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EXPLICIT DISTRIBUTIONAL RESULTS
IN PATTERN FORMATION

By V. T. Stefanov1 and A. G. Pakes

University of Western Australia

A new and unified approach is presented for constructing joint gener-
ating functions for quantities of interest associated with pattern formation
in binary sequences. The method is based on results on exponential fami-
lies of Markov chains. The tools we use are not only new for this area; they
seem to be the right approach for deriving general explicit distributional
results.

1. Introduction. The concept of runs, and more generally patterns, have
been used in various areas: hypothesis testing, reliability theory, DNA se-
quencing [see Bishop, Williamson and Skolnick (1983) and the references
therein], computer science and others. In the present paper we derive explicitly
the distributions (joint, in general) of various quantities associated with the
time of first reaching an arbitrary and fixed pattern of 0’s and 1’s, although the
methodology we use allows much wider applicability. The observed sequences
are derived from either independent Bernoulli trials or some dependent tri-
als, including Markov dependent ones. The quantities of interest are the time
of first seeing the pattern itself and the counts of appearances of all of its
subpatterns until seeing the pattern for the first time. Throughout the paper
we understand a subpattern to be any initial substring of its elements (e.g.,
x1x2x3 in the pattern x1x2 · · ·x5). We will derive the joint Laplace transform
of these random quantities. Therefore, we will have the Laplace transform
of any linear transformation of these; note that linear combinations of these
random quantities produce, for example, the counts of one symbol runs of an
arbitrary length and of a length not smaller than a preassigned number and
other quantities that might be of interest.

Relevant literature is widely scattered, with overlaps and rediscoveries not
at all uncommon. We intend publishing a survey elsewhere, and here we men-
tion just a few sources on occurrence of patterns. Pioneers such as De Moivre
and Laplace solved problems about success runs, and Feller (1950) showed
how recurrent event theory could be deployed in a systematic manner. The
key to handling complex patterns was provided by Conway’s leading numbers.
See Gardner (1988) for a popular account. Formalization of this notion arose
almost simultaneously (in various guises) at the hands of Li (1980) (using
optional stopping), Gerber and Li (1981) (using Markov chains), Guibas and
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Odlyzko (1981) (using elementary arguments) and Blom and Thorburn (1982).
The last makes connections with Markov renewal theory, and this is system-
atically exploited to obtain very general results for Markov dependent trials
by Biggins and Cannings (1987). Chryssaphinou and Papastavridis (1990) in-
dependently considered Markov dependent trials by suitably extending the
methodology of Guibas and Odlyzko (1981).

Gerber and Li (1981) [cf. also Li (1980)] have found an expression for the
Laplace transform of the time to first occurrence of a given pattern in repeti-
tive drawings from a finite set of symbols (finite alphabet). Other related ref-
erences on the time of first seeing a pattern are Guibas and Odlyzko (1980),
Breen, Waterman and Zhang (1985) and Biggins and Cannings (1987). Limit-
ing distribution results for counts of appearances of a given pattern in alpha-
betical sequences can be found in Chryssaphinou and Papastavridis (1988),
Godbole and Schaeffner (1993) and Schbath (1995). Recently Aki and Hirano
(1994, 1995) derived joint distributional results for the time of first seeing a
run of successes and all its subpatterns (being also runs of successes) in binary
sequences.

In the present paper we illustrate a new methodology by extending the
results of Aki and Hirano (1994, 1995) to more general patterns. Our method-
ology is based on first imbedding the problem into a more general one for
an appropriate finite-state Markov chain with one absorbing state, and sec-
ond, treating that chain by the tools of exponential families. The first step of
imbedding the problem into a similar one for Markov chains is natural and
used in earlier as well as many recent treatments, for example, Li (1980), Ger-
ber and Li (1981), Fu and Koutras (1994), Banjevic (1994). More specifically,
the process of reaching a pattern can be modelled by a Markov chain with
the states recording the progress towards achieving it, with actually reach-
ing it being an absorbing state. Clearly this approach is applicable to reach-
ing patterns formed from finite alphabets when the trials are independent or
Markov-dependent. However our second step based on exponential families is
new for this area. It allows a routine derivation of the Laplace transform of a
whole collection of variables of interest. A brief description of the exponential
family technology follows. In a Markov chain stopped at a finite random time
τ let Ni; j�τ� be the number of the one-step transitions from i to j up to time
τ: Clearly the sequential likelihood function is (with suitable conventions to
cover pi; j = 0)

