of this configuration (including the four O3-planes) is:

Qhid
D3 = −nO3

4
− 1

2
χ(DO7) + 8

(

− 1

2

∫

DO7

F2
D7

)

= −19− 3(1 + 2nb)
2 = −22 , (3.32)

where at the end we set nb = −1.
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4 Moduli stabilisation

We have now collected all the ingredients to proceed with the discussion of moduli sta-

bilisation in the explicit example. In section 4.1 we stabilise of the dilaton and complex

structure moduli using background fluxes. In section 4.2 we come then to the stabilisation

of the Kähler moduli. Our discussion is based on the geometry of the CY three-fold X3

introduced in section 2.2.2 and the associated brane setup discussed in the previous section.

The results are compared to the ones obtained for the three-fold P
4
[1,1,1,6,9][18]. Equipped

with the explicit flux solutions, we then proceed with the stabilisation of the Kähler moduli

and find explicit de Sitter minima with TeV-scale soft masses.

4.1 Dilaton and complex structure moduli stabilisation

In section 2.2.2 we obtained the pre-potential (2.28) and all the corresponding periods. Let

us now proceed with the stabilisation of the dilaton and complex structure moduli. We

turn on flux only along three-cycles which are invariant under Z3
3. The complex structure

moduli which are not invariant under the discrete symmetry are stabilised such that the

Calabi-Yau is symmetric under the GP-group Z
3
3, i.e. zero, following exactly the arguments

outlined in section 2.2.1. Hence, they are not present in our prepotential.

We are then left with the stabilisation of the (four) invariant u-moduli and the dilaton.

The imaginary self-dual (ISD) condition for the fluxes halves the number of independent

flux choices. We consider in the following fluxes with a positive D3 tadpole, which is a

necessary condition for the ISD condition. We specify fluxes of the form:

(

M̃K

ÑK

)

=

(

−NK

MK

)

, (4.1)

which leaves us with 2×4+2 = 10 independent flux parameters. Indeed, in this parametrisa-

tion the D3 tadpole (2.12) becomes automatically positive semi-definite, QD3 =
∑

K

(

(M̃K)2 + (ÑK)2
)

. Furthermore, some flux configurations are related by SL(2,Z)

transformations which leads to further redundancies:
(

M̃K

ÑK

)

≃
(

−M̃K

−ÑK

)

≃
(

−ÑK

M̃K

)

≃
(

ÑK

−M̃K

)

. (4.2)

We are interested in SL(2,Z) invariant flux configurations with a tadpole QD3 ≤ 22−2ND3,

since the D3-tadpole of our setup in section 3.3 was −(22−2ND3) (cf. (3.32) after including

the contribution from the D3-branes at the singularities).

Looking at the prepotential (2.28) we observe an additional symmetry between the

complex structure moduli u2 and u3. This is related to the orientifold involution.21 To

consider orientifold invariant configurations, we need to restrict our analysis to minima

with u2 = u3 and flux choices which have equal fluxes corresponding to these two moduli.

21It is worthwhile to note that the generators K2 and K3, cf. (2.24), correspond to the monomials

α8 z
3
1 z

3
2 z

3
5 and α7 z

3
1 z

3
3 z

3
6 in the hypersurface equation (3.18). Therefore, setting u2 = u3 is linked with

the involution (3.10) of the CY three-fold.

– 19 –



J
H
E
P
0
5
(
2
0
1
4
)
0
0
1

This reduces the problem to eight independent flux choices and three complex structure

moduli.

From the prepotential (2.28) and a given flux choice we can calculate the scalar poten-

tial and, in particular, the covariant derivatives DiW . We are interested in the solutions

of DiW = 0 and would like to find such minima numerically as an analytic treatment

seems infeasible. To minimise the potential numerically in an efficient and reliable way, we

limit ourselves to the prepotential without the instanton corrections at first (in the mirror

symmetric language). Given a minimum for this setup, we check in a second step whether

the instanton corrections are small enough to keep this minimum stable at the computed

values of ui.

To solve this problem numerically, we use the openly available package Paramotopy [59],

which allows to scan over various flux choices more efficiently. Paramotopy relies on

Bertini [60] which is a homotopy continuation solver that produces solutions to polynomial

systems. This numerical analysis only identifies isolated minima but neglects continuous

ones. As we have to treat the conjugate of a complex structure modulus as an indepen-

dent variable during the numerical search with this code, we stress that this might neglect

various minima which are not found because they might be realised as continuous minima

in this larger system under consideration.

To simplify the system (2.3) further we can solve the dilaton equation explicitly. In-

deed, we find that

τ =
f · Π̄
h · Π̄ (4.3)

and a similar expression for its complex conjugate τ̄ solve the F-term condition

0 = ∂τW +W ∂τK = −h ·Π+ (f − τh) ·Π
(

− 1

τ − τ̄

)

,

where we used the Kähler potential (2.2) and the notation introduced in (2.9).

We can use this result to simplify the covariant derivatives for the complex structure

moduli as follows. First we expand the first equation in (2.3) explicitly as

0 = ∂iW +W ∂iK = (f − τh) · ∂iΠ− (f − τh) ·Π Π† · Σ · ∂iΠ
Π† · Σ ·Π .

Next, we cancel the denominator, then use (4.3) and cancel denominators again to obtain

0 = (Π† · Σ ·Π)(f · ∂iΠh · Π̄− f · Π̄h · ∂iΠ)− (f ·Πh · Π̄− f · Π̄h ·Π)(Π† · Σ · ∂iΠ) .

We use this equation as an input for the numerical minimisation which is a set of polynomial

equations. In complete analogy we can obtain the input for the covariant derivatives with

respect to the complex conjugated variables.

Under the above assumptions, we have searched for minima for each D3 tadpole in the

range between QD3 = 10, . . . , 20 for 100 randomly chosen flux configurations. On average

we find 2.59 solutions for a single flux configuration. At first many solutions correspond to

solutions outside the fundamental domain and with large instanton corrections, but we can

use the SL(2,Z) freedom to transform solutions into the fundamental domain. We show in
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QD3 (Ñi, M̃i) u1 u2,3 u4 τ gs |W0|

19 (1,−3, 0, 0, 0, 0, 2,−1) 4.39− 1.22i 19.3 + 0.971i −21.6 + 1.18i 2.21 + 2.58i 0.39 954.4

14 (1, 1, 1, 1, 3, 0, 0, 0) −5.99 + 2.69i 4.09 + 1.59i −0.115− 0.0581i −2.76 + 1.24i 0.8 82.66

14 (1, 0, 0, 1, 1,−3, 1, 0) 4.72 + 2.7i −3.92 + 1.94i 0.176− 0.0468i 4.14 + 1.32i 0.75 54.03

15 (2, 0, 2, 1, 0, 0,−1, 0) 28.+ 3.3i −11.4 + 2.62i 0.331− 0.0291i 6.72 + 1.3i 0.77 55.85

15 (1, 2, 1, 1, 1, 2,−1, 0) 1.49 + 0.861i −1.22 + 1.77i −0.201− 0.0276i −2.41 + 2.22i 0.45 36.44

18 (1, 2, 0, 2, 2, 2, 0,−1) 1.13 + 0.473i −0.327 + 2.02i −0.583 + 0.103i −1.5 + 3.44i 0.29 126.5

Table 1. Summary of all solutions which satisfy 0 < gs < 1 and obey |Finst|/|F | < 1,

maxi
(

|F i
inst

|
)

/|F | < 1. The flux configuration is given where the third and respectively seventh

entry denote the flux quanta Ñ2 = Ñ3 respectively M̃2 = X̃3 which are chosen to be the same as

described in the main text.

QD3 (Ñi, M̃i) gs W0 |W0| |Finst|/|F | maxi

(

|F i
inst|

)

/|F |

19 (1,−3, 0, 0, 0, 0, 2,−1) 0.39 618.+ 727.3i 954.4 0.0744 0.00976

14 (1, 1, 1, 1, 3, 0, 0, 0) 0.8 −41.33− 71.58i 82.66 0.731 0.0592

14 (1, 0, 0, 1, 1,−3, 1, 0) 0.75 −9.465 + 53.2i 54.03 0.723 0.051

15 (2, 0, 2, 1, 0, 0,−1, 0) 0.77 49.89 + 25.11i 55.85 0.0114 0.00387

15 (1, 2, 1, 1, 1, 2,−1, 0) 0.45 −30.06− 20.59i 36.44 0.788 0.0968

18 (1, 2, 0, 2, 2, 2, 0,−1) 0.29 −120.3− 38.86i 126.5 0.014 0.0257

Table 2. Examples of solutions which satisfy 0 < gs < 1 and obey |Finst|/|F | < 1,

maxi
(

|F i
inst

|
)

/|F | < 0.1. Here we show the respective size of their instanton contributions. Again

note that the third and respectively seventh entry for the flux configuration denote the entries for

Ñ2 = Ñ3 respectively M̃2 = M̃3 which are chosen to be the same as described in the main text.

