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Convergence as a function of the number of states is studied and demonstrated for the Poet-
Temkin model of electron-hydrogen scattering. In this Coulomb three-body problem only the L = 0
partial waves are treated. By taking as many as thirty target states, obtained by diagonalizing
the target Hamiltonian in a Laguerre basis, complete agreement with the smooth results of Poet is
obtained at all energies. We show that the often-encountered pseudoresonance features in the cross
sections are simply an indication of an inadequate target state representation.
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The close-coupling equations [1] have formed the
framework for detailed modeling of electron-atom colli-
sions since the late 1950s. An approach based on the Fad-
deev formalism has also been applied to such systems of
few interacting particles with Coulomb potentials [2], but
this has not proved as successful as the former approach.
The close-coupling equations are derived by making an
expansion over the complete set of target states including
the continuum. Typically, neglecting the contribution of
the continuum states leads to an overestimation of the
cross sections above the ionization threshold. Burke and
Webb [3] used a basis of Lz Slater functions to diagonal-
ize the hydrogen-atom target. The positive energy states
(pseudostates), when included in the close-coupling for-
malism, gave improved cross sections. A further study
of the approximation of the continuum by L2 states was
reported by Burke and Mitchell [4] for a model electron-
hydrogen problem, first analyzed in detail by Temkin [5]
and Kyle and Temkin [6], in which only l = 0 target
states were used and the L = 0 partial wave amplitude
was studied as a function of energy. While this is a sim-
pli6cation of the full Coulomb three-body problem, it
still contains the essential difficulties associated with it,
namely, the Coulomb continuum. For singlet scattering
the pseudostate expansions were accompanied by reso-
nance features above the ionization threshold which per-
sisted for the largest basis used. Away from the resonance
features the amplitudes for the different bases appeared
to converge. The pseudoresonances varied in number and
energy with different bases.

A J-matrix calculation was carried out for the same
model problem by Heller and Yamani [7]. In the J-matrix
method one similarly makes use of L~ expansions of the
target and they also observed unphysical resonance fea-
tures. Their expansions included up to ten basis states

for the hydrogen-atom target. An interesting aspect of
the J-matrix method is that it leads to a physical in-

terpretation of the nature of the Lz discretization of the
continuum. Yamani and Reinhardt [8] showed for the
hydrogen atom that an expansion of the target in a ba-
sis of Laguerre functions could be given in a form where

the coefficients were obtainable analytically. The coeffi-

cients are essentially Pollazeck polynomials. The energy
of the pseudostates can be readily identified with the ze-

ros of the polynomials of order N for a set of N Laguerre
functions. The pseudostates apart from an overall nor-
malization factor can be shown to converge conditionally
to the continuum Coulomb functions [9].

Further investigations of the convergence of the pseu-
dostate method were carried out by Oza and Callaway

[10] and Oza [11]. Their largest calculations (N ( 9)
still contained pseudoresonance features although it was
noted [11]that their effect was diminishing with increase
in basis. An important advance to the theory of electron-
hydrogen scattering for this model was made by Poet
[12]. He noted that the Schrodinger equation was of a
separable form enabling the general solutions of the dif-

ferential equation to be found analytically. The match-

ing to obtain the physical solutions required numerical
solution of an integral equation, which was done to a
high accuracy. The cross sections he obtained in the re-

gion where close coupling suffered from pseudoresonances
were very smooth. Where the close-coupling results were
convergent, i.e. , away from the resonance regions, they
were in good agreement with Poet. Callaway and Oza
[13] extended Poet's methods to calculate the total and
ionization cross sections and compared the results with
their pseudostate calculations which were averaged over
the pseudoresonances. Bransden, Hewitt, and Plummer

[14] applied the Schwinger variational method to this
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model with the wave function expanded in a basis of pseu-
dostates. This approach also suEered from pseudoreso-
nance behavior which was dificult to remove.

The above pseudostate investigations still leave open
the question of whether the pseudoresonances can be
completely eliminated directly, without having to resort
to averaging techniques such as in [10]or [14]. In this Let-
ter we employ a Laguerre basis to generate target expan-
sions of up to thirty states and solve the close-coupling
equations using the momentum space approach of Mc-
Carthy and Stelbovics [15]. The results we present show
that convergence to the model results is obtained over
the whole energy range treated by Poet [12]. We extend
the scale of his calculation and give results for higher
level inelastic and ionization scattering from 0 to 400 eV
incident electron energy. In such an application a La-
guerre basis is ideal because with an appropriate choice
the functions are orthogonal and hence large basis diag-
onalizations pose no numerical difficulties (X up to 100
has been achieved). Moreover, the convergence can be
studied systematically by simply increasing the basis size

¹ A very important feature of the Laguerre basis is that

the lower-energy states rapidly converge to the exact hy-
drogen eigenstates as N is increased. The Laguerre basis
(g~(r) we choose has the form

