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Abstract

Representing documents is a crucial component in many NLP tasks, for instance pre-
dicting aspect ratings in reviews. Previous methods for this task treat documents globally,
and do not acknowledge that target categories are often assigned by their authors with gen-
erally no indication of the specific sentences that motivate them. To address this issue, we
adopt a weakly supervised learning model, which jointly learns to focus on relevant parts
of a document according to the context along with a classifier for the target categories. De-
rived from the weighted multiple-instance regression (MIR) framework, the model learns
decomposable document vectors for each individual category and thus overcomes the repre-
sentational bottleneck in previous methods due to a fixed-length document vector. During
prediction, the estimated relevance or saliency weights explicitly capture the contribution
of each sentence to the predicted rating, thus offering an explanation of the rating. Our
model achieves state-of-the-art performance on multi-aspect sentiment analysis, improv-
ing over several baselines. Moreover, the predicted saliency weights are close to human
estimates obtained by crowdsourcing, and increase the performance of lexical and topical
features for review segmentation and summarization.

1. Introduction

Many NLP tasks such as document classification, question answering, and summarization
heavily rely on how well the contents of the document are represented in a given model.
In particular, when classifying the sentiment of documents towards an item, the attitude
of the author generally results from the ratings of several specific aspects of the item. For
instance, the author of a review might have a rather positive overall sentiment about a
movie because they have particularly liked the plot and the setting, but not too much the
actors. Determining the rating of each aspect automatically is a challenging task, mainly
because it is difficult to find a fixed-length document representation which works well for
all the aspects. This task is typically cast as a supervised learning problem and has been
previously addressed by engineering or learning a large number of features to represent each
review, which are then fed to a linear classifier (McAuley, Leskovec, & Jurafsky, 2012; Zhu,
Zhang, & Ma, 2012; Tang, 2015). However, such models ignore that sentences have diverse
contributions to a document’s overall or aspect-specific sentiments, and that document-level
labels are coarse, in the sense that it is uncertain which parts of the text motivate them.

One way to ameliorate this issue is to select only sentences that discuss the targeted
aspect (Zhu et al., 2012) but this requires a preliminary segmentation of texts, which is
costly, and ignores sentences that have only a partial relation to an aspect. Another solution
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Figure 1: Explicit document modeling using weighted multiple-instance regression. The
model takes as input a document Bi (bag), which consists of multiple input
vectors bij (instances), possibly from a neural network. The model learns to
compute a weighted average of these vectors by estimating the weights ψij for
each document Bi and its target categories yi ∈ Rk.

is to model sentence-level labels as latent variables to be learned jointly with the document
classifier (Titov & McDonald, 2008a; McAuley et al., 2012; Lei, Barzilay, & Jaakkola, 2016).
Such binary latent assignments, however, are prone to errors on partially relevant sentences,
and lead to latent document representations which are typically rigid, implicit, and difficult
to interpret.

In this paper, we propose a weakly supervised approach based on weighted multiple-
instance regression (MIR) represented in Figure 1. We aim to answer the question: “To
what extent does each part of a document contribute to the prediction of a document-level
label?” Given a set of input vectors or intermediate hidden states of a neural network
for each document, the model learns to explicitly assign relevance weights to parts of the
document according to the context, as well as a classifier for the target labels. The model
thus learns decomposable and flexible document vectors for each individual category and
overcomes the representational bottleneck in previous methods that use one fixed document
vector for all categories. For training, our model only requires document-level labels (e.g.
aspect ratings), makes no particular assumption on the word features, and has reasonable
computational demands. Lastly, the learned instance weights have explanatory power, and
can be combined with sequence models for aspect-based review segmentation and summa-
rization. Specifically, we make the following contributions:

1. We propose a joint model comprised of an instance relevance mechanism, which ex-
plicitly summarizes the important contents of a document, through a decomposable
representation and a document classifier for the target labels. The model is directly
based on a weighted multiple-instance learning framework (Pappas & Popescu-Belis,
2014) and is mathematically equivalent to recent attention mechanisms in NLP (Bah-
danau, Cho, & Bengio, 2015).

2. We demonstrate that for document-level aspect rating prediction, our model consis-
tently outperforms several standard MIR and non-MIR baselines, as well as state-
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of-the-art neural baselines. The benefit is observed across several datasets, feature
spaces, and types of input vectors or intermediate hidden states of a network.

3. We evaluate the explanatory power of our model by comparing its predicted aspect
saliency values with those assigned by humans, using a novel dataset for evaluating
attention-based methods in document classification (Pappas & Popescu-Belis, 2016).

4. We show that the learned aspect saliency values are beneficial to review segmentation
and summarization, as they augment word or topic feature spaces with structural
information about the input.

The paper is organized as follows. We compare our proposal with previous studies of
multi-aspect sentiment analysis and of multiple instance learning in Section 2. In Section 3,
we formulate the problem of aspect rating prediction as weakly supervised text regression.
In Section 4, we propose an efficient weighted MIR model to solve it, and in Section 5 we
show how the learned features can be used to segment and summarize reviews. In Section 6,
we describe the data used in the experiments. In Section 7, we evaluate the model on
aspect rating prediction. Then, we evaluate the aspect saliency values, first intrinsically,
by comparing them to human annotations (Section 8), and then extrinsically, on review
segmentation and summarization (Section 9).

2. Related Work

We review related work along three main directions: sentiment analysis, with a focus on
aspect-based studies; interpretable models in machine learning, comparing to neural net-
works with attention; and multiple-instance learning, the main framework of our study.

2.1 Multi-aspect Sentiment Analysis

Sentiment analysis typically aims to detect the polarity of a given text, and is commonly
formulated as a classification problem for discrete labels such as ‘positive’ and ‘negative’,
or a regression problem for real-valued labels (Pang & Lee, 2005, 2008). Pang and Lee
(2008) survey the large range of features that have been engineered, either for rule-based
sentiment analysis methods (Hatzivassiloglou & Wiebe, 2000; Hu & Liu, 2004; Wilson,
Wiebe, & Hoffmann, 2005), or for corpus-based ones (Pang, Lee, & Vaithyanathan, 2002;
Thomas, Pang, & Lee, 2006). Machine learning techniques for sentiment classification have
been introduced quite early by Pang et al. (2002) among others.

Following initial studies on feature engineering (e.g., Pang & Lee, 2008), more recent
studies have focused on feature learning (Maas et al., 2011; Socher et al., 2011; Tang et al.,
2014), including the use of deep neural networks (Socher et al., 2013; Mikolov et al., 2013;
Tang, 2015). These methods do not require costly engineering of features, but the learned
features are typically difficult to interpret in terms of semantic properties (Li, Chen, Hovy,
& Jurafsky, 2015). The above methods use one fixed-length vector to represent a document
for each label, whereas our proposal accounts for varying contributions of sentences. Our
study innovates with respect to feature engineering and learning approaches at the same
time, because our multiple-instance formulation focuses on the vector composition objective
and not on the learning of the feature space itself.
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The fine-grained analysis of opinions on specific aspects or features of items is known as
multi-aspect sentiment analysis. This task usually requires aspect-related text segmentation,
followed by prediction or summarization (Hu & Liu, 2004; Zhuang, Jing, & Zhu, 2006). Most
attempts to perform this task have engineered various feature sets, augmenting words with
topic or content models (Mei, Ling, Wondra, Su, & Zhai, 2007; Titov & McDonald, 2008b;
Sauper, Haghighi, & Barzilay, 2010; Lu, Ott, Cardie, & Tsou, 2011), or with linguistic
features (Pang & Lee, 2005; Baccianella, Esuli, & Sebastiani, 2009; Qu, Ifrim, & Weikum,
2010; Zhu et al., 2012). Other studies have advocated the joint modeling of multiple aspects
(Snyder & Barzilay, 2007) or of multiple reviews for the same item (Li et al., 2011). McAuley
et al. (2012) introduced new corpora of multi-aspect reviews, and proposed an interpretable
probabilistic model for modeling aspect reviews called PALE LAGER, which we use for
comparison in this paper. Kim, Zhang, Chen, Oh, and Liu (2013) proposed an hierarchical
model to discover the structure of aspect-related sentiment from unlabeled corpora. Joint
aspect identification and sentiment classification have been used by Sauper and Barzilay
(2013) to aggregate product reviews, while Lakkaraju, Socher, and Manning (2014) proposed
a hierarchical deep learning framework to achieve the same goal. Another related task
is entity-based sentiment analysis, where the goal is to model the sentiment regarding
specific entities (Mitchell, Aguilar, Wilson, & Van Durme, 2013; Deng & Wiebe, 2015;
Choi, Rashkin, Zettlemoyer, & Choi, 2016).

Previous studies of aspect rating prediction from text have used automatically segmented
texts for training (Zhu et al., 2012; McAuley et al., 2012), or have modeled the relationships
between different aspect ratings (Lin & He, 2009; Gupta, Di Fabbrizio, & Haffner, 2010;
McAuley et al., 2012) to go beyond standard supervised models such as SVM with bags-
of-words. Recently, several studies combined collaborative filtering and topic modeling to
perform aspect rating prediction (McAuley & Leskovec, 2013; Bao, Fang, & Zhang, 2014;
Wu, Beutel, Ahmed, & Smola, 2015), but as they are not only based on text, they are not
comparable to our work. To our knowledge, none of the previous studies considered in their
modeling the weak relationship between text labels and the parts of texts (e.g. sentences)
as we propose here. Furthermore, we trained our model over the entire unsegmented text,
reducing the computational cost and human intervention that is required to obtain seg-
mented text. In addition, we capture meaningful structural information of the input text,
instead of the output labels only, and thus provide interpretable sentence weights, which
can be used for segmenting and summarizing reviews.

Most previous studies of review segmentation and summarization are unsupervised
(Titov & McDonald, 2008a; Zhu, Wang, Tsou, & Zhu, 2009; Wang, Lu, & Zhai, 2010;
Brody & Elhadad, 2010; Lu et al., 2011), while fewer studies explored supervised learning
(Li et al., 2010). Recently, the availability of annotated data (McAuley et al., 2012; Pontiki
et al., 2014) has increased the interest in supervised methods, e.g. with constrained struc-
tured models (McAuley et al., 2012), or with linear chain CRF models (Patra, Mandal,
Das, & Bandyopadhyay, 2014; Hamdan, Bellot, & Bechet, 2015). While sentence sentiment
has been shown to be useful for inferring sentence aspects (Brody & Elhadad, 2010; Ganu,
Elhadad, & Marian, 2009), the aspect saliency and sentiment of sentences from in-domain
corpora have not been considered before, while here, they will be used to augment word or
topic spaces.
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2.2 Interpretable Models in Machine Learning

Our model can be seen as a parametrized pooling layer in a neural network, for instance
substituting intermediate pooling layers, which typically use average or summation with
equal weights. Our initial proposal for an instance relevance mechanism (Pappas & Popescu-
Belis, 2014) has a close resemblance to the “attention” mechanisms proposed later for
machine translation, which selectively focus on parts of the input (Bahdanau et al., 2015;
Hermann et al., 2015; Luong et al., 2015; Zhao et al., 2015), and we argue in Section 4.2
that they are in fact equivalent. Attention mechanisms have been shown lately to be quite
useful for a variety of NLP tasks, including machine translation (Bahdanau et al., 2015;
Luong et al., 2015; Sennrich, Haddow, & Birch, 2016), question answering (Sukhbaatar,
Szlam, Weston, & Fergus, 2015; Xiong, Merity, & Socher, 2016), summarization (Rush,
Chopra, & Weston, 2015; Chopra, Auli, & Rush, 2016), image captioning (Xu et al., 2015),
and document classification (Yang et al., 2016). The last study is perhaps the closest to
ours: it applied an attention mechanism to each level of an hierarchical neural network
over documents, with large improvements over the state-of-the-art. However, it did not
evaluate quantitatively the explanatory potential of the attention mechanism. To the best
of our knowledge, we were the first to introduce an attention-based method for document
classification (Pappas & Popescu-Belis, 2014), albeit outside the neural framework.