F i
inst

denotes the leading order contribution in Finst in a given ui.

figure 3 the distribution in the (gs, |W0|)-plane after restricting to the fundamental domain:

most of the points (shown in gray) correspond to points with numerically large instanton

contributions, whereas for blue and red points the instanton contributions are numerically

small (satisfying |Finst|/|F | < 0.1 and maxi
(

|F i
inst|
)

/|F | < 0.1) taking instanton corrections

up-to order 2 (blue) and order 10 (red) into account. This numerical cut is chosen as in [27]

to guarantee that the instanton contributions to the (pre-)potential are at least an order

of magnitude smaller compared to the overall prepotential.

The distribution of minima (again before invoking the small contributions of the in-

stantons) in the fundamental domain is shown in figure 4.

Finally, in table 1 and 2, we display some minima with ‘small’ worldsheet instanton con-

tributions. For illustrative purposes we show a variety of solutions with different tadpoles,

flux configurations and different values for the stabilised moduli and flux superpotential,

requiring not necessarily the above smallness criteria applied in the distribution plots. As

explained above this is a necessary requirement for retaining the minimum obtained from

the classical terms also in the presence of the instanton corrections.

In order to have a consistent superspace derivative expansion in the 4D effective field

theory, one requires V ≫ |W0|3 [61]. This implies that the Kähler moduli have to be

stabilised such that V ≫ 103, respectively, V ≫ 106 depending on |W0|.
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Figure 3. Distribution of flux solutions in the (gs, |W0|)-plane in the fundamental domain after

performing appropriate SL(2,Z) transformations.
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Figure 4. Distribution of solutions in the fundamental domain of τ , i.e. in the (Re[τ ], Im[τ ] = 1/gs)

plane (top left). Next to it (top right) we show the distribution in the (Re[τ ], 1/ Im[τ ] = gs) plane.

The bottom shows the distribution of minima with respect to values of gs before restricting to small

worldsheet instanton corrections. Gray points correspond to points with large instanton corrections,

blue and red points have small contributions from instantons taking corrections up to order 2 and

10 into account.
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Figure 5. The same distributions as before but for P1,1,1,6,9. Distribution of solutions in the

fundamental domain of τ , i.e. in the (Re[τ ], Im[τ ] = 1/gs) plane (top). In the middle we show the

distribution in the (Re[τ ], 1/ Im[τ ] = gs) plane. The bottom shows the distribution of minima with

respect to values of gS before restricting to points with small worldsheet instanton corrections. Gray

points correspond to points with large instanton corrections, blue and red points have instanton

contributions that are small taking corrections up to order 2 and 14 into account (again requiring

|Finst|/|F | < 0.1 and maxi
(

|F i
inst

|
)

/|F | < 0.1).

To compare our results to previous analysis, we show in figure 5 the corresponding

distributions for P4
[1,1,1,6,9][18]. Note that the gray points in figures 3 and 4 are not solutions

of DW = 0 when W is the full type IIB superpotential. On the other hand, they satisfy

DŴ = 0, where Ŵ is the cubic polynomial in the ui arising from the prepotential without

instanton corrections as in (2.28). We can consider Ŵ as the superpotential for a toy

model. From the figures 3 and 4, we see that in this toy model we find results consistent

with a uniform distribution of W0 and gs.

4.2 Kähler moduli stabilisation

As we have seen in the previous section, the dilaton and the complex structure moduli can

be fixed supersymmetrically at semi-classical level by turning on quantised background

fluxes. For concreteness, we shall focus on the flux vacuum related to the last line in

table 1: the string coupling is in the perturbative regime, gs = 0.29, the VEV of the flux

superpotential is |W0| = 126.5 and the D3-charge of the flux is QD3 = 18, leaving space

for ND3 ≤ 2 D3-branes on top of the dP6 singularities.
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Definition of the Kähler moduli. Due to the no-scale property of the type IIB Kähler

potential for the Kähler moduli Ti, i = 1, . . . , h1,1(X3), KT−moduli = −2 lnV , the fluxes

do not induce any tree-level F-term potential for the T -moduli. The Kähler moduli can

however be lifted by either perturbative or non-perturbative effects. A general strategy to

lift these remaining flat directions in a way compatible with the presence of chirality has

been described in [15, 16]. Here we shall simply apply the same stabilisation scheme to our

particular example.

The total number of Kähler moduli is h1,1(X3) = 4. Three of them are even under the

orientifold and are defined as:

Tb = τb + i

(∫

Db

C4

)

, Ts = τs + i

(∫

Ds

C4

)

, Tvs = τvs + i

(∫

Dq1+Dq2

C4

)

,

where the visible sector four-cycle volume is τvs = τq1 + τq2 . On the other hand, the

orientifold odd Kähler modulus is defined as [62]:

G = b+ ic ≡
(∫

Dq1−Dq2

B2

)

+ i

(∫

Dq1−Dq2

C2

)

. (4.4)

Leading order stabilisation. The potential for the Kähler moduli can be organised in

an expansion in inverse powers of the overall CY volume V . As we shall see, the leading

order contribution comes from D-terms which depend on the Kähler moduli because gauge

fluxes induce T -dependent FI-terms.

In addition to the anomalous U(1) living on the stack of D7-branes on top of the O7-

plane, there are two additional anomalous U(1) symmetries belonging to the gauge theory

located at the dP6 singularity.22 Thus the total D-term potential looks like:

VD = V quiver
D + V bulk

D , (4.5)

where:

V quiver
D =

1

Re(fD31)

(

∑

i

qD31i|Ci|2−ξD31

)2

+
1

Re(fD32)

(

∑

i

qD32i|Ci|2−ξD32

)2

, (4.6)

and:

V bulk
D =

1

Re(fD7)

(

∑

i

qD7i|φi|2 − ξD7

)2

. (4.7)

In the previous expressions, the gauge kinetic functions are given by:

fD31 = τ + qD31Tvs , fD32 = τ + qD32G and fD7 = Tb − Ts + kτ , (4.8)

where qD3i are the U(1) charges of Tvs and G while k is a parameter which depends on

FD7. The Ci and φi are canonically normalised matter fields with U(1) charges qD31i, qD32i

22The gauge theory associated to any dPn singularity, with n = 0, 1, . . . , 8, gives always rise to two

anomalous U(1)’s.
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and qD7i living respectively on the fractional D3- and D7-branes.23 The FI-terms ξD31 and

ξD32 read [63]:

ξD31 = 4qD31

τvs
V and ξD32 = 4qD32

b

V , (4.9)

while ξD7 is given in (3.31).

One can easily see that the D-term potential scales as V quiver
D ∼ V bulk

D ∼ O(1/V2).

This is of the same order as the flux-generated F-term potential used to fix τ and all the

complex structure moduli:

V flux
F ≃ 1

V2

(

|DτW |2 + |DuW |2
)

. (4.10)

In order to have a consistent stabilisation procedure, we have therefore to set VD = 0 so

that supersymmetry is preserved at this order of expansion in inverse powers of V . This

condition gives:

ξD31 =
∑

i

qD31i|Ci|2, ξD32 =
∑

i

qD32i|Ci|2 and ξD7 =
∑

i

qD7i|φi|2. (4.11)

These relations fix only three combinations of closed and open string moduli, correspond-

ing to the combinations of axions which get eaten up by the anomalous U(1)s via the

Stückelberg mechanism. The mass of each Abelian gauge boson is proportional to the

open and closed string axion decay constants fop
ax,j and f cl

ax,j [64]:

M2
U(1),j ≃

1

Re(fj)

[

(fop
ax,j)

2 + (f cl
ax,j)

2
]

, (4.12)

where:

(fop
ax,j)

2 ≃ ξj and (f cl
ax,j)

2 ≃ ∂2K

∂T 2
j

. (4.13)

For the anomalous U(1) on the D7-stack in the bulk, we have:

(fop
ax,D7)

2 ≃ ξD7 ≃
1

τb
≫ (f cl

ax,D7)
2 ≃ ∂2K

∂T 2
b

≃ 1

τ2b
for τb ∼ V2/3 ≫ 1 , (4.14)

implying that the combination of moduli fixed by D-terms is mostly given by open string

modes. We can therefore consider τb, or equivalently V , as a flat direction at this level of

approximation. As can be seen from (4.12), the anomalous U(1) develops a mass of the

order of the Kaluza-Klein scale: MU(1),D7 ∼ MP /τb ∼ MP /V2/3 ∼ MKK .