A(k —I)!
!+1+k

x exp( Ar—/2)1, „'+, (Ar),

where the I,&'+, (Ar) are the associated Laguerre polyno-
mials, / is set to zero for this model, and k ranges from
1 to the basis size ¹ The constant A is arbitrary and is

chosen so that the lowest-energy states are essentially the
exact hydrogen eigenstates. By taking A = 2 or A = 1

the exact 1s or 2s state, respectively, is obtained from
the diagonalization for N & 1. The rate of convergence
to the higher exact hydrogen bound states for A = 2 as
a function of N has been given by Bray, Konovalov, and
McCarthy [16]. A preliminary study of the close-coupling
expansion and its convergence properties for N & 10 were

given by Winata and Stelbovics [17].
We solve the close-coupling equations using the

Lippmann-Schwinger equation for the T matrix elements

(k„n[T inpko) = (k„n[V [npkp)+)
nl

„„,„, (k„[V [
'k')(k' '[T

[ oko)

E —e„—k'z/2 + i0

~„' = ~'(k. /k. ) [(k„n[T'[n,k, )['. (4)

In Fig. 1 we present the singlet cross sections cr„ for a
number of transitions and compare them with the exact

where 9 denotes total spin, and E = eo + k02/2 = e„
+ kz/2 is the on-shell energy. Note that all orbital angu-
lar momenta are set to zero, and have been omitted from
the notation. Denoting the total Hamiltonian by H, and
the space-exchange operator by P„ the potential matrix
elements in (2) are [15]

(k„n~V [n'k') = (k„n~vg+ vg2+ (—1)s(H —E)P„[n'k'),

(3)

where vq and vq~ are the electron-proton and electron-
electron potentials, respectively. The space-exchange
operator arises by demanding that the singlet-triplet
coordinate-space wave functions have the symmetry re-

quired on application of the Pauli principle. The target
states [n') are obtained by diagonalizing the atomic hy-

drogen Hamiltonian in the Laguerre basis. The basis size
N must be sufficiently large that the states [n) and [no)
in (2) come out from the diagonalization to be essen-
tially the exact hydrogen eigenstates for the transition
of interest. The incident projectile is denoted by [ko)
and the initial target state is [no), which we take to be
the ground state of hydrogen. The method of solution
of (2) is given by McCarthy and Stelbovics [15]. The
corresponding cross section sr~ in units of era~& is given by

results of Poet [12,18]. The projectile energy ranges from
1 to 400 eV, with approximately 100 energy steps chosen
to represent the essential structures. The calculations
were done over a large range of N from 5 to 30. The
results are shown for three sets of target states N = 5 and
N = 10 calculated with A = 1, and N = 30 calculated
with A = 2. Quantitative results may be obtained upon
request.

We chose A = 1 for the smaller sets as then on diago-
nalization the 2s state is exact mhile the 1s and 3s are
quite good, whereas if we had A = 2 then the 1s state
would be exact, but the 3s state would be quite bad. For
the N = 30 runs we can take either value of A. We took
A = 2 to show that the convergent answers are indepen-
dent of A.

We see that the characteristic pseudoresonance be-
havior is evident for the smaller sets. However, the
thirty-state runs do not exhibit this phenomenon and are
in complete agreement with Poet, indicating that pseu-
doresonances can be simply thought of as a lack of con-

vergence with N. A very narrow genuine resonance in the
2s cross section around 10 eV is well reproduced by the
thirty-state runs. The ionization cross section is calcu-

lated by adding the cross sections of the positive energy

target states. It is the most difBcult to get convergent.
Even with thirty states some minor oseillations are visible

at the intermediate energies.
In Fig. 2 the corresponding triplet results o„are given.
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FIG. 1. Singlet cross sections of the simplified model of electron-hydrogen scattering that treats only states with zero orbital
angular momentum. The exact results, denoted by open circles, are due to Poet [12, 18]. The curves denote close-coupling
calculations with thirty (solid line), ten (long-dsshed line), and five (short-dashed line) L states generated using the Laguerre
basis.
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FIG. 2. Triplet cross sections of the simplified model of electron-hydrogen scattering that treats only states with zero
orbital angular momentum. The exact results, denoted by open circles, are due to Poet [12). The curves denote close-coupling
calculations with thirty (solid line), ten (long-dashed line), and five (short-dashed line) L states generated using the Laguerre
basis.
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We see that there is no pseudoresonance structure here,
and for most of the transitions X = 5 is suKcient. The
reason that the 3s transition is a little higher for the
X = 5 set is that with only five states in the Laguerre
basis it is not possible to get simultaneously the exact 18,
28, and 3s hydrogen wave functions to a high precision,
for any A.

The major conclusion that we draw from this work is
that close-coupling equations can be made to yield con-
vergent results at all energies for a Coulomb three-body
problem. The basis size required is at least a factor of
2 larger than employed in previous applications. Con-
vergence is independent of the value of A, though the
convergence rate probably does depend on A. The rate
of convergence depends on the transition, e.g. , conver-
gence for the elastic channel is much faster than for the
ionization channel, and it is more diKcult to get conver-
gent singlet channels than triplet channels, at least in
this model. Last, the convergence rates critically depend
on the energy of the incident projectile. While at ener-
gies a little above the ionization threshold as many as
thirty states may be necessary, at the higher energies as
few as five states are often sufBcient. Further studies of
the full electron-hydrogen scattering system, by allowing
arbitrary partial waves for both the target and projectile,
indicate that the conclusions regarding convergence are
carried over to the general case.
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