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EXPLICIT DESCRIPTION OF AE SOLUTION SETS FOR
PARAMETRIC LINEAR SYSTEMS∗

EVGENIJA D. POPOVA†

Abstract. Consider linear systems whose input data are linear functions of uncertain parame-
ters varying within given intervals. We are interested in an explicit description of the so-called AE
parametric solution sets (where all universally quantified parameters precede all existentially quan-
tified ones) by a set of inequalities not involving the parameters. This work presents how to obtain
explicit description of AE parametric solution sets by combining a modified Fourier–Motzkin type
elimination of existentially quantified parameters with the elimination of the universally quantified
parameters. Some necessary (and sufficient) conditions for existence of nonempty AE parametric so-
lution sets are discussed, as well as some properties of the parametric AE solution sets, e.g., shape of
the solution set and some inclusion relations. Explicit descriptions of particular classes of AE para-
metric solution sets (tolerable, controllable, any two-dimensional) are given. Numerical examples
illustrate the solution sets and their properties.
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1. Introduction. Consider a linear algebraic system

(1.1a) A(p)x = b(p)

having linear uncertainty structure

(1.1b) aij(p) := aij,0 +

m∑
μ=1

aij,μpμ, bi(p) := bi,0 +

m∑
μ=1

bi,μpμ,

where aij,μ, bi,μ ∈ R, μ = 0, . . . ,m, i, j = 1, . . . , n, and the parameters p = (p1, . . . , pm)�

are considered to be uncertain, varying within given intervals

(1.1c) p ∈ [p] = ([p1], . . . , [pm])�.

In a more general case, the dependencies between the parameters in (1.1b) can be
nonlinear. Such systems are common in many engineering analysis or design problems,
control engineering, robust Monte Carlo simulations, etc., where there are complicated
dependencies between the model parameters which are uncertain. The set of solutions
to (1.1), called the united parametric solution set, is

Σp
uni = Σ(A(p), b(p), [p]) := {x ∈ Rn | ∃p ∈ [p], A(p)x = b(p)} .(1.2)

The (united) parametric solution sets generalize the (united) nonparametric solution
sets to interval linear systems; the elements of the matrix and of the right-hand side
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in the latter are independent intervals. However, the solutions of many practical
problems involving uncertain (interval) data have quantified formulation involving
the universal logical quantifier (∀) besides the existential quantifier (∃). Examples of
several mathematical problems formulated in terms of quantified solution sets can be
found in [14] and in the vast literature on quantified constraints satisfaction problems;
see, e.g., [5] for references to applications in control engineering, electrical engineering,
mechanical engineering, biology, and others.

In this work we focus on linear systems involving linear dependencies between
interval parameters and on quantified parametric solution sets where all universally
quantified parameters precede all existentially quantified ones. Such solution sets are
called AE parametric solution sets, after Shary [14]. AE parametric solution sets
generalize both the united parametric solution set and the corresponding nonpara-
metric AE solution sets. Our goal is to describe the parametric AE solution sets by
inequalities not involving the interval parameters. This is a fundamental problem with
considerable practical importance. The explicit description of a parametric solution
set is useful for visualizing the solution set, for exploring the solution set properties,
which helps in designing better (sharp and fast) numerical methods, and for finding
exact bounds for the solution, which helps in testing new numerical methods.

The description of the parametric solution sets is related to quantifier elimina-
tion, which has stimulated a tremendous amount of research. Since Tarski’s general
theory [15] is EXPSPACE-hard [2], a lot of research is devoted to special cases with
polynomial-time decidability. Apart from quantifier elimination, the only known gen-
eral way of describing the united parametric solution set is a Fourier–Motzkin type
parameter elimination process proposed in [1] and modified in [9]. The nonparametric
AE solution sets were studied by many authors; see [3], [4], [14] and the references
given therein. With the exception of [12], [13], which consider some special cases
of tolerable solution sets, and [10], also considering a special case, to our knowledge
there are no other studies of the parametric AE solution sets.

In this paper (section 4) we discuss how to obtain an explicit description of para-
metric AE solution sets by a Fourier–Motzkin type elimination of the existentially
quantified parameters (called E-parameters). The methodology for elimination of
E-parameters is presented in section 3. Explicit descriptions of particular classes of
parametric AE solution sets (tolerable, controllable, any two-dimensional) are given
in section 5. Based on the explicit description or the properties of the parameter
elimination process, in this section we prove several properties of the parametric AE
solution sets. Some necessary or necessary and sufficient conditions for a parametric
AE solution set to be nonempty are presented. Also discussed are the shape of the
parametric AE solution sets and some inclusion relations. For simplicity of notation
we consider square systems. However, all the assertions in the paper are valid for
rectangular systems. Numerical examples illustrate the parametric AE solution sets
and their properties.

2. Notation. Denote by Rn,Rn×m the set of real vectors with n components
and the set of real n × m matrices, respectively. A real compact interval is [a] =
[a−, a+] := {a ∈ R | a− ≤ a ≤ a+}. By IRn, IRn×m we denote the sets of interval
n-vectors and interval n × m matrices, respectively. For [a] = [a−, a+], define mid-
point ȧ := (a− + a+)/2 and radius â := (a+ − a−)/2. These functions are applied to
interval vectors and matrices componentwise. For a given index set Π = {π1, . . . , πk},
denote pΠ = (pπ1 , . . . , pπk

).
∧

and ∧ denote the logical “And.”
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With the notation A••μ := (aij,μ) ∈ Rn×n, b•μ := (bi,μ) ∈ Rn, μ = 0, . . . ,m, the
system (1.1a) can be rewritten equivalently as(

A••0 +
m∑

μ=1

pμA••μ

)
x = b•0 +

m∑
μ=1

pμb•μ.

For a matrix A ∈ Rn×n, Am• denotes the mth row of A.
For a parametric matrix A(p) (resp., vector b(p)), depending on a number of

parameters (1.1c), A([p]), b([p]) denote the corresponding nonparametric matrix (resp.,
vector)

aij([p]) := aij,0 +
m∑

μ=1

aij,μ[pμ], bi([p]) := bi,0 +
m∑

ν=1

bi,μ[pμ].