Recently, there has been an interest in algorithms which are interpretable and capable of
explaining classification predictions (Lou, Caruana, & Gehrke, 2012; Lou, Caruana, Gehrke,
& Hooker, 2013; Kim, 2015; Lipton, 2016; Das, Agrawal, Zitnick, Parikh, & Batra, 2016).
For instance, Ribeiro, Singh, and Guestrin (2016) proposed a model-agnostic technique that
explains the predictions of any type of classifier. This method is unaware of the internal
mechanisms of the classifier, and hence the explanation may not directly align with the
actual prediction process, while our mechanism is learned jointly with the classifier. Lei
et al. (2016) proposed a method for rationalizing neural predictions using an encoder which
defines a distribution over text fragments, called rationales, which are passed on to the
decoder for prediction. This method was evaluated on the BeerAdvocate dataset from
McAuley et al. (2012), and we include it in our comparisons below, where applicable. The
method was shown to outperform previous attention models at the word level, but it is
unclear whether binary selections also work well on larger parts of an input text, such as
sentences, or other intermediate hidden states of a deeper neural network, which may be
important for prediction. In contrast, this is not an issue for the attention-based methods
like ours. Another open question is how to extend Lei et al.’s method to hierarchical neural
networks, which can learn deep compositional text representations (Yang et al., 2016).

2.3 Multiple Instance Learning

Multiple-instance learning (MIL) is a machine-learning approach originally proposed by
Dietterich, Lathrop, and Lozano-Prez (1997) to deal effectively with coarse-grained input
labels. The MIL algorithms receive as input a set of labeled bags, each of which contains
a variable number of instances; however, these instances are not individually labeled, as in
traditional supervised learning. The goal of MIL is either to learn a classifier which assigns
correct labels to individual instances, or to predict the labels of the bags without necessarily
inducing the labels of each individual instance. Comprehensive surveys and comparisons of
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MIL methods are available (Foulds & Frank, 2010; Amores, 2013). MIL has been success-
fully applied to a variety of domains such as image classification, molecule classification for
drug discovery, drug activity prediction, remote sensing and text or document categoriza-
tion. The majority of the MIL studies focused on classification (Andrews, Tsochantaridis,
& Hofmann, 2003; Bunescu & Mooney, 2007; Settles, Craven, & Ray, 2008; Wang, Nie, &
Huang, 2011; Doran & Ray, 2014; Cheplygina, Tax, & Loog, 2015; Zhu, Wu, Xu, Chang,
& Tu, 2015). In particular, MIL was applied to information extraction (Hoffmann, Zhang,
Ling, Zettlemoyer, & Weld, 2011) and relation extraction (Surdeanu, Tibshirani, Nallapati,
& Manning, 2012; Xu, Hoffmann, Zhao, & Grishman, 2013). However, fewer studies focused
on regression, which we now discuss.

Multiple-instance regression (MIR) belongs to the class of MIL problems with real-valued
output, and is a variant of multiple regression where each data point may be described by
more than one vector of values. MIR was firstly introduced by Ray and Page (2001), who
proposed an EM algorithm which assumes that one primary instance per bag is responsible
for its label. Wagstaff and Lane (2007) proposed to simultaneously learn a regression model
and to estimate instance weights per bag for crop yield modeling, but their method is not
applicable to prediction. A similar method which learns the internal structure of bags using
clustering was later proposed by Wagstaff, Lane, and Roper (2008) for crop yield prediction,
and we will compare to it in Section 7. Later, the method was adapted to map bags into
a single-instance feature space by Zhang and Zhou (2009). Different assumptions were
made in other studies: Wang, Radosavljevic, Han, Obradovic, and Vucetic (2008) assumed
that each bag is generated by random noise around a primary instance, while Wang, Lan,
and Vucetic (2012) represented bag labels with a probabilistic mixture model. The main
disadvantage of the above methods for text regression tasks is that they do not scale well
to high-dimensional feature spaces, and that some of them are not applicable to prediction.

Attempts to apply MIR to document analysis have concerned news categorization (Zhang
& Zhou, 2008; Zhou, Sun, & Li, 2009) or web-index recommendation (Zhou, Jiang, & Li,
2005). Kotzias, Denil, de Freitas, and Smyth (2015) combined MIL with deep learning fea-
tures and applied it to sentiment prediction with the goal of transferring label information
from group labels (review) to instance labels (sentences). However, their study focused
solely on binary sentiments rather than gradual ones, and did not take into account the
sentiments towards aspects as we do here. To the best of our knowledge, no previous study
has attempted to use MIR for text regression tasks with real-valued labels such as aspect
rating prediction, sentiment and emotion prediction, as we do here.

3. Problem Definition: Weakly Supervised Text Regression

We consider as input data D a set B of m reviews accompanied by numerical labels Y
(represented in Fig. 1). Each review Bi is a bag of ni sentences (i.e. instances), where each
sentence is a d-dimensional vector, typically a vector of words. Hence, a review is noted
as Bi = {bij}

d
ni

with bij ∈ R
d for 1 ≤ j ≤ ni. If there are k sentiment aspects rated for

each review, the labels of all reviews are noted as Y = {yi}
k
m with yi ∈ R

k. Therefore, the
dataset D is more precisely noted as D = {({b1j}

d
n1
, y1), ..., ({bmj}

d
nm
, ym)}.

The challenge is to infer the label of new bags, which do not have a constant number of
instances. This requires finding a set of bag representations X = {x1, . . . , xm} with xi ∈ R

d
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to train a regression model, from which the class labels of new bags can then be inferred.
In other words, we propose to represent each review in the feature space as one exemplar
vector per aspect class, obtained from the convex combination of its instances. This requires
computing the sentence relevance to an aspect rating k, called aspect saliency and noted
Ψ = {ψijk}

1
ni
, with unit constraints per review. The goal is then to find a mapping, noted

Φ : Rd → R, from this type of representation to numeric values, which is able to predict
the label of a given bag. To obtain this mapping, if we assume that X is the optimal bag
representation for our task, then we need to look for the optimal regression hyperplane Φ
which minimizes a loss function L plus a regularization term Ω, as follows:

Φ = argmin
Φ

(

L(Y,X,Φ)
︸ ︷︷ ︸

loss

+ Ω(Φ)
︸ ︷︷ ︸

reg.

)

(1)

However, the best set of representations X for a task is generally unknown. Therefore,
one has to make assumptions about how to compose them through a fixed function of B,
or a parametrized function of B learned jointly with the regression hyperplane Φ. Such
assumptions have a strong impact on the learning performance. Three main assumptions
have been made in the past: aggregating all instances, keeping them as separate examples,
or choosing the most representative one, as defined below. As for the regression, noted
as f , several state-of-the-art models can be used, and we will present below results using
Support Vector Regression (Drucker, Burges, Kaufman, Smola, & Vapnik, 1996) and Lasso
(Tibshirani, 1996) with respectively the ℓ2 and ℓ1 norms for regularization.

Aggregated Instances. Each bag is represented as a single d-dimensional vector,
which is the average of its instances. Then, a regression model f is trained on pairs of
vectors and class labels, Dagg = {(xi, yi) | i = 1, . . . ,m}, and the predicted class of an
unlabeled bag Bi = {bij | j = 1, . . . , ni} is computed as follows:

ŷ(Bi) = f(mean({bij | j = 1, . . . , ni})) (2)

A sum can be used instead of the mean, and we observed that with appropriate regulariza-
tion the two have similar prediction performance. This baseline corresponds to the typical
approach for text regression tasks, where each text sample is represented by a single vector
in the feature space, e.g. bag-of-words (BOW) with counts or with TF-IDF weights.

Instance as Example. Each of the instances in a bag is considered as a separate
example, with its bag’s label. A regression model f is learned over the training set made
of all vectors of all bags, Dins = {(bij , yi) | i = 1, . . . ,m; j = 1, . . . , ni}. To label a new bag
Bi, the predicted labels of the instances are averaged:

ŷ(Bi) = mean({f(bij) | j = 1, . . . , ni}) (3)

The median can be used instead of the average, especially when the bags contain outliers.
Primary Instance. This assumption considers that a single instance in each bag, called

primary or prime, is responsible for the bag’s label (Ray & Page, 2001). The approach is
similar to the previous one, except that only one instance per bag is used as training data:
Dpri = {(bpi , yi) | i = 1, . . . ,m}, where bpi is the prime instance of the ith bag Bi. The prime
instances are discovered through an iterative algorithm which refines the regression model
f . The class of a new bag is computed as in Eq. 3 above.
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The main drawbacks of the previous instance relevance methods that we address below
are the following ones: (1) prohibitive complexity for high dimensional feature spaces, which
are common in text regression tasks; (2) inefficiency or inability to estimate the importance
of the instances of unseen bags; and (3) lack of modeling of weights with sparsity, which is
needed for different types of data.

4. Proposed Model: Weighted Multiple Instance Regression

The new MIR model that we propose assigns individual relevance values (weights) for
each instance of a bag to model the input structure, considering that it is the weighted
combination of instances that is responsible for the label of the bag. Building upon the
existing ‘Instance Relevance’ assumption (Wagstaff & Lane, 2007; Wagstaff et al., 2008;
Wang et al., 2011), we address its shortcomings presented in Section 2.3 and those above,
and make it applicable to document modeling as follows.

To jointly learn instance weights and target labels efficiently, we minimize a Regularized
Least Squares loss (RLS), which enables us to support high-dimensional feature spaces,
required for text regression tasks. In addition, our model is able to predict for previously
unseen bags both their class label and the contribution of each instance to the bag’s pre-
dicted label. Our model learns an optimal method to aggregate instances directly from the
training data and allows more degrees of freedom in the regression model than previous
proposals. Essentially, the weight of an instance can be interpreted as its relevance both in
training and prediction, thus enabling an explicit modeling of documents.

4.1 Modeling Instance Relevance and Bag Labels

Each bag of instances defines a bounded region of a hyperplane orthogonal to the y-axis,
namely the envelope of all its points. The goal is to find a regression hyperplane that passes
through each bag Bi and to predict its label by using at least one data point xi within that
bounded region. Thus, the point xi is a convex combination of the points in the bag, in
other words Bi is represented by the weighted average of its instances bij :

xi =

ni∑

j=1

ψijbij with 1 ≥ ψij ≥ 0 and

ni∑

j=1

ψij = 1 (4)

Here, ψij is the weight of the jth instance of the ith bag, and indicates the saliency or
relevance of an instance j to the prediction of the class yi of the i

th bag. The first constraints
force xi to fall within the bounded region of the points in bag i and guarantee that the ith

bag will influence the regressor.

We propose the following method for learning to predict the instance weights and at
the same time the target labels of bags. Initially, the ni instance weights associated to
each bag Bi, noted ψi = {ψij}

1
ni

with ψij ∈ [0, 1] are unknown. We aim for a linear
regression model f that is able to model each target value yi for each bag using regression
coefficients Φ ∈ R

d, that is, Y = f(X) = ΦTX, where X and Y are respectively the sets
of training bag representations and their labels. Note that the coefficients Φ, the weights
Ψ and representations X are different for each aspect. For brevity, we formulate the model
for one aspect only (k = 1).
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We define a loss function according to a least squares objective dependent on B, Y , Φ
and the set of weight vectors Ψ = {ψ1, . . . , ψm} using Eq. 4 as follows:

L(Y,B,Ψ,Φ) = ||Y − ΦTX||22
(4)
=

N∑

i=1

(

yi − ΦT
(
ni∑

j=1

ψijbij
))2

=

N∑

i=1

(

yi − ΦT (Biψi)
)2

(5)

Using L and assuming ℓ2-norm for regularization with ǫ1 and ǫ2 terms for ψi ∈ Ψ and Φ
respectively, we transform the objective from Eq. 1 into the least squares objective shown
in the following equation, subject to ψij ≥ 0 ∀i, j and

∑ni

j=1 ψij = 1 ∀i.