On the other hand, the Abelian gauge bosons at the dP6 singularity become massive

by eating up the closed string axions since:

K ⊃ (Tvs + T̄vs)
2

V ⇒ (fop
ax,D31

)2 ≃ τvs
V ≪ (f cl

ax,D31)
2 ≃ ∂2K

∂T 2
vs

≃ 1

V for τvs ≪ 1 ,

and similarly for the second U(1). Hence the D-terms from the quiver construction fix

τvs and b. The corresponding axions get eaten up by the two anomalous U(1)s which

from (4.12) acquire a mass of the order of the string scale: MU(1),D3 ∼ MP /V1/2 ∼ Ms.

Similarly to τb, the matter fields |Ci| remain massless at this level of approximation.

23Note that we denoted the fields X, Y , Z of section 3.2 as Ci, while the φi are fields in the anti-symmetric

representation of U(4), cf. (56).
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Subleading order stabilisation. In order to fix Tb, Ts and |Ci| we have to consider

subleading F-term contributions.

Visible sector matter fields. Focusing on the stabilisation of the visible sector matter fields,

we have (we restrict to the case of just one open string field C where we set the VEV of

its phase to zero without loss of generality24):

VF (|C|) = c2m
2
0|C|2 + c3A|C|3 + c4λ|C|4 +O(|C|5)− d4

τ2vs
V3

[

1 +O
(

1

V

)]

≃ c2
|C|2
Vα2

+ c3
|C|3
Vα3

+

(

c4
Vα4

− d4
V

)

|C|4 , (4.15)

where the first three terms come from expanding the F-term scalar potential in powers of

|C| up to fourth order, while the last term comes from the breaking of the no-scale structure

by τvs which we wrote in terms of |C| using the first relation in (4.11). In more detail, the

quadratic term is proportional to the soft scalar mass of |C| which we have parametrised as

m2
0 ≃ V−α2 , the cubic term is proportional to the soft A-term parametrised as A ≃ V−α3 ,

while the quartic term is proportional to the coupling λ ≃ V−α4 .

Depending on the sign of c2, the VEV of |C| can be zero or non-vanishing. If c2 > 0,

then |C| = 0, implying, by (4.11), ξD3,i = 0 ∀i = 1, 2 which fixes τvs = b = 0. This ensures

that the dP6 divisor supporting the visible sector is really collapsed to zero size.

If instead the matter field |C| develops a tachyonic mass from supersymmetry breaking,

i.e. c2 < 0, then, depending on the signs of the different coefficients in (4.15), |C| can develop

a non-zero VEV. In this case, one may worry that τvs gets fixed at values larger than the

string scale, so resolving the dP6 singularity. However this is not the case. In fact, for

models with just fractional D3-branes, the visible sector is sequestered from supersymmetry

breaking, leading to α3 = 2, α4 = 1 and either α2 = 3 or α2 = 4, depending on the moduli-

dependence of the Kähler metric for matter fields [65]. Thus |C| ≃ MP /Vα2−2, implying

from (4.11) that τvs ≃ V5−2α2 , with a similar relation holding for b. We then see that for

α2 = 3 τvs ∼ V−1 ≪ 1, while for α2 = 4 τvs ∼ V−3 ≪ 1, and so in both cases the dP6

divisor is still in the singular regime.

An interesting implication of this case is that the phase θ of C = |C| eiθ can behave as

the QCD axion for α = 3. In fact, its decay constant fop
ax is set by the above VEV of |C|

which can take two different values (using V ∼ 108 as derived below):

fop
ax ≃ MP

V ≃ 1010GeV for α2 = 3 and fop
ax ≃ MP

V2
≃ 100GeV for α2 = 4 .

The value of fop
ax for α2 = 3 lies inside the phenomenologically allowed window for the QCD

axion: 109GeV . fQCD . 1012GeV while the case with α2 = 4 seems to be ruled out.

Note that C has to be a SM singlet due to the large value of its VEV. Moreover, there are

two anomalous U(1)s at the dP6 singularity, and so only one combination of open string

axions can play the rôle of the QCD axion and get massive by QCD instantons whereas

the other combination would remain massless.
24A different value of the phase could change the sign of c3, for example, but given that we are not

working out the exact sign of c3, the exact value of the phase is irrelevant for our conclusions.
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In the presence of flavour D7-branes, threshold effects de-sequester the visible sector

inducing soft terms of order the gravitino mass, and so α2 = 2. In this case c2 has

to be positive otherwise τvs would develop a VEV of order unity, thus resolving the dP6

singularity. The matter field |C| would therefore have a vanishing VEV which could however

become non-zero via RG running below the string scale. τvs would then develop a very

small VEV compatible with the singular regime and one could obtain a viable QCD axion

from the phase of a matter field analogous to the situation described above. A similar

mechanism could help to have a viable QCD axion also in the case with just fractional

D3-branes and α2 = 4.

Kähler moduli in the geometric regime. The scalar potential for the Kähler moduli Ts

and Tb receives three different leading order contributions: Vnp from non-perturbative

superpotential effects, Vα′ from perturbative corrections to the Kähler potential and soft

terms Vsoft from matter fields living on bulk D7-branes.

The expression for Vnp is [5]:

Vnp =
8

3λ
(asAs)

2√τs
e−2 asτs

V − 4 asAs|W0|τs
e−asτs

V2
, (4.16)

where we have already minimised with respect to the Ts-axion and we have traded τb for

V ≃ λτ
3/2
b . This potential is generated by an E3-instanton wrapping Ds with as = 2π,

while the prefactor As is function of the stabilised complex structure moduli as well as

of potential open string moduli, whose exact structure is hard to compute in practice.

This instanton contributes to the superpotential if the B-field is chosen as in (3.25). If

one instead performs the flux choice (3.24), gaugino condensation in the SO(8) pure super

Yang-Mills theory on the bulk D7-branes gives rise to a tiny contribution proportional to

e−
π
3
τb which can be neglected. Moreover, a possible contribution from a rank-two instanton

on Ds would also be negligible for τs > 1.

The contribution Vα′ takes the form [66]:

Vα′ =
3

4

ζ|W0|2

g
3/2
s V3

, (4.17)

where ζ = −χ(X3)ζ(3)/[2(2π)
3] ≃ 0.32 using (2.20) for the Euler number of X3. Fur-

ther perturbative corrections arise due to string loop effects [67, 68].25 Because of the

‘extended no-scale structure’ [74, 75], these corrections are negligible since they scale as

V−10/3 whereas Vα′ behaves as V−3.

The last contribution Vsoft reads:

Vsoft = c
|W0|2

V2[ln(V/|W0|)]2
|φ|2 , (4.18)

where the soft scalar mass for the matter field φ living in the bulk scales as the gravitino

mass m3/2 = eK/2|W | ≃ |W0|/V suppressed by a factor of order ln(MP /m3/2) [76, 77] (c is

25For recent activity on stringy perturbative corrections see [69–73].
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an O(1) coefficient). Employing the last relation in (4.11) one obtains:

Vsoft = p
|W0|2

V8/3[ln(V/|W0|)]2
, with p =

c IU(4)

21/3qD7
, (4.19)

with IU(4) given in (3.28).

