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Abstract—This paper focuses on the dynamics of a multiple manipulator space free-� ying robot
(SFFR) with rigid links and issues relevant to the development of appropriate control algorithms. To
develop an explicit dynamics model of such complex systems, the Lagrangian formulation is applied.
First, the system kinetic energy is derived based on a developed kinematics approach. Then, through
vigorous mathematical analyses, three formats are obtained which describe the contribution of each
term of kinetic energy to the equations of motion. Next, explicit derivations of a system’s mass
matrix, and of the vectors of non-linear velocity terms and generalized forces are introduced for the
� rst time. The obtaineddynamics model is very useful for dynamics analyses,design and development
of control algorithms for such complex systems. The explicit SFFR dynamics can be implemented
either numerically or symbolically. Following the latter approach, the developed symbolic code for
dynamics modeling, i.e. SPACEMAPLE, and its veri� cation procedure are described, and issues
relevant to the development and computation of dynamics models in control algorithms are brie� y
discussed.Speci� c dynamic characteristicsof SFFRs compared to � xed-basemanipulators are pointed
out.
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1. INTRODUCTION

Space free-� ying robots (SFFR) are space systems that include an actuated satellite
base equipped with one or more manipulators. An SFFR whose base actuators
are inactive is called a free-� oating space robot. Distinct from � xed-based
manipulators, the spacecraft (base) of a SFFR responds to dynamic reaction forces
due to manipulator motions. In order to control such a system, it is essential to
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consider the dynamic coupling between the manipulators and the base [7–9]. To
this end, one should � rst derive a proper dynamics model for the system, which is
to be elaborated in this paper.

Vafa and Dubowsky [1] have described the kinematics and conservation dynam-
ics of a free-� oating space manipulator system, using the Virtual Manipulator Ap-
proach. No external forces act on the system and so the system center of mass is
� xed in inertial space, enabling them to represent a free-� oating system by one with
a virtual � xed base. Papadopoulos and Dubowsky [2] have employed a barycen-
tric vector approach, to study kinematics and dynamics of a single-arm SFFR in
free-� oating mode. Taking the center of mass of the whole system as a repre-
sentative point for the translational motion and using barycentric vectors, which
re� ect both geometric con� guration and mass distribution of the system, results
in decoupling the total linear and angular motion from the rest of the equations.
This approach was also applied by Papadopoulos and Moosavian [3] to obtain the
dynamics and to control a multiple-arm SFFR in free-� ying mode. Umetani and
Yoshida [4] have presented a Generalized Jacobian Matrix for a free-� oating sys-
tem. Assuming that no external forces are applied on a rigid robotic system with
revolute joints, they derive a generalized Jacobian matrix which re� ects both mo-
mentum conservation laws and kinematic relations. The proposed generalized Jaco-
bian matrix converges to the conventional Jacobian when the base body is relatively
massive.

Nakamura et al. [5] have studied the mechanics of coordinated object manip-
ulation by multiple robotic arms, taking the object dynamics into consideration.
Moosavian and Papadopoulos [6] have developed free-� yer kinematics based on
the direct path method and compared that to the barycentric vector approach. Their
analysis showed that the direct path method results in equations with simpler terms,
and requires signi� cantly less computations for position and velocity analyses.
Therefore, it emerges as a more appropriate approach for dynamics modeling of
multiple-arm systems, which is studied in this paper.

The focus of this paper is on the dynamics of a multiple-manipulator SFFR
based on the direct path kinematics approach. Derivation of the equations of
motion results in an explicit derivations of the system’s mass matrix, and of the
vectors of non-linear velocity terms and generalized forces. Unlike with recursive
dynamics formulations, the obtained dynamics model is very useful for dynamics
analyses, design studies and the development of control algorithms for SFFRs.
The obtained explicit dynamics model of a multiple-manipulator SFFR, published
for the � rst time here, can be implemented either numerically or symbolically.
The latter approach was followed, and the developed symbolic code for dynamics
modeling, i.e. SPACEMAPLE, and its veri� cation procedure are described here.
Dynamics issues important in the development of appropriate control algorithms
are also discussed. Speci� c dynamic characteristics of SFFRs compared to � xed-
base manipulators are discussed before concluding the paper.
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2. LAGRANGIAN FORMULATION