ψ1, . . . , ψm,Φ = arg min
ψ1,...,ψm,Φ

m∑

i=1

((

yi − ΦT (Biψi)
)2

︸ ︷︷ ︸

f1 loss

+ ǫ1||ψi||
︸ ︷︷ ︸

f1 reg.

)

︸ ︷︷ ︸

f2 loss

+ ǫ2||Φ||
2

︸ ︷︷ ︸

f2 reg.

(6)

The selection of the ℓ2-norm was based on preliminary results which demonstrated that
it led to a more accurate function than the ℓ1-norm, but other combinations of p-norm
regularizations can be explored for f1 and f2, e.g. to control the sparsity of instance weights
and regression coefficients.

The above objective is non-convex and difficult to optimize because the minimization
is with respect to all ψ1, . . . , ψm and Φ at the same time. One solution is to divide it in
two parts. If we note f1 the model that is obtained from the minimization with respect to
ψ1, . . . , ψm only, and f2 the model obtained from the minimization with respect to Φ only,
then we observe that if one of the two functions is known or held fixed, then the other one is
convex and can be learned with well-known least squares solving techniques. Alternatively,
we propose an efficient to way to solve them jointly in the next section.

Having computed ψ1, . . . , ψm and Φ for the training data, we could predict a label for a
new bag from the test data using Eq. 3 by taking the average of instance predictions, but
then we would not be able to compute the weights of its instances. Moreover, information
that has been learned about the instances during the training phase would not be used
during prediction. The solution for predicting instance weights, presented in the next
section, is to learn a function parametrized by coefficients O ∈ R

d, which is able to map
a given instance bij ∈ R

d to a real-valued weight in the [0,1] interval and satisfies the
constraints of Eq. 4.

4.2 Learning the Weights Jointly with Minibatch Stochastic Gradient Descent

One straightforward way to learn to predict instance weights is through a third regression
model f3 with coefficients O ∈ R

d, which we presented in an earlier study (Pappas &
Popescu-Belis, 2014, Section 5). The model was trained on the instance weights obtained
from Eq. 6, noted Dw = {(bij , ψij) | i = 1, ...,m; j = 1, ..., ni}. The objective from Eq. 6
was minimized consecutively with the following one:

O = argmin
O

N∑

i=1

ni∑

j=1

(
ψij −OT bij

)2

︸ ︷︷ ︸

f3 loss function

+ ǫ3||O||2
︸ ︷︷ ︸

f3 reg.

(7)
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The learned model was able to estimate the weights of the instances of an unlabeled bag Bi
during prediction time as: ψ̂i = f3(Bi) = OTB′

i. Once normalized, these weights allowed
us to compute the predicted label for an unseen bag Bi as ŷi = f2(Bi) = ΦTBiψ̂i. To
solve the non-convex optimization problem of Eq. 6 and 7, we proposed to use alternating
projections (AP), a powerful method for finding the intersection of convex sets (Bauschke
& Borwein, 1996; Lewis & Malick, 2008). The algorithm, called APWeights, first optimized
the parameters of f2 and f1 from Eq. 6 in an alternating fashion, and then learned the
parameters of f3 based on the learned weights by f2.

We propose here a new algorithm, called SGDWeights, which optimizes jointly the two
consecutive objectives from Eq. 6 and 7 above. This algorithm addresses two limitations
of APWeights: the redundancy of parameters when learning the instance-specific weights
ψi per bag and the global coefficients O; and the fact that the instance weights function
(f3) and the functions of Eq. 6 (f1 and f2) are not influencing each other during training.
The SGDWeights model merges the two objectives of APWeights into a compact form
by using only the O and Φ parameters, as the Ψ parameters have been replaced with a
function. The model is thus more general, unified, and self-contained than APWeights. The
new objective consists of differentiable functions, which can be optimized with minibatch
stochastic gradient descent (SGD).

Firstly, we replace the ψ parameters in Eq. 6 with a normalized exponential function,
namely softmax, as follows:

σ(Bi, O) = P (ψ = yi|Bi) =
exp(O

TBi)

∑ni

k=1 exp
(OTBik)

(8)

This function satisfies the constraints of Eq. 6 and can be seen as a probability distribution
of the weights to be learned ψi per bag. Moreover, it naturally derives from the weighted
multiple-instance learning framework (Pappas & Popescu-Belis, 2014), and is essentially
equivalent to the attention formula used later by Bahdanau et al. (2015), except that Bi
has to be input to an additional non-linear hidden layer.

Secondly, we multiply the output of this function with the bag Bi and map it to the
target label through coefficients Φ using a least squares objective, as before. Hence, we
obtain an objective with two mutually-influencing functions: one function for estimating
the instance weights per bag with non-negativity and unit constraints, and another function
to model the target labels:

O,Φ = arg min
O,Φ

m∑

i=1

(yi − ΦT (Bi · σ(Bi, O)))2 +Ω(Φ, O) (9)

The model is regularized with Ω, which can support any kind of regularization for the
coefficients O and Φ, for instance as in the objective of Eq 6.

The algorithm for SGDWeights (Algorithm 1) takes as input the set of bags Bi with
known labels yi and the regularization terms ǫ1 and ǫ2. The algorithm uses penalized ℓ2
regularization for O and Φ.1 First, the algorithm iterates through each batch of a predefined
size (set to 50 here) in the training data and accumulates the gradient error of each example

1. In the examined datasets, after optimizing for the learning rate, we observed that the values of the
regularization terms did not affect much the performance, hence we kept ǫ1and ǫ2 equal to 1.
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Algorithm 1: SGDWeights: jointly learning the parameters of the objective in Eq. 6.

Data: Reviews B = {bij}
m
ni
, Ratings Y = {Yi}

m

Result: Parameters Φ, O
1 set(max iter , tolerance, ǫ1, ǫ2, α, c) # a is the learning rate and c its decay
2 initialize(Φ, O) # Initialize model parameters
3 while not converged do
4 for batch in B do
5 # Accumulate gradient values Φg, Og in the batch
6 for Bi in batch do

7 Φg = Φg +
∂
∂Φg

L(Φ, Bi, Yi)

8 Og = Og +
∂
∂Og

L(W,Bi, Yi)

9 end
10 # Perform gradient step on parameters Φ, O

11 Φ = Φ− α(
Φg

|batch| + ǫ1||Φ||); O = O − α
( Og

|batch| + ǫ2||O||
)

12 end

13 e = 1
m

∑

i(Yi − ΦTBiψ̂i) # Mean absolute error
14 if eprev − e < tolerance or iter > max iter then
15 converged = True
16 end
17 α = α− c # Learning rate decay

18 end

with respect to O and Φ. Then, it updates the parameters according to the accumulated
gradient error and the regularization term. After all batches have been visited (one epoch),
the training error of the learned model is computed to check for convergence. This repeats
until convergence, i.e. when the decrease of the training error is lower than a predefined
value (10−6) or until a maximum number of iterations is reached. Algorithm 1 shows a
simple version of minibatch SGD with learning rate decay; however, the performance and
convergence time can be improved by using more sophisticated versions such as ADAGRAD
(Duchi, Hazan, & Singer, 2011) or ADAM (Kingma & Ba, 2014). In practice, we selected
the version based on time and scores on training sets.

The time complexity TSGD of SGDWeights is computed in Eq. 10 depending on the
input variables, noted h = {m, n̂, d, b̂}, where m is the number of bags, n̂ the average size
of the bags, d the vocabulary size (dimensions of feature space), and b̂ the minibatch size:

TSGD(h) = O
(m

b̂
(b̂((n̂d+ d2) + (n̂d+ n̂2 + d2)))

)
= O

(
m(n̂d+ d2 + n̂2)

)
≤ TAP(h) (10)

The complexity of SGD is lower than that of APWeights (Pappas & Popescu-Belis, 2014,
Eq. 9), thanks to the joint formulation compared to the consecutive one. Another advantage
of SGDWeights is that SGD update is independent from the number of examples and can
further benefit from parallelization across multiple cores (Zinkevich, Weimer, Smola, & Li,
2011). We also confirm experimentally in Section 7.3.3 that SGDWeights scales better than
APWeights in terms of execution time and achieves a similar or smaller prediction error.
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The complexity of TSGD which performs segmentation and rating prediction jointly is
only O

(
d2
)
more expensive (assuming that n̂ << m) than that of previous methods for

aspect-based sentiment analysis, namely O
(
md

)
, as they rely on Support Vector Machines

as in (McAuley et al., 2012). In practice, their efficiency is lower than TSGD if we take into
account their segmentation model which requires an extra dataset pass, O

(
mn̂d

)
, and their

structured objective for the SVM.

5. Learning to Segment and Summarize Reviews

The proposed weighted MIR model is able to predict aspect ratings, but can also estimate
the saliency of sentences with respect to each aspect. The second capability is learned in
an weakly-supervised manner, i.e. without knowledge of which aspect is being discussed in
each sentence of the training bags. The aspect saliency of each sentence can be used to
improve aspect-based text segmentation and summarization in several ways.

These two tasks are defined here along the same lines, in terms of data annotations and
metrics, as in previous work (McAuley et al., 2012). Aspect-based segmentation of a review
simply means to assign to each of its sentences a single aspect label from the list of aspects.
Aspect-based summarization differs from traditional extractive summarization, as its goal
is to select for each review exactly one sentence per aspect, no matter how representative
it is. What is then evaluated is the accuracy of labels over the selected subset of sentences,
i.e. how many of them receive receive a correct aspect label.

To solve the two tasks, the aspect label of a sentence could be directly estimated by its

maximum aspect saliency score found by the MIR model, that is, argmaxa ψ̂
(a)
i , where ψ̂

(a)
i

is the saliency of sentence i for aspect a. While this addresses the unsupervised version of the
tasks, in a supervised setting we can combine the saliency values with Conditional Random
Fields (CRFs), trained using n-gram bag-of-words (BOW) of simple features (binary counts,
TF-IDF) or of more sophisticated ones (POS tags, Wordnet synsets, and others). In addition
to BOW of counts or TF-IDF values, we define and use here new contextual features based
on sentence-level aspect saliency and sentiment predicted by our MIR model.

5.1 Linear Chain CRF

Given an input document b ∈ B composed of T consecutive sentences bt, and a set of output
variables ȳ ∈ Y, with ȳ taking categorical values from A = {1, . . . , k} (the aspects to which
sentences can refer), a first-order Linear Chain CRF models the conditional distribution
p(ȳ|b) as a globally normalized log-linear distribution (Lafferty, McCallum, & Pereira, 2001):

p(ȳ|b) ∝

T∏

t=1

h(ȳt, bt)

T−1∏

t=1

hy(ȳt, ȳt+1) (11)

where h(ȳt, bt) = exp(w · f(ȳt, bt)) models the aspect label of the sentence at position t by
means of a parameter vector w and a feature vector f(ȳt, bt), and hy(ȳt, ȳt+1) models the
transition between the aspect variables at positions t and t+ 1 in the linear chain. Hence,
this model accounts for sequential dependencies of aspects in the context of each review.

We consider three CRF models of increasing complexity: (1) a CRF without pairwise
potential, which is equivalent to logistic regression, hence noted LogReg; (2) a linear chain
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Figure 2: Combination of BOW with aspect saliency and sentiment features from MIR.

CRF with symmetric pairwise potential, noted CRF-u, using (k2+k)/2 variables; and (3) a
linear chain CRF with asymmetric pairwise potential, noted CRF-d, using k2 variables.

