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PT symmetry, that is, a combined parity and time-reversal symmetry, is a key milestone for non-Hermitian

systems exhibiting entirely real eigenenergy. In the present work, motivated by a recent experiment, we study PT

symmetry of the time-evolution operator of nonunitary quantum walks. We present the explicit definition of PT

symmetry by employing a concept of symmetry time frames. We provide a necessary and sufficient condition so

that the time-evolution operator of the nonunitary quantum walk retains PT symmetry even when parameters of

the model depend on position. It is also shown that there exist extra symmetries embedded in the time-evolution

operator. Applying these results, we clarify that the nonunitary quantum walk in the experiment does have PT

symmetry.

DOI: 10.1103/PhysRevA.93.062116

I. INTRODUCTION

Quantum mechanics requires that, in a closed system,
physical observables be represented by Hermitian operators.
The Hamiltonian of the system is no exception to this rule.
However, the closed system is an ideal concept and, rigorously
speaking, almost all systems in the real world, except a
whole universe, should have flow of energy and particles
to outer environments, which makes the Hamiltonian of the
inner system non-Hermitian. Furthermore, it is widely ac-
cepted to phenomenologically include non-Hermitian effects
into Hamiltonians when we treat effects of amplification
and dissipation, namely, gain and loss, in open systems.
For example, non-Hermitian Hamiltonians are employed to
describe radioactive decay [1], depinning of flux lines in
type-II superconductors [2], and so on [3]. In general, such a
non-Hermitian Hamiltonian has complex eigenenergy which
makes systematic controls of the dynamics difficult.

In 1998, however, Bender and Boettcher clarified that a

broad class of non-Hermitian Hamiltonians can have en-

tirely real eigenenergy if the system possesses a combined

parity symmetry and time-reversal symmetry (TRS), that

is, PT symmetry [4–7]. If the Hamiltonian possesses PT
symmetry and its eigenstates are also eigenstates of the

PT -symmetry operator, then this is a sufficient condition for

the eigenenergy being real. Applying this property, moreover,

PT symmetry in the non-Hermitian Hamiltonian provides

a procedure to selectively induce complex eigenenergy for

specific eigenstates [8–10]. For systems described by non-

Hermitian Hamiltonians with PT symmetry, a large number

of novel phenomena, which can not be observed in Hermitian

systems, have been predicted theoretically. For example,

systems with PT -symmetric periodic structures can act as

unidirectional invisible media [11,12], edge states having

complex eigenenergy emerge [13,14], Bloch oscillations with

unique features occur [15], and others [16–24]. These results

open a way to engineer non-Hermitian systems to utilize

as novel platforms of applications. The system with PT
symmetry has been realized in optics by using coupled optical

waveguides with fine-tuned complex refractive index [25,26].

It has been also demonstrated that coupled microcavity

resonators realize PT -symmetric systems [27,28]. Recently,

the mode-selective lasing by utilizing PT symmetry has been

realized based on microring resonators [29,30]. However, due

to difficulty in handling gain and loss effects, the experimental

systems are limited to a small number of elements.

In contrast, there is a unique way to experimentally perform

large-scale PT -symmetric systems with high tunability, that

is, the discrete-time quantum walk [31,32]. The discrete-time

quantum walk (quantum walk, in short) is the model recently

attracting attention as a versatile platform for quantum compu-

tations and quantum simulators. The quantum walk describes

quantum dynamics of particles by a time-evolution operator,

instead of a Hamiltonian. Quantum walks have been realized in

various experimental setups, such as cold atoms [33], trapped

ions [34,35], and optical systems [36–40]. Since quantum

walks enable high tunability of the system setup, various

phenomena which require delicate setups have been observed,

such as Anderson localization [41,42], scattering with positive-

and negative-mass pulses [43], emergence of edge states which

stem from topological phases [44], and so on.

Remarkably, in 2012, a quantum walk by optical-fiber

loops, where additional optical amplifiers make it possible

to control the effects of gain and loss, was experimentally

implemented [45]. Due to gain and loss, the time-evolution

operator of this quantum walk becomes nonunitary, which can

be considered that the effective Hamiltonian is non-Hermitian.

Nevertheless, it has been shown that the system has entirely

real (quasi)energy in proper setups. Furthermore, interesting

phenomena peculiar to PT symmetry, such as unidirectional

invisible transport [45], extraordinary Bloch oscillations [45],

and optical solitons [46,47], have been observed. These results

provide convincing evidence that the system possesses PT
symmetry. However, PT symmetry and the PT -symmetry

operator have not yet been directly identified from the time-

evolution operator itself, since the definition of PT symmetry

on the time-evolution operator has not been established so

far. It is an urgent and important task to identify the explicit

definition of PT symmetry for further developments.

In the present work, we provide the explicit definition of the

PT -symmetry operator and identify that the time-evolution

operator of the nonunitary quantum walk in the experiment

has, indeed, PT symmetry. This is archived for the first

time by employing a concept of symmetry time frames [48]

which has been developed in the recent study of topological

phases of quantum walks [48–52]. We also show that the

time-evolution operator of the nonunitary quantum walk has
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extra symmetries. Furthermore, we provide the necessary and

sufficient conditions for PT and other symmetries of the

time-evolution operator even when parameters of the model

are position dependent. Taking account of these results, we

present an inhomogeneous nonunitary quantum walk with

PT symmetry. (We note that, although the argument on

PT symmetry to retain the reality of (quasi)energy has been

generalized in Refs. [53–55], we focus on PT symmetry in

the original sense of Ref. [4] in the present work.)

This paper is organized as follows. We define the time-

evolution operator of the nonunitary quantum walk in Sec. II.

Section III is devoted to presenting how to define and identify

PT symmetry and extra symmetries of the time-evolution

operator of the nonunitary quantum walk. This is our main

result of the present work. In Sec. IV, as applications of

the result obtained in the previous section, we identify PT
symmetry of the time-evolution operator of the nonunitary

quantum walk in the experiment [45] and, further, demonstrate

a PT -symmetric inhomogeneous nonunitary quantum walk.

The summary and discussion are given in Sec. V.