Since a typical maneuver of a SFFR is of relatively short length and duration,
microgravity and dynamic effects due to orbital mechanics are negligible compared
to control forces. Therefore, the motion of the system is considered with respect
to an in-orbit inertial frame of reference (XYZ), and the system potential energy is
taken equal to zero. The general Lagrangian formulation for such system yields:

d

dt

³
@T

@ Pqi

´
¡

³
@T

@qi

´
D Qi; i D 1; : : : ; N; (1)

where T is the system kinetic energy, N is the system d.o.f., and qi , Pqi and Qi

are the ith element of the vector of generalized coordinates, generalized speeds and
generalized forces, respectively. To apply (1), and obtain dynamics equations, � rst
the system kinetic energy, T , has to be derived. This can be written as:

T D
1

2

Z

M

PRP ¢ PRP dM; (2)

where M de� nes the system distributed mass and PRP is velocity of an arbitrary
point P , which can be evaluated based on the direct path kinematics approach
for multiple manipulator SFFR with rigid elements, developed in Moosavian and
Papadopoulos [6] as:

P 2 Base: PR.0/
p D PRC0

C !0 £ rp=C0
; (3a)

P 2 Link.m/
i : PR.m/

pi
D PRC0

C !0 £ r.m/
0

C
i¡1X

kD1

!
.m/
k £

¡
r.m/

k ¡ l.m/
k

¢
¡ !

.m/
i £

¡
l.m/
i ¡ r

p=C
.m/
i

¢
; (3b)

where PRC0 describes the spacecraft center of mass velocity, rp=C0 describes the
position of P with respect to the spacecraft center of mass, vectors I.m/

i , r.m/
i and

so on are body-� xed vectors which describe the position of joints i and i C 1 with
respect to Ci , as seen in Fig. 1, and !0 and !

.m/
k are the angular velocity of the

spacecraft and of the kth link of the mth manipulator, respectively. For single d.o.f.
joints, the angular velocity of an individual body can be obtained as:

!
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where z.m/
i is a unit vector along the axis of rotation of the ith joint of the mth

manipulator, and Pµ .m/
i is the corresponding joint angle rate.

Substitution of (3) for PRP into (2) yields:
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Figure 1. A SFFR system with n manipulators.

which can be simpli� ed to obtain:

T D T0 C T1 C T2; (6a)

with:
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and Pr.m/
Ci

describes the velocity of Ci which can be obtained as:
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Note that expressions for T are in terms of invariant body-� xed vectors and
appropriate transformation matrices for each term must be employed to do the
required differentiations in (1).
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The vector of generalized coordinates is chosen here as:
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; (7a)

which can be arranged as:
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where:
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with ±0 being the spacecraft Euler angles and µ
.m/
i (i D 1; : : : ; Nm) describes the

mth manipulator joint angles. Instead of corresponding Euler angles, the system dy-
namics can be formulated on the basis of choosing Euler parameters for orientation
representation, Hughes [17]. This selection introduces algebraic constraints to the
system, and the Natural Orthogonal Complement Method as presented in Saha and
Angeles [18], can be applied to obtain independent system of equations of motion.
Using (6) and applying the general Lagrangian formulation, (1), the equations of
motion are obtained as:

H.±0; µ/ Rq C C
¡
±0; P±0; µ ; Pµ

¢
D Q.±0; µ/; (8)

where the vector of generalized coordinates q has been already de� ned in (7), C is
an N £ 1 vector which contains all the non-linear velocity terms (in a microgravity
environment), and Q is the N £ 1 vector of generalized forces (N D K C 6) given
by:
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F0;p is the pth external force/moment applied on the spacecraft, F.m/
i;p is the pth

external force/moment applied on the ith body of the mth manipulator, if is the
number of applied forces/moments on the corresponding body and J.m/

i;p is a Jacobian
matrix corresponding to the point of force/moment application. Note that (9) can
be obtained based on the de� nition of generalized forces. This equation can be
rearranged so that actuator forces/torques are displayed explicitly. If all external
forces except the ones applied on the spacecraft are zero, Q can be written as:

Q D JQ

8
<

:

0fs
0ns

¿K£1

9
=

; ; (10)

where 0fs and 0ns are the net force and moment applied on the spacecraft, and JQ is
an N £ N Jacobian matrix. For a well designed system, JQ remains non-singular,
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i.e. any required Q can be produced by the system’s actuators. Next, to obtain an
explicit dynamics model of multiple manipulator SFFR, mathematical analyses are
presented to help in calculating the mass matrix, the vector of non-linear velocity
terms and the generalized forces.