Exactly one nonparametric system A([p])x = b([p]) corresponds to a parametric sys-
tem A(p)x = b(p). However, for a nonparametric system [A]x = [b], there are infinitely
many ways by which one can choose the number m of the parameters, the type of the
parameter dependencies A••μ, μ = 0, . . . ,m, and the parameter domain [p] ∈ IRm,
so that A([p]) = [A] and b([p]) = [b]. All parametric systems A(p)x = b(p), such
that A([p]) = [A], b([p]) = [b], correspond to the nonparametric system [A]x = [b].
Lemma 5.5 below defines a way by which one can obtain a variety of parametric
systems that correspond to a nonparametric system.

Definition 2.1. A parameter pμ, 1 ≤ μ ≤ m, is of 1st class if it occurs in only
one equation of the system (1.1a).

It does not matter how many times a 1st class parameter appears within an
equation. A parameter pμ is of 1st class iff the vector b•μ − A••μx has only one
nonzero component (that is, biμ −Ai•μx �= 0 for exactly one i, 1 ≤ i ≤ n).

Definition 2.2. A parameter pμ, 1 ≤ μ ≤ m, is of 2nd class if it is involved in
more than one equation of the system (1.1a).

A parameter pμ is of 2nd class iff the vector b•μ − A••μx has more than one
nonzero component.

Definition 2.3. A parametric matrix is called row-dependent1 if for some μ ∈
{1, . . . ,m} and some i ∈ {1, . . . , n}, Card(J ) ≥ 2, where J := {j | 1 ≤ j ≤ n, aij,μ �=
0}. A parametric matrix is called row-independent if for all μ ∈ {1, . . . ,m} and all
i ∈ {1, . . . , n}, Card(J ) < 2.

A row-dependent parametric matrix is denoted by Ard(p) and a row-independent
one by Ari(p). Examples of row-independent parametric matrices are the symmetric,
skew-symmetric, Hankel, Toeplitz, and Hurwitz matrices, as well as the nonparametric
matrices.

3. Fourier–Motzkin type elimination of E-parameters. The united para-
metric solution set (1.2) is characterized as follows by a trivial set of inequalities:

Σp
uni = {x ∈ Rn | ∃pμ ∈ R, μ = 1, . . . ,m : (3.1)–(3.2) hold},

where

A••0x− b•0 +
m∑

μ=1

(A••μx− b•μ) pμ ≤ 0 ≤ A••0x− b•0 +
m∑

μ=1

(A••μx− b•μ) pμ,(3.1)

p−μ ≤ pμ ≤ p+μ , μ = 1, . . . ,m.(3.2)

1By analogy with the column-dependent parametric matrices defined in [7].
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Starting from a trivial description of Σp
uni, the following theorem shows how the exis-

tentially quantified parameters in this set of inequalities can be eliminated successively
in order to obtain a new description not involving pμ, μ = 1, . . . ,m.

Theorem 3.1 (see [9]). Let gλ(x), fλν,1(x), fλν,2(x), fλμ(x), λ = 1, . . . , k(≥ n),
ν = 1, . . . ,m1 − 1, m1 ≥ 1, be real-valued functions of x = (x1, . . . , xn)

� on some
subset D ⊆ Rn. Assume that there exists a nonempty set T ⊆ {1, . . . , k} such that
fλm1(x) �≡ 0 for all λ ∈ T . For the parameters pμ, μ = m1, . . . ,m, varying in R and
for x varying in D define the sets S1, S2 by

S1 := {x ∈ D | ∃pμ ∈ R, μ = m1, . . . ,m : (3.3), (3.4) hold},
S2 := {x ∈ D | ∃pμ ∈ R, μ = m1 + 1, . . . ,m : (3.5), (3.6), (3.7) hold},

where inequalities (3.3), (3.4) and (3.5), (3.6), (3.7), respectively, are given by

(3.3) gλ(x) +

m1−1∑
ν=1

fλν,1(x)ṗν ∓
m1−1∑
ν=1

fλν,2(x)p̂ν

+

m∑
μ=m1+1

fλμ(x)pμ ≤ −fλm1(x)pm1 ≤ · · · , λ = 1, . . . , k,

(3.4) ṗμ − p̂μ ≤ pμ ≤ ṗμ + p̂μ, μ = m1, . . . ,m,

(3.5) gλ(x) +

m1−1∑
ν=1

fλν,1(x)ṗν ∓
m1−1∑
ν=1

fλν,2(x)p̂ν + fλm1(x)ṗm1 ∓ |fλm1(x)|p̂m1

+
m∑

μ=m1+1

fλμ(x)pμ ≤ 0 ≤ · · · , λ = 1, . . . , k,

and for α, β ∈ T , α < β,

(3.6)

gα(x)fβm1(x)− gβ(x)fαm1(x) +

m1−1∑
ν=1

(fβm1(x)fαν,1(x)− fαm1(x)fβν,1(x)) ṗν

∓
m1−1∑
ν=1

(|fβm1(x)|fαν,2(x) + |fαm1(x)|fβν,2(x)) p̂ν

+

m∑
μ=m1+1

(fαμ(x)fβm1(x) − fβμ(x)fαm1(x)) pμ ≤ 0 ≤ · · · ,

(3.7) ṗμ − p̂μ ≤ pμ ≤ ṗμ + p̂μ, μ = m1 + 1, . . . ,m.

The “· · · ” in the right-hand side inequalities denotes the left-side expression in the left
inequality with the bottom sign (+) in front of the terms involving a parameter radius,
while “∓” in the left inequality should be read “−.”2 (Trivial inequalities which are
true for any x ∈ Rn can be omitted.) Then S1 = S2.

2For example, the expanded (3.3) is

gλ(x) +

m1−1∑

ν=1

fλν,1(x)ṗν −
m1−1∑

ν=1

fλν,2(x)p̂ν +

m∑

μ=m1+1

fλμ(x)pμ ≤ −fλm1
(x)pm1

≤ gλ(x) +

m1−1∑

ν=1

fλν,1(x)ṗν +

m1−1∑

ν=1

fλν,2(x)p̂ν +
m∑

μ=m1+1

fλμ(x)pμ.
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The inequalities (3.5) are called end-point inequalities because they are obtained
by combining (3.3) with (3.4). The inequalities (3.6) are called cross inequality pairs
because they are obtained by combining two inequality pairs (3.3). Note that the
resulting inequalities (3.5) and (3.6) have the form (3.3), which allows the elimination
process to continue with the next parameters.