II. DEFINITION OF TIME-EVOLUTION OPERATORS

OF NONUNITARY QUANTUM WALKS

Figure 1 shows the schematic view of the experimental

setup of the nonunitary quantum walk implemented by the two

optical-fiber loops in Ref. [45]. As explained in the caption,

the system is interpreted as one-dimensional (1D) two-step

quantum walks. Motivated by the experiment, we define a

time-evolution operator of the nonunitary quantum walk with

gain and loss so that one can flexibly tune various parameters

of the system, while the basic setup of the system should not

be altered. At first, we introduce the time-evolution operator

of the 1D two-step unitary quantum walk, and then extend it

FIG. 1. (a) Experimental setup. Optical pulses corresponding

to walkers go around in two optical-fiber loops with different

circumferences, and they are split into two at the connected point

(shown by a rectangle) corresponding to coin operators. After a single

cycle, pulses are delayed or advanced in time due to the difference

of lengths of two fiber loops, corresponding to shift operators. The

time evolution of the single time step is composed of the following

two substeps. At the former half of the step, amplitudes of pulses

passing through the long (short) loop are amplified (dumped) and,

at the latter half of the step, vice versa. (b) Translation from the

above description to the standard schematic view of the 1D two-step

quantum walk. When a pulse passes the long (short) loop and it

is delayed (advanced) in time, this is interpreted as that the walker

“shifts to the right (left).” In both (a) and (b), loops or arrows with

gain (loss) are depicted in solid (dashed) lines.

to the nonunitary one. We introduce the basis of the walker’s

1D position space |n〉 and internal states |L〉 = (1,0)T ,|R〉 =
(0,1)T , where the superscript T denotes the transpose. The

symbols L,R represent the walker’s internal states, say, left

mover and right mover components, respectively. The time-

evolution operator of the two-step unitary quantum walk Uu is

defined as

Uu = S C(θ2) S C(θ1).

Here, the coin operator C(θi), where the subscript i = 1 or

2 distinguishes the parameter for the first or second coin

operators, respectively, and the shift operator S are standard

elemental operators of quantum walks defined as

C(θi) =
∑

n

|n〉〈n| ⊗ C̃(θi,n), (1a)

C̃(θi,n) =
(

cos[θi(n)] i sin[θi(n)]

i sin[θi(n)] cos[θi(n)]

)

, (1b)

and

S =
∑

n

(

|n − 1〉〈n| 0

0 |n + 1〉〈n|

)

. (2)

Since C̃(θi,n) acts on the internal states of walkers at the

position n, the coin operator C(θi) mixes the walker’s internal

states, where the value of θi(n) determines how strongly to mix

at each position n. The shift operator S changes the position

of walkers depending on the internal states. Note that, in the

present work, we follow a rule that an operator with a tilde on

the top acts on the space of internal states of walkers.

With an initial state |ψ(0)〉, the wave function after the t

time step is described as

|ψ(t)〉 = U t |ψ(0)〉 =
∑

n,σ=L,R

ψn,σ (t) |n〉 ⊗ |σ 〉.

From the eigenvalue equation, we define the quasienergy ε as

U |�λ〉 = λ|�λ〉, λ = e−iε,

where |�λ〉 is the eigenvector with the eigenvalue λ. For the

unitary quantum walk, λ should satisfy |λ| = 1 and then ε

should be real with 2π periodicity.

The unitary quantum walk described by Uu can be extended

to the nonunitary one described by

U = S G2 	2 C(θ2) S G1 	1 C(θ1), (3)

which is consistent with the basic experimental setup in

Ref. [45]. Here, we introduce additional elemental operators:

the gain and/or loss (gain-loss) operator Gi and the phase

operator 	i defined as

Gi =
∑

n

|n〉〈n| ⊗ G̃i,n, G̃i,n =
(

gi,L(n) 0

0 gi,R(n)

)

, (4)

	i =
∑

n

|n〉〈n| ⊗ 	̃i,n, 	̃i,n =
(

eiφi,L(n) 0

0 eiφi,R (n)

)

, (5)

respectively. The gain-loss operator Gi multiplies the wave

function amplitude ψn,σ (t) by the factor gi,σ (n). If gi,σ (n) �= 1,
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FIG. 2. An example of the one time step of time evolution

described by the time-evolution operator U with the initial state

|ψ(0)〉 = |0,L〉. The left (right) mover components are depicted as

waves in dashed (solid) curves. At each time step, on a site n,

the left (right) mover component ψn,L(R)(t) is varied to the linear

combination of ψn,L(t) and ψn,R(t) by the coin operator C(θi). Then,

left mover components ψn,L(t) move to the left and right mover

components ψn,R(t) move to the right by the shift operator S. During

walkers changing their positions, they are affected by gain or loss

of the amplitude and phase modulation; that is, ψn,σ (t) increases or

decreases by the factor gi,σ (n) by the gain-loss operator Gi , and earns

the phase φi,σ (n) by the phase operator 	i .

then Gi and U become nonunitary operators. The phase

operator 	i adds the phase φi,σ (n) to that of the wave

function amplitude ψn,σ (t). The time evolution of a walker

described by U is schematically explained in Fig. 2. Thereby,

the time-evolution operator of the nonunitary quantum walk

contains three kinds of n-dependent parameters, θi(n),gi,σ (n),

and φi,σ (n). The setup in the experiment in Ref. [45] is

realized with the parameters in Eq. (39), as we discuss in

Sec. IV.

III. PT AND EXTRA SYMMETRIES OF THE

NONUNITARY QUANTUM WALK

In this section, we identify various symmetries embedded

in the time-evolution operator of the nonunitary quantum walk

in Eq. (3). Among them, our main target is PT symmetry,

which can restrict the quasienergy of the nonunitary quantum

walk to real numbers. To begin with, let us summarize the

argument on the PT symmetry of Hamiltonians [4]. In order

to define PT symmetry, we consider parity symmetry and

TRS at first. For a system described by a (Hermitian or non-

Hermitian) Hamiltonian H , it is required that the Hamiltonian

satisfies the following relations to retain parity symmetry

and TRS:

PHP−1 = H, (6)

T HT −1 = H, (7)

respectively. Here, the parity-symmetry operator P , which

flips the sign of position from n to −n, is a unitary operator and

does not include complex conjugation K. The TRS operator

T , which inverts the direction of time from t to −t , is an

antiunitary operator including K. By combing Eqs. (6) and (7),

PT symmetry of the Hamiltonian is defined as

(PT )H (PT )−1 = H, (8)

where the combined symmetry operator PT is the antiunitary

operator.

When the Hamiltonian satisfies both Eqs. (6) and (7),

the relation for PT symmetry (8) is automatically satisfied.