3. MATHEMATICAL PRELIMINARIES

The system kinetic energy [as expressed in (6)], regardless of body speci� cations,
is composed of three typical terms:

a1 D
1

2
mPr ¢ Pr; (11a)

a2 D
1

2
! ¢ I ¢ !; (11b)

a3 D PRC0 ¢
X

k

mk Prk : (11c)

So, to differentiate the system kinetic energy according to (1), such terms have
to be differentiated. Therefore, preliminary calculations in differentiation of these
terms are presented in this section, resulting in three formats which describe the
contribution of each term to the equations of motion. These formats, obtained in
the Appendix, will be used in deriving the system dynamics model in the following
section.

Differentiation of the � rst term, (11a), yields:
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which describes format-I, de� ned as the contribution of the � rst typical term to
the equations of motion. Note that r is differentiated in the inertial frame (see the
Appendix).

Differentiation of the second term, (11b), yields:
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which describes format-II. Note that ! is differentiated in the body frame.
Similarly, considering (11c), we can obtain:
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which describes format-III.
Next, to obtain the system dynamics model key matrices, the original terms in the

system kinetic energy as obtained in (6) are substituted into the corresponding for-
mat. Then, following the structure of dynamics model presented in (8), appropriate
terms are collected together.

4. EXPLICIT DYNAMICS MODEL

4.1. Mass matrix

To obtain the mass matrix H, according to (8), the acceleration terms in each of the
three formats have to be considered. Therefore, Hij is computed by:

² Substituting each term of the system kinetic energy into the corresponding
format.

² Finding the coef� cients of Rq in each format.

² Adding the results, obtained from the three formats, for each term.

² Adding the results, obtained for all of the terms.

Disregarding the details, this procedure eventually yields:
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where !
.m/
k is given by (4) and r.m/

Ck
can be substituted from (see Fig. 1):
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The notation employed here is consistent to Kane and Levinson [10], i.e. a left
superscript on partial derivatives refers to the frame in which the differentiation has
to be taken, whereas for the inertial frame it is left as blank.

4.2. Vector of non-linear terms

The vector of non-linear velocity terms in (8) can be computed by dropping the
acceleration terms in each of the obtained formats. So, Ci is computed following
the same procedure as described for computation of the Hij , by considering the
coef� cients of Pq and any other term (except those which correspond to Rq/ in each
format. This approach yields:
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and:
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Note that expressing the angular velocity as a function of the Euler rates, vector
C2 can be combined with the � rst term of (17a). Then, the vector of non-linear
velocity terms can be written as:

C.±0; P±0; µ; Pµ / D
^

C.±0; P±0; µ; Pµ / Pq: (18)

This is a representation of non-linear velocity terms which is preferred in the
development of adaptive control algorithms.

4.3. Vector of generalized forces

As described in (10), if all external forces except the ones applied on the spacecraft
are zero, the vector of generalized forces Q is written as:
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Assuming that 0fs and 0ns are applied at the spacecraft center of mass, J0 is de� ned
as:
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Then, J0 can be obtained as:

J0 D
µ

TT
0 03£3 03£3

03£3 S0 03£K

¶

6£N

; (20b)

where S0.±0/ is a 3 £ 3 matrix, see Meirovitch [11], relating the spacecraft angular
velocity to the corresponding Euler rates as:

0!0 D S0.±0/ P±0: (20c)

Therefore, JQ is obtained as:
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; (21)

which can be substituted into (19) to obtain Q. This completes the derivation
of the dynamics model for a multiple-arm SFFR with rigid elements. Note that
computation of the obtained dynamics equations can be done either by numerical
or symbolical programming tools. Obtaining the system response using analytical
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expressions was employed in developing SPACEMAPLE and is discussed later in
this paper.

5. DYNAMICS SPECIFICATIONS IN SPACE

Unlike � xed-base manipulators, in space robotic systems any motion of a single link
creates a reactional motion of the whole system. In free-� oating mode, where no
external force is applied on the system, the motion is dynamically constrained, i.e.
total linear and angular momentum of the system is conserved. Also, the Jacobian
matrix as obtained in Moosavian and Papadopoulos [6] becomes mass dependent. In
other words, the inertial linear velocity of an arbitrary point P and angular velocity
of the corresponding body is affected by the mass distribution over the entire system.
Surprisingly, this correlation between arms and the free base also affects the relative
motion of the end-effector with respect to the base. This is due to the fact that joint
angles and rates are dynamically coupled, even though the relative motion can be
expressed in terms of a � xed-base-type Jacobian. To observe speci� c characteristics
of space robotic systems, in a more vigorous investigation, elements of the dynamics
model for a � xed-base manipulator can be compared to those of a space robotic
system as follows.