5.2 Aspect Saliency, Sentiment, and Diversification

The typical BOW features lack affective information such as the saliency and the sentiment
of the sentences towards an aspect, which could be useful when deciding which aspect a
sentence refers to. We propose to use the aspect saliency (weight estimate ψ̂a for an aspect
a ∈ A) and the sentiment information (ŷa) from our weighted MIR model to augment the
word or topic feature spaces for each sentence, as represented on the left side of Figure 2.
The current sentence can be augmented with its own MIR features, noted respectively as
sw and sp for aspect saliency and sentiment (see table in Fig. 2), but also with features from
the previous or following sentences, or even with review-level features such as the average
sentence saliency cw or aspect rating cp.

McAuley et al. (2012) observed that sentences from different aspects tended to receive
the same label when their aspects had close meanings (e.g. palate and taste of a beer), and
reduced this unwanted effect by enforcing diversity on the predicted output, i.e. enforcing
that each aspect is assigned at least once in each review. We add this constraint to our model
as follows. We build a bipartite graph for each review Bi, which maps its ni sentences to ni
aspects. We define the compatibility between a sentence s and an aspect a as either its aspect
saliency estimate from the MIR model for the unsupervised task (i.e. csa = ψ̂is = f3(bis))
or as the CRF probability estimate for the supervised task (i.e. csa = p(s|a)). The graph
edges are then defined as:

E
(Bi)
s,l =

{
csl if 1 ≤ l ≤ k
maxa csa otherwise

(12)

The first part enforces each of the k aspects to have a matching sentence (for summa-
rization), while the second one allows the remaining sentences to match any aspect (for
segmentation). The optimal assignment of sentences to aspects is found using the Hungar-
ian algorithm (Kuhn, 1955; Munkres, 1957).
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Dataset Reviews Sentences Features Rating Labels
BeerAdvocate 1,586,259 16,883,058 19,418 feel, look, overall, smell, taste
Toys & Games 373,974 2,105,647 31,984 educational, durability, fun, overall
Audiobooks 10,989 44,487 3,971 performance, story, overall
RateBeer (FR) 17,998 105,569 903 appearance, aroma, overall, palate, taste
RateBeer (ES) 1,259 3,511 2,120 appearance, aroma, overall, palate, taste
TED comments 1,200 3,814 957 polarity
TED talks 1,203 12,023 5,000 unconvincing, fascinating, persuasive, funny,

ingenious, longwinded, inspiring, courageous,
jaw-dropping, beautiful, confusing, obnoxious

Table 1: The datasets with aspect, sentiment and emotion ratings used in our experiments.

6. Datasets Used in our Evaluation

We use eight public datasets (Table 1). Five of them were built for aspect prediction
by McAuley et al. (2012) (see 6.1), and subsets of them have aspect-based segmentation
(see 6.3). We also use book reviews from Audible with human attention scores (see 6.2).

6.1 Multi-aspect Sentiment Analysis

The BeerAdvocate, Ratebeer (ES), RateBeer (FR), Audiobooks and Toys & Games datasets
include aspect ratings assigned by the authors of the reviews, with 3 to 5 aspect dimensions.
Furthermore, on the TED talks that we gathered and released earlier (Pappas & Popescu-
Belis, 2013),2 we aim to predict the 12-dimensional talk-level emotion ratings assigned by
viewers through voting, as well as the polarity of comments assigned by external judges (one
dimension). In all datasets, the instances are the sentences of reviews or comments, except
for the TED emotion rating dataset where the instances are comments written by users
below each talk, of which we keep the ten most recent ones per talk. Six of the datasets
are in English, one is in Spanish (Ratebeer) and one in French (RateBeer); therefore, our
results also illustrate the language-independence of our methods.

The features for each of the datasets are vectors of words with binary attributes sig-
naling word presence or absence, in a traditional bag-of-words model (BOW). These word
vectors were provided with the first six datasets, and we generated them for the latter
two, after lowercasing and stopword removal. To experiment with different feature spaces,
for TED comments, we also computed TF-IDF scores using the same dimensionality as
BOW. Moreover, we computed sentence features based on 300-dimensional word embed-
dings trained on Wikipedia with word2vec (Mikolov et al., 2013).3 Specifically, we adopted
the concatenation of max, min and average pooling (900 dimensions, hence about the same
size as BOW) of the embeddings of words belonging to a given sentence, an approach that
has been shown to work well in practice (Tang et al., 2014).

The target class labels were normalized by the maximum rating in their scale, except
for the 12 emotions of the TED talks, for which the votes were normalized by the maximum

2. Available at https://www.idiap.ch/dataset/ted/.
3. Available at https://code.google.com/archive/p/word2vec/.
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number of votes over all the emotion classes for each talk. Two emotions from the original
data, labeled as ‘informative’ and ‘ok’, were excluded as they are neutral ones.

6.2 Human Attention Prediction

The definition of the summarization task given in Section 5 above does not take into account
whether the summary of a review actually reflects its sentiment towards the corresponding
aspect. This is because sentences annotated with aspects are not necessarily opinionated
and do not necessarily justify the actual aspect ratings of the review. To our knowledge, no
existing dataset captures human attention in document classification. In other words, to
evaluate the full potential of our method, and of many other attention-based models that
have been recently proposed in NLP, we need an annotation that targets specifically the
opinionated sentences and how they contribute to their review’s aspect rating. Mere facts
about an aspect not necessarily relevant to its rating.

Therefore, for the intrinsic evaluation of the MIR weights, i.e. of our instance relevance
mechanism, we designed a new dataset called HATDOC (Pappas & Popescu-Belis, 2016).4

We obtained human judgments over a set of 100 reviews of audiobooks collected from
www.audible.com, by crowdsourcing the task via www.crowdflower.com. Each review is
accompanied by ratings of three aspects of the audiobook: the story (plot of the book), the
performance (i.e. acting of the voice(s) heard on the recording), and the overall appreciation.
All three aspects are rated by the author of each review on a five-point scale (one to five
stars). We collected 100 reviews with 1,662 sentences by sampling 20 reviews for each rating
value of the ‘overall’ aspect.

The human judges were asked to provide labels which represent the explanatory value
of each sentence with respect to the aspect rating of a given review, which on a five-point
scale labeled as: “Not at all”,“A little”, “Moderately”, “Rather well”, or “Very well”. The
reliability of the judges was controlled by randomly inserting questions with known answers
(known as “gold questions”) among the series of questions. We only kept judges with more
than 70% accuracy on these questions. For each non-gold question, we collected at least
4 answers, for a total of 7,121 judgments. The ground-truth label per sentence for each
aspect was the response of the majority of judges, or, in case of a draw, the response with
the highest confidence score, as computed by the platform from the annotators’ reliability
levels. We acknowledge, however, that other aggregation strategies may provide better
insights, as future work may show.

The overall confidence of the annotations, as computed by Crowdflower, was 59%.
Specifically, it was 57% for the ‘overall’ and ‘story’ aspects, and 63% for ‘performance’.
The percentages of sentences with a confidence higher than or equal to 0.8 were, respec-
tively, 4%, 7% and 12% for each aspect. These values suggest that the task was the most
difficult for the ‘overall’ aspect, followed by the ‘story’ and ‘performance’ aspects. For eval-
uation, we will use judgments from all the confidence levels, and we will compare them with
the saliency values assigned automatically by our model.

While a full analysis of the HATDOC dataset is beyond our scope, one property must
be emphasized: when allowed to rate the relevance of sentences to various aspects indepen-
dently, humans often consider that sentences are relevant to more than one aspect at a time.

4. We make this dataset available at https://www.idiap.ch/paper/hatdoc/.
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Specifically, we found that only 9% of the sentences were relevant to a single aspect rating
(more than “a little”) and irrelevant to the two others (“not at all”, on the scale presented
above). Therefore, sentence saliency weights appear to represent better the opinionated
content of a review than simple aspect labeling, and therefore this approach represents an
innovative way to evaluate sentiment summarization.

6.3 Review Segmentation and Summarization

For the extrinsic evaluation of the MIR weights, we use six datasets annotated with seg-
mentation labels from McAuley et al. (2012), namely: BeerAdvocate (992 reviews, 8,399
sentences), Pubs (100 reviews, 981 sentences), Toys & Games (101 reviews, 510 sentences),
Audiobooks (95 reviews, 439 sentences), RateBeer (FR) (57 reviews, 279 sentences) and
RateBeer (ES) (115 reviews, 319 sentences). All these datasets, except Pubs, are subsets
of those presented in Table 1 of Section 6.1 above. As McAuley et al. (2012) only used the
Pubs dataset for segmentation and summarization (although it contains aspect ratings), we
do the same here for comparison. The sentences of the reviews are accompanied by cat-
egorical aspect labels, which were annotated by humans through crowdsourcing. In other
words, the labels represent the particular aspect of an item discussed by each sentence. The
baseline features are bag-of-words (BOW) provided with the datasets. For segmentation
and summarization, the sentence vectors were normalized with ℓ2, so that the MIR features
obtained in Section 5.2 fall in the same range as the BOW features.

7. Evaluation on Multi-aspect Sentiment Analysis

In this section, after specifying the setup of our experiments (7.1), we present the results
of the proposed model for multi-aspect sentiment analysis (7.2), including a comparison
with neural networks. Next, we investigate the effects of our design choices: the MIR
assumptions (7.3.1), the input feature space (7.3.2), and the learning algorithm (7.3.3).

7.1 Experimental Settings

To compare with the state of the art in aspect rating prediction from texts, we experiment
with the five multi-aspect datasets provided by McAuley et al. (2012). We use the same
protocol as McAuley et al., i.e. a uniform split of the data into 50% for training and 50% for
testing. We compare with their structured and unstructured methods, both over segmented
text, i.e. sentences that refer to the target aspect, and over unsegmented text, i.e. all the
sentences of a review. Specifically, we compare our proposal to the following three state-
of-the-art methods: (1) Support Vector Machine (SVM), the well-known maximum margin
classifier (Cortes & Vapnik, 1995); (2) Structured-SVM, a generalization of SVM for general
structured output labels (Tsochantaridis, Joachims, Hofmann, & Altun, 2005), which learns
the relationships between aspect ratings, known as a ‘rating model’; and (3) PALE LAGER,
the probabilistic model proposed by McAuley et al. (2012) which includes a structured SVM
and achieves state-of-the-art performance on the tasks we consider here.

All the models are optimized (when applicable) on a development set, i.e. a 25% subset of
the training data, through exhaustive grid-search over a fine-grained range of possible values.
The hyper-parameters to optimize for the various MIR assumptions are the regularization
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Figure 3: Mean squared error (MSE) on aspect rating prediction for our MIR model with
unsegmented text, compared to structured or unstructured supervised baselines,
with unsegmented or segmented text over five multi-aspect datasets. The scores
of SVM and PALE LAGER are from McAuley et al. (2012).

terms λ2 and λ1 of their regression model f . As stated in Section 3, we experiment with
two regression models: Support Vector Regression (SVR), which uses the ℓ2 norm, and
Lasso, which uses the ℓ1 norm. The hyper-parameters to optimize for APWeights are the
three regularization terms ǫ1, ǫ2, ǫ3 of the ℓ2-norm for the f1, f2 and f3 regression models.
Lastly, for the Clustering MIR assumption (Wagstaff et al., 2008), we use the f2 regression
model, which relies on ǫ2 and the number of clusters k, optimized over {5, ..., 50} with step
5, for its clustering algorithm, which is here the k-Means one. All the regularization terms
are optimized over the same range of possible values, noted a · 10b with a ∈ {1, . . . , 9} and
b ∈ {−4, . . . ,+4}, hence 81 values per term. The hyper-parameters for SGDWeights are
the same ones as for APWeights, plus the learning rate or step size ǫ, the minibatch size
m, and the gradient step strategy (learning rate decay, ADAGRAD, or ADAM). For the
regression models and evaluation, we use the scikit-learn library (Pedregosa et al., 2012).5

We report standard error metrics for regression, namely the Mean Absolute Error (MAE)
and the Mean Squared Error (MSE), which are defined over a test set of bags Bi respectively
as MAE = (

∑k
i=1 |f(Bi)− yi|)/k and MSE = (

∑k
i=1(f(Bi)− yi)

2)/k.