However, even when the Hamiltonian has neither parity

symmetry [Eq. (6)] nor TRS [Eq. (7)], it can satisfy Eq. (8)

to establish PT symmetry. This recovering of PT symmetry

becomes much important in the case of non-Hermitian Hamil-

tonians, since one of the standard ways to phenomenologically

include the effects of gain and loss is adding non-Hermitian

imaginary potential terms into a Hermitian Hamiltonian, which

prevents retaining TRS in Eq. (7) due to complex conjugation

K. In addition to the presence of PT symmetry of the

non-Hermitian Hamiltonian, we demand that eigenvectors of

the non-Hermitian Hamiltonian are also eigenvectors of the

PT -symmetry operator,

H |�λ〉 = Eλ|�λ〉, PT |�λ〉 = eiδ|�λ〉, (9)

where the phase δ is a real number. Satisfying both conditions

Eqs. (8) and (9) establishes the sufficient condition that

the eigenenergy Eλ is kept to be a real number even for

the non-Hermitian Hamiltonian. Hereafter, we apply the

above argument to the time-evolution operator of nonunitary

quantum walks.

A. Symmetries in homogeneous systems

For simplicity, at first, we assume the homogeneous

nonunitary quantum walk in which all parameters have no

position n dependencies, so that we can treat operators in

momentum space by applying the Fourier transformation.

In the homogeneous systems, the operators C(θi),Gi , and

	i are diagonal in the momentum representation, and we can

drop the subscript n from C̃(θi,n),G̃i,n, and 	̃i,n. For further

simplification, we assume

G̃2 = G̃−1
1 = G̃ =

(

eγ 0

0 e−γ

)

= eγ σ3 , (10)

	̃2 = 	̃1 = 	̃ =
(

eiφ 0

0 e−iφ

)

= eiφσ3 , (11)

where σj=1,2,3 are Pauli matrices. [The peculiar choice of G̃2 =
G̃−1

1 is motivated by the setup of the experiment [45] as shown

in Eqs. (39b) and (39c).] By using the Pauli matrix σ1, the coin

operator is also written as

C̃(θi) =
(

cos[θi] i sin[θi]

i sin[θi] cos[θi]

)

= eiθiσ1 . (12)
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With the Fourier transformation, the shift operator in Eq. (2)

can be rewritten as

S =
∑

k

|k〉〈k| ⊗ S̃(k), S̃(k) =
(

e+ik 0

0 e−ik

)

= eikσ3 ,

(13)

where k stands for the wave number. Accordingly, the

time-evolution operator U in Eq. (3) in the momentum

representation is written down as

U =
∑

k

|k〉〈k| ⊗ Ũ (k), (14a)

Ũ (k) = S̃(k) G̃ 	̃ C̃(θ2) S̃(k) G̃−1 	̃ C̃(θ1). (14b)

Since determinants of all the above elemental operators are

one, the determinant of the time-evolution operator Ũ (k) is

also one, while the operator is nonunitary when γ �= 0.

By solving the eigenvalue problem, the quasienergy of the

time-evolution operator in Eq. (14b) is derived as

cos(±ε) = cos θ1 cos θ2 cos 2(k + φ) − sin θ1 sin θ2 cosh(2γ ),

(15)

and the corresponding eigenvector is

|�k,±〉 = e−i
θ1
2

σ1
e−iηk

2
√

cos 2ξk

(

eiα ± e−iα

−i[eiα ∓ e−iα]

)

, (16)

α = ηk ± ξk,

where ηk and ξk are defined as

tan(2ηk) = d1/d3,

cos(2ξk) =
√

1 − (d2/|dk|)2, sin(2ξk) = d2/|dk|,
|dk| = |d3 + id1|,
d1 = sin θ1 cos θ2 cos 2(k + φ) + cos θ1 sin θ2 cosh(2γ ),

d2 = − sin θ2 sinh(±2γ ),

d3 = − cos θ2 sin 2(k + φ).

We remark that, while ηk is always real, ξk becomes imaginary

when d2
2 > d2

1 + d2
3 . Figure 3 shows the quasienergy as a

function of k with several values of γ : (a) eγ = 1, (b) eγ = 1.1,

(c) eγ = 1.34 . . . , and (d) eγ = 1.5 (see the caption of Fig. 3

for other parameters). Comparing with the case of the unitary

quantum walk in Fig. 3(a), we see from Fig. 3(b) that,

while the quasienergy gap around ε = 0 becomes narrow,

the quasienergy remains entirely real even for the finite γ

(nonunitary quantum walks). This keeps holding as long as

the absolute value of the right-hand side in Eq. (15) does

not exceed one, which is consistent with the condition to

keep ξk real. The value of γ used for Fig. 3(c) corresponds

to this limit and the quasienergy gap closes at ε = 0, the

so-called exceptional point [5]. When γ exceeds this value,

part of the quasienergy whose components of real number

are zero exhibits finite values of imaginary number, as shown

in Fig. 3(d). These observations suggest the presence of PT
symmetry or more generalized symmetries in Refs. [53–55].

Henceforth, we show that there exists PT symmetry, as

Ref. [45] has stated. In addition, from Eq. (15), we also

understand that the quasienergy becomes symmetric with

respect to ε = 0. Indeed, these properties can be understood
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FIG. 3. The quasienergy in Eq. (15) with various gain-loss

parameters when θ1 = π/4, θ2 = −π/7, and φ = 0. The left column

shows the quasienergy as a function of k where the solid (dashed)

curves represent the real (imaginary) part of the quasienergy, while

the right column shows the eigenvalue on a unit circle indicating

|λ| = 1 on a complex plain. (a) In the case of eγ = 1, all of the

quasienergies are real as the time-evolution operator is unitary.

(b) In the case of eγ = 1.3, the quasienergy is entirely

real although the time-evolution operator is nonunitary, and

quasienergy gaps around ε = 0,π open. (c) In the case of eγ =
exp{cosh−1[(cos θ1 cos θ2 − 1)/(sin θ1 sin θ2)]/2} = 1.34 . . . , while

the quasienergy is entirely real, the quasienergy gap around ε = 0

closes. (d) In the case of eγ = 1.5, the quasienergy becomes complex

for |k|/π � 0.1, and the gap closes.

from symmetries embedded in the nonunitary time-evolution

operator in Eq. (14), which is also shown in the following

subsections.

1. PT symmetry

We introduce the parity symmetry and TRS operators,

P and T , in the position and momentum representations as
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follows;

P =
∑

n

|−n〉〈n| ⊗ P̃ =
∑

k

|−k〉〈k| ⊗ P̃, (17)

T =
∑

n

|n〉〈n| ⊗ T̃ =
∑

k

|−k〉〈k| ⊗ T̃ , (18)

where P̃ and T̃ act on the internal space of the time-evolution

operator. We understand that the parity-symmetry operator P
flips the sign of momentum k because the operator P changes

the position n to −n and the TRS operator T also flips the sign

of k since the operator T is an antiunitary operator including

a complex conjugation K.