Minimising the total F-term potential V tot
F = Vnp + Vα′ + Vsoft with respect to τs in

the limit ǫ ≡ 1/(asτs) ≪ 1, we obtain:

e−asτs ≃ 3λ
√
τs

4asAs

|W0|
V ⇒ τs(V) ≃

1

as
ln

( V
|W0|

)

. (4.20)

Plugging this result into V tot
F , we find:

V ≃ |W0|2
V3

[

3ζ

4g
3/2
s

− 3λ

2
τs(V)3/2 + p

V1/3

[asτs(V)]2
]

. (4.21)

The minimisation with respect to V then gives:

3ζ

4g
3/2
s

≃ 3λ

2
τs(V)3/2

(

1− 1

2asτs(V)

)

− 8

9
p

V1/3

[asτs(V)]2
. (4.22)

Substituting this result in (4.21), the leading order contribution to the vacuum energy

becomes:

〈V tot
F 〉 ≃ |W0|2

〈V〉3
√

asτs(V)
[

− 3λ

4 a
3/2
s

+
p

9

〈V〉1/3
[asτs(V)]5/2

]

. (4.23)

Setting this expression equal to zero and plugging the result for p back in (4.22), we find:

3ζ

4g
3/2
s

≃ 3λ

2
τ3/2s

(

1 +O(ǫ)
)

. (4.24)

For gs = 0.29, |W0| = 126.5 and λ = 1
3

√

2
3 from (3.7), (4.24) yields τs ≃ 2.42 which fixes

the divisor Ds supporting the E3-instanton in the geometric regime above the string scale.

Setting as = 2π, the relation (4.20) then yields V ≃ 2.55 · 107/As.

We compute the range for the coefficient As by imposing consistency with TeV-scale

supersymmetry.26 If there are no flavour branes and the visible sector is sequestered, the

gaugino masses scale as [65]:

M1/2 =
3γζ eKcs/2

4
√
2gs

|W0|MP

V2
≃ 36.5TeV γ A2

s , (4.25)

where γ is an O(1) function of the complex structure moduli which determines the shift of

the dilaton VEV due to α′ effects, and eKcs ≃ 1/55.9 by direct computation in our explicit

example. If γ = 1 and As = 0.2, one obtains M1/2 ≃ 1.5TeV. The CY volume is then

V ≃ 1.3 ·108 while the parameter p becomes p ≃ 0.2. As can be seen from (4.19), p depends

26Note that the coefficient As depends on open and closed strings (see [78] for the dependence of the

prefactor on D3 brane moduli). An explicit stabilisation of this quantity in this range for TeV scale

supersymmetry is an additional constraint on open/closed string moduli stabilisation.
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just on the flux coefficient nb introduced in (3.26), the U(1) charge qD7 and the parameter

c, and so we do not have enough freedom to tune the cosmological constant. This was

expected from the beginning since we chose a particular value of the flux superpotential

|W0|. However, p turns out to be of order unity, implying that in order to find a solution

with vanishing cosmological constant one has to vary |W0| around the value considered in

this example, |W0| = 126.5.

If the visible sector is not sequestered from supersymmetry breaking, then the soft

terms become of the order of the gravitino mass and a larger value of V is needed, resulting

in a larger tuning of As. We shall therefore focus on the sequestered case where the string

scale turns out to be Ms =
√
πg

1/4
s MP /

√
V ≃ 2 · 1014GeV. The unification scale is instead

set by the winding scale MW ≃ MsV1/6 ≃ 5 ·1015GeV. The gravitino mass is intermediate,

m3/2 = eKcs/2
√

gs/2|W0|MP /V ≃ 6 · 1010GeV, whereas the moduli masses scale as:

mτs ≃ m3/2 ln(MP /m3/2) ≃ 1 · 1012GeV and mV ≃
m3/2√

V
≃ 5 · 106GeV, (4.26)

showing that there is no cosmological moduli problem. Recall that the cosmological moduli

problem places a lower bound on the moduli masses (mmod & O(10)TeV, cf. [79–81]). Both

τvs and b get a mass of order the string scale, justifying the fact that they can be integrated

out. On the other hand, the complex structure moduli and the dilaton develop a mass of

order m3/2. They can however still be integrated out at leading order since they are

decoupled from the T -moduli (at least at classical level the Kähler potential factorises).

As far as the axions are concerned, the Ts-axion gets a mass of order mτs while the volume

axion is massless at this level of approximation. It will only get a tiny mass by subleading

non-perturbative effects which scale as e−V2/3 ≪ 1. This bulk axion behaves as dark

radiation [82, 83] and gets produced by the decay of the light volume modulus which drives

reheating after the end of inflation.

5 Summary and conclusions

The general ideas regarding realistic local string models and moduli stabilisation are based

on several reasonable assumptions but it is important to substantiate them with concrete

realisations in order to put those proposals on firmer grounds. We have been able to com-

bine several ideas that have been implemented independently before — chiral matter at

branes at singularities, fluxes to stabilise complex structure moduli and quantum effects

to stabilise Kähler moduli — in one single framework. This is a technically challenging

achievement and represents a clear step forward towards the explicit construction of fully

realistic models. It is very encouraging that properties such as the unification and the su-

persymmetry breaking scale are obtained at realistic values while at the same time allowing

for de Sitter vacua.

The procedure followed here has been systematic:

• First of all, we find appropriate CY manifolds that satisfy the phenomenological re-

quirements: having at least four Kähler moduli, two rigid cycles mapped into each
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other by orientifold involution to guarantee a visible sector with U(n) gauge sym-

metries, an extra rigid cycle in the geometric regime for non-perturbative moduli

stabilisation and an extra cycle which controls the overall volume. Furthermore,

these varieties admit suitable discrete symmetries to effectively reduce the number of

complex structure moduli.

• We identify the orientifold action and its associated O-planes. We determine the

structure and location of D-branes wrapping different cycles in order to satisfy all

consistency conditions. In addition, we make sure that at least one cycle allows a

non-zero contribution to the non-perturbative superpotential.

• In order to stabilise the dilaton and the complex structure moduli, we turn on arbi-

trary fluxes on three-cycles invariant under the discrete symmetry. This reduces the

complex structure stabilisation to a manageable problem.

• All geometric moduli are stabilised in a self-consistent manner. Assuming that the

overall volume is large enough to justify a 1/V expansion, we start with the dominant

terms of order 1/V2. These are the F-terms for the dilaton and the complex structure

moduli, as well as the D-terms. Since all of them are positive definite, they minimise

the overall scalar potential at zero value to leading order in 1/V . The F-terms fix the

dilaton and complex structure moduli. The D-terms induced by anomalous U(1)s,

both, at the visible and hidden sector, fix the value of matter fields in the hidden sector

and blow-up modes in the visible sector. The corresponding axion fields get eaten by

the Abelian gauge bosons as in the standard Stückelberg mechanism. At next order,

i.e. 1/V3, the geometric Kähler moduli are stabilised as in the standard LVS scenario,

giving rise to an exponentially large volume and supersymmetry breaking.

Besides the three ‘standard terms’ that determine the large volume minimum, there

are non-vanishing F-terms of bulk matter fields residing on the brane wrapping the

large cycle. These additional contributions are induced by D-term stabilisation and

supersymmetry breaking. They add a positive term which uplifts the value of the

minimum.

Depending on the VEV of the flux superpotential |W0|, the minimum can be AdS,

dS or Minkowski. We select the value (in the dense uniform range) that gives ap-

proximately Minkowski and then let the dense distribution of values around it do the

tuning a la Bousso-Polchinski (although we do not address this part of the framework

here).

Depending on the structure of the induced soft terms in the visible sector, the corre-

sponding matter fields get a zero or non-zero VEV. In turn, the visible sector blow-up

mode develops a VEV which can be either vanishing or suppressed by inverse powers

of V , justifying the validity of working in the singularity regime.

• The scales determined by this stabilisation procedure acquire realistic values, in the

sense that the string scale is close to the standard GUT scale, while the soft terms

are either of the order of the TeV-scale (fitting with a sequestered scenario) or of the
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order of the gravitino mass which is heavy (intermediate scale). In both scenarios

the lightest volume modulus is heavier (106–107GeV) than the TeV scale, e.g. the

gaugino mass scale in the sequestered case. Therefore, there is no cosmological mod-

uli problem and the decay of this mode determines reheating dominating late time

cosmology.

• In the case with a non-vanishing VEV for a visible sector matter field, its phase

becomes a potential candidate for the QCD axion with a decay constant in the allowed

range and similar to the (large) value of the gravitino mass ∼ 1010GeV. The detailed

structure of VEVs for matter fields is more model-dependent, depending in part on

the distribution of D3-branes at the dP6 singularity. Since there are many options we

will leave this for a future treatment, as well as a discussion of the phenomenology

of this class of models.