7.2 Comparison with State-of-the-Art Systems

Figure 3 displays the performance of the proposed model for aspect rating prediction. Our
MIR model outperforms all other models over all datasets except Audiobooks. When com-
pared to the best SVM baseline (with unsegmented text) provided by McAuley et al., our
method improves by 58% on BeerAdvocate, 40% on Toys, 60% on Audiobooks, 94% on
Ratebeer (FR) and 47% on Ratebeer (ES), despite the fact that it does not use their rating
model. McAuley et al. report MSE scores of 2%, 5%, 3%, 2% and 3% respectively on the
above data sets for their best model, which uses a joint rating model and an aspect-specific
text segmenter trained on hand-labeled data. These scores are comparable to those of our
MIR model (1%, 5%, 5%, 1%, and 3%), which does not use these features.

5. Our code is available at https://github.com/idiap/wmil-sgd.
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Methods Vocabulary dhidden Depth |θ| MSE
SVM (Lei et al., 2016) bigram (>147k) - - 2.5M 0.0154
MIR (this work) unigram (19k) - - 38k 0.0115
Dense (Rumelhart et al., 1986) unigram (19k) 200 1 41.2k 0.0101
LSTM (Hochreiter et al, 1997) unigram (147k) 200 2 644k 0.0094
GRU (Chung et al., 2014) unigram (19k) 200 1 241.6k 0.0079
RCNN (Lei et al., 2016) unigram (147k) 200 2 323k 0.0087
Dense+MIR (this work) unigram (19k) 200 1 41.4k 0.0091
GRU+MIR (this work) unigram (19k) 200 1 241.8k 0.0078

Table 2: Comparison of our instance relevance mechanism (MIR) integrated within neural
networks, with state-of-the-art neural networks, on the aspect rating prediction
task in terms of mean squared error (MSE). |θ| indicates the number of parameters.

These results indicate that by modeling the saliency of sentences for aspect ratings, even
with unsegmented text only, the MIR model outperforms even complex baselines, including
structured models (Structured-SVM), which make use of either unsegmented or segmented
text (PALE LAGER). This means that, unlike PALE LAGER which requires a separate
segmentation procedure to achieve the best scores, MIR does not require human intervention
to perform as well or even better. Hence, MIR is able to learn structural information without
explicitly modeling the relationship between aspect ratings. The structured models are
more successful than MIR only on Audiobooks, likely because this is the dataset with the
fewest number of aspects. Lastly, as stated by McAuley et al. (2012), predictors which
use segmented text, for example with topic models as studied by Lu et al. (2011), do not
reliably outperform SVR baselines, as they have marginal or even no improvements. For
this reason, we did not further experiment with them.

Recently, Lei et al. (2016) proposed a recurrent convolutional neural network (RCNN)
for multi-aspect sentiment analysis and compared it to LSTM (Hochreiter & Schmidhu-
ber, 1997). To compare our proposal with theirs, we integrated our method (MIR) as a
parametrized pooling layer into two types of neural networks at the word-level, treating a
document as a sequence of word embeddings: (1) a fully-connected layer noted as Dense
(Rumelhart, Hinton, & Williams, 1986), and (2) Gated Recurrent Units noted as GRU
(Chung, Gülcehre, Cho, & Bengio, 2014), using ReLUs for all activations (Nair & Hinton,
2010). We use the same evaluation protocol, word embeddings and dataset as Lei et al.
(2016), but we use the pre-processed BeerAdvocate dataset provided by McAuley et al.
(2012), with a vocabulary of 19k words, while Lei et al. used their own pre-processing, with
a vocabulary of 147k unigrams.

Table 2 displays the mean squared error (MSE) on a test set with 1,000 reviews from
BeerAdvocate, using 260k reviews for training. In terms of non-neural methods, the first
two lines show that our MIR model with unigram features largely outperforms SVM with
bigram features as evaluated by Lei et al. (2016), while using far fewer parameters (|θ|).
As expected, neural methods perform better than MIR alone with bag-of-word features.
However, Dense+MIR outperforms Dense as well as LSTM, while using only 200 more pa-
rameters. Moreover, GRU+MIR outperforms all other methods, including GRU alone and
RCNN. These results show that MIR is beneficial regardless of the feature space used and
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BeerAdvocate RateBeer (ES) RateBeer (FR) Audiobooks Toys&Games

Model \\\ Error MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

AverageRating 14.20 3.32 16.59 4.31 12.67 2.69 21.07 6.75 20.96 6.75

Aggregated (ℓ1) 13.62 3.13 15.94 4.02 12.21 2.58 20.10 6.14 20.15 6.33

Aggregated (ℓ2) 14.58 3.68 14.47 3.41 12.32 2.70 19.08 5.99 18.99 5.93

Instance (ℓ1) 12.67 2.89 14.91 3.54 11.89 2.48 20.13 6.17 20.33 6.34

Instance (ℓ2) 13.74 3.28 14.40 3.39 11.82 2.40 19.26 6.04 19.70 6.59

Prime (ℓ1) 12.90 2.97 15.78 3.97 12.70 2.76 20.65 6.46 21.09 6.79

Prime (ℓ2) 14.60 3.64 15.05 3.68 12.92 2.98 20.12 6.59 20.11 6.92

Clustering (ℓ2) 13.95 3.26 15.06 3.64 12.23 2.60 20.50 6.48 20.59 6.52

Weighted MIR (ℓ2) 12.24 2.66 14.18 3.28 11.37 2.27 18.89 5.71 18.50 5.57

..vs SVR (%) +16.0 +27.7 +2.0 +3.8 +7.6 +15.6 +1.0 +4.5 +2.6 +6.0

..vs Lasso (%) +10.1 +15.1 +11.0 +18.4 +6.8 +11.8 +6.0 +6.9 +8.1 +11.9

..vs 2nd best (%) +3.3 +7.8 +1.5 +3.3 +3.7 +4.9 +1.0 +4.5 +2.6 +6.0

Table 3: Performance of aspect rating prediction in terms of Mean Absolute Error (MAE)
and Mean Squared Error (MSE) with 5-fold c.-v., averaged over all aspects in each
dataset. The best scores are in bold and the second best ones are underlined.
Significant improvements (paired t-test, p < 0.05) are in italics.

the input or the intermediate hidden states it operates on. Moreover, MIR has remark-
able computational efficiency in estimating explicit document representations, overcoming
the bottleneck of previous methods which attempt to learn a single, rigid and fixed-length
document representation. Lastly, our instance relevance mechanism is able to improve the
performance of the network while retaining its explanatory potential (as we show below),
in contrast to the model proposed by Lei et al., which is bounded by the performance of
its encoder network. Especially, when their model reaches the performance of the encoder
network, it has zero explanatory potential (Lei et al., 2016, Fig. 2).

7.3 Effects of the Model Design Choices

In this section, we experiment with 5-fold c.-v. on equal-size samples of 1,200 instances per
dataset. We use APWeights for training, because it has fewer hyper-parameters to tune
and is faster than SGDWeights for smaller training sets, as shown in Section 7.3.3.

7.3.1 Multiple-Instance Regression Assumptions

The proposed model relies on an original weighted instance relevance assumption to achieve
state-of-the-art results, as shown in the previous section, but how does it compare with
baseline MIR assumptions? We compare it here with Aggregated Instances, Instance as
Example, Prime Instance, and Clustering (the instance relevance method proposed by
Wagstaff et al., 2008). Moreover, we report for comparison the scores of a method that
always predicts the average rating over the training set, noted as Average Rating.

Table 3 shows the performance of the models with various MIR assumptions for aspect
rating prediction (columns 1 to 5). We have compared them on sentiment and emotion
rating prediction in earlier work (Pappas & Popescu-Belis, 2014). The proposed model
consistently outperforms the other assumptions on all datasets. In particular, it outperforms
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BOW TF-IDF word2vec

Model \\\ Error MAE MSE MAE MSE MAE MSE

Aggregated (ℓ1) 17.08 4.17 16.59 3.97 16.03 3.84
Aggregated (ℓ2) 16.88 4.47 16.25 4.16 14.62 3.30
Instance (ℓ1) 17.69 4.37 18.11 4.50 16.37 3.86
Instance (ℓ2) 16.93 4.24 16.88 4.23 15.60 3.67
Prime (ℓ1) 17.39 4.37 17.72 4.43 16.13 3.89
Prime (ℓ2) 18.03 4.91 17.10 4.29 15.71 3.72
Weighted MIR (ℓ2) 15.91 3.95 15.36 3.63 14.25 3.29

MIR vs. SVR +5.7% +11.2% +5.5% +12.5% +2.56% + 0.29%
MIR vs. Lasso +6.8% +5.0% +7.3% +8.5% +12.47% +16.82%
MIR vs. 2nd best +5.7% +5.0% +5.5% +8.5% +2.56% + 0.29%

Table 4: MAE and MSE (× 100) on sentiment prediction with 5-fold c.-v. over TED com-
ments, with three features spaces: BOW with counts, TF-IDF weights, and word
embeddings from word2vec. Improvements in italics are significant at p < 0.05
(pairwise t-test).

the two models with the Aggregated Instance assumption, which correspond respectively to
traditional BOW with SVR (when using the ℓ2 norm) and Lasso (when using the ℓ1 norm).
The Aggregated (ℓ2) baseline has on average 11% lower performance than our model in
terms of MSE and about 6% in terms of MAE. Similarly, the Aggregated (ℓ1) baseline has
on average 13% lower MSE and 8% MAE than the proposed model. As we have previously
shown (Pappas & Popescu-Belis, 2014), the same conclusions can be drawn for each aspect
of the five review datasets.

The Instance as Example assumption performs quite well on BeerAdvocate and Toys
& Games (for MSE) with ℓ1, on Ratebeer (ES), RateBeer (FR) and Toys&Games (for
MAE) with ℓ2. Therefore, this assumption is appropriate for this task, but it still scores
below our model, by about 5% MAE and 8%–9% MSE. The Prime Instance assumption
with ℓ1 performs well only on BeerAdvocate, and with ℓ2 only on Toys&Games, again with
lower scores than our model, namely by about 9% MAE and 15%–18% MSE. This suggests
that the Prime assumption is not the most appropriate for this task. Lastly, even though
Clustering attempts to model instance relevance, as we do, it only reaches scores similar
to Prime, presumably because the relevance weights are assigned based on the computed
clusters and are not directly influenced by the objective of the task.

Our model also outperforms all other methods for sentiment prediction over comments
of TED talks (see Table 4), as well as for talk-level emotion prediction with 12 dimensions.
For sentiment prediction, it outperforms SVR by 11% MSE and Lasso by 5%. For emotion
prediction (averaged over all 12 aspects), differences are smaller, at 1.6% and 2.9% respec-
tively (Pappas & Popescu-Belis, 2014). The smaller differences could be explained by the
fact that among the 10 comments selected per talk, several were not directly related to the
emotion that the system tries to predict.
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Dataset APWeights SGDWeights
Name Size MSE t/i i T (s) MSE t/i i T (s)

BeerAdvocate 1,586,259 1.30 7,931.3 3 23,793.9 1.26 326.1 5 1,728.3
Toys & Games 373,974 4.90 1,136.7 2 2,273.4 5.06 90.1 8 743.2
Pubs 53,492 1.92 129.8 20 2,596.0 1.65 11.0 33 370.0
Audiobooks 10,989 5.58 13.7 3 41.0 5.26 1.9 159 311.7
RateBeer (FR) 17,998 1.83 38.1 2 76.2 1.82 2.9 14 41.8
RateBeer (ES) 1,259 3.40 1.2 3 3.5 3.40 0.3 196 49.0
TED comments 1,200 4.13 0.8 5 4.2 4.05 0.2 202 38.4
TED talks 1,203 4.86 1.1 17 19.6 4.83 0.2 164 32.9

Average - 3.49 1,321.6 - 3,600.1 3.41 54.1 - 424.4

Table 5: Comparison of the APWeights and SGDWeights learning algorithms for aspect
rating prediction, in terms of time per iteration (t/i, in seconds), number of itera-
tions (i) and total time (T ) per aspect. SGDWeights is slower for smaller datasets,
but is clearly more efficient on the larger ones, with better MSE.