The parameter elimination process resembles the so-called Fourier–Motzkin eli-
mination of variables; see, e.g., [11]. It was first proposed in [1] in a form based on the
parameter inequalities (3.2) which leads to a tremendous number of solution set char-
acterizing inequalities. In order to reduce the number of characterizing inequalities,
the modified parameter elimination in Theorem 3.1 is based on the equivalent pa-
rameter inequalities (3.4) in midpoint/radius representation. Thus, in the parameter
elimination process we apply the relation

λṗμ − |λ|p̂μ ≤λpμ≤ λṗμ + |λ|p̂μ for λ ∈ R(3.8)

without the necessity to consider the particular sign of λ. Therefore, the modified
parameter elimination does not depend on a particular orthant. Furthermore, The-
orem 3.1 gives a compact representation of the characterizing inequalities which will
be illustrated below.

Consider the parametric system (1.1), the united parametric solution set of which
is described by the trivial set of characterizing inequalities (3.1) and for μ = 1, . . . ,m,
(3.4). Let for M1 ∪ M2 = {1, . . . ,m}, M1 ∩ M2 = ∅, pμ, μ ∈ M1, be 1st class
E-parameters and pμ, μ ∈ M2, be 2nd class E-parameters. By Theorem 3.1, the
elimination of all pμ, μ ∈ M1, updates the inequality pairs (3.1) so that they become

(3.9) A••0x− b•0 +
∑

μ∈M1

(A••μx− b•μ) ṗμ ∓
∑

μ∈M1

|A••μx− b•μ| p̂μ

+
∑

μ∈M2

(A••μx− b•μ) pμ ≤ 0 ≤ · · · .

The end-point inequality pairs (3.9) are equivalent to single absolute-value inequalities
(3.10) and vice versa:

(3.10)

∣∣∣∣∣∣A••0x− b•0 +
∑

μ∈M1

(A••μx− b•μ) ṗμ

+
∑

μ∈M2

(A••μx− b•μ) pμ

∣∣∣∣∣∣ ≤
∑

μ∈M1

|A••μx− b•μ| p̂μ.

Let for pν1 , ν1 ∈ M2, Tν1 ⊆ {1, . . . , n}, Card(Tν1) = k, be the index set of the
inequalities (3.9) (resp., (3.10)) involving pν1 . By Theorem 3.1, the elimination of pν1
updates the end-point inequalities (3.9) (resp., (3.10)), which become

(3.11)

∣∣∣∣∣∣A••0x− b•0 +
∑

μ∈M1∪{ν1}
(A••μx− b•μ) ṗμ

+
∑

μ∈M2\{ν1}
(A••μx− b•μ) pμ

∣∣∣∣∣∣ ≤
∑

μ∈M1∪{ν1}
|A••μx− b•μ| p̂μ
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and for α, β ∈ Tν1 generate k(k − 1)/2 cross inequality pairs

(3.12) Δ0,ν1(α, β, x) +
∑

μ∈M1

Δμ,ν1(α, β, x)ṗμ

∓
∑

μ∈M1

(|fν1(β, x)| |fμ(α, x)| + |fν1(α, x)| |fμ(β, x)|) p̂μ

+
∑

μ∈M2\{ν1}
Δμ,ν1(α, β, x)pμ ≤ 0 ≤ · · · ,

wherein fμ(α, x) := (Aα•μx− bαμ), and similarly for fν1(α, x), fμ(β, x), fν1(β, x),
and Δμ,ν1(α, β, x) := fν1(β, x)fμ(α, x) − fν1(α, x)fμ(β, x) for μ ∈ {0} ∪ M1 or μ ∈
M2 \ {ν1}. The cross inequality pairs (3.12) also can be written as equivalent single
absolute-value inequalities.

The elimination of the next 2nd class E-parameters updates similarly the end-
point inequalities (3.11) and introduces more cross inequalities. The cross inequalities
can be more complicated than the inequalities (3.12). However, the solution set
characterizing inequalities (both end-point and cross inequalities), obtained by the
Fourier–Motzkin type elimination of E-parameters, have the same general form, which
can be presented as follows.

For λ ∈ T := {1, . . . , n} ∪ Tc, where {1, . . . , n} is the index set of the end-
point characterizing inequalities and Tc is the index set of the characterizing cross
inequalities, the set of all solution set characterizing inequalities obtained by the
Fourier–Motzkin type elimination of E-parameters is

(3.13)
∧
λ∈T

uλ,0(x) +
∑
μ∈L1

uλ,μ(x)ṗμ −
∑
μ∈L1

vλ,μ(x)p̂μ ≤
∑
μ∈L2

wλ,μ(x)pμ

≤ uλ,0(x) +
∑
μ∈L1

uλ,μ(x)ṗμ +
∑
μ∈L1

vλ,μ(x)p̂μ,

wherein L1 is the set of indexes of all eliminated E-parameters, uλ,0(x), uλ,μ(x),
vλ,μ(x), wλ,μ(x) are corresponding real-valued functions of x = (x1, . . . , xn)

�, and L2

is the set of indexes of the noneliminated parameters. A more general representation
of the inequality pairs (3.13) is∧

λ∈T
uλ(x, L1) ≤

∑
μ∈L2

wλ,μ(x)pμ≤ vλ(x, L1),(3.14)

where uλ(x, L1) is the expression in the left side of the left inequality of (3.13), and
vλ(x, L1) is the expression in the right side of the right inequality of (3.13); uλ(x, L1)
and vλ(x, L1) differ only in the signs of the terms involving the radius of a parameter.