Then, we convert Eqs. (6)–(8) for the Hamiltonian into

those for the time-evolution operator in Eq. (14). By using

the relation between the time-evolution operator and the

effective Hamiltonian U = e−iH , we derive relations for parity

symmetry, TRS, and PT symmetry as

PUP−1 = U,

T UT −1 = U−1,

(PT )U (PT )−1 = U−1.

By substituting Eqs. (17) and (18) into the above relations, we

obtain

P̃Ũ (k)P̃−1 = Ũ (−k), (19)

T̃ Ũ (k)T̃ −1 = Ũ−1(−k), (20)

(P̃T̃ )Ũ (k)(P̃T̃ )−1 = Ũ−1(+k), (21)

respectively.

In order to identify symmetries, we need to examine

whether the time-evolution operator of the nonunitary quantum

walk in Eq. (14b) satisfies the above relations. For parity sym-

metry in Eq. (19), on one hand, we can straightforwardly obtain

relations for the same elemental operators by comparing the

left and right hand sides of Eq. (19) by substituting Eq. (14b),

e.g., P̃ S̃(k)P̃−1 = S̃(−k),P̃G̃P̃−1 = G̃, and etc. On the other

hand, for TRS and PT symmetry, there appear the inverse

operators of the time-evolution operator on the right-hand side

of Eqs. (20) and (21), which invert the time order of elemental

operators and then prevent us from deriving the one to one

correspondence for the same elemental operators. Indeed,

according to recent work on symmetries which are important

to topological phases of quantum walks, it has become clear

that the presence of the inverse of time-evolution operators

in symmetry relations prevents us from straightforwardly

identifying the symmetries. To overcome this difficulty, the

concept of symmetry time frame has been introduced [48].

The symmetry time frame requires a redefinition of the

time-evolution operator by shifting the origin of time so

that the time-evolution operator exhibits symmetric order of

elemental operators in the time direction. In the case of Ũ (k)

in Eq. (14b), the redefined time-evolution operator Ũ ′(k) fitted

in the symmetric time frame is written down as

Ũ ′(k) = C̃(θ1/2) S̃(k) 	̃ G̃ C̃(θ2) G̃−1 	̃ S̃(k) C̃(θ1/2), (22)

which we can obtain by the unitary transformation Ũ ′(k) =
ei

θ1
2

σ1Ũ (k)e−i
θ1
2

σ1 . Here, we use the commutative property

between operators G̃,S̃(k), and 	̃ as they are described by

exponentials of σ3. By substituting Ũ ′(k) in Eq. (22) into

Eqs. (19)–(21), we obtain conditions for elemental operators

C̃(θi),G̃,S̃(k), and 	̃ to retain each symmetry. For example,

in the case of TRS, we obtain the following two equations

from the left and right hand sides of Eq. (20) by substituting

Eq. (22):

LHS = [T̃ C̃(θ1/2)T̃ −1][T̃ S̃(k)T̃ −1][T̃ 	̃T̃ −1][T̃ G̃T̃ −1] · · · ,

RHS = [C̃−1(θ1/2)][S̃−1(−k)][	̃−1][G̃] · · · .

Comparing the two equations, we obtain conditions for the

elemental operators, such as T̃ C̃(θ1)T̃ −1 = C̃−1(θ1), and so

on. We summarize conditions on all elemental operators for

various symmetries in Table I. Using Table I, we discuss

symmetries of the time-evolution operator by starting from the

unitary case, then including the gain-loss and phase operators

step by step.

The case γ = φ = 0. In this case, the time-evolution

operator Ũ ′(k) describes the unitary quantum walk and we

consider conditions only on C̃(θi) and S̃(k) in Table I. From the

anticommutation relations of Pauli matrices, we identify that

Ũ ′(k) satisfies parity symmetry and TRS with the following

symmetry operators:

P̃ = σ1, T̃ = σ1K. (23)

Therefore, by combing the two symmetry operators in Eq. (23),

the PT -symmetry operator is determined as

P̃T̃ = σ0K, (24)

where σ0 = diag(1,1), and Ũ ′(k) also possesses PT symme-

try.

The case γ �= 0 and φ = 0. The finite γ makes Ũ ′(k) the

nonunitary time-evolution operator and we should consider

the additional condition on the gain-loss operator G̃ as well

as those on C̃(θi) and S̃(k) in Table I. Since conditions on

G̃ for parity symmetry and TRS by symmetry operators in

Eq. (23) are not satisfied, the time-evolution operator Ũ ′(k) has

neither parity symmetry nor TRS. However, when we consider

PT symmetry, the condition (P̃T̃ )G̃(P̃T̃ )−1 = G̃ with P̃T̃
in Eq. (24) is satisfied. Therefore, we identify PT symmetry

and confirm that the nonunitary time-evolution operator Ũ ′(k)

(with φ = 0) preserves PT symmetry.

The case γ �= 0 and φ �= 0. Now, the condition on the phase

operator in Table I is also maintained to retain PT symmetry.

We easily confirm the condition (P̃T̃ )	̃(P̃T̃ )−1 = 	̃∗ with

P̃T̃ in Eq. (24). Thereby, we conclude that, nevertheless,

individual parity symmetry and TRS are broken in the

nonunitary quantum walk with the phase operator in the

homogeneous system; there PT symmetry is present.

We recall that the sufficient condition for quasienergy

being real requires the other condition, namely, that the

eigenvector of the nonunitary time-evolution operator is also

one of the PT -symmetry operator. To check this, applying the

unitary transformation ei(θ1/2)σ1 to the eigenvector of Ũ (k) in

Eq. (16), the eigenvector of Ũ ′(k) fitted in the symmetry time

frame is described as |� ′
k,±〉 = ei(θ1/2)σ1 |�k,±〉. Then, we can
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TABLE I. A list of conditions for elemental operators so that the time-evolution operator Ũ ′(k) satisfies parity, time-reversal, and PT ,

as well as chiral, particle-hole, and parity-chiral symmetries. The first column indicates each symmetry, the second column represents the

symmetry operators X̃ = P̃, T̃ , P̃T̃ , Ŵ̃, �̃, and P̃Ŵ̃, and the third column X̃u shows specific forms of symmetry operators which are derived

from the unitary time-evolution operator with γ = φ = 0. The fourth to seventh columns show conditions for the elemental operators to

satisfy each symmetry. This part of the table should be read according to the following example: in order to satisfy parity symmetry

the coin operator should satisfy P̃C̃(θi)P̃
−1 = C̃(θi). The [yes] or [no] next to each condition explains whether the condition is satisfied

or not with the symmetry operator X̃u. Note that C̃(θi) = eiθiσ1 , S̃(k) = eikσ3 , G̃ = eγ σ3 , and 	̃ = eiφσ3 . We use the following relations:

C̃−1(θi) = C̃(−θi), S̃
−1(k) = S̃(−k), S̃−1(−k) = S̃(+k), and 	̃−1 = 	̃∗.