7.3.2 Independence from the Feature Space

The MIR model does not make any assumption about the feature space. We examine here
whether the improvements it brings remain present even with a different feature space,
for instance one based on TF-IDF coefficients or word2vec features instead of BOW with
counts. For sentiment prediction on TED comments, we find that by changing the feature
space to TF-IDF, strong baselines such as Aggregated (ℓ1) and (ℓ2), i.e. SVR and Lasso,
improve their performance, reaching 16.2% and 16.6% MAE respectively (with 4.2% and
4.0% MSE). However, our model still outperforms them on both MAE and MSE scores,
which reach 15.3% and 3.6%, thus improving over SVR by 5.5% on MAE and 12.5% on
MSE, and over Lasso by 7.4% on MAE and 8.5% on MSE.

When using word embeddings as features, all methods improve their performance, how-
ever, MIR still outperforms all other methods. These results suggest that MIR improve-
ments hold also on more sophisticated feature spaces. Moreover, MIR also improves the
performance of neural networks when it is used as a pooling layer for attending their interme-
diate hidden states, as we showed in Section 7.2. Of course, apart from better performance
on rating prediction, MIR also provides meaningful structural information about the input,
as we demonstrate in Section 9.

7.3.3 Efficiency of the Learning Algorithms

We compare here the performance and the execution time of two learning algorithms, the
initial APWeights and SGDWeights (see Section 4.2 above). As in Section 7.2, we use the
full-sized datasets with uniform training/testing splits. Table 5 displays the MSE score
per dataset, the average duration per iteration and per rating dimension, in seconds. The
datasets are listed by decreasing number of reviews.

In terms of efficiency, SGDWeights scales better than APWeights when the number of
training examples increases: the average time per iteration and per rating dimension of
SGDWeights increases more smoothly than for APWeights, which has a steeper increase.
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Figure 4: Accuracy of the proposed MIR model on predicting the explanatory value of
sentences with respect to review-level ratings of the three aspects, for subsets of
increasing crowd confidence values. Random accuracy is 1 out of 5, i.e. 20%.

However, APWeights is faster on smaller datasets such as TED talks, TED comments and
Ratebeer (ES). At the same time, SGDWeights equals or outperforms APWeights on most
datasets, as shown by its average MSE scores.

8. Intrinsic Evaluation of Saliency Values: Comparison to Humans

Apart from the competitive results for rating prediction, one of our central claims is that
the saliency values of our model reflect the contribution of each sentence to its rating
predictions, in other words, that the model provides interpretable instance weights. In this
section, we evaluate this important property intrinsically, while in Section 9 we demonstrate
the benefits of the weights in application to other tasks. Qualitative analyses on several
examples can be found elsewhere (Pappas & Popescu-Belis, 2014, Sec. 7.2).

We compare the MIR weights with the explanatory values assigned by humans to review
sentences, on the HATDOC dataset with 1,662 sentences (presented in Section 6.2). For
training, we collected a uniform sample of audiobook reviews from Audible, with 10,000
reviews for each overall rating (1 to 5), hence 50,000 reviews not included in the test set.
This ensures that our system can learn to model reviews from all the rating levels, while
the Audiobook set presented in Section 6.1 does not have a uniform rating distribution. All
reviews are accompanied by review-level ratings of three aspects of the respective audio-
book: ‘overall quality’, ‘performance’, and ‘story’. To compare our model’s output with
this ground truth, we convert our [0, 1] saliency values into categorical labels from 1 to 5
using round(4ψ̂ + 1). Based on tests over a development subset, our model is trained with
SGDWeights and ADAGRAD (see Section 4.2 above), with a step size of 0.001.

We first examine the accuracy of the saliency values predicted by our model, i.e. the
proportion of sentences with an explanatory label that is identical to the one assigned by
humans. Predicting the exact label is a challenging task, given that even the human judges
do not have full agreement. Figure 4 displays the accuracy of our model, for each aspect, for
test subsets of increasing crowd confidence, from the entire test set to only the most reliable
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labels. The model achieves the highest accuracy on the ‘performance’ aspect, with up to
60% accuracy for labels assigned with at least 0.8 confidence by humans. The accuracy for
the ‘story’ aspect reaches up to 33%, while ‘overall’ has the lowest accuracy, at 26%. Our
model thus significantly outperforms the random baseline, which has 20% accuracy (1 out
of 5). The low performance on the ‘overall’ aspect can be attributed to its generality, as it
includes elements of the other two aspects along with other evaluative and non-evaluative
statements.

When relaxing the constraints of exact label matching, i.e. accepting neighboring labels
as matches (distance of 1), the accuracies at the same confidence levels as above increase to
71%, 43% and 52% respectively. Interestingly, the ‘overall’ aspect benefits the most from
this relaxation, showing that many predictions were actually close but not identical to the
human label. The performance of MIR on all aspects is greater at higher crowd confidence
values (≥ 0.8), which shows that both the system and the humans find similar difficulties in
labeling explanatory power. To provide a more nuanced assessment of MIR weights, they
can also be compared with those from human judges by placing all of them on the same
scale of qualification, and estimating reliability as agreement with the average (see Pappas
& Popescu-Belis, 2016).

9. Evaluation of Saliency Values for Segmentation and Summarization

We report the results on segmentation and summarization using the aspect saliency and
sentiment of sentences within the sequence labeling model proposed in Section 5. Then,
we investigate the discriminative potential and importance of the proposed features when
varying the parameters of the sequence labeling model on these tasks.

9.1 Experimental Settings

To compare with state-of-the-art on aspect segmentation and summarization, we use a
uniform split of the data (50% for training and 50% for testing) as did McAuley et al.
(2012). To account for randomness effects in the splitting, we report the average scores of
each method over five runs (Section 9.2).

We compare our model with the methods used by McAuley et al. (2012). As Lei et al.
(2016) used a modified version of McAuley’s segmentation task to evaluate their word-based
selection method, this is not directly comparable with McAuley’s or our method. We con-
sider Latent Dirichlet Allocation (LDA; Blei, Ng, & Jordan, 2003), which was trained by
McAuley et al. with various numbers of topics: 10, 50, or the number of aspects k. The ab-
stract topics obtained from LDA on the training set were then manually aligned by McAuley
at al. with the aspects, which is why they considered this method to be semi-supervised.
We report in Figure 5 only the best LDA scores out of their three configurations. Fur-
ther tuning of the number of topics would be impractical due to the manual alignment;
moreover, our main focus is on the unsupervised or fully-supervised methods and baselines.
We also consider McAuley et al.’s PALE LAGER, which achieves state-of-the-art perfor-
mance on the tasks we consider and supports three types of learning, namely unsupervised,
semi-supervised and fully-supervised.

For both tasks, we report the accuracy score, i.e. the fraction of correct predictions. For
summarization, we also report the Area Under Curve (AUC) score, as we can view the task
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Figure 5: Accuracy on review segmentation (top) and on summarization (bottom) of the
CRF models with BOW+MIR features, compared to several baselines. The scores
of LDA and PALE LAGER are from McAuley et al. (2012).

as the retrieval of the most relevant sentences for each aspect, and use the probabilities for
each sentence and aspect to rank sentences (correct sentences should rank higher) – the
AUC can be computed using the ground-truth aspect labels.

To demonstrate the merits of our features across several sequence labeling models, we
evaluate them in Section 9.3 over five random splits, 80% for training and 20% for testing. In
each experiment, we select the model and features by cross-validation on the training data.
All the CRF models are optimized over the same range of values for their regularization
term, noted a · 10b, with a ∈ {1, . . . , 9} and b ∈ {−3, . . . ,+3}. We train our MIR model
with SGDWeights (based on the findings in Section 7) on each dataset, without making
available the segmentation labels, and we test all the unique combinations of MIR features,
presented in Section 5, in addition to BOW features.

9.2 Comparison with the State of the Art

We evaluate three of our models from Section 5: (1) the unsupervised, direct aspect assign-
ment according to the saliency values learned by our model; (2) the fully-supervised un-
structured model that uses our aspect saliency and sentiment features, noted LogReg+MIR;
and (3) the structured models with MIR features, noted CRF-u+MIR and CRF-d+MIR.

Review segmentation. For segmentation, the proposed linear chain CRF with MIR
features outperforms all other baselines over all datasets (see Figure 5, upper part), with
about 15% relative improvement on average over the best baseline (PALE LAGER, fully-
supervised). The largest differences appear on the Toys and the Audiobooks datasets with
about 31% and 14% improvement respectively. Compared to the semi-supervised models,
LDA and PALE LAGER, the improvements are much higher, as expected. The CRF-u
model performs better than the simple CRF, demonstrating that capturing the relationship
between aspects is beneficial for this task.
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BeerAdvocate Pubs Toys&Games Audiobooks RateB. (FR) RateB. (ES)

Model BOW +MIR BOW +MIR BOW +MIR BOW +MIR BOW +MIR BOW +MIR

Segmentation: accuracy scores

Unsup. - 47.05 - 52.03 - 28.64 - 36.46 - 45.76 - 23.00
LogReg 81.36 82.96* 64.57 65.97† 58.62 60.40 55.83 60.68† 87.57 90.30* 81.02 82.73
CRF-u 87.55 88.80* 67.35 68.35† 59.94 62.14 61.85 67.92* 88.28 90.35* 83.07 81.75
CRF-d 88.96 89.21 69.73 69.66 58.30 61.21 64.56 65.94 88.88 90.37† 83.42 82.88

Summarization: accuracy scores

Unsup. - 60.66 - 61.13 - 33.37 - 41.03 - 48.52 - 24.33
LogReg 87.78 88.87* 62.54 63.16 35.74 42.47* 56.20† 53.38 74.86 76.19 53.33 57.33
CRF-u 87.89 88.24* 61.18 63.14† 40.23 41.10* 56.39 58.01 73.62 74.95 55.33 56.00
CRF-d 87.53 87.55 61.14 62.93* 38.41 41.41 54.91 55.65 74.29 74.19 54.33 56.33

Summarization: AUC scores

Unsup. - 30.19 - 20.50 - 26.92 - 34.73 - 25.29 - 20.61
LogReg 87.72 88.79* 63.01 64.59* 45.43 47.76* 60.77 60.60 72.25 71.42 50.63 48.97
CRF-u 87.61* 87.29 63.84 64.70* 46.81 47.53† 59.79 63.64* 71.11 72.20* 50.44 49.82
CRF-d 86.76 86.83 63.57 65.35* 46.14 47.48* 61.27 62.07 71.04 71.81 50.11 51.14

Table 6: Performance of CRF models for aspect segmentation and summarization with 5-
fold c.-v. The best scores for each comparison between BOW and BOW+MIR are
in bold, and the best scores for each dataset and task are underlined. Significance
is noted with a ‘*’ for the 90% level and a ‘†’ for the 80% level.