4. Description of parametric AE solution sets. We start this section with
a general definition.

Definition 4.1. Quantified solution sets to a parametric linear system A(p)x =
b(p), involving either linear or nonlinear dependencies between the parameters p =
(p1, . . . , pm)�, are sets of the form

{x ∈ Rn | (Q1p1 ∈ [p1]) . . . (Qmpm ∈ [pm])(A(p)x = b(p))},

where Qi ∈ {∀, ∃}, i = 1, . . . ,m.
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The total number of quantified parametric solution sets exceeds 2m since the ex-
istential and the universal quantifiers do not commute. In this work we consider only
linear systems involving linear dependencies between the uncertain parameters and
quantified solutions sets of such systems where all occurrences of the universal quan-
tifier precede all occurrences of the existential quantifier. After the terminology used
in [14], we call these solution sets AE parametric solution sets. Thus, a parametric
AE solution set of the system (1.1a)–(1.1c) is defined by

Σp
AE := {x ∈ Rn | (∀pA ∈ [pA])(∃pE ∈ [pE ])(A(p)x = b(p))} ,(4.1)

where A and E are sets of indexes such that A ∪ E = {1, . . . ,m}, A ∩ E = ∅. There
are exactly 2m parametric AE solution sets.

Theorem 4.2. For given index sets A and E, the parametric AE solution set
(4.1) of the system (1.1a)–(1.1c) is described by the set of inequality pairs

(4.2)
∧
λ∈T

⎛
⎝uλ(x, E) −

∑
μ∈A

(wλ,μ(x)ṗμ − |wλ,μ(x)|p̂μ) ≤ 0

≤ vλ(x, E)−
∑
μ∈A

(wλ,μ(x)ṗμ + |wλ,μ(x)|p̂μ)

⎞
⎠ ,

where

SE :=
∧
λ∈T

uλ(x, E) ≤
∑
μ∈A

wλ,μ(x)pμ ≤ vλ(x, E)

is the set of inequality pairs obtained by Fourier–Motzkin type elimination of all E-
parameters, T = {1, . . . , t}, t ≥ n.

Proof.

Σp
AE := {x ∈ Rn | (∀pA ∈ [pA])(∃pE ∈ [pE ])(A(p)x = b(p))}

=

⎧⎨
⎩x ∈ Rn | (∀pA ∈ [pA])

( ∧
λ∈T

uλ(x, E) ≤
∑
μ∈A

wλ,μ(x)pμ ≤ vλ(x, E)
)⎫⎬
⎭

= {x ∈ Rn | (4.2)} .

The first equality above follows from the Fourier–Motzkin type elimination of all
E-parameters. The second equality follows from the distributivity of the universal
quantifiers over conjunction, the parameter inequality pairs for the A-parameters,
and the relation

(4.3) (∀p ∈ [p] : b1 ≤ f(p) ≤ b2) ⇔
(
b1 ≤ min

p∈[p]
f(p)

)
∧
(
max
p∈[p]

f(p) ≤ b2

)
.

Corollary 4.3. The elimination of the universally quantified parameters does
not introduce new characterizing inequalities to the description of Σp

AE obtained by
elimination of all existentially quantified parameters.

It was proved in [9] that the elimination of 1st class E-parameters does not in-
troduce the so-called cross inequalities. These inequalities are generated only by the
elimination 2nd class E-parameters and the degree of the polynomials involved in the
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cross inequalities may increase with each eliminated 2nd class E-parameter. Thus, we
can estimate the shape of a parametric AE solution set, i.e., the maximal degree of
the polynomial equations describing the solution set boundary.

Corollary 4.4. The nonlinear shape of Σp
AE is determined by the 2nd class

E-parameters.
The next important corollary follows from the elimination theorems for the 1st

class E-parameters and the A-parameters.
Corollary 4.5. The infimum/supremum of a parametric AE solution set is

attained at particular end-points of the intervals for the 1st class E-parameters and
the A-parameters.

Due to the above, we sometimes say that the boundary of a parametric AE
solution set is linear with respect to the 1st class E-parameters and the A-parameters.
Despite this property, the parametric AE solution set may not depend linearly on
these parameters.

The application of Theorem 4.2 will be illustrated in the next section, where we
consider some classes of parametric AE solution sets, give their explicit description,
and derive some of their properties.

5. Properties of the parametric AE solution sets. The first two general
theorems below are proved in [10] and are not based on the description of the para-
metric AE solution sets. The following theorem gives a set-theoretical description
of AE parametric solution sets (4.1) and generalizes a corresponding theorem [14,
Theorem 3.1] for nonparametric AE solution sets.

Theorem 5.1 (see [10]).

Σp
AE =

⋂
pA∈[pA]

⋃
pE∈[pE ]

{x ∈ Rn | A(pA, pE) · x = b(pA, pE)} .

The next theorem gives some analytic necessary conditions for a general AE
parametric solution set to be nonempty.

Theorem 5.2 (see [10]). If a parametric AE solution set (4.1) is nonempty, then
for any x ∈ Σp

AE

(5.1)
∑
ν∈A

(A••νx− b•ν)[pν ] ⊆ b•0 −A••0x+
∑
μ∈E

(b•μ −A••μx)[pμ].

The interval inclusion (5.1) is equivalent to the inequality

|A(ṗ)x− b(ṗ)| ≤
m∑

μ=1

δμ|A••μx− b•μ|p̂μ,(5.2)

where δμ := {1 if μ ∈ E ,−1 if μ ∈ A}.
The inequality (5.2) presents the end-point inequalities in the explicit character-

ization of a parametric AE solution set. The following theorem and corollary follow
from Theorem 4.2 and a property proved in [9] that the elimination of 1st class E-
parameters does not generate any cross inequalities.

Theorem 5.3. A parametric AE solution set of the linear system (1.1a)–(1.1c)
is nonempty iff the solution set describing inequalities (4.2), defined in Theorem 4.2,
holds true.

Corollary 5.4. Let the definition of a parametric AE solution set to the linear
system (1.1a)–(1.1c) involve only 1st class existentially quantified parameters. Such
parametric AE solution set is nonempty iff the inequality (5.2) holds true.
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Fig. 5.1. The parametric AE solution set for the system from Example 5.1.

The nonempty parametric AE solution sets from Corollary 5.4 have linear shape
but they are not convex in the general case.