It is interesting to note that the values for |W0| found in our analysis are concentrated

within the range 1 . |W0| . 100.27 This is consistent with the following two important

requirements necessary to trust the 4D low-energy theory. Firstly, we must have V ≫ |W0|3
in order to control the superspace derivative expansion by having a gravitino mass smaller

than the Kaluza-Klein scale MKK [61]. Secondly, we need V ≫ |W0|6 to have a vacuum

energy density smaller than M4
KK [61, 84, 85]. However, the last constraint applies only

to AdS vacua, and so it does not affect our Minkowski or slightly de Sitter solutions,

whereas the first constraint is more generic. For |W0| ≃ 100 it requires a volume of order

V ≫ 106. This bound can be easily satisfied in the LVS scenario due to the presence of

an exponentially large volume. In the explicit minimisation carried out in section 4.2, we

actually found a minimum with V ≃ 108.

There are many open questions to be addressed. In order to incorporate cosmological

issues into this framework, it would be interesting to considering concrete CY manifolds

which allow for a realisation of inflation. Two of the models in appendix B have h1,1 = 5

and are K3-fibred. These are the right features to realise different promising models where

the inflaton is a Kähler modulus [86–89]. The moduli space of the open string sector needs

to be studied in order to combine moduli stabilisation with a realistic higgsing towards the

Standard Model gauge group.

Moreover, in this paper we turned on flux quanta only along three-cycles which are

invariant under an appropriate discrete symmetry of the complex structure moduli space.

Even in this simpler case, we could find only a few solutions to the minimisation equations

which are completely under control, in the sense that the instanton corrections determine

only a negligible shift of the VEV of the u-moduli. More generically, in order to perform

a proper statistical analysis of flux vacua, to understand the distribution of phenomeno-

logically interesting mass scales in the landscape, one should turn on flux quanta on all

three-cycles. In addition one needs to be able to find solutions to the complete minimisation

equations including also instanton effects. This task is a real technical challenge that we

27Notice that for technical reasons, we have turned on only a small number of flux quanta. Very small

values of |W0|, as required for KKLT, are expected to emerge only when hundreds of flux quanta are

switched on.
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leave for future work. However, we still think that our paper represents an important step

forward in the understanding of crucial questions, like for example the explicit realisation

of the Bousso-Polchinski scenario for the cosmological constant [90].

Acknowledgments

We would like to thank Martin Bies, Mirjam Cvetič, Andres Collinucci, Jim Halverson,
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A Periods and Picard-Fuchs equations

In this appendix we review some standard facts about mirror symmetry, special geometry

and the PF-system that are omitted in the main text for brevity of the discussion, but

might prove helpful for the interested reader. We also present explicit formulas for the

period vector Π and the flux superpotential Wflux in terms of the prepotential F . For more

details we refer to standard references, e.g. [29, 91, 92]. We closely follow [93].

A.1 Periods as solutions to the Picard-Fuchs equations

In this section we collect some derivations and explanations that have been skipped in

the main text. We will be as brief as possible and refer to the context of the main text

frequently, in order to avoid repetitions.

Next we discuss the structure of the complex structure moduli space Mcs of M3. This

structure is captured by the dependence of the holomorphic three-form Ω and its periods

Π on the complex structure moduli z. The periods are solutions to the PF differential

system. In the following we are mostly interested in the periods at the point of large

complex structure z ∼ 0. Invoking mirror symmetry, the periods in the symplectic basis

of three-cycles on M3 are determined by classical intersections on M̃3. In turn worldsheet-

instanton corrections to the Kähler moduli space of M̃3 are predicted by the expansion of

the periods of M3 at large complex structure/large volume.

The complex structure dependence of the holomorphic three-form Ω is conveniently

parametrized by its periods, introduced in the period expansion (2.4) w.r.t. an integral

symplectic basis (αK , βK) of H3(M3,Z). The basis elements obey the elementary relations

∫

αK ∧ βL = −
∫

βL ∧ αK = δLK ,

∫

αK ∧ αL = −
∫

βL ∧ βK = 0 . (A.1)

In terms of the Poincaré dual basis (AK , BL) of H3(M3,Z) defined via

∫

AK

αL = −
∫

BL

βK = δKL (A.2)
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the periods of Ω can be directly defined by the following integrals

XK =

∫

AK

Ω , FK =

∫

BK

Ω . (A.3)

The XK form projective coordinates on the complex structure moduli space since Ω is only

defined up to multiplication with ef for a holomorphic function f on the complex structure

moduli space.28 Mathematically the existence of these coordinates reflects the isomorphism

H1(M3, TM3) ∼= H(2,1)(M3) and the local Torelli theorem. Thus the dimension of complex

structure moduli space is h(2,1) and the periods F have to be functions of the X. Employing

Griffiths transversality [95, 96] in the form

0 =

∫

M3

Ω ∧ ∂

∂XI
Ω , (A.4)

it can be shown that FK = XL ∂
∂XKFL = ∂

∂XK (XLFL) − FI , which immediately im-

plies (2.5). The gauge freedom can be fixed by setting ef = 1/X0 yielding (2.6) and (2.7).

Next, we note that the natural hermitian metric

h = i

∫

Ω ∧ Ω̄ (A.5)

on the vacuum line bundle L spanned by Ω [94] also enters the Kähler potential (2.9) on

the complex structure moduli space. Similarly h is used to construct the hermitian/Chern

connection on the holomorphic line bundle L,

Ai = ∂i log(h) = −∂iKcs =
i

h
(X̄K∂iFK − F̄ī) . (A.6)

From this one can determine the covariant derivative on L as Di = ∂i+∂iKcs, which has to

be used e.g. when evaluating the F-terms (2.3). Theses definitions imply that the curvature

form of the bundle L is also the Kähler form on its base manifold, i.e. the complex structure

moduli space. This is one central property of N = 2 special geometry.

As mentioned in the main text, the main objective in order to control the complex

structure sector of a CY three-fold M3 is to compute the prepotential (2.6). This is ac-

complished by solving the associated PF-system, which is constructed as follows. For toric

hypersurface the explicit algebraic representation of a family of CY hypersurfaces [97] in a

toric variety P∆ associated to ∆Z
4 reads

P (x, a) =
∑

pj∈∆Z̃
4

aj
∏

i

x
〈vi,p〉+1
i . (A.7)

Here, we introduced the projective coordinates xi to each vertex vi of ∆
Z
4 and pj are the

integral points in the dual polytope ∆M̃
4 . The constants aj are labeled by these points and

constitute the complex structure moduli of M3. It can be shown, using a residue integral

representation for Ω [95, 96, 98–101], that directly involve the constraint (A.7), that Ω

28More precisely Ω is a section of the vacuum line bundle L over Mcs, see [94].
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obeys the Gelfand-Kapranov-Zelevinski (GKZ) differential system [102, 103]. This system

is constituted of the operators Ll and Zk. They are completely determined by the toric

data encoded in the points ṽj and ℓ(i)-vectors ℓ(a) of ∆M̃
4 as

Li =
∏

ℓ
(i)
j >0

(

∂

∂aj

)ℓ
(i)
j

−
∏

ℓ
(i)
j <0

(

∂

∂aj

)−ℓ
(i)
j

, i = 1, . . . , k , (A.8)

that are the actual PF operators annihilating the periods and operators

Zj =
∑

n

(v̄n)
jϑn − βj , j = 0, . . . , 4 . (A.9)

Here β = (−1, 0, 0, 0, 0) is the so-called exponent of the GKZ-system and ϑn = an
∂

∂an

denote logarithmic derivatives. We have embedded the points ṽn into a hypersurface at

distance 1 away from the origin by defining v̄n = (1, ṽn) so that all zeroth components are

(v̄n)
0 = 1.

The differential equations (A.9) are easily solved by introducing coordinates

zi = (−)ℓ
(i)
0

k+4
∏

j=0

a
ℓ
(i)
j

j , i = 1, . . . k , (A.10)

on the complex structure moduli space of M3. In these so-called algebraic coordinates the

point of maximally unipotent monodromy, also denoted as the point of large volume/large

complex structure, is centred at zi = 0. Indeed by solving the GKZ-system in these

coordinates explicitly using the Frobenius method [104, 105] the obtained solutions have

the well-known log-grading. There is a a unique holomorphic power series solution X0 and

solutions starting with
(

ln(zi)
)k

for k = 0, . . . , 3. This structure is expected by mirror

symmetry due to the shift symmetry of the NS-NS B-field, bi 7→ bi + 1, in the Type IIA

theory, which implies on the B-model side a maximal logarithmic degeneration of periods

near the point zi = 0 [104, 106].