In the unsupervised setting, PALE LAGER achieves higher scores than our model on
BeerAdvocate and Audiobooks by 52% and 22%, however, our model outperforms PALE
LAGER by a larger margin, namely by 72%, 77% and 100% respectively on Pubs, Ratebeer
(FR) and Ratebeer (ES). On Toys, the performances of the two systems are similar. We
should note that PALE LAGER has a modeling advantage in this task, because it is able
to de-correlate aspect words from sentiment words. In contrast, our model captures the
aspect sentiment saliency and may assign low scores on non-factual sentences regardless of
whether they actually discuss a particular aspect.

Review summarization. The performance on review summarization of the CRF with
MIR features is slightly higher on average (+2.3%) than the fully-supervised PALE LAGER,
with the best scores found on Ratebeer (ES) and BeerAdvocate (+18.6% and +2.3%) and
the worst ones on Ratebeer (FR) and Toys (−3.8% and −5%), as shown in Fig. 5, lower
part. One explanation for not always improving summarization (e.g. on Toys), despite the
improved segmentation model over PALE LAGER, is that here only the reviews with more
sentences than the number of aspects are considered, by definition of the task. Such reviews
are in fact more difficult to segment than reviews with fewer sentences.

As for the unsupervised setting, PALE LAGER outperforms our model on BeerAdvo-
cate and Ratebeer (ES) by 28% and 21% respectively, while our model outperforms PALE
LAGER on all other datasets, namely Pubs, Toys, Audiobooks, and Ratebeer (FR), re-
spectively by 81%, 6%, 20%, and 165%. Even though both models are superior to the
semi-supervised variants of LDA, our model outperforms LDA by a larger margin than
PALE LAGER does. Interestingly, the performance of our model on Pubs, without task
supervision, is similar to the best fully supervised model.
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9.3 Discriminative Potential of MIR Features

The results of several sequence labeling models with vs. without MIR features (Table 6)
show the discriminative potential of the MIR features on segmentation and summarization.
The CRF models with MIR features for aspect saliency and sentiment outperform those
not using them. Out of the 18 combinations of the three tasks and the six datasets, the
CRF model with BOW+MIR features outperforms BOW alone for 15 of them, i.e. 83%.
Furthermore, the CRF model with BOW+MIR features outperforms BOW alone in 87% of
the pairwise model comparisons (47 out of 54).

Review segmentation. The BOW+MIR features segment the reviews more accurately
than BOW only in 83% of the pairwise comparisons for this task, shown in the first three
lines of Table 6. The structured models (CRF-u and CRF-d) outperform unstructured
ones (LogReg) over all datasets, highlighting the importance of modeling the relationships
between aspects. The unstructured model (LogReg) benefited the most from the MIR
features, on average, followed by the structured models CRF-u and CRF-d. The MIR
features were not informative on Pubs and Ratebeer (ES).

Review summarization. On the summarization task, the BOW+MIR features sur-
pass the BOW features in 89% of the pairwise comparisons. The LogReg unstructured
model outperforms CRF on all the datasets except for Audiobooks (lines 4–6 of Table 6).
When the linear chain CRFs are given BOW+MIR features, they improve over LogReg for
Audiobooks. Moreover, the structured models do not outperform the unstructured ones on
this task; this can be attributed to the fact that the summarization labels are not sequential
and thus the structured information is not as helpful as on segmentation.

On the same task evaluated with AUC metric (lines 7–9 of Table 6), the BOW+MIR
features help to summarize the reviews more accurately than BOW in 78% of the pairwise
comparisons. Here, the linear chain CRFs outperform the unstructured baseline (LogReg)
on 3 out of 6 datasets, namely Pubs, Audioboks and Ratebeer (ES), although they benefit
from MIR features on all datasets. The lowest performance is observed on Ratebeer (ES),
as for the segmentation task; one reason for this might be that the small context prevents
CRF+MIR to accurately learn the relationship between aspects.

Feature analysis. To identify the most informative MIR features that are the most
informative for each task, from those in listed in Section 5.2, Table 2, we analyze their
importance over the training data (with 10-fold c.-v.), both for summarization and seg-
mentation. We estimate the importance of each type of features based on the likelihood of
appearance in the top 5 models (out of 770 per fold, i.e. the number of feature combinations)
which outperformed CRF with BOW. The results are represented as heatmap diagrams in
Figure 6 for each dataset (columns).

For segmentation, the most informative features are the aspect saliency of the current,
next and previous sentences (sw , sw next , sw prev) for BeerAdvocate, Ratebeer (ES) and
Ratebeer (FR); and the aspect sentiment of the current sentence (sp) for Pubs, Toys and
Audiobooks. Interestingly, the former features are more informative than the latter ones;
this suggests that the context of the sentence plays an important role in finding the aspect
it discusses. For summarization, the aspect saliencies of the previous and next sentences
(sw prev) are the most important features for BeerAdvocate and Ratebeer (ES), the aspect
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Figure 6: Importance of MIR features for segmentation and summarization as their like-
lihood of appearance in the top-5 models better than CRF with BOW (10-fold
c.-v. on the training data).

sentiment of the current sentence (sp) for Toys, the global sentiment (cp) for Pubs and
Ratebeer (FR), and the aspect saliency of next sentence (sp next) for Audiobooks.

The best performing features across all datasets and models are: for segmentation, the
aspect saliency of the next sentence and the sentiment of the current sentence (sw next and
sp at 0.87); and for summarization, the aspect saliency of the previous sentence (sw prev
at 0.90) and the sentiment of the current sentence (sp at 0.86). On average, the saliency
features have a higher importance compared to the aspect sentiment ones for both tasks,
namely 0.84 vs. 0.66 and 0.77 vs. 0.72. Overall, MIR features have good discriminative
potential on both tasks, although the optimal features depend on the dataset.

The MIR weights appear to capture at least partly some of the sequential information
that is captured by the CRFs. Such information is clearly beneficial for both segmentation
and summarization, as seen from the differences between the scores of LogReg and CRF,
without MIR, in Table 6. (And, as expected, it is more beneficial for the former than the
second task, where the differences between scores are smaller.) However, when using the
MIR features, the scores of LogReg are much closer to those of the CRF models, and even
outperform CRF+MIR in 4 out of 6 experiments with summarization. The information
about sequences is likely learned by the MIR when modeling the weights of the features
from the next and previous sentence to the current one.

10. Conclusion

We proposed a weighted multiple-instance regression model for explicit document modeling,
with a direct application to multi-aspect sentiment analysis. The proposed model learns
instance relevance weights together with target labels. When used for rating prediction, it
outperforms several MIR and non-MIR baselines on seven publicly available datasets, even
when the sophistication of the feature space increases. This suggests that our contribution
is to a certain extent independent from feature engineering or learning. The results vali-
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date our hypothesis that the target aspect ratings are weakly connected to the individual
segments of a text, and that accounting for this uncertainty is an appropriate strategy.

The document models learned with MIR are explicit in the sense that they have explana-
tory power, as we demonstrated in two ways. Firstly, we showed that the learned weights are
comparable with sentence-level human judgments obtained by crowdsourcing. Secondly, we
showed that the weights can augment word or topic feature spaces with information regard-
ing the sentiment of sentences, which in combination with CRF models reached superior
or similar performance to the state of the art. The MIR model thus captures meaningful
structural information which is helpful for text understanding tasks. Such information has
applications beyond multi-aspect sentiment analysis, e.g. to summarize opinionated text or
to exploit user reviews within recommender systems.

Acknowledgments

We are grateful for their support to the European Union through its 7th Framework Pro-
gram (inEvent project n. 287872, www.inevent-project.eu) and its Horizon 2020 program
(SUMMA project n. 688139, www.summa-project.eu), and to the Swiss National Science
Foundation (MODERN project n. 147653, www.idiap.ch/project/modern/). We would also
like to thank the anonymous reviewers for their helpful suggestions.

References

Amores, J. (2013). Multiple instance classification: Review, taxonomy and comparative
study. Artificial Intelligence, 201, 81–105.

Andrews, S., Tsochantaridis, I., & Hofmann, T. (2003). Support vector machines for
multiple-instance learning. In Advances in Neural Information Processing Systems,
pp. 561–568, Vancouver, BC, Canada.

Baccianella, S., Esuli, A., & Sebastiani, F. (2009). Multi-facet rating of product reviews.
In Boughanem, M., Berrut, C., Mothe, J., & Soule-Dupuy, C. (Eds.), Advances in
Information Retrieval, Vol. 5478 of Lecture Notes in Computer Science, pp. 461–472.
Springer Berlin Heidelberg.

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by jointly learning
to align and translate. In 5th International Conference on Learning Representations,
San Diego, USA.

Bao, Y., Fang, H., & Zhang, J. (2014). TopicMF: Simultaneously exploiting ratings and
reviews for recommendation. In Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, pp. 2–8, Québec City, Québec, Canada.
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Lei, T., Barzilay, R., & Jaakkola, T. (2016). Rationalizing neural predictions. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing, pp.
107–117, Austin, Texas. Association for Computational Linguistics.

Lewis, A., & Malick, J. (2008). Alternating projections on manifolds. Mathematics of
Operations Research, 33 (1), 216–234.

Li, F., Han, C., Huang, M., Zhu, X., Xia, Y.-J., Zhang, S., & Yu, H. (2010). Structure-
aware review mining and summarization. In Proceedings of the 23rd International
Conference on Computational Linguistics, COLING ’10, pp. 653–661, Beijing, China.

Li, F., Liu, N., Jin, H., Zhao, K., Yang, Q., & Zhu, X. (2011). Incorporating reviewer
and product information for review rating prediction. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence - Volume 3, IJCAI ’11, pp.
1820–1825, Barcelona, Spain.

Li, J., Chen, X., Hovy, E. H., & Jurafsky, D. (2015). Visualizing and understanding neural
models in NLP. CoRR, abs/1506.01066.

Lin, C., & He, Y. (2009). Joint sentiment/topic model for sentiment analysis. In Proceedings
of the 18th ACM Conference on Information and Knowledge Management, CIKM ’09,
pp. 375–384, Hong Kong, China.

Lipton, Z. C. (2016). The mythos of model interpretability. In 2016 ICML Workshop on
Human Interpretability in Machine Learning, New York, USA.

Lou, Y., Caruana, R., & Gehrke, J. (2012). Intelligible models for classification and regres-
sion. In Proceedings of the 18th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’12, pp. 150–158, Beijing, China.

Lou, Y., Caruana, R., Gehrke, J., & Hooker, G. (2013). Accurate intelligible models with
pairwise interactions. In Proceedings of the 19th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’13, pp. 623–631, New York,
NY, USA. ACM.

Lu, B., Ott, M., Cardie, C., & Tsou, B. K. (2011). Multi-aspect sentiment analysis with
topic models. In Proceedings of the 11th IEEE International Conference on Data
Mining Workshops, ICDMW ’11, pp. 81–88, Washington, DC, USA.

Luong, M., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based
neural machine translation. In Proceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP ’15, pp. 1412–1421, Lisbon, Portugal.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). Learning
word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies - Volume
1, HLT ’11, pp. 142–150, Portland, OR, USA.

621



Pappas & Popescu-Belis

McAuley, J., & Leskovec, J. (2013). Hidden factors and hidden topics: Understanding
rating dimensions with review text. In Proceedings of the 7th ACM Conference on
Recommender Systems, RecSys ’13, pp. 165–172, Hong Kong, China.

McAuley, J., Leskovec, J., & Jurafsky, D. (2012). Learning attitudes and attributes from
multi-aspect reviews. In Proceedings of the 12th IEEE International Conference on
Data Mining, ICDM ’12, pp. 1020–1025, Brussels, Belgium.