For a � xed-base serial manipulator, as shown in Asada and Slotine [12], the mass
matrix H, and the vector of non-linear velocity terms C, can be obtained as:

H D
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¡
j Pj
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¢
; (23d)

mi is the ith link mass, 0ICM i

i is its inertia matrix with respect to the center of mass
expressed in the � xed frame, 0zi is a unit vector along the ith joint axis expressed in
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the � xed frame, j Pj
CMi

is the position vector of the ith center of mass with respect
to the origin of the j th frame as seen in that frame, and 0Tj is the rotation matrix
between the j th frame and the � xed one. It can be shown that the obtained Hij and
Ci for a � xed-base manipulator are functions of speci� c set of mass parameters as:

Hij D hij . Qmk; : : : ; QmN /h0
ij .µ1; : : : ; µN / k D max.i; j /; (24a)

Ci D fi. Qmi; : : : ; QmN /f 0
i .µ1; : : : ; µN ; Pµ1; : : : ; PµN/; (24b)

where hij , h0
ij , fi , and f 0

i are functions of the given arguments, Qmi denotes ith
link mass properties (both mass and inertia), and µi is the ith joint variable. As
it is seen, mass properties have a backward propagation effect on the dynamics
model. In other words, mass properties of link ‘i’ do not appear in the H elements
which correspond to posterior joint variables, i.e. i C 1; : : : ; N: For instance, mass
properties of the � rst link only appear in H11 and C1. On the contrary, for space
manipulators in the free-� oating mode, this is no longer true and every element
of the dynamics model is affected by mass properties of all links. Therefore, any
deviation in the estimation of mass parameters has a more drastic effect on the
performance of model-based control algorithms in space. This makes dynamics
modeling of such systems a very important stage for the development of appropriate
control algorithms in space.

6. GENERATION OF THE SYMBOLIC CODE: SPACEMAPLE

As mentioned earlier, computation of the obtained dynamics equations can be
done either numerically or symbolically. The latter is chosen here to develop a
symbolic code called SPACEMAPLE. However, to compare the two programming
approaches, the required steps in numerical computation of the obtained dynamics
is � rst reviewed. To this end, the preparation of few sample terms, i.e. k@!

.m/
k =@qi

and k@!
.m/
k =@ Pqi , for numerical computation is discussed. In a similar way, other

terms in Hij , Ci and JQ can be obtained, and programmed in the corresponding
environment.

First, preliminary calculations for numerical computer programming of
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.m/
k =@qi and k@!

.m/
k =@ Pqi is presented. Following the arrangement of (7) for the

vector of generalized coordinates, the angular velocity of the kth link of the mth
manipulator expressed in its own body-� xed frame, k!

.m/
k , can be obtained as:

k!
.m/
k D k¡1T.m/T

k
k¡2T.m/T

k¡1 ¢ ¢ ¢ 0T.m/T

1 S0 P±0

C
k¡1X

sD1

±
k¡1T.m/T

k
k¡2T.m/T

k¡1 ¢ ¢ ¢ sT.m/T

sC1
Pµ .m/
s

sz.m/
s

²
C Pµ .m/

k
kz.m/

k ; (25)
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where S0 has been already de� ned in (20c), i¡1T.m/
i is rotation matrix between the

ith body-� xed frame and the previous frame, and iz.m/
i ´ .0; 0; 1/T is a unit vector

along axis of rotation of the ith joint of the mth manipulator expressed in its own
body-� xed frame. Therefore, one obtains:

k@!
.m/
k

@q
.p/
i

D

8
>>>><

>>>>:

s1 if p D 0
0 if .p 6D 0 and p 6D m/

s2 if .p D m and i < k/

0 if .p D m and i > k/

s3 if .p D m and i D k/;

(26)

where:

s1 D k¡1T.m/T

k
k¡2T.m/T

k¡1 ¢ ¢ ¢ 0T.m/T

1

@S0

@q
.0/
i

P±0; (27a)

s2 D k¡1T.m/T

k ¢ ¢ ¢ iT.m/T

iC1

Á
@ i¡1T.m/T

i

@q
.m/
i

!
i¡2T.m/T

i¡1 ¢ ¢ ¢ 0T.m/T

1 S0 P±0

C
i¡1X

sD1

Á
k¡1T.m/T

k ¢ ¢ ¢ iT.m/T

iC1

Á
@ i¡1T.m/T

i

@q
.m/
i

!
i¡2T.m/T

i¡1 ¢ ¢ ¢ sT.m/T

sC1
Pµ .m/
s

sz.m/
s

!