Symmetry X̃ X̃u X̃C̃(θi)X̃
−1 X̃S̃(k)X̃−1 X̃G̃X̃−1 X̃	̃X̃−1

Parity symmetry P̃ σ1 C̃(+θi) [yes] S̃(−k) [yes] G̃ [no] 	̃ [no]

Time-reversal symmetry (TRS) T̃ σ1K C̃(−θi) [yes] S̃(+k) [yes] G̃ [no] 	̃∗ [no]

PT symmetry P̃T̃ σ0K C̃(−θi) [yes] S̃(−k) [yes] G̃ [yes] 	̃∗ [yes]

Chiral symmetry Ŵ̃ iσ2 C̃(−θi) [yes] S̃(−k) [yes] G̃ [no] 	̃∗ [yes]

Particle-hole symmetry (PHS) �̃ σ3K C̃(+θi) [yes] S̃(−k) [yes] G̃ [yes] 	̃ [no]

Parity-chiral symmetry (PCS) P̃Ŵ̃ σ3 C̃(−θi) [yes] S̃(+k) [yes] G̃ [yes] 	̃∗ [no]

straightforwardly confirm the equation

P̃T̃ |� ′
k,±〉 = ±e+i2ηk |� ′

k,±〉,

as long as ξk is real (then ε is also real). Therefore, we confirm

that the entirely real quasienergy in Eq. (15) originates in the

PT symmetry of the nonunitary time-evolution operator.

2. Extra symmetries

The time-evolution operator of the nonunitary quantum

walk in Eq. (22) can possess extra symmetries. Here, we

discuss such symmetries which are intensively studied for

topological phases of the quantum walk [44,48–52]. These

extra symmetries are chiral symmetry and particle-hole sym-

metry (PHS) defined for a Hamiltonian H as

Ŵ H Ŵ−1 = −H, (25)

� H �−1 = −H, (26)

respectively. The chiral-symmetry operator Ŵ is a unitary

operator, while the PHS operator � is an antiunitary one.

These two symmetries guarantee that the system has a pair of

eigenstates with opposite sign of eigenvalues if the eigenvalue

is real. Accordingly, eigenenergy appears symmetric with

respect to zero energy. Following the same procedure as before,

we convert Eqs. (25) and (26) to symmetry relations for the

time-evolution operator:

Ŵ U Ŵ−1 = U−1,

� U �−1 = U.

Defining the symmetry operators as

Ŵ =
∑

n

|n〉〈n| ⊗ Ŵ̃ =
∑

k

|k〉〈k| ⊗ Ŵ̃,

� =
∑

n

|n〉〈n| ⊗ �̃ =
∑

k

|−k〉〈k| ⊗ �̃,

we derive relations to retain chiral symmetry and PHS:

Ŵ̃ Ũ (k) Ŵ̃−1 = Ũ−1(+k), (27)

�̃ Ũ (k) �̃−1 = Ũ (−k). (28)

Substituting Eq. (22) into Eqs. (27) and (28), we again obtain

conditions on the elemental operators to retain chiral symmetry

and PHS as shown in Table I. Due to 2π periodicity of the

quasienergy, if the time-evolution operator satisfies Eq. (27)

and/or (28), the quasienergy appears symmetric with respect

to ε = 0 and π .

The case γ = φ = 0. At first, we focus on conditions on

the coin and shift operators in the case of chiral symmetry in

Table I for this unitary quantum walk. We find that, with the

symmetry operator Ŵ̃ = iσ2, chiral symmetry is retained. It is

known that if TRS and chiral symmetry are presented, PHS is

simultaneously retained with the symmetry operator �̃ = Ŵ̃T̃ .

In summary, by using

Ŵ̃ = iσ2, �̃ = σ3K, (29)

the unitary time-evolution operator Ũ ′(k) has extra symme-

tries, chiral symmetry, and PHS.

The case γ �= 0 and φ = 0. In order to retain chiral

symmetry and PHS for this nonunitary quantum walk, the

gain-loss operator G̃ should be unchanged (X̃G̃X̃−1 = G̃)

when X̃ = Ŵ̃ or �̃ in Eq. (29) is acted on. We understand that

X̃ = �̃ keeps G̃ as is, while X̃ = Ŵ̃ does not. Thereby, only

PHS survives after including gain and loss effects. However,

we can introduce a new symmetry combined with parity and

chiral symmetries,

(PŴ) U (PŴ)−1 = U−1,

which we call parity-chiral symmetry (PCS). Taking account

of Eqs. (19) and (27), we derive the symmetry relation for

PCS,

(P̃Ŵ̃) Ũ (k) (P̃Ŵ̃)−1 = Ũ−1(−k), (30)

and then obtain conditions on each elemental operator as listed

in Table I. We note that PCS also guarantees the symmetric

behavior of the quasienergy with respect to ε = 0 and π . From

Eqs. (23) and (29), the PCS operator becomes

P̃Ŵ̃ = σ3, (31)

(we ignore an unimportant minus sign). With the above

symmetry operator P̃Ŵ̃, we confirm that Ũ ′(k) possesses PCS,
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and the symmetric property of the quasienergy is guaranteed

by PHS and PCS.

The case γ �= 0 and φ �= 0. Finally, we consider the nonuni-

tary quantum walk with finite phases whose quasienergy

is given in Eq. (15). To retain PHS and PCS, the phase

operator should satisfy �̃	̃�̃−1 = 	̃ and (P̃Ŵ̃)	̃(P̃Ŵ̃)−1 =
	̃∗, respectively. However, both conditions are not satisfied

with the symmetry operators in Eqs. (29) and (31). Thereby,

the finite γ and φ break all symmetries which guarantee a pair

of eigenstates with the opposite quasienergies.