∏
i; j

p
Ni; j�τ�
i; j = exp

(∑
i; j

Ni; j�τ� lnpi; j
)

and we have a general exponential family. If the chain has k states, there
are k linear constraints on the pi; j, namely

∑
jpi; j = 1; for each i: So the

parameter space is �k2−k�-dimensional in general. For a finite stopping time
τ there might be linear constraints on the Ni; j as well. For most stopping
times, there are either no linear constraints or fewer than k: Then the ran-
dom variables in the exponent above number more than the free parameters.
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Such exponential families are called curved exponential families. However,
for some Markov chains there are a few finite stopping times for which there
are exactly k linear constraints on the Ni; j: This issue has been discussed
in Stefanov (1991) for ergodic Markov chains. Also the time to absorption in
a chain with one absorbing state is a stopping time that possesses this nice
property (see Remark 1 in Section 2). So the number of linearly independent
Ni; j is equal to the number of free parameters. Such an exponential family
is called a noncurved exponential family. For rigorous definitions of a curved
and a noncurved exponential family and their basic properties one may re-
fer to Barndorff-Nielsen (1978, 1980) and Brown (1986). For noncurved cases,
standard theory identifies the Laplace transform of the linearly independent
Ni; j: More specifically, after a suitable reparametrization and denoting the
linearly independent Ni; j by X1;X2; : : :, the noncurved exponential family
takes the form

exp
(∑

i

θiXi + ϕ�θ�
)

and the Laplace transform of the X’s is exp�ϕ�θ� − ϕ�θ + s��: So this pro-
vides us with an implicit formula for the Laplace transform of the variables
of interest. If the absorbing Markov chain we use to model our problem has
a relatively simple transition probability matrix, we have the possibility of an
explicit formula. In particular, this is the case for various patterns formed by
binary sequences. The aim of this article is to promote this technology through
applying it to a relatively simple example. On the other hand, the explicit ex-
pressions we derive here are general enough to cover all existing results in this
direction for binary sequences as well as providing closed explicit expressions
for some patterns which were not available earlier. Also this technology is ap-
plicable in other areas where similarly patterned Markov chains are used as
underlying models. Moreover, the revealed noncurved exponential structure of
the random quantities of interest leads to explicit limit results for the counts
of appearances of the pattern and all of its subpatterns via an appropriate
extension of the results of Stefanov (1995).

The paper is organized as follows. In Section 2 we introduce a special finite-
state Markov chain with one absorbing state. Explicit distributional results
are found when absorption occurs. These embrace explicit distributional re-
sults in pattern formation when independent or some dependent (including
Markov dependent) Bernoulli trials are performed. In Section 3 we discuss
briefly the case of first seeing a fixed number of consecutive successes; this is
the case that has been extensively studied in recent literature.

2. General theory. Let �Z�t��t≥0, t ∈ �0;1;2; : : :� be a homogeneous
�n + 2�-state Markov chain defined as follows. The set of states is I =
�0;1; : : : ; n+ 1�. Assume that

n+ 1 = k1 + k2
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for some preassigned positive integers k1; k2. Let

0 < pi; qi < 1 ∀ i = 0;1; : : : ; n;
pi + qi = 1;

and let

I0 =def �i ∈ Ix i = 0;1; : : : ; k1 − 1�
I1 =def I \

(
I0 ∪ �k1; n+ 1�

)
= �k1 + 1; : : : ; n�:

The one-step transition probabilities pij are defined as follows:

�1�

pi; i+1 = pi; i = 0;1; : : : ; n;

pi;0 = qi; i ∈ I0;

pk1; k1
= qk1

;

pi;1 = qi; i ∈ I1;

pn+1; n+1 = 1;

pi; j = 0 otherwise.