Example 5.1. Consider the parametric linear system A(p)x = b(q), where

A(p) =

(
2p1 p12 − p1

2.5p21 + p2 p2

)
, b(q) =

(
2q
2q

)
,

p1 ∈
[
1

2
,
3

2

]
, p2 ∈

[
7

10
,
17

10

]
, p12, p21 ∈ [0, 1], q ∈

[
13

6
,
17

6

]
.

The solution set Σ∀q∃p1,p2,p12,p21 is presented on Figure 5.1. Its boundary is linear but
neither the whole solution set nor its intersection with the fourth orthant is convex.
Furthermore, the solution set is unbounded in the fourth orthant.

It is well known that a parametric united solution set is a subset of its corre-
sponding nonparametric solution set, but we have never seen a formal proof of this
fact. Below, for completeness, we give the proof of a more general inclusion relation.

Lemma 5.5. Let f(p) and g(p) be linear functions of the interval parameters
p ∈ [p] ∈ IRm such that they involve at least two different parameters pi1 , pi2 :

f(p) = α0 + αpi1 + f0(p \ {pi1 , pi2}), g(p) = β0 + βpi2 + g0(p \ {pi1 , pi2}),

where α0, β0, α, β ∈ R, and f0, g0 are linear functions of pi3 , . . . , pim . Then for f̃(q),
g̃(q), defined by

f̃(q) := q1 + q2 + f0(p \ {pi1 , pi2}),
g̃(q) := q1 + q3 + g0(p \ {pi1 , pi2}),

where q = (q1, q2, q3, pi3 , . . . , pim), q1 ∈ [q1] is arbitrary, q2 ∈ [q2], such that q̇2 =
α0+αṗi1− q̇1, q̂2 = |α|p̂i1 − q̂1, q3 ∈ [q3], such that q̇3 = β0+βṗi2− q̇1, q̂3 = |β|p̂i2 − q̂1,
the following relations hold:

f([p]) = f̃([q]), g([p]) = g̃([q]).

Proof. The proof is trivial and follows from the relation a = ȧ+ âe, where a ∈ [a],
e ∈ [−1, 1], and the relation (3.8).
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Theorem 5.6. For two parameter vectors u ∈ [u] ∈ IRm1 , v ∈ [v] ∈ IRm2 , such
that A([u]) = A([v]) = [A], b([u]) = b([v]) = [b] and A(u), b(u) are obtained from
A(v), b(v) by successive application of Lemma 5.5. Similarly, A(v), b(v) are obtained
from [A], [b]; then

Σuni(A(u), b(u), [u]) ⊆ Σuni(A(v), b(v), [v]) ⊆ · · · ⊆ Σuni([A], [b]).

Proof. The application of Lemma 5.5 to two elements aij1 (·), aij2 (·) from the ith
row of the matrix A (or to aij1(·) and bi(·)) implies the introduction of a parame-
ter (say, uμ) having row-dependencies. Then the inclusion relation follows from the
inequality

|aij1μxj1 + aij2μxj2 | ≤ |aij1μxj1 |+ |aij2μxj2 |
applied to the right side of the ith absolute-value end-point inequality characterizing
the solution set.

The application of Lemma 5.5 to two elements of different rows of the matrix A
(and the vector b) implies the introduction of column-dependencies. Then the elimi-
nation of the parameter having more nonzero components in the coefficient vector will
generate additional characterizing cross inequalities which may additionally restrict
the solution set.

Since by Theorem 4.2 all E-parameters are eliminated first and the elimination of
all A-parameters does not introduce any cross inequalities, we can also apply Theo-
rem 5.6 to parametric AE solution sets as specified by the next corollary.

Corollary 5.7. Theorem 5.6 is applicable to parametric AE solution sets which
have the same structure of the dependencies between the A-parameters and the same
domain [pA].

Proof. Let us have two parametric systems (resp., AE solution sets) such that

the requirements of the corollary hold, that is, A
(1)
••μ = A

(2)
••μ, b

(1)
•μ = b

(2)
•μ for μ ∈ A. If

for a p̃A = 0, by Theorem 5.6 we have

Σ(A(1)(p̃A, pE1), b
(1)(p̃A, pE1), [pE1 ]) ⊆ Σ(A(2)(p̃A, pE2), b

(2)(p̃A, pE2), [pE2 ]),

then we will have the same inclusion for every p̃A ∈ [pA] and thus for the corresponding
parametric AE solution sets.

5.1. Parametric tolerable solution sets. For p = (p1, . . . , pm1) and q =
(q1, . . . , qm2), the general parametric tolerable solution set is defined by

Σtol(A(p), b(q), [p], [q]) := {x ∈ Rn | ∀p ∈ [p], ∃q ∈ [q], A(p)x = b(q)} .
Denote by Σtol(Ari(p), [p], [b]) the tolerable solution set of a system involving

a row-independent parametric matrix and a right-hand-side vector with indepen-
dent interval components. Since A([p]) is the interval hull of Ari(p) and in view
of Definition 2.3, by Theorem 4.2 the two tolerable solution sets Σtol(A([p]), [b]) and
Σtol(Ari(p), [p], [b]) have the same explicit representation

Σtol(A([p]), [b]) = Σtol(Ari(p), [p], [b]) =
{
x ∈ Rn |

∣∣∣Ȧx− ḃ
∣∣∣ ≤ b̂− Â|x|

}
.

Proposition 5.8. Let q = (q1, . . . , qm2). If q1, . . . , qm2 are 1st class parameters,
then

Σtol(A(p), b(q), [p], [q]) =

{
x ∈ Rn |

∣∣∣Ȧx− ḃ
∣∣∣ ≤ m2∑

μ=1

q̂μ|b•μ| −
m1∑
μ=1

p̂μ|A••μx|
}
,

where
∑m2

μ=1 q̂μ|b•μ| = rad(b([q])).
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If the parametric tolerable solution set involves 2nd class E-parameters, then its
description contains cross inequalities with respect to these parameters. However,
since all 2nd class E-parameters (if any) are involved in the right-hand side of the
system, the cross inequalities with respect to these parameters will be linear, which
proves the following theorem.