While the above result implies that the pair of quasienergies

in Eq. (15) does not originate in symmetry, we can still find the

contributions of symmetry by introducing a modified version

of parity symmetry defined below. Because of translation

symmetry in the homogeneous system, we reexpress the

time-evolution operator in Eq. (22) by including the phase

operator into the shift operator as

Ũ ′(k) = C̃(θ1/2) S̃(k + φ) G̃ C̃(θ2) G̃−1 S̃(k + φ) C̃(θ1/2).

(32)

Next, we introduce the modified parity-symmetry operator

with phase modulations defined as

Pφ =
∑

n

e−i2φn|−n〉〈n| ⊗ P̃φ =
∑

k

|−k − 2φ〉〈k| ⊗ P̃φ .

By combing the modified parity-symmetry operator Pφ and

chiral-symmetry operator Ŵ, the condition on the shift operator

S̃(k + φ) to retain modified PCS, (P̃φŴ̃)Ũ ′(k)(P̃φŴ̃)−1 =
Ũ ′−1(−k − 2φ), becomes

(P̃φŴ̃)S̃(k + φ)(P̃φŴ̃)−1 = S̃(k + φ),

which is satisfied by the symmetry operator P̃φŴ̃ = σ3.

Note that conditions for C̃(θi) and G̃ to retain modi-

fied PCS are the same with those of PCS, since both

operators are k independent. Thereby, we identify that

the pair of quasienergies in Eq. (15) originates from

modified PCS.

B. Symmetries in inhomogeneous systems

Next, we consider PT symmetry, PHS, and PCS of the

time-evolution operator of the nonunitary quantum walk in

Eq. (3) with position-dependent parameters. Therefore, we

need to consider the time-evolution operator in the position

representation. Taking the symmetry operators for internal

space in Eqs. (24), (29), and (31) into account, those in the

position representation are described as

PT =
∑

n

|−n + q〉〈n| ⊗ σ0K, (33a)

� =
∑

n

|n〉〈n| ⊗ σ3K, (33b)

PŴ =
∑

n

|−n + q〉〈n| ⊗ σ3, (33c)

where the index q is introduced to determine the origin of

the space reflection point (see Fig. 4) because we treat lattice

systems. By using the symmetry operators in Eqs. (33a)–(33c),

FIG. 4. The difference of the reflection points of the parity-

symmetry operator. When q = 0, the reflection point is on the site

n = 0. When q = ±1, the reflection point is between sites n = 0 and

n = ±1.

each symmetry defined for the time-evolution operator in the

position representation becomes

(PT )U (PT )−1 = U−1, (34a)

�U�−1 = U, (34b)

(PŴ)U (PŴ)−1 = U−1. (34c)

Equations (33) and (34) guarantee that if two of the above

three symmetries are confirmed, there also exists the other

symmetry which is derived by combining the confirmed two

symmetries. Even in the position representation, we need to

use the time-evolution operator fitted into the symmetry time

frame written as

U ′ = C(θ1/2) S G2 	2 C(θ2) S G1 	1 C(θ1/2). (35)

As shown in Sec. III A, when parameters of the coin,

gain-loss, and phase operators are position independent,

conditions to retain each symmetry are reduced to conditions

to the elemental operators as summarized in Table I. This

simplification is based on the fact that all of the operators

G̃,S̃(k), and 	̃ are described by exponentials of σ3, and

then they are commutative. However, when the parameters

depend on position, the shift operator S is not commutative

with gain-loss operator Gi and phase operator 	i . Thus, we

need to consider conditions for operators SGi	i as a whole.

For example, the condition to retain PT symmetry for the

time-evolution operator is derived as follows. By substituting

Eq. (35) into Eq. (34a), the left and right hand sides become

LHS = [(PT ) C(θ1/2) (PT )−1] [(PT ) SG2	2 (PT )−1] · · · ,

RHS = [C−1(θ1/2)] [(SG1	1)−1] · · · ,

respectively. By comparing these two equations, we obtain

the conditions to retain PT symmetry for the time-evolution

operator of the nonunitary quantum walk in inhomogeneous

systems as

(PT )C(θi)(PT )−1 = C−1(θi), (36a)

(PT )(SGi	i)(PT )−1 = (SGj	j )−1, (36b)

where i,j = 1,2 and i �= j . From Eq. (36), we obtain condi-

tions imposed on each position-dependent parameter to retain
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PT symmetry as

θi(n) = θi(−n + q), (37a)

g1,L(n) = [g2,L(−n + q + 1)]−1, (37b)

g1,R(n) = [g2,R(−n + q − 1)]−1, (37c)

φ1,L(n) = φ2,L(−n + q + 1), (37d)

φ1,R(n) = φ2,R(−n + q − 1). (37e)

We find that, on one hand, the parameter θi(n) of the coin

operator is uncorrelated in time direction, which means that

θ1(n) and θ2(n) can be determined independently. On the other

hand, parameters of gain-loss and phase operators have strict

restrictions in time direction as well as in position space. We

note that when conditions in Eqs. (37b) and (37c) are satisfied,

the absolute value of the determinant of the time-evolution

operator U in inhomogeneous systems remains to be one,

even though the determinant of each Gi is not one. We should

also recall that while the conditions Eq. (37) guarantee that

the time-evolution operator has PT symmetry, they do not

guarantee that eigenvectors of the time-evolution operator are

those of the PT -symmetry operator.

In the same way, we can obtain conditions to preserve PCS

and PHS for the time-evolution operator in inhomogeneous

systems. We find that PCS is maintained under the following

conditions:

θi(n) = θi(−n + q), (38a)

g1,L(n) = [g2,L(−n + q + 1)]−1, (38b)

g1,R(n) = [g2,R(−n + q − 1)]−1, (38c)

φ1,L(n) = −φ2,L(−n + q + 1), (38d)

φ1,R(n) = −φ2,R(−n + q − 1). (38e)

Comparing the above conditions, Eq. (38), with those for PT
symmetry in Eq. (37), we understand that while Eqs. (38a)–

(38c) are the same as Eqs. (37a)–(37c), the conditions on

phases φi,σ (n) to retain PT symmetry and PCS cannot be

simultaneously satisfied unless φi,σ (n) = 0. This gives another

conclusion that PHS is retained only if φi,σ (n) = 0 since PHS

can be defined as the combination of PT symmetry and PCS,

� = (PT ) (PŴ). By combining Eqs. (37) and (38), we also

understand that there is no constraint on θi(n) and gi,σ (n) to

retain PHS.