; (27b)

s3 D
@k¡1T.m/T

k

@q
.m/
k

k¡2T.m/T

k¡1 ¢ ¢ ¢ 0T.m/T

1 S0 P±0

C
k¡1X

sD1

³
@k¡1T.m/T

k

@q
.m/
k

k¡2T.m/T

k¡1 ¢ ¢ ¢ sT.m/T

sC1
Pµ .m/
s

sz.m/
s

´
: (27c)

Similarly, we can obtain:

k@!
.m/
k

@ Pq.p/
i

D

8
>>>><

>>>>:

s¤
1 if p D 0

0 if .p 6D 0 and p 6D m/

s¤
2 if .p D m and i < k/

0 if .p D m and i > k/

s¤
3 if .p D m and i D k/;

(28)

where:

s¤
1 D k¡1T.m/T

k
k¡2T.m/T

k¡1 ¢ ¢ ¢ 0T.m/T

1 S0
@ P±0

@ Pq .0/
i

; (29a)

s¤
2 D k¡1T.m/T

k
k¡2T.m/T

k¡1 ¢ ¢ ¢ iT.m/T

iC1
iz.m/

i ; (29b)

s¤
3 D kz.m/

k : (29c)
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Note that S0 is a function of ±0 and i¡1T.m/
i is just a function of q.m/

i . There-

fore, @ i¡1T.m/T

i =@q
.m/
i , @S0=@q

.0/
i and @ P±0=@ Pq .0/

i can be calculated analytically, and
substituted into (27) and (29). Other terms in Hij , Ci and JQ can also be calcu-
lated in a similar way. The obtained results can then be programmed in a numerical
environment, to quantify the system dynamics.

Although numerical derivation seems a cumbersome procedure, it would be the
only choice if symbolical programming tools were not available. Note that for
the numerical development of the dynamic properties of mechanical manipulators,
existing recursive algorithms can be followed. To solve direct dynamics, these
algorithms utilize iterative routines for inverse dynamics, and joint forces and
torques inputs. For instance, a computer code has been developed and employed
for a dynamical study of the � rst element launch (FEL) con� guration of the Space
Station Freedom by Grewal and Modi [13]. Similarly, Anderson and Duan [14]
have implemented parallel computational algorithms for dynamics of multiple
rigid-body systems. For further details, one can see a comparison of different
methods for developing the dynamics of rigid-body systems presented by Ju and
Mansour [15]. Here, our focus is on the computation of the explicit dynamics
model based on Lagrange formulation. However, by means of symbolical tools,
each term can be analytically calculated in a computer program. For instance,
(25) can be directly programmed to represent k!

.m/
k . Then, @k!

.m/
k =@qi and

@ k!
.m/
k =@ Pqi will be analytically calculated in a single step, rather than going through

different options in (26) and (28). Furthermore, using mathematical identities
and factorization techniques, the result can be simpli� ed to reduce the resulting
analytical expressions.

According to the above reasons, derivation of the developed dynamics equations
of motion has been programmed in a symbolic environment (MAPLE) for a
multiple-manipulator SFFR with rigid elements in a general con� guration. The
code (SPACEMAPLE) yields the mass matrix H, the vector of non-linear velocity
terms C, the Jacobian matrix JQ used in describing the vector of generalized
forces, the Jacobian matrix Jc which describes the task space (employed in different
control algorithms) and its time derivative PJc, each one as an analytical function of
generalized coordinates/speeds.

The program, as depicted in Fig. 2, is initiated by determining the system general
con� guration, i.e. number of manipulators/appendages, number of links for each
one, and d.o.f. for the spacecraft (i.e. 3 for planar motions or 6 for three-dimensional
maneuvers). Then, mass properties and geometric parameters for each element
of the system are speci� ed. These parameters can be substituted by numerical
quantities or left as parameters. The latter results in longer expressions, while
the � rst one yields more concise results, particularly when some components of
geometric vectors or inertia matrices are zero. In fact, in most studies the dynamics
has to be modeled for a speci� c system, and then employed in simulation and control
investigations. Usually, for these investigations, the simulation routine has to be run
tens of times. Therefore, it is preferable to substitute the system parameters by their



236 S. Ali A. Moosavian and E. Papadopoulos

Figure 2. Basic steps of SPACEMAPLE.

values at the very beginning and make it more concise. The cost is just running
SPACEMAPLE once some changes in the system parameters have to be made.