Mei, Q., Ling, X., Wondra, M., Su, H., & Zhai, C. (2007). Topic sentiment mixture: modeling
facets and opinions in weblogs. In Proceedings of the 16th International Conference
on the World Wide Web, WWW ’07, pp. 171–180, Banff, AB, Canada.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed rep-
resentations of words and phrases and their compositionality. In Burges, C., Bottou,
L., Welling, M., Ghahramani, Z., & Weinberger, K. (Eds.), Advances in Neural Infor-
mation Processing Systems 26, pp. 3111–3119.

Mitchell, M., Aguilar, J., Wilson, T., & Van Durme, B. (2013). Open domain targeted
sentiment. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pp. 1643–1654, Seattle, Washington, USA.

Munkres, J. (1957). Algorithms for the assignment and transportation problems. Journal
of the Society for Industrial and Applied Mathematics, 5 (1), 32–38.

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann
machines.. In International Conference in Machine Learning, pp. 807–814, Haifa,
Israel.

Pang, B., & Lee, L. (2005). Seeing stars: Exploiting class relationships for sentiment cat-
egorization with respect to rating scales. In Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics, ACL ’05, pp. 115–124, Ann Arbor, MI,
USA.

Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends
in Information Retrieval, 2 (1-2), 1–135.

Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up?: Sentiment classification using
machine learning techniques. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, EMNLP ’02, pp. 79–86, Philadelphia, PA, USA.

Pappas, N., & Popescu-Belis, A. (2013). Sentiment analysis of user comments for one-class
collaborative filtering over TED talks. In Proceedings of the 36th international ACM
SIGIR Conference on Research and development in information retrieval, SIGIR ’13,
pp. 773–776, Dublin, Ireland.

Pappas, N., & Popescu-Belis, A. (2014). Explaining the stars: Weighted multiple-instance
learning for aspect-based sentiment analysis. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, EMNLP ’14, pp. 455–466, Doha,
Qatar.

Pappas, N., & Popescu-Belis, A. (2016). Human versus machine attention in document
classification: A dataset with crowdsourced annotations. In Proceedings of the EMNLP
4th Workshop on Natural Language Processing for Social Media, SocialNLP 2016, pp.
94–100, Austin, TX, USA.

622



Explicit Document Modeling through Weighted Multiple-Instance Learning

Patra, B. G., Mandal, S., Das, D., & Bandyopadhyay, S. (2014). JU CSE: A conditional
random field (CRF) based approach to aspect based sentiment analysis. In Proceedings
of the 8th International Workshop on Semantic Evaluation, SemEval ’14, pp. 370–374,
Dublin, Ireland.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., VanderPlas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., & Duchesnay, E. (2012). Scikit-learn: Machine learning
in python. CoRR, abs/1201.0490.

Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I., & Manand-
har, S. (2014). SemEval-2014 task 4: Aspect based sentiment analysis. In Proceedings
of the 8th International Workshop on Semantic Evaluation, SemEval ’14, pp. 27–35,
Dublin, Ireland.

Qu, L., Ifrim, G., & Weikum, G. (2010). The bag-of-opinions method for review rating pre-
diction from sparse text patterns. In Proceedings of the 23rd International Conference
on Computational Linguistics, COLING ’10, pp. 913–921, Beijing, China.

Ray, S., & Page, D. (2001). Multiple instance regression. In Proceedings of the 18th Inter-
national Conference on Machine Learning, ICML ’01, pp. 425–432.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). ”why should I trust you?”: Explaining
the predictions of any classifier. CoRR, abs/1602.04938.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations
by error propagation. In Rumelhart, D. E., McClelland, J. L., & PDP Research Group,
C. (Eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cog-
nition, Vol. 1, pp. 318–362. MIT Press, Cambridge, MA, USA.

Rush, A. M., Chopra, S., & Weston, J. (2015). A neural attention model for abstractive
sentence summarization. CoRR, abs/1509.00685.

Sauper, C., & Barzilay, R. (2013). Automatic aggregation by joint modeling of aspects and
values. Journal of Artificial Intelligence Research, 46 (1), 89–127.

Sauper, C., Haghighi, A., & Barzilay, R. (2010). Incorporating content structure into text
analysis applications. In Proceedings of the 2010 Conference on Empirical Methods in
Natural Language Processing, EMNLP ’10, pp. 377–387, Cambridge, MA.

Sennrich, R., Haddow, B., & Birch, A. (2016). Edinburgh neural machine translation sys-
tems for WMT 16. CoRR, abs/1606.02891.

Settles, B., Craven, M., & Ray, S. (2008). Multiple-instance active learning. In Advances
in Neural Information Processing Systems, NIPS ’08, pp. 1289–1296, Vancouver, BC,
Canada.

Snyder, B., & Barzilay, R. (2007). Multiple aspect ranking using the good grief algorithm.
In In Proceedings of the Annual Conference of the North American Chapter of the
ACL, HLT-NAACL ’07, pp. 300–307, Rochester, NY, USA.

Socher, R., Pennington, J., Huang, E. H., Ng, A. Y., & Manning, C. D. (2011). Semi-
supervised recursive autoencoders for predicting sentiment distributions. In Proceed-
ings of the Conference on Empirical Methods in Natural Language Processing, EMNLP
’11, pp. 151–161, Edinburgh, UK.

623



Pappas & Popescu-Belis

Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D., Ng, A. Y., & Potts,
C. (2013). Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, EMNLP ’13, pp. 1631–1642, Portland, OR, USA.

Sukhbaatar, S., Szlam, A., Weston, J., & Fergus, R. (2015). End-to-end memory networks.
In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., & Garnett, R. (Eds.),
Advances in Neural Information Processing Systems 28, pp. 2440–2448. Curran Asso-
ciates, Inc.

Surdeanu, M., Tibshirani, J., Nallapati, R., & Manning, C. D. (2012). Multi-instance multi-
label learning for relation extraction. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, EMNLP-CoNLL ’12, pp. 455–465, Jeju Island, Korea.

Tang, D. (2015). Sentiment-specific representation learning for document-level sentiment
analysis. In Proceedings of the 8th ACM International Conference on Web Search and
Data Mining, WSDM ’15, pp. 447–452, Shanghai, China.

Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., & Qin, B. (2014). Learning sentiment-
specific word embedding for twitter sentiment classification. In Proceedings of the
52nd Annual Meeting of the ACL, ACL ’14, pp. 1555–1565, Baltimore, MD, USA.

Thomas, M., Pang, B., & Lee, L. (2006). Get out the vote: Determining support or opposi-
tion from congressional floor-debate transcripts. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, EMNLP ’06, pp. 327–335, Sydney,
NSW, Australia.

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the
Royal Statistical Society (Series B), 58, 267–288.

Titov, I., & McDonald, R. (2008a). A joint model of text and aspect ratings for sentiment
summarization. In Proceedings of the Annual Meeting of the ACL, HLT ’08, pp. 308–
316, Columbus, OH, USA.

Titov, I., & McDonald, R. (2008b). Modeling online reviews with multi-grain topic models.
In Proceedings of the 17th International Conference on World Wide Web, WWW ’08,
pp. 111–120, Beijing, China.

Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun, Y. (2005). Large margin methods
for structured and interdependent output variables. Journal of Machine Learning
Research, 6, 1453–1484.

Wagstaff, K. L., & Lane, T. (2007). Salience assignment for multiple-instance regression. In
Proceedings of the ICML 2007 Workshop on Constrained Optimization and Structured
Output Spaces, Corvallis, OR, USA.

Wagstaff, K. L., Lane, T., & Roper, A. (2008). Multiple-instance regression with struc-
tured data. In Proceedings of the IEEE International Conference on Data Mining
Workshops, ICDMW ’08, pp. 291–300.

Wang, H., Lu, Y., & Zhai, C. (2010). Latent aspect rating analysis on review text data:
a rating regression approach. In Proceedings of the 16th ACM SIGKDD Interna-

624



Explicit Document Modeling through Weighted Multiple-Instance Learning

tional Conference on Knowledge Discovery and Data Mining, KDD ’10, pp. 783–792,
Washington, DC, USA.

Wang, H., Nie, F., & Huang, H. (2011). Learning instance specific distance for multi-instance
classification. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial In-
telligence, pp. 507–512, San Francisco, CA, USA.

Wang, Z., Lan, L., & Vucetic, S. (2012). Mixture model for multiple instance regression
and applications in remote sensing. IEEE Transactions on Geoscience and Remote
Sensing, 50 (6), 2226–2237.

Wang, Z., Radosavljevic, V., Han, B., Obradovic, Z., & Vucetic, S. (2008). Aerosol opti-
cal depth prediction from satellite observations by multiple instance regression. In
Proceedings of the SIAM International Conference on Data Mining, SDM ’08, pp.
165–176, Atlanta, GA, USA.

Wilson, T., Wiebe, J., & Hoffmann, P. (2005). Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of the Conference on Human Language Tech-
nology and Empirical Methods in Natural Language Processing, HLT ’05, pp. 347–354,
Vancouver, BC, Canada.

Wu, C., Beutel, A., Ahmed, A., & Smola, A. J. (2015). Explaining reviews and ratings with
PACO: Poisson additive co-clustering. CoRR, abs/1512.01845.

Xiong, C., Merity, S., & Socher, R. (2016). Dynamic memory networks for visual and textual
question answering. CoRR, abs/1603.01417.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A. C., Salakhutdinov, R., Zemel, R. S., &
Bengio, Y. (2015). Show, attend and tell: Neural image caption generation with
visual attention. CoRR, abs/1502.03044.

Xu, W., Hoffmann, R., Zhao, L., & Grishman, R. (2013). Filling knowledge base gaps for
distant supervision of relation extraction. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pp. 665–670,
Sofia, Bulgaria. Association for Computational Linguistics.

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016). Hierarchical attention
networks for document classification. In Proceedings of the 15th Annual Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL’16, San Diego, California.

Zhang, M.-L., & Zhou, Z.-H. (2008). M3MIML: A maximum margin method for multi-
instance multi-label learning. In Proceedings of the 8th IEEE International Conference
on Data Mining, ICDM ’08, pp. 688–697.

Zhang, M.-L., & Zhou, Z.-H. (2009). Multi-instance clustering with applications to multi-
instance prediction. Applied Intelligence, 31 (1), 47–68.

Zhao, H., Lu, Z., & Poupart, P. (2015). Self-adaptive hierarchical sentence model. CoRR,
abs/1504.05070.

Zhou, Z.-H., Jiang, K., & Li, M. (2005). Multi-instance learning based web mining. Applied
Intelligence, 22 (2), 135–147.

625



Pappas & Popescu-Belis

Zhou, Z.-H., Sun, Y.-Y., & Li, Y.-F. (2009). Multi-instance learning by treating instances
as non-i.i.d. samples. In Proceedings of the 26th Annual International Conference on
Machine Learning, ICML ’09, pp. 1249–1256, Montreal, QC, Canada.

Zhu, J., Wang, H., Tsou, B. K., & Zhu, M. (2009). Multi-aspect opinion polling from textual
reviews. In Proceedings of the 18th ACM Conference on Information and Knowledge
Management, CIKM ’09, pp. 1799–1802, Hong Kong, China.

Zhu, J., Zhang, C., & Ma, M. Y. (2012). Multi-aspect rating inference with aspect-based
segmentation. IEEE Transactions on Affective Computing, 3 (4), 469–481.

Zhu, J.-Y., Wu, J., Xu, Y., Chang, E., & Tu, Z. (2015). Unsupervised object class discovery
via saliency-guided multiple class learning. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 37 (4), 862–875.

Zhuang, L., Jing, F., & Zhu, X.-Y. (2006). Movie review mining and summarization. In
Proceedings of the 15th ACM International Conference on Information and Knowledge
Management, CIKM ’06, pp. 43–50, Arlington, VA, USA.

Zinkevich, M., Weimer, M., Smola, A. J., & Li, L. (2011). Parallelized stochastic gradient
descent. In Advances in Neural Information Processing Systems 23, NIPS ’10, pp.
2595–2603.

626