IV. APPLICATIONS

Finally, we apply results to retain various symmetries

obtained in Sec. III into specific models of nonunitary quantum

walks. At first, we identify symmetries of the nonunitary

quantum walk realized in the experiment [45]. Second, we

show the numerical results of the walker’s time evolution in

the homogeneous system considered in Sec. III A. For the

other example, we demonstrate that, for an inhomogeneous

nonunitary quantum walk where four distinct spatial regions

exist, the time-evolution operator possessesPT symmetry and

the quasienergy becomes entirely real.

A. Symmetries satisfied in the experiment

Here, we directly identify symmetries of the nonunitary

quantum walk realized in the experiment [45] from the

time-evolution operator. The time-evolution operator in the

experiment, Uex, is given by Eq. (3) by assigning the following

parameters:

θ1(n) = θ2(n) = π/4, (39a)

g1,L(n) = [g2,L(n)]−1 = e+γ0 , (39b)

g1,R(n) = [g2,R(n)]−1 = e−γ0 , (39c)

φ1,L(n) = φ2,L(n) = 0, (39d)

φ1,R(n) = φ2,R(n) =
{

−φ0 for mod(n + 3,4) = 1, 2,

+φ0 for mod(n + 3,4) = 3, 0.

(39e)

The quasienergy of this time-evolution operator becomes

cos(±ε) = − 1
2

cos φ0 cosh(2γ0) ±
√

fk(γ0,φ0), (40)

where

fk(γ0,φ0)= 1
8
[cosh(4γ0)(cos2 φ0 − 1)−3 cos2 φ0+4+cos k].

Regarding PT symmetry, we can confirm that all parameters

in Eq. (39) satisfy conditions in Eq. (37) to retain PT
symmetry, especially, by choosing q = −1 for φi,L(n) which

only depends on the position. Therefore, we can identify PT
symmetry of the nonunitary time-evolution operator Uex with

the symmetry operator in Eq. (33a).

From Eq. (40) and Fig. 5, we expect that the time-evolution

operator Uex also has PHS and PCS because there appear

pairs with the opposite quasienergies ±ε. However, as shown

in Sec. III B, the finite φi,σ (n) prevents PHS and PCS. This

problem is solved by introducing a modified PHS operator

with a position shift by r as

�r =
∑

n

|n + r〉〈n| ⊗ σ3K. (41)

-0.5

-0.5

0

0.5

1

-1

ε/
π

k/π
-1

0.50 1

(a)

-0.5

-0.5

0

0.5

1

-1

ε/
π

k/π
-1

0.50 1

(b)

FIG. 5. The quasienergy as a function of k in Eq. (40) with

various gain-loss parameters when φ0 = 6π/5. The solid (dashed)

curve represents the real (imaginary) part of the quasienergy. (a)

When eγ = 1.1, the quasienergy is entirely real. (b) When eγ = 1.4,

a part of the quasienergy becomes complex. In both cases, quasienergy

exists being symmetric with respect to ε = 0.
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By using the modified PHS operator �r , the condition on the

phase parameter to satisfy �rU�−1
r = U is derived as

φi,σ (n) = −φi,σ (n + r). (42)

Inputting r = 2, we confirm that the phase parameter in

Eq. (39e) satisfies Eq. (42). Therefore, the time-evolution

operator Uex also preserves modified PHS.

B. Time evolution of probability distributions of homogeneous

nonunitary quantum walks

Next, we numerically demonstrate the time evolution of

probability distributions of nonunitary quantum walks in

homogeneous systems. To this end, we employ the time-

evolution operator in Eq. (14). We note that we define the

probability distribution at a position n at a time t as

|ψn(t)|2 = |ψn,L(t)|2 + |ψn,R(t)|2

even for nonunitary quantum walks although, in non-

Hermitian quantum mechanics, the biorthogonality of eigen-

vectors (of a Hamiltonian or time-evolution operator) should

be taken into account for normalized inner products. Because

of this, the sum of the probability distributions over the position

space

P (t) =
∑

n

|ψn(t)|2

need not be one for the nonunitary quantum walk, while P (t) =
1 for the unitary quantum walk. This choice stems from the

fact that the quantity |ψn(t)|2 calculated numerically agrees

well with the intensity distribution of laser pulses observed

experimentally in the optical-fiber loops with loss as reported

in Ref. [38].

In Fig. 6, we show numerical results on the time evo-

lution for the homogeneous quantum walk in Eq. (14).

The parameters are the same with the parameter set in

Fig. 3, namely, (a) eγ = 1 (the unitary quantum walk),

(b) eγ = 1.1 (the nonunitary quantum walk with entirely

real quasienergy), (c) eγ = 1.34 . . . (the nonunitary quantum

walk at the exceptional point), and (d) eγ = 1.5 (the nonuni-

tary quantum walk with complex quasienergy). Comparing

the probability distributions in Figs. 6(a) and 6(b), when
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FIG. 6. The time evolution for the quantum walk in the homogeneous system with various gain-loss parameters: (a) eγ = 1 (the unitary

quantum walk), (b) eγ = 1.1 (the nonunitary quantum walk with entirely real quasienergy), (c) eγ = 1.34 . . . (the nonunitary quantum walk

at the exceptional point), and (d) eγ = 1.5 (the nonunitary quantum walk with complex quasienergy). The other parameters θ1 = π/4,θ2 =
−π/7,φ = 0, and the initial state |ψ(0)〉 = |0〉 ⊗ |R〉 are used for all cases (a)–(d). Top panels: The contour maps of the logarithm of

the probability distribution ln[|ψn(t)|2] in the position and time plane. Middle panels: The probability distributions after 200 time steps

|ψn(t = 200)|2. Bottom panels: The time step dependence of the sum of the probability distributions P (t).
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FIG. 7. (a) A schematic view of the nonunitary quantum walk with four distinct spatial regions. (b) A schematic view to explain gain-loss

operations in the experiment by the optical-fiber loops.

the nonunitary quantum walk has entirely real quasienergy,

the time evolution is not largely different from that of the

unitary quantum walk. One exception is that the sum of the

probability distribution P (t) exhibits tiny oscillations around

P (t) ≈ 1 with time in the nonunitary case [Fig. 6(b), bottom],

while P (t) = 1 in the unitary quantum walk [Fig. 6(a),

bottom].

However, as increasing γ further, the time evolution of

the nonunitary quantum walk drastically changes. At the

exceptional point, the sum of the probability distribution

P (t) grows linearly with time as shown in Fig. 6(c), bottom,

and when part of the quasienergies become complex, P (t)

grows exponentially with time as shown in Fig. 6(d), bottom.