Theorem 5.9. The parametric tolerable solution sets have linear shape.
Next we prove some inclusion relations between different tolerable solution sets.
Theorem 5.10. Let Ari(u), Ard(v) ∈ Rn×n, and [A] ∈ IRn×n be such that for

given parameter vectors u ∈ [u] ∈ IRm1 , v ∈ [v] ∈ IRm2 , Ari([u]) ⊆ [A], and Ard(v)
is obtained from Ari(u) or from Ari([u]) by successive application of Lemma 5.5. If
the parameters q ∈ [q] ∈ IRm3 are of 1st class, then

(5.3) Σtol([A], b([q])) ⊆ Σtol(Ari([u]), b([q]))

= Σtol(Ari(u), b([q]), [u]) ⊆ Σtol(Ard(v), b([q]), [v]).

If A(v) is obtained from A(u) by successive application of Lemma 5.5, then for an
arbitrary q ∈ [q] ∈ IRm3 which may involve 2nd class E-parameters

Σtol(A(u), b(q), [u], [q]) ⊆ Σtol(A(v), b(q), [v], [q]).(5.4)

Proof. The equality relation in (5.3) follows from the equivalent explicit descrip-
tion of the two solution sets.

The proof of Σtol(Ari(u), b([q]), [u]) ⊆ Σtol(Ard(v), b([q]), [v]) is similar to the
proof of Theorem 5.6 for row-dependencies. However, since the radiuses of the uni-
versally quantified parameters appear in the right-hand side of the solution set char-
acterizing inequalities with negative sign, the inclusion relation is reversed.

The inclusion relation (5.4) follows similarly if we consider also the characterizing
cross inequalities for the 2nd class E-parameters.

We prove Σtol([A], b([q])) ⊆ Σtol(Ari([u]), b([q])). If [aij ] � aij([u]), there exist at
least one interval [t] �= [0, 0] such that [aij ] = aij([u])+ [t] and âij = âij([u])+ t̂. Then
the inclusion follows from −âij ≤ −âij([u]).

Example 5.2. Consider the nonparametric interval linear system [A]x = [b], where

[A] =

(
[0, 1] [ 12 ,

3
2 ]

[−2, 0] [1, 2]

)
,[b] =

(
[−1, 2]
[−3, 3]

)
.

The nonparametric interval matrix [A] presents an interval hull of the following para-
metric matrices (and of infinitely many other parametric matrices):

A1 =

(
a11 a12
a21 1 + a11

)
, A2 =

(
a11 a+ 1

2
−2a 1 + a11

)
, A3 =

(
a a+ 1

2
−2a 1 + a

)
,

where a11, a ∈ [0, 1], a12 ∈ [ 12 ,
3
2 ], a21 ∈ [−2, 0]. Since both A1 and A2 are row-

independent matrices with the same interval hull, the parametric tolerable solution
sets Σtol(A1, [b]) and Σtol(A2, [b]) have the same explicit description which is equiv-
alent to the description of the corresponding nonparametric tolerable solution set
Σtol([A], [b]). The parametric matrix A3 is row-dependent and has the same interval
hull as the matrices A1, A2. Therefore, by Theorem 5.10, relation (5.3),

Σtol([A], [b]) = Σtol(A1, [b]) = Σtol(A2, [b]) ⊆ Σtol(A3, [b]).
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Fig. 5.2. Inclusion relations between the parametric tolerable solution sets from Example 5.2:
(a) the inclusions (5.5), (b) the inclusions (5.6).

If we consider a system with matrix [B] =
(

[0,1] [−4,2]
[−2,0] [1,2]

)
which encloses the matrix

[A], we obtain the inclusions

(5.5) Σtol([B], [b]) ⊆ Σtol([A], [b]) = Σtol(A1, [b]) = Σtol(A2, [b]) ⊆ Σtol(A3, [b]).

The last inclusion chain is presented in Figure 5.2(a), where Σtol([B], [b]) is the inner-
most white polyhedron, Σtol([A], [b]) is the polyhedron in light gray, and Σtol(A3, [b])
is the parallelogram with black corners.

Now, consider parametric systems involving the same matrices [A], A1, A2, A3

and a right-hand-side vector depending on a 2nd class parameter, that is, b(q) =
(q1, q1 − q2)

�, where q1, q2 ∈ [−1, 2] and b([q]) = [b]. For the tolerable solution sets of
these systems we have the following inclusion relations:

Σtol(V, b(q))
(5.4)

⊆ Σtol(A3, b(q))
Cor5.7
⊆ Σtol(A3, [b]),(5.6)

Σtol(V, b(q))
Cor5.7
⊆ Σtol(V, [b])

(5.3)

⊆ Σtol(A3, [b]),

where V ∈ {[A], A1, A2}.
In Figure 5.2(b) Σtol(A3, [b]) is the black parallelogram, Σtol(A3, b(q)) is the par-

allelogram in gray, and Σtol(V, b(q)) is the innermost white polyhedron.
The next theorem gives a better description of the shape of the parametric toler-

able solution set than Theorem 5.9.
Theorem 5.11. The parametric tolerable solution set is a convex polyhedron.
Proof. First we consider the special case where all E-parameters q = (q1, . . . , qm2)

are of 1st class. Then, defining [b] := b([q]), by Theorem 5.10 we have

Σtol(A(p), b(q), [p], [q]) = Σtol(A(p), b([q]), [p])

= {x ∈ Rn | (∀p ∈ [p])(A(p)x ∈ [b])}

=

{
x ∈ Rn | (∀p ∈ [p])

(
A••0x+

m1∑
μ=1

(A••μx)pμ ∈ [b]

)}
.

Define L := {λ = (λ1, . . . , λm1) | λμ ∈ {−,+}, μ = 1, . . . ,m1}. The relation (4.3)
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implies
∧

λ∈L b1 ≤ f(pλ) ≤ b2 for a linear function f(p) and p ∈ [p] ∈ IRk. Thus,

(5.7) Σtol(A(p), b([q]), [p])

=

{
x ∈ Rn |

∧
λ∈L

b− ≤ A••0x+

m1∑
μ=1

(A••μx)p
λµ
μ ≤ b+

}
,

which proves the theorem since a convex polyhedron is expressed as the solution set
for a system of linear inequalities.