Therefore, the one-step transition probability matrix has the following form:



q0 p0 0 · · · : : : : : : : : : 0

q1 0 p1 0 : : : : : : : : : 0
:::

:::
:::

:::
:::

:::
:::

:::

qk1−1 0 : : : 0 pk1−1 0 : : : 0

0 0 0 : : : qk1
pk1

0 0

0 qk1+1 0 : : : : : : 0 pk1+1

:::
:::

:::
:::

:::
:::

:::
:::

0 qk1+k2−1 0 : : : : : : : : : 0 pk1+k2−1

0 0 : : : : : : : : : : : : 0 1




Assume also that

P�Z�0� = 0� = 1:

Denote by Ni; j�t� the number of the one-step transitions from state i to state
j up to time t. Let

τ =def inf�tx Z�t� = n+ 1�
= inf�tx Nn;n+1�t� = 1�:

That is, τ is the time to absorption in state n+1: The motivation for discussing
the above Markov chain comes from the following particular case.



670 V. T. STEFANOV AND A. G. PAKES

Example 1. Let

�2�

pi = p; i ∈ I0;

pi = q; i ∈ I1; i = k1;

qi = q; i ∈ I0;

qi = p; i ∈ I1; i = k1;

where pi; qi were given in (1) and p + q = 1. In this case the stopping time
τ marks the moment of first seeing the following pattern of 0’s and 1’s, by
independent Bernoulli trials with probability of success p:

1 · · ·1
k1

0 · · ·0
k2

;

where ki denotes the number of digits in the ith block. In fact it is easy to
see that an entry to the state i, 0 ≤ i ≤ k1 + k2; records an attainment of the
subpattern consisting of the first i digits of the above pattern; consequently
the entry to the absorbing state means reaching the pattern.

Example 2 (The Markov-dependent extension of Example 1). Let

p0 = p�0�; q0 = q�0�;
p1 = p; q1 = q;

:::
:::

pk1−1 = p; qk1−1 = q;
pk1
= q; qk1

= p;
pk1+1 = q�0�; qk1+1 = p�0�;

:::
:::

pk1+k2−1 = q�0�; qk1+k2−1 = p�0�;

where q�0� = 1 − p�0�, q = 1 − p and p is the probability of getting a success
given a success in the previous trial, while p�0� is the probability of getting a
success given a failure in the previous trial. The initial state is 0.

Generally, to each pattern of 0’s and 1’s,

1 · · ·1
k1

0 · · ·0
k2

1 · · ·1
: : :

0 · · ·0
km

;

we can introduce a Markov chain with n + 2 states (n + 1 = k1 + · · · + km)
with the last state being an absorbing state, such that its hitting time is
the moment of first seeing this pattern by independent and some dependent
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(including Markov dependent) Bernoulli trials. Each row (except for the last
one) of the transition probability matrices of these Markov chains has exactly
two nonzero entries; one of them is always pi; i+1; i = 1; : : : ; n and the other
one, say pi; j; depends on the particular pattern. Note that in the latter case
j ≤ i and j is the length of the longest achieved subpattern when the chain
leaves state i:

For the sake of clarity, we shall demonstrate our methodology on the Markov
chain introduced at the beginning of this section; this covers the case of a
pattern consisting of two blocks only. The methodology allows the derivation
of explicit solutions for any fixed pattern of 0’s and 1’s.

Consider the chain �Z�t��t≥0 introduced above. For the sake of brevity we
shall denote Ni; j�τ� by Ni; j and even more briefly Nj−1; j�τ� by Nj. Then
the Radon–Nikodym derivative of the measure generated by the chain on the
time interval �0; τ�, with respect to some σ-finite measure is [Stefanov (1991)]:

�3� exp
{ n∑
i=0

Ni+1 lnpi +
k1−1∑
i=0

Ni;0 lnqi +Nk1; k1
lnqk1

+
n∑

i=k1+1

Ni;1 lnqi

}
:

In view of Stefanov’s (1991) results (Proposition 1; cf. also Remark 1 below),
the family given by (3) is a noncurved exponential family of order �n+ 1�.

Remark 1. Actually, Stefanov’s (1991) paper treats ergodic Markov chains
only. However, it is straightforward to extend his results to absorbing Markov
chains with one absorbing state. Now the stopping time representing the time
of absorption is the one for which a noncurved exponential family is obtained.
Observe that in order to obtain a noncurved exponential family it is essential
that the evolution of the chain begin at a fixed state and terminate at a fixed
state.