Remarkably, in the latter case, the probability distribution

after 200 time steps is well approximated by the Gaussian

distribution [Fig. 6(d), middle], in contrast with other cases

(a)–(c). We note that linear and exponential growths of the

sum of the probability distributions P (t) are observed in

Ref. [45] under a different setup, and the Gaussian distribution

of the probability distribution is also reported in Refs. [24,38].

Therefore, these observations which are available by experi-

ments can be considered as a manifestation of nonunitary time

evolution.

C. Nonunitary quantum walks with four distinct regions

Although we can construct various time-evolution operators

of nonunitary quantum walks in inhomogeneous systems with

PT symmetry by employing the conditions in Eq. (37), keep-

ing a real number of the quasienergy requires the additional

condition that eigenstates of the time-evolution operator are

those of the PT -symmetry operator. Since it is our empirical

fact that the additional condition is often broken in systems

with strongly position-dependent parameters, here we treat a

rather moderate inhomogeneous nonunitary quantum walk as

shown in Fig. 7(a). This system has four distinct spatial regions

with different parameters by combinations of LA/B and L+/−
where the regions are defined as

LA : − L/2 � n � L/2,

LB : n � −L/2 − 1, n � L/2 + 1,

L+ : n � 0,

L− : n � −1.

Taking account of Eq. (37) with q = 0, we choose parameters

of the elemental operators as follows:

θ1(n) =
{

+π/4 n ∈ LA,

−π/8 n ∈ LB ,
(43a)

θ2(n) =
{

−π/3 n ∈ LA,

+π/6 n ∈ LB ,
(43b)

g1,L(n) = [g2,L(−n + 1)]−1 =
{

1.1 n ∈ L−,

1.2 n ∈ L+,
(43c)

g1,R(n) = [g2,R(−n + 1)]−1 =
{

1.2 n ∈ L−,

1.1 n ∈ L+,
(43d)

φ1,L(n) = φ2,L(−n + 1) =
{

π/4 n ∈ L−,

π/8 n ∈ L+,
(43e)

φ1,R(n) = φ2,R(−n + 1) =
{

−π/3 n ∈ L−,

−π/6 n ∈ L+.
(43f)

We emphasize that θi(n) is symmetric with respect to the origin

of position space, while gi,σ (n) and φi,σ (n) are not. We also

remark that the first (second) gain-loss operator G1(2) only

amplifies (dumps) wave function amplitudes of both left and

right mover components as shown in Fig. 7(b), in contrast to

the experimental setup in Fig. 1(a).

-1

0

1

-1 0 1

Im
(λ

)

Re(λ)

-1

0

1

-1 0 1

Im
(λ

)

Re(λ)

FIG. 8. The eigenvalue λ (green crossed) of the time-evolution

operator of the nonunitary quantum walk with parameters in Eq. (43)

plotted on a complex plain.

062116-10



EXPLICIT DEFINITION OF PT SYMMETRY . . . PHYSICAL REVIEW A 93, 062116 (2016)

We numerically calculate eigenvalues of the time-evolution

operator U assigned the above parameters by imposing

periodic boundary conditions to both ends L − 1 and −L with

L = 128. As shown in Fig. 8 we clearly see that all eigenvalues

stay on a unit circle in a complex plane, which indicates

that the quasienergy is entirely real. Furthermore, eigenvalues

are not symmetric with respect to ε = 0,π , because the

position-dependent phase parameters φi,σ (n) break both PHS

and PCS.

V. SUMMARY AND DISCUSSION

We have explicitly defined the PT -symmetry operator

for the time-evolution operator of the nonunitary quantum

walk given in Eq. (3), and identified necessary and sufficient

conditions, Eq. (37), on position-dependent parameters of the

elemental operators to retainPT symmetry. Taking account of

the conditions, we have succeeded in clarifying the presence

of PT symmetry of the nonunitary quantum walk realized

in the experiment by using optical-fiber loops [45] from

the time-evolution operator. This has been accomplished for

the first time by employing the concept of the symmetry

time frame which had been developed in the recent work

on topological phases of quantum walks [44]. At the same

time, we have also studied extra symmetries embedded in

the time-evolution operator of the nonunitary quantum walk,

such as chiral symmetry, PHS, PCS, and so on. In Sec. IV B,

we have numerically demonstrated the time evolution of

probability distributions for the homogeneous nonunitary

quantum walk, and shown that those of the nonunitary quantum

walk with entirely real quasienergy are completely different

from those with complex quasienergy. Besides, we have also

demonstrated in Sec. IV C that the inhomogeneous nonunitary

quantum walk which has PT symmetry and even possesses

entirely real quasienergy is possible.

We believe that the result obtained in the present work

stimulates further developments on PT symmetry of nonuni-

tary time-evolution operators which has not yet been studied

enough, compared with non-Hermitian Hamiltonians. Also,

the conditions Eq. (37) would strongly support the experiment

by using the optical-fiber loops [45] as the versatile platform

for studying phenomena originating in PT symmetry. Besides

this, although we have focused on the optical-fiber setup

in the present work, our result can be straightforwardly

applied to other setups of the quantum walk. Furthermore, we

can easily generalize our theory to the nonunitary quantum

walk only with dissipation, which would be much easier

to realize in various experimental setups. In addition, since

we have shown that the nonunitary quantum walk can retain

important symmetries to establish topological phases, it would

be interesting to study topological phases and corresponding

edge states of the nonunitary quantum walk, which we will

report on elsewhere.

An important open problem is to identify a general-

ized condition to retain real quasienergy of the nonunitary

quantum walk. According to progress on PT symmetry of

non-Hermitian Hamiltonians, it is already known that the

argument on PT symmetry can be generalized as follows:

if a Hamiltonian H satisfies a pseudo-Hermiticity condition

ηHη−1 = H † with a positive operator η which may not

be related to parity symmetry, eigenenergy could become

real [54,55]. Indeed, we observed possibly related phenomena

in our nonunitary quantum walk setup because quasienergy

becomes entirely real even when θ1(n) is completely random

in position space. This suggests the possibility of retaining real

quasienergy of the nonunitary time-evolution operator without

strong constraint on the position space. We leave this issue as

a future work.
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[48] J. K. Asbóth and H. Obuse, Bulk-boundary correspondence for

chiral symmetric quantum walks, Phys. Rev. B 88, 121406(R)

(2013).

[49] T. Kitagawa, M. S. Rudner, E. Berg, and E. Demler, Exploring

topological phases with quantum walks, Phys. Rev. A 82,

033429 (2010).

[50] H. Obuse and N. Kawakami, Topological phases and delocal-

ization of quantum walks in random environments, Phys. Rev.

B 84, 195139 (2011).
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