If the parametric tolerable solution set involves 2nd class E-parameters, their
elimination will generate cross inequalities with respect to these parameters. However,
since all 2nd class E-parameters are involved in the right-hand side of the system, all
cross inequalities with respect to these parameters will be linear involving additional
(new) affine-linear dependencies between the parameters p. Then, the proof will
continue the same way as for 1st class E-parameters above but with an enlarged
matrix A′ having n+k rows and a vector [b′] ∈ IRn+k, where k is the number of cross
inequalities.

The assertion of Theorem 5.11 and the left two relations in (5.3) are considered
in [12], [13] for the special case of the row-independent parametric matrix and the
right-hand side with independent components. Theorem 5.11 and relation (5.4) of
Theorem 5.10 address the most general case of parametric tolerable solution sets.
Note that (5.7) gives another description of the parametric tolerable solution set
by n2m1+1 inequalities. This description is equivalent to the description given in
Proposition 5.8 that contains only n absolute-value inequalities.

5.2. 2D parametric AE solution sets. In [9] we studied the elimination of
2nd class existentially quantified parameters from two characterizing inequalities. The
next theorem, giving an explicit description of the parametric AE solution sets to any
two-dimensional (2D) linear system, follows from [9, Theorem 4.1] and Theorem 4.2.

Theorem 5.12. A parametric AE solution set (4.1) to a 2D linear system (1.1a)–
(1.1c) is described by the inequalities

|A(ṗ)x− b(ṗ)| ≤
m∑

μ=1

δμ|A••μx− b•μ|p̂μ,(5.8)

∣∣∣∣∣∣Δ0,i +

m∑
μ=1,μ
=i

Δμ,iṗμ

∣∣∣∣∣∣ ≤
m∑

μ=1,μ
=i

δμ|Δμ,i|p̂μ, i ∈ M,(5.9)

where δμ := {1 if μ ∈ E ,−1 if μ ∈ A}, M is the index set of the 2nd class existentially
quantified parameters, Δα,β(x) := fα,1(x)fβ,2(x)−fα,2(x)fβ,1(x), and fλ,1(x), fλ,2(x)
are the components of the coefficient vector fλ(x) := A••λx− b•λ of the parameter pλ
for λ ∈ {α, β}.

For a system of two equations the above theorem implies
(i) any parametric AE solution set is described by 2 + m1 absolute-value in-

equalities, where m1 is the number of 2nd class E-parameters;
(ii) the maximal degree of the polynomial equations describing the boundary of

a 2D parametric AE solution set is not greater than 2.
Remark 5.1. The elimination of a 2nd class E-parameter from more than two

inequality couples is done by combining every two inequality couples containing this
parameter. Although Theorem 5.12 (resp., [9, Theorem 4.1]) describes the solution
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Fig. 5.3. The controllable nonparametric solution set (a) and the parametric controllable solu-
tion set (b) for the system from Example 5.3.

set of a 2D system, the proof of [9, Theorem 4.1] is general and constructive with
respect to superfluous inequalities. Therefore [9, Theorem 4.1] (resp., Theorem 5.12)
is applicable to any two characterizing inequality couples.

Example 5.3. Consider the parametric linear system A(p)x = b(q), where

A(p) =

(
p1 −p2
p2 p1

)
, b(q) =

(
2q
2q

)
, p1 ∈ [−2, 2], p2 ∈ [−1, 2], q ∈ [1, 2].

The parametric controllable solution set

Σp
cont = Σcont(A(p), b(q), [p], [q]) := {x ∈ Rn | (∀q ∈ [q])(∃p ∈ [p])(A(p)x = b(q))}

is described by the inequalities

∣∣∣3 + x2

2

∣∣∣ ≤ −1 + 2|x1|+
3|x2|
2

, |−3x1 − 3x2| ≤ −|x1 + x2|+ 2|x2
1 + x2

2|,∣∣∣3− x1

2

∣∣∣ ≤ −1 + 2|x2|+
3|x1|
2

,

∣∣∣∣3x1 − 3x2 −
x2
1

2
− x2

2

2

∣∣∣∣ ≤ −|x1 − x2|+ 3
|x2

1 + x2
2|

2
.

The left two inequalities above are the so-called end-point inequalities which describe
the nonparametric controllable solution set Σcont(A([p]), b([q])). Since A(p) is the zero
matrix for p = (0, 0)� ∈ [p], both controllable solution sets (the parametric one and its
corresponding nonparametric one) are unbounded. Σcont(A([p]), b([q])) is presented in
gray in Figure 5.3(a), and both the parametric (in dark gray) and the nonparametric
controllable solution sets are presented in Figure 5.3(b).

The webComputing service framework [8] is expanded by a program (http://cose.
math.bas.bg/webMathematica/webComputing/ParametricAESSet.jsp) for generating
an explicit description of 2D parametric AE solution sets and for their graphical vi-
sualization.

5.3. Parametric controllable solution sets. For two nonempty disjoined in-
dex sets A and E , the general parametric controllable solution set is defined by

Σcont(A(pE), b(qA), [pE ], [qA])

:= {x ∈ Rn | (∀qA ∈ [qA])(∃pE ∈ [pE ])(A(pE )x = b(qA))}.
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It follows from Theorem 4.2 that the explicit description of a parametric con-
trollable solution set can be easily derived from the explicit description of the united
parametric solution set for a system with the same parametric matrix and a right-
hand-side vector [b] = b([qA]) with independent components. So far we know the
explicit description of the united parametric solution set for systems with a symmet-
ric or skew-symmetric matrix [6], as well as for arbitrary 2D parametric matrices [9]
or systems involving only 1st class E-parameters [10]. The next theorem is obtained
by applying Theorem 4.2 to the explicit description of the united parametric solution
set for a system with a skew-symmetric matrix from [6].

Theorem 5.13. The controllable solution set to a system with a skew-symmetric
matrix and independent right-hand-side vector, that is,

Σskew
cont := {x ∈ Rn | ∀b ∈ [b], ∃Askew ∈ [A], Askewx = b},

is described by ∣∣∣Ȧx− ḃ
∣∣∣ ≤ Âx− b̂,∣∣∣∣∣

n∑
i=1

Mi•xi(ui + vi)

∣∣∣∣∣ ≤
n∑

i,j=1

|xixj(u1 − vj)| âij −
n∑

i=1

|xi(ui + vi)| b̂i

∀u, v ∈ {0, 1}n \ {0}, u �lex v,

where M = Ȧx− ḃ.
If qν are 1st class parameters for all ν ∈ A, then

Σcont(A(pE ), b([qA]), [pE ]) = Σcont(A(pE ), b(qA), [pE ], [qA]).