In order to relate these solutions with the geometrical periods Π in (2.8) of Ω in the

integral symplectic basis (αK , βK) one employs mirror symmetry. The mirror map (2.14)

is constructed by identifying the Xi in (2.7) with the single-logarithmic solutions in the

zi. Then, we have to find the prepotential (2.13) among the solutions of the PF system,

which also fixes all other periods by (2.8). It can be argued invoking the matching of

D-brane central charges under mirror symmetry [30] that, in a suitable integral basis,

the subleading terms of F are given by the classical intersections29 (2.15) of the mirror

three-fold M̃3, however, with

Kij =
1

2

∫

M̃3

ι∗
(

c1(Kj)
)

∧ JimodZ . (A.11)

29We note that the last period in (2.8) only matches the vanishing period at the conifold of the mirror

quintic [106] if Kij is shifted by 8, which amounts to replace the integrand of Kij by
(

J2 + c2(M3)
)

with

c2(M3) denoting the second Chern class of M̃3 [107].
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Here c1(Kj) denotes the first Chern class of the divisor Kj and ι∗ = PM̃3
◦ ι∗ ◦ P−1

Kj
is the

Gysin homomorphism where PM̃3
(PK̃j

) is the Poincaré-duality map on M̃3 (Kj) and ι∗ is

the push-forward on homology of the embedding ι : Kj → M̃3. Thus, ι∗
(

c1(Kj)
)

is a four-

form. It is calculated by first noting the projection formula [108] for a map f : X → X ′

between two algebraic varieties X, X ′,

f∗
(

[Y ] · f∗([Y ′])
)

= f∗([Y ]) · [Y ′] (A.12)

for two subvarieties Y , Y ′ of X respectively X ′ with corresponding homology classes [Y ],

[Y ′]. Applying this to the embedding ι we obtain

ι∗
(

c1(Kj)
)

· Ji = ι∗
(

c1(Kj) · ι∗(Ji)
)

= PM̃3
([pt])

∫

Kj

c1(Kj)ι
∗(Ji) (A.13)

where Poincaré duality in the first and second equation is understood. Here we have

used that on Kj any four-form is proportional to the top form on Kj with proportionality

factor given by its integral over Kj . Using the adjunction formula for Kj in M̃3 to show

c1(Kj) = −ι∗Jj , we finally obtain

Kij = −1

2

∫

M̃3

Ji ∧ J2
j modZ , (A.14)

which is precisely the expression in (2.15).

For reference in the main text, we conclude this appendix by presenting the period

vector (2.8) in the integral basis that follows from the prepotential (2.13):

Π = X0











1

ui

1
3!Kijk u

iujuk +Kiu
i +K0 +

∑

β n
0
β

(

2Li3(q
β)− diu

iLi2(q
β)
)

−1
2Kijk u

juk −Kij u
j +Ki +

∑

β n
0
βdi Li2(q

β)











. (A.15)

We also display flux superpotentials obtained for this period vector

Wflux = X0

[

N̂0 + M̂0K0 + M̂ iKi + (N̂i − M̂ jKij + M̂0Ki)u
i − 1

2
M̂ iKijk u

juk

+
1

3!
M̂0Kijk u

iujuk + (M̂ i − M̂0ui)
∑

β

din
0
β Li2(q

β) + 2M̂0
∑

β

n0
β Li3(q

β)

]

(A.16)

where the flux G3 = F3 − τH3 has been expanded into complex flux quantum numbers

(M̂K , N̂K) = (MK−τM̃K , NK−τÑK) formed from the flux quantum numbers (MK , NK)

of F3 and (M̃K , ÑK) of H3.

B More examples

In this section we calculate the period vector at large complex structure for selected exam-

ples of CY three-folds X3 which satisfy the phenomenological criteria established in [16].

These CY three-folds are realized as hypersurfaces in toric varieties. The number of com-

plex structure moduli z in the examples ranges between four and five.
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B.1 Example 2

Here we consider another four moduli example of mirror pairs of CY three-folds (X3, X̃3).

The polytope ∆X
4 and its dual ∆X̃

4 read

∆X
4 =





























2 1 −1 −1 D1

2 1 0 −2 D2

2 2 −1 −2 D3

2 2 0 −3 D4

0 0 0 1 D5

0 0 1 0 D6

0 1 0 0 D7

−1 −1 0 1 D8





























, ∆X̃
4 =





























−1 −1 −1 −1 D̃1

1 −1 −1 −1 D̃2

1 −1 3 −1 D̃3

−3 3 −1 −1 D̃4

5 −1 −1 3 D̃5

5 −1 3 3 D̃6

1 3 −1 3 D̃7

1 3 3 3 D̃8





























. (B.1)

Here we have introduced the toric divisors Di respectively D̃i corresponding to the vertices

in ∆X
4 respectively ∆X̃

4 in the last column. We note that the polytopes ∆X
4 and ∆X̃

4 are

congruent. Thus the corresponding toric varieties P∆ and P∆̃ differ only by the action of

an orbifold group and the mirror construction agrees with the GP orbifold construction of

the mirror CY three-fold.

We note again that it is the CY three-fold X3 of which we want to calculate the periods

on its complex structure moduli space. Its Hodge numbers and Euler number read

h(1,1) = 4 , h(2,1) = 98 , χ(X3) = −188 . (B.2)

After demanding invariance under the GP orbifold group, only four of the 98 complex

structure moduli remain. The periods left invariant under this orbifold precisely agree

with the periods of the mirror X̃3, as explained in section 2.2.1, that we calculate next.

All the following geometrical calculations are performed on the Kähler moduli space of

X3. First we note that there are 16 star-triangulations of ∆X
4 . By calculating the quartic

intersections on the toric ambient variety we see that there are only eight CY phases on

X3, both with simplicial and non-simplicial Mori cone. We focus in the following on a CY

phase with simplicial Mori cone that arises from a single phase of the ambient toric variety.

The Mori cone in this phase is generated by

ℓ(1) = (−1, 1, 1,−1, 0, 0, 0, 0) , ℓ(2) = (0, 0, 0, 1, 1, 0, 0, 2) , (B.3)

ℓ(3) = (1,−1, 0, 0,−1, 1, 0, 0, ) , ℓ(4) = (1, 0,−1, 0,−1, 0, 1, 0)

Next, we readily calculate by duality between curves and divisor,

Ki · ℓ(j) = δji , (B.4)

the generators Ki of the Kähler cone. In the chosen triangulation the Kähler cone is

spanned by the generators Ki

K1 = D1+D2+D3 , K2 = D1+D2+D3+D4 , K3 = D1+D3 , K4 = D1+D2

(B.5)
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in terms of the toric divisors Di introduced in (B.1). In terms of this basis we calculate

the classical triple intersections w.r.t. the (1, 1)-forms Ji dual to the Kj as

C0 = J2
1J2 + 3J1J

2
2 +

5J3
2

3
+ 2J1J2J3 + 2J2

2J3 + 2J1J2J4 + 2J2
2J4 + 2J2J3J4 . (B.6)

Analogously we calculate the other classical intersections (2.15) to be

K12 = −3 , K21 = −1 , K32 = K42 = −2 , K22 = −5 , (B.7)

KjJj =
2

3
J1 +

8

3
J2 + J3 + J4 , K0 = − ζ(3)

(2πi)3
188 (B.8)

with all other Kij = 0. We note that these relations hold up to integers as before and the

Kij are symmetric modulo integers.

Finally, the intersections (B.6) and (B.7) allow us to write down the prepoten-

tial (2.13) as

F = −t21t2 − 3t1t
2
2 −

5t32
3

− 2t1t2t3 − 2t22t3 − 2t1t2t4 − 2t22t4 − 2t2t3t4

+2t1t2 + t2t3 + t2t4 +
5

2
t22 +

2

3
t1 +

8

3
t2 + t3 + t4 − iζ(3)

47

4π3

+
∑

β

n0
β Li3(q

β) , (B.9)

where β = (d1, d2, d3, d4) in the basis βi of effective curves of H2(X3,Z) corresponding to

the generators (B.3) of the Mori cone and qβ = e2πidit
i
as before. We also introduced the

flat coordinates ti on the Kähler moduli space of X3 corresponding to the βi. The instanton

corrections for the Kähler moduli space are determined by solving the PF equations for X̃3

along the lines of section A.1 for the charge vectors (2.21).