Furthermore, we shall find a minimal canonical representation of the family
given by (3). Assume first that k2 > 1: In view of Stefanov (1991) [see (3)
on page 355] we have the following linear relationships between Ni+1; i =
0; : : : ; n; Ni;0; i ∈ I0 and Ni;1; i ∈ I1:

�4�

Ni;0 =Ni−1; i −Ni; i+1 =Ni −Ni+1 if i = 2;3; : : : ; k1 − 1;

Nk1
−Nk1+1 = 0;

Ni;1 =Ni−1; i −Ni; i+1 =Ni −Ni+1 if i = k1 + 1; : : : ; n;

Nn;n+1 =Nn+1 = 1;

N0;1 =N1 = 1+
k1−1∑
i=1

Ni;0;

with the convention that
∑j
i=1�·� = 0 if j = 0: This convention is applicable

throughout the paper unless otherwise explicitly stated.
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Specifically, these are derived by counting the number of entries to and
exits from a state, up to time τ: The last equality can also be expressed as

�5�
N1 = 1+N1;0 +

k1−1∑
i=2

�Ni −Ni+1�

= 1+N1;0 +N2 −Nk1
:

Hence

�6� N1;0 =N1 −N2 +Nk1
− 1:

Now, replacing Nk1
by Nk1+1, N1;0; Ni;0 �i = 2; : : : ; k1 − 1� and Ni;1 �i =

k1 + 1; : : : ; n� in (3) by the expressions in (4) and (6), we get the following
representation of this exponential family, where ρi stands for piqi+1/qi:

�7�

exp
{
N00 lnq0 +N1 ln�p0q1� +

k1−2∑
i=1

Ni+1 lnρi

+Nk1; k1
lnqk1

+Nk1+1 ln
(
pk1−1pk1

qk1+1q1

qk1−1

)

+
n−1∑

i=k1+1

Ni+1 lnρi +Nn+1 ln
pn
qn
− lnq1

}
:

Since Nn+1 = 1; one of the minimal canonical representations of the non-
curved exponential family of size n+ 1 given by (7) is

�8� exp
{ n∑
i=0

θi Xi + ϕ�θ�
}
; θ = �θ0; : : : ; θn� ∈ 2 ⊂ Rn+1;

where X0 =N00; Xi =Ni; i 6= k1; Xk1
=Nk1; k1

, 2 is an open set and

�9�

θ0 = lnq0;

θ1 = ln�p0; q1�;
θk1
= lnqk1

;

θk1+1 = ln�pk1−1pk1
qk1+1q1/qk1−1�;

θi = lnρi−1 otherwise

and ϕ�θ� = ln�pn/�qnq1��; whose explicit form will be found below. Let us
introduce the following notation:

σ1 x=def 1− exp�θ0� − exp�θ1� − exp�θ1 + θ2� − · · ·
− exp�θ1 + · · · + θk1−1�;

σ2;1 x=def − exp
( k1−1∑

i=1

θi

)[k2−1∑
l=1

exp
( l∑
j=1

θk1+j

)]
;(10)
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σ2;2 x=def − exp
( k1−1∑

i=1

θi

)[k2−2∑
l=1

exp
( l∑
j=1

θk1+j

)]
;

νi x=def exp
( i∑
j=1; j6=k1

θj

)
; i = 1;2; : : : :

From (9) we find that

�11�
q0 = eθ0; p0 = 1− eθ0;

q1 =
eθ1

1− eθ0
; p1 =

1− eθ0 − eθ1

1− eθ0

and after further calculation we find that

�12�

qk1−1 =
νk1−1

σ1
;

qk1
= exp�θk1

�;

qk1+1 =
νk1+1

pk1
q1σ1

;

qn =
νn

pk1
q1σ1 + σ2;2

:

From (12) we find that

pn =
pk1

q1σ1 + σ2;1

pk1
q1σ1 + σ2;2

because

σ2;1 = σ2;2 − νn;
whence

�13� exp�−ϕ�θ�� = q1νn
pk1

q1σ1 + σ2;1
:

Here pk1
and q1 are functions of θ given explicitly above and the other quan-

tities in (13) are also functions of θ, which were introduced in (10). In the case
when k2 = 1 the expression given in (7) takes the following form:

exp
{
N00 lnq0 +N1 ln�p0q1� +

k1−2∑
i=1

Ni+1 lnρi

+Nk1; k1
lnqk1

+ ln
pk1−1pk1

qk1−1

}
:

Then ϕ�θ� = ln�pk1−1pk1
/qk1−1� and along the same lines we find that

exp�−ϕ�θ�� =
∑k1−1
i=1 exp�θi�
pk1

σ1
;

with the convention that
∑j
i=1�e�·�� = 1 if j = 0:
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From well-known properties of noncurved exponential families [cf. Brown
(1986) or Barndorff-Nielsen (1978), page 114], the moment generating function
of the random vector X = �X0;X1;X2; : : : ;Xn� is

�14� MGFX�t� = exp�ϕ�θ� − ϕ�θ+ t��;

where t =def �t0; t1; : : : ; tn�; θ = �θ0; θ1; : : : ; θn� and θ + t ∈ 2. From (13) we
find an explicit expression for exp�ϕ�θ + t��. In the latter we replace the θi’s
by their expressions in terms of pi’s and qi’s [cf. (9) above] to get (t�i� stands
for t1 + t2 + · · · + ti):

�15� exp�ϕ�θ+ t�� = PQA1 +A2

Q exp�∑n
i=1; i6=k1

ti�p0p1 : : : pn−1qnq1
;

if k2 > 1, and

�16� exp�ϕ�θ+ t�� = PA1

exp�∑k1−1
i=1 ti�p0p1 : : : pk1−1qk1

;

if k2 = 1, where

A1 = 1−q0e
t0 −p0q1e

t1 −p0p1q2e
t�2�−· · ·−p0p1 : : : pk1−2qk1−1 exp�t�k1 − 1��;

A2 = −q1 exp�−tk1
�
(
p0p1 : : : pk1

qk1+1 exp�t�k1 + 1�� + · · ·
+ p0p1 : : : pk1+k2−2qk1+k2−1 exp�t�k1 + k2 − 1��

)
;

P = 1− exp�θk1
+ tk1

� = 1− qk1
exp�tk1

�

and

Q = exp�θ1 + t1�
1− exp�θ0 + t0�

= p0q1 exp�t1�
1− q0 exp�t0�

:

Then from (14), (15) and (16) we get the following.

Theorem 1. The moment generating function of X is

�17� MGFX�t� =
p0p1 : : : pn exp�∑n

i=1; i6=k1
ti�

�1− qk1
exp�tk1

��A1 +A2/Q
;

where Q;A1 and A2 are given above and A2 = 0, if k2 = 1.

The interpretation of the X’s in terms of quantities related to first seeing
a pattern is that Xi; �1 ≤ i < k1 and k1 < i ≤ n� is the count of appearances
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of the subpattern consisting of the first i digits of the pattern. Also

τ =X0 + 2X1 +X2 + · · · +Xk1
+ 3Xk1+1 +Xk1+2 + · · · +Xn − 1

=
n∑
i=0

Xi +X1 + 2Xk1+1 − 1

because

τ =
∑
i; j

Ni; j�τ�

and ∑
i; i6=0

Ni;0�τ� =N1 − 1;
∑
i; i>1

Ni;1�τ� =Nk1+1 − 1;

Nk1
=Nk1+1 and Nn;n+1�τ� = 1:

Example 1 (Continued). Consider the case of independent Bernoulli trials
introduced in Example 1 above. In this case

A2 = −pk1+1q exp�−tk1
�
( k2−1∑

i=1

qi exp�t�k1 + i��
)
;

if k1 > 1; and

A2 = −p3 exp�−t1�
( k2−1∑

i=1

qi exp�t�1+ i��
)
;

if k1 = 1y note that in the latter case q1 = p: However, for both cases the
expressions for A2/Q have the same form; that is,

A2/Q = −pk1 exp�−t1 − tk1
��1− q exp�t0��

( k2−1∑
i=1

qi exp�t�k1 + i��
)
;

if k1 > 1, and

A2/Q = −p exp�−2t1��1− q exp�t0��
( k2−1∑

i=1

qi exp�t�1+ i��
)
;

if k1 = 1: Therefore, from (17) we have

MGFX�t�

=
[
pk1qk2 exp

( n∑
i=1; i6=k1

ti

)]

×
{
�1− p exp�tk1

��
[
1− q exp�t0� − q

( k1−1∑
i=1

pi exp�t�i��
)]