However, in the general case of 2nd class universally quantified parameters we have
an inclusion.

Theorem 5.14. If there are two equations α, β of the parametric system which
involve simultaneously an existentially quantified parameter pk and a universally quan-
tified parameter ql such that

(5.10) sign(fkβbα,l) = sign(fkαbβ,l) �= 0,

where fkλ(x) = Aλ•kx, λ ∈ {α, β}, then

Σcont(A(pE ), b([qA]), [pE ]) ⊂ Σcont(A(pE ), b(qA), [pE ], [qA]).

Proof. By Theorem 5.12,3 the description of Σcont(A(pE), b(qA), [pE ], [qA]) in-
volves the inequality (respective to (5.9))

(5.11)

∣∣∣∣∣∣Δ0,k +
∑

μ∈E,μ
=k

Δμ,kṗμ +
∑
ν∈A

Δν,k q̇ν

∣∣∣∣∣∣ ≤
∑

μ∈E,μ
=k

|Δμ,k|p̂μ −
∑
ν∈A

|Δν,k|q̂ν ,

while in the description of Σcont(A(pE), b([qA]), [pE ]) the corresponding inequality is

(5.12)

∣∣∣∣∣∣Δ0,k +
∑

μ∈E,μ
=k

Δμ,k ṗμ +
∑

λ∈{α,β}
Δλ,kb(q̇)

∣∣∣∣∣∣
≤

∑
μ∈E,μ
=k

|Δμ,k|p̂μ − |fkβ(x)|b̂α([qA])− |fkα(x)|b̂β([qA]),

3See Remark 5.1.
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Fig. 5.4. The parametric controllable solution sets for the system from Example 5.4: (a)
Σcont(A(p), b([q]), [p]) and (b) Σcont(A(p), b(q), [p], [q]) represented by Σcont(A(p), b([q]), [p]) in gray,
which is expanded by the dark gray spike in the 1st orthant.

where b̂λ([qA]) =
∑

ν∈A |bνλ|q̂ν . The left side of (5.11) is equal to the left side of
(5.12). The relations (5.10) and |u− v| ≤ |u|+ |v|, where in the latter we have strong
inequality for sign(u) =sign(v) �= 0 and equality otherwise, imply that the right side
of (5.11) is greater than the right side of (5.12), which proves the theorem.

Example 5.4. Consider the parametric linear system A(p)x = b(q), where

A(p) =

(
2p1 p2
p2 2p1

)
, b(q) =

(
3
2 + q
q

)
, p1 ∈ [1, 2], p2 ∈ [−1, 1], q ∈

[
− 1

10
,
1

10

]
.

Since the coefficients of q in the two components of b(q) are positive and likewise
the coefficients of p1 and p2, Σcont(A(p), b([q]), [p]) ⊆ Σcont(A(p), b(q), [p], [q]) in the
first orthant (x1 ≥ 0, x2 ≥ 0), while in the fourth orthant (x1 ≥ 0, x2 ≤ 0)
Σcont(A(p), b([q]), [p]) = Σcont(A(p), b(q), [p], [q]). The cross inequalities describing
the two parametric controllable solution sets with eliminated p1 are

3|x2| ≤ −|x1|/5− |x2|/5 + | − 2x2
1 + 2x2

2| ≤ −|2x1 − 2x2|/10 + | − 2x2
1 + 2x2

2|,

where the expression in the middle presents the right-hand side of the characterizing
inequality for Σcont(A(p), b([q]), [p]), the expression to the right presents the right-
hand side of the characterizing inequality for Σcont(A(p), b(q), [p], [q]). Eliminating p2
we obtain

| − 3x1/2 + 3x2
1 − 3x2

2| ≤ −|x1|/10− |x2|/10 + |x2
1 − x2

2| ≤ −|x1 + x2|/10 + |x2
1 − x2

2|.

Both parametric controllable solution sets are presented in Figure 5.4. For their
interval hull we have

�Σcont(A(p), b([q]), [p]) =

([
2

5
,
11

14

]
,

[
−2

7
,
2

7

])�
,

�Σcont(A(p), b(q), [p], [q]) =

([
2

5
,
9

10

]
,

[
−2

7
,
2

5

])�
.

It follows from Corollary 4.4 that the parametric controllable solution set has
the same shape as the parametric united solution set for a system with the same
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parametric matrix and a right-hand-side vector [b] = b([q]). In the special case when
A(p) involves only 1st class parameters, the parametric controllable solution set has
linear shape.

6. Conclusion. The description of parametric AE solution sets by Fourier–
Motzkin type parameter elimination is feasible and much faster and more compact
than by quantifier elimination or other techniques. The description of a parametric
AE solution set is simpler and usually involves fewer characterizing inequalities than
the description of the corresponding united parametric solution set for the same sys-
tem. Knowing the explicit description of a united parametric solution set, we can
easily obtain the explicit description of any parametric AE solution set for the same
system. Unfortunately, so far we know the explicit description of the united paramet-
ric solution set to only a few systems with fixed data dependencies. Therefore more
research is necessary in this direction.

Many AE solution sets for a given parametric system are empty sets. The in-
equalities describing a parametric AE solution set present necessary and sufficient
conditions for the solution set to be nonempty. If we do not know the so-called cross
inequalities obtained by the elimination of 2nd class existentially quantified param-
eters, then the well-known end-point characterizing inequalities present a necessary
condition for the parametric AE solution set to be nonempty. We proved various
inclusion relations between different parametric AE solution sets corresponding to
a nonparametric system. Knowing the description of a parametric AE solution set,
we know the maximal degree of the polynomial equations describing the solution set
boundary. We proved that all parametric tolerable solution sets are convex poly-
hedrons. We hope that the explicit description of parametric AE solution sets will
facilitate exploring more properties and developing new numerical methods for the
parametric AE solution sets.
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