B.1.1 The orientifold involution

The weight matrix for ∆X
4 , which was given in (B.1), reads as follows:

z1 z2 z3 z4 z5 z6 z7 z8 DeqX

1 0 0 1 0 1 1 4 8

0 1 0 0 0 0 1 2 4

0 0 1 0 0 1 0 2 4

0 0 0 1 1 0 0 2 4

. (B.10)

Again we note that this phase differs from the one used in (B.3). The Stanley-Reisner ideal

in this phase reads:

SR-ideal : {z1 z6, z1 z7, z2 z3, z2 z7, z3 z6, z4 z5 z8} (B.11)

The hypersurface equation at the symmetric complex structure points is given by:

equrd = z41 z
4
2 z

4
3 z

4
4 + z42 z

4
4 z

4
6 + z41 z

4
2 z

4
5 z

4
6 + z43 z

4
4 z

4
7 + z28 + ρ1 z

8
1 z

4
2 z

4
3 z

4
5

+ ρ2 z
4
1 z

4
3 z

4
5 z

4
7 + ρ3 z

4
5 z

4
6 z

4
7 + ρ4 z1 z2 z3 z4 z5 z6 z7 z8 + ρ24 z

2
1 z

2
2 z

2
3 z

2
4 z

2
5 z

2
6 z

2
7

(B.12)
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The holomorphic involution is given by:

σ : (z2 , z6) ↔ (z3 , z7) . (B.13)

There is only one O7-plane and it is given by:

O7 : z2 z6 − z3 z7 = 0 , (B.14)

with χ(O7) = 36. Furthermore, we have O3-planes at

{z1 = 0, z5 = 0, z2 z6 + z3 z7 = 0} and {z1 = 0, z4 = 0, z2 z6 + z3 z7 = 0} (B.15)

B.2 Example 3

In this section we consider a five moduli example of mirror pairs of CY three-folds (X3, X̃3).

The polytope ∆X
4 and its dual ∆X̃

4 read

∆X
4 =

































3 1 −1 1 D1

6 −1 0 2 D2

0 1 0 0 D3

6 −2 1 2 D4

0 0 1 0 D5

0 0 0 1 D6

−1 0 0 −1 D7

3 0 0 1 D8

3 −1 1 1 D9

































, ∆X̃
4 =

























−1 −1 −1 2 D̃1

0 −1 −1 −1 D̃2

2 −1 −1 −1 D̃3

2 −1 5 −1 D̃4

2 5 −1 −1 D̃5

2 11 11 −1 D̃6

2 11 17 −1 D̃7

























. (B.16)

Here we have introduced the toric divisors Di respectively D̃i corresponding to the points

in ∆X
4 respectively ∆X̃

4 in the last column. We have included two interior points on

codimension two and three faces in ∆X
4 as the last two points in (B.16). These points

are necessary to resolves singularities of the toric ambient space which also descend to the

generic CY hypersurface X3. We note that the polytopes ∆X
4 and ∆X̃

4 are congruent.

The Hodge numbers and Euler number of the CY three-fold X3 of which we want to

calculate the periods read

h(1,1) = 5 , h(2,1) = 185 , χ(X3) = −360 . (B.17)

After demanding invariance under the GP orbifold group, only five of the 185 complex

structure moduli remain. The periods left invariant under this orbifold precisely agree

with the periods of the mirror X̃3, that we calculate in the next.

All the following calculations are performed on the Kähler moduli space of X3. We

note that the ambient toric variety P∆ has 13 inequivalent star-triangulations. As before

we calculate the quartic intersections of its toric divisors, noting that all these 13 phases

descend to distinct CY phase of X3. We focus here on a particular star-triangulation of

∆X
4 with simplicial Mori cone generated by

ℓ(1)=(0, 0,−1,−1, 0, 0, 0, 1, 1) , ℓ(2)=(0, 0, 0, 1, 1, 0, 0, 0,−2) , ℓ(3)=(0, 0, 1, 0,−1, 2, 3, 0, 1) ,

ℓ(4)=(0, 1, 1, 0, 0, 0, 0,−2, 0) , ℓ(5)=(1,−1, 0, 1, 0, 0, 0,−1, 0) . (B.18)
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Next, we readily calculate by duality between Mori and Kähler cone, the generators Ki of

the Kähler cone. In the chosen triangulation the Kähler cone is spanned by the genera-

tors Ki

K1 = D1 −D4 +D5 +
1

2
D6 , D2 = D5 +

1

2
D6 , K3 =

1

2
D6

K4 = D1 +D3 −D4 +D5 , K5 = D1 (B.19)

in terms of the toric divisors Di introduced in (B.1). In terms of this basis we calculate

the classical triple intersections as

C0 =
4J3

1

3
+ 4J2

1J2 + 4J1J
2
2 +

7J3
2

6
+ 4J2

1J3 + 8J1J2J3 +
7

2
J2
2J3 + 4J1J

2
3 +

7

2
J2J

2
3 + J3

3

+
3

2
J2
1J4+3J1J2J4+

3

2
J2
2J4+3J1J3J4+3J2J3J4+

3

2
J2
3J4+

1

2
J1J

2
4+

1

2
J2J

2
4+

1

2
J3J

2
4

+J2
1J5 + 2J1J2J5 + J2

2J5 + 2J1J3J5 + 2J2J3J5 + J2
3J5 + J1J4J5 + J2J4J5 + J3J4J5 .

(B.20)

Similarly we calculate the other classical intersections (2.15) to be

K11=K12=K13=K21=K31=−4 , K14=K24=K34=−1

2
, K22=K23=K32=−7

2
,

K33=−3 , K41=K42=K43=−3

2
, K51=K52=K53=−1 ,

KjJj=
23

6
J1+

41

12
J2+3J3+

3

2
J4+J5 , K0=− ζ(3)

(2πi)3
360 (B.21)

with all other Kij = 0. We note that these relations hold up to integers as before and the

Kij are symmetric modulo integers.

Finally, the intersections (B.20) and (B.21) allow us to obtain the prepotential (2.13).

For brevity, we do not write out the cubic term by noting that they are identical to (B.20)

after replacing Ji → −ti. We obtain

F = C0|Ji=−ti + 2t21 + 4t1t2 + 4t1t3 +
1

4
t1t4 +

1

4
t2t4 +

1

4
t3t4 +

7

4
t22 +

7

2
t2t3 +

3

2
t23

+t1t4 + t2t4 + t3t4 +
1

2
t1t5 +

1

2
t2t5 +

1

2
t3t5 +

23

6
t1 +

41

12
t2 + 3t3 +

3

2
t4 + t5

−iζ(3)
45

2π3
+
∑

β

n0
β Li3(q

β) , (B.22)

where β = (d1, d2, d3, d4) in the basis βi of effective curves of H2(X3,Z) corresponding to

the generators (B.18) of the Mori cone and qβ = e2πidit
i
as before. We also introduced the

flat coordinates ti on the Kähler moduli space of X3 corresponding to the βi. The instanton

corrections for the Kähler moduli space are determined by solving the PF equations for X̃3

along the lines of section A.1 for the charge vectors (2.21).
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B.2.1 The orientifold involution

The weight matrix for ∆X̃
4 , which was given in (B.16), reads as follows:

z1 z2 z3 z4 z5 z6 z7 z8 z9 DeqX

1 1 0 0 1 6 9 0 0 18

1 0 1 1 0 6 9 0 0 18

1 0 0 0 0 4 6 0 1 12

0 1 1 0 0 4 6 0 0 12

0 0 0 0 0 2 3 1 0 6

. (B.23)

The Stanley-Reisner ideal for the phase of the ambient space, which gives rise to two dP8

divisors and one dP1 divisor on the CY and respects the K3-fibration structure of the

polytope, is given by:

SR-ideal : {z1 z4, z1 z5, z1 z9, z2 z3, z2 z5, z4 z8, z5 z8,
z3 z4, z4 z5, z6 z7 z8, z2 z6 z7 z9, z3 z6 z7 z9}

(B.24)

The CY hypersurface equation at the symmetric complex structure point becomes:

equrd = z36 + z27 + z61 z
12
2 z124 z68 z

6
9 + z122 z184 z65 z

6
8 z

12
9 + z123 z64 z

18
5 z68 z

12
9

+ ρ1 z
6
1 z

12
3 z125 z68 z

6
9 + ρ2 z

12
1 z62 z

6
3 z

6
8 + ρ3 z

6
2 z

6
3 z

12
4 z125 z68 z

12
9

+ ρ4 z
6
1 z

6
2 z

6
3 z

6
4 z

6
5 z

6
8 z

6
9 + ρ5 z

4
1 z

4
2 z

4
3 z

4
4 z

4
5 z6 z

4
8 z

4
9

(B.25)

The involution, which is a Z2-symmetry of ∆X̃
4 , is given by:

σ : (z2 , z4) ↔ (z3 , z5) . (B.26)

Under (B.26) the two dP8 divisors D4 and D5 are mapped onto each other. Furthermore,

as a fixed point set we obtain two O7-planes:

O71 : z2 z4 − z3 z5 = 0 , O72 : z2 z4 + z3 z5 = 0 (B.27)

with χ(O71) = χ(O72) = 25 but no O3-planes.