− pk1 exp�−t1 − tk1
��1− q exp�t0��

( k2−1∑
i=1

qi exp�t�k1 + i��
)}−1

:
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Example 2 (Continued). From (17) we have

MGFX�t� =
[
p�0�qpk1−1�q�0��k2−1 exp

( n∑
i=1; i6=k1

ti

)]

×
{
�1− p exp�tk1

��
[
1− q�0� exp�t0� − qp�0�

(k1−1∑
i=1

pi−1 exp�t�i��
)]

− qp�0�pk1−1 exp�−t1 − tk1
��1− q�0� exp�t0��

×
( k2−1∑

i=1

�q�0��i−1 exp�t�k1 + i��
)}−1

:

3. The case k2 5 0. The case k2 = 0, which reduces the pattern to a run
of k1 1’s, can be treated along the same lines with simplified algebra. Because
of its central importance in recent literature [see Aki and Hirano (1995) and
Mohanty (1994) and the references therein] we give a brief account of this
case as well.

The one-step transition probability matrix of the corresponding Markov
chain has the success run form




q0 p0 0 : : : : : : 0

q1 0 p1 0 : : : 0
:::

:::
:::

:::
:::

:::

qk−1 0 : : : : : : 0 pk−1

0 0 : : : : : : 0 1




:

When pi = p �i = 0; : : : ; k − 1�, the stopping time τ represents the moment
of first seeing a run of k successes in independent Bernoulli trials with prob-
ability of success p: Suitable selections of the pi’s cover the case of Markov
dependent Bernoulli trials as well as the so-called binary sequences of order
k [for the definition of the latter see Aki and Hirano (1994)].

Equations �3�, �4� and �9� take the forms

�18� exp
{k−1∑
i=0

Ni+1 lnpi +
k−1∑
i=0

Ni;0 lnqi

}
;

where

�19�

Ni;0 =Ni−1; i −Ni; i+1 =Ni −Ni+1 if i = 1;2; : : : ; k− 1;

Nk−1; k =Nk = 1;

N0;1 =N1 = 1+
k−1∑
i=1

Ni;0;

�20�
θ0 = lnq0;

θ1 = ln�p0q1�;
θi = lnρi; i = 2; : : : ; k− 1;
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and ϕ�θ� = ln�pk−1/qk−1�: Along the same lines as above, with substan-
tially simplified algebra, we derive the moment generating function of N =
�N00;N1; : : : ;Nk−1�: The result is stated in the following.

Theorem 2. The moment generating function of N is

MGFN�t� =
p0p1 : : : pk−1 exp�∑k−1

i=1 ti�
A1

where A1 is as given in the previous section with k1 replaced by k:

There is a useful interpretation of the components of the vector N in terms
of runs and their length. Since there are several different ways of counting
success runs [see Fu and Koutras (1994)], we shall first recall these via an
example. Let 0110011110 be a sequence of 1’s (success) and 0’s (failure). Then
the run 11 appears once if Mood’s (1940) counting is used, three times in
Feller’s (1950) counting, and four times in Ling’s (1988) overlapping counting.
Now it is straightforward to see that according to Mood’s counting, Ni repre-
sents the number of success runs of length at least i in a sequence which is
stopped after reaching k consecutive successes. It is easy to see that

τ =N00 + 2N1 +N2 +N3 +N4 + · · · +Nk−1:

Also Ni −Ni+1 represents the number of runs of length exactly i: Of course,
from the moment generating function of N, we find immediately the moment
generating function of any linear transformation of N: In particular, we can
find the moment generating function of the vector �τ;N1 −N2; : : : ;Nk−1 −
Nk�; that is, the vector consisting of the moment of first seeing consecutive k
successes and numbers of success runs of length exactly i; i = 1; : : : ; k−1; in
Mood’s counting, for each of the three cases (i) independent Bernoulli trials,
(ii) Markov dependent Bernoulli trials and (iii) binary sequences of order k: By
the same token, we can derive immediately the moment generating function
of the same vector when any of the other above countings of runs is used; note
that the number of runs of a fixed length, in either Feller’s (1950) or Ling’s
(1988) counting, is a simple linear function of N1; : : : ;Nk−1: Therefore, all
results presented by Aki and Hirano (1995) can be derived from Theorem 2
above.
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