B.3 Example 4

In this section we consider a three moduli example of mirror pairs of CY three-folds

(X3, X̃3). The polytope ∆X
4 and its dual ∆X̃3

4 read

∆X
4 =

































6 0 −1 2 D1

6 −1 0 2 D2

3 1 −1 1 D3

3 −1 1 1 D4

0 0 1 0 D5

0 1 0 0 D6

0 0 0 1 D7

−1 0 0 −1 D8

3 0 0 1 D9

































, ∆X̃
4 =





























−1 −1 −1 2 D̃1

0 −1 −1 −1 D̃2

2 −1 −1 −1 D̃3

2 −1 5 −1 D̃4

2 5 −1 −1 D̃5

2 5 11 −1 D̃6

2 11 5 −1 D̃7

2 11 11 −1 D̃8





























. (B.28)
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Here we have introduced the toric divisors Di respectively D̃i corresponding to the points

in ∆X
4 respectively ∆X̃

4 in the last column. We note that the last point in ∆X
4 is an interior

point on a codimension two face, that has resolves a singularity of the toric ambient space

which also lies in the generic CY hypersurface X3. We note that the polytopes ∆X
4 and ∆X̃

4

are congruent. Thus the corresponding toric varieties P∆ and P∆̃ differ only by the action

of an orbifold group and as before the mirror construction agrees with the GP orbifold

construction of the mirror CY three-fold.

We recall again that it is the CY three-fold X3 of which we need to calculate the

periods on its complex structure moduli space. Its Hodge numbers and Euler number read

h(1,1) = 5 , h(2,1) = 185 , χ(X3) = −360 . (B.29)

After demanding invariance under the GP orbifold group, only five of the 185 complex

structure moduli remain. The periods left invariant under this orbifold precisely agree

with the periods of the mirror X̃3, that we calculate in the next.

All the following topological calculations are performed on the Kähler moduli space of

X3. First we note that there are 18 star-triangulation of ∆X
4 yielding 18 CY phase on X3.

We chose one phase with Mori cone generated by

ℓ(1) = (−1, 1, 1, 0, 0, 0, 2, 3, 0) , ℓ(2) = (0, 0, 0, 1,−1, 1, 0, 0,−1) ,

ℓ(3) = (0, 0, 1, 0, 1,−1, 0, 0,−1) , ℓ(4) = (0, 1, 0,−1, 1, 0, 0, 0,−1) ,

ℓ(5) = (1,−1,−1, 0, 0, 0, 0, 0, 1) . (B.30)

Next, we readily calculate by duality between curves and divisor, the generators Ki of the

Kähler cone. In the chosen triangulation the Kähler cone is spanned by the generators

K1 = 2D1 + 2D2 +D3 +D4 +D9 , K2 = D1 +D2 +D4 , K3 = D1 +D3 ,

K4 = D1 +D2 , K5 = 3D1 + 2D2 +D3 +D4 +D9

(B.31)

in terms of the toric divisors Di introduced in (B.28). In terms of this basis we calculate

the classical triple intersections as

C0 = J3
1 +

3

2
J2
1J2 +

1

2
J1J

2
2 + J2

1J3 + J1J2J3 + J2
1J4 + J1J2J4 + J1J3J4 +

7

2
J2
1J5 + 3J1J2J5

+
1

2
J2
2J5 + 2J1J3J5 + J2J3J5 + 2J1J4J5 + J2J4J5 + J3J4J5 +

7

2
J1J

2
5 +

3

2
J2J

2
5 + J3J

2
5

+J4J
2
5 +

7J3
5

6
. (B.32)
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Analogously we calculate the other classical intersections (2.15) to be

K11 = −3 ,

K12 = K52 = −1

2
,

K21 = K25 = −3

2
,

K31 = K35 = K41 = K45 = −1 ,

K51 = K55 = K15 = −7

2
,

KjJj = 3J1 +
3

2
J2 + J3 + J4 +

41

12
J5 ,

K0 = − ζ(3)

(2πi)3
360 (B.33)

with all other Kij = 0. We note that these relations hold up to integers as before.

Finally, the intersections (B.32) and (B.33) allow us to obtain the prepotential (2.13).

The cubic terms are obtained by replacing Ji → −ti in (B.32) and we obtain

F = C0|Ji=−ti +
3

2
t21 + t1t2 +

1

2
t1t3 +

1

2
t1t4 +

7

2
t1t5 + t2t5 +

1

2
t3t5 +

7

4
t25

+3t1 +
3

2
t2 + t3 + t4 +

41

12
t5 − iζ(3)

45

2π3
+
∑

β

n0
β Li3(q

β) , (B.34)

where β = (d1, d2, d3, d4) in the basis βi of effective curves of H2(X3,Z) corresponding to

the generators (B.30) of the Mori cone and qβ = e2πidit
i
as before. We also introduced the

flat coordinates ti on the Kähler moduli space of X3 corresponding to the βi. The instanton

corrections for the Kähler moduli space are determined by solving the PF equations for X̃3

along the lines of section A.1 for the charge vectors (2.21).

B.3.1 The orientifold involution

The weight matrix for ∆X̃
4 , which was given in (B.28), reads as follows:

z1 z2 z3 z4 z5 z6 z7 z8 z9 DeqX

1 0 0 0 1 0 4 6 0 12

0 1 1 0 1 0 6 9 0 18

0 1 0 0 0 1 4 6 0 12

0 0 1 1 0 0 4 6 0 12

0 0 0 0 0 0 2 3 1 6

. (B.35)

The Stanley-Reisner ideal for the phase of the ambient space, which gives rise to two dP8

divisors and one dP1 divisor on the CY and respects the K3-fibration structure of the

polytope, is given by:

SR-ideal : {z1 z5, z1 z6, z2 z3, z2 z5, z2 z6, z2 z9, z3 z4,
z3 z5, z5 z9, z7 z8 z9, z1 z4 z7 z8, z4 z6 z7 z8}

(B.36)
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The CY hypersurface equation at the symmetric complex structure point reads as follows:

equrd = z37 + z28 + z62 z
12
4 z125 z66 z

6
9 + z61 z

12
3 z65 z

12
6 z69 + z63 z

6
4 z

12
5 z126 z69

+ ρ1 z
12
1 z62 z

12
3 z66 z

6
9 + ρ2 z

6
1 z

12
2 z124 z65 z

6
9 + ρ3 z

12
1 z122 z63 z

6
4 z

6
9

+ ρ4 z
6
1 z

6
2 z

6
3 z

6
4 z

6
5 z

6
6 z

6
9 + z41 z

4
2 z

4
3 z

4
4 z

4
5 z

4
6 z7 z

4
9

(B.37)

The involution which leaves the ambient variety invariant and maps the two dP8’s at

D2 and D5 onto each other is given by:

σ : (z1 , z2) ↔ (z6 , z5) . (B.38)

The fixed point set of this involution is given by one O7-plane:

O7 : z1 z2 − z6 z5 = 0 (B.39)

with χ(O7) = 24 and 2× 1 plus 2× 3 O3-planes at

{z4 = z1 z2 + z5 z6 = z9 = 0} , {z3 = z1 z2 + z5 z6 = z9 = 0} ,
{z4 = z1 z2 + z5 z6 = z8 = 0} , {z3 = z1 z2 + z5 z6 = z8 = 0} .

(B.40)
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