To simplify the obtained analytical expressions, at each intermediate step, mathe-
matical tools and factorization techniques available in MAPLE are used. The result
of this fairly re� ned code is an analytical dynamics model of any speci� ed multiple
manipulator SFFR with rigid elements in terms of generalized coordinates/speeds.
The resulting models were used in simulation and control investigations, as pre-
sented in Moosavian and Rastegari [16].
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Table 1.
Typical results of veri� cation procedure for SPACEMAPLE

Row C H

First Second Third Fourth Fourteenth
column column column column column

1 ¡0:13E¡14 0:0 0:0 0:0 0:11E¡13 0:0
2 0:18E¡14 0:0 0:0 0:0 0:71E¡14 0:0
3 ¡0:47E¡14 0:0 0:0 0:0 0:0 0:0
4 ¡0:27E¡14 0:11E¡13 0:71E¡14 0:0 0:14E¡13 0:56E¡16
5 ¡0:27E¡14 0:18E¡14 0:0 ¡0:14E¡13 0:18E¡14 0:28E¡16
6 0:18E¡14 0:10E¡14 ¡0:18E¡14 0:0 ¡0:36E¡14 0:0
7 0:0 0:0 ¡0:78E¡15 0:0 ¡0:18E¡14 0:0
8 ¡0:44E¡15 ¡0:83E¡15 0:36E¡14 ¡0:67E¡15 0:36E¡14 0:0
9 0:0 ¡0:67E¡15 0:44E¡15 ¡0:22E¡15 0:0 0:0

10 ¡0:13E¡14 0:11E¡14 0:89E¡15 ¡0:89E¡15 0:18E¡14 0:0
11 0:17E¡15 0:0 ¡0:18E¡14 ¡0:44E¡15 ¡0:38E¡14 0:0
12 0:39E¡15 0:0 ¡0:39E¡15 0:11E¡15 ¡0:78E¡15 0:0
13 0:28E¡16 0:0 0:0 0:0 ¡0:28E¡16 ¡0:69E¡17
14 ¡0:35E¡16 0:0 0:0 0:0 0:56E¡16 0:28E¡16

Undoubtedly, before using the obtained models via SPACEMAPLE the code had
to be veri� ed, which was performed in a vigorous way. In brief, SPACEMAPLE
was used for � xed-base systems which represent limiting cases of space robotic
systems (letting spacecraft mass go to in� nity). The output results were veri� ed
by comparisons to those obtained by hand calculations. However, since in these
limiting cases most of the terms in the dynamics equations vanish, the model must
be veri� ed also in a general case, i.e. for a multiple-manipulator space robotic
system. This was done by developing another simpler code at a very fundamental
level, and comparing the numerical results of the two for a large number of cases
in different systems and con� gurations. The simpler code computes the system
kinetic energy, using (6), and substitutes the result directly into the equations of
motion, (1). Obviously, such code yields very long equations of motion, compared
to the very compact ones of SPACEMAPLE. However, the simplicity of this code
makes it fairly reliable, so that it can be employed as a yardstick for the veri� cation
procedure. In fact, this was a very helpful approach in identifying minor mistakes
at various levels and verifying SPACEMAPLE at the end.

Table 1 shows typical results of this veri� cation procedure for SPACEMAPLE,i.e.
the difference between obtained results of SPACEMAPLE and those of the simple
code, for a 14-d.o.f. space robotic system (with three manipulators/appendages)
shown in Fig. 3. As it is seen, the differences between obtained vectors of non-
linear velocity terms (C) and a few sample columns of two mass matrices (H)
are zero, either exactly or approximately (order of 10¡13 and lower which are
due to truncations). Although these results correspond to a single random set of
generalized coordinates/speeds (with non-zero entries), the differences are of the
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Figure 3. A three manipulator/appendage space free-� yer considered for the veri� cation procedure.

same order for several other trials. Therefore, it can be concluded that the developed
SPACEMAPLE code is free of errors.

7. CONCLUSIONS

The general Lagrangian formulation was applied to obtain an explicit dynamics
model of a multiple manipulator SFFR, which is very useful for dynamics analyses,
design studies and the development of model-based control algorithms for such
complex systems. To model the system dynamics, mathematical analyses showed
the existence of three key type of terms and three different formats were developed
to apply on these. Separate calculations of the mass matrix, vector of non-linear
velocity terms and generalized forces were presented, and the obtained results were
assembled to obtain the dynamics model.

It was also shown that for a � xed-base manipulator, mass properties have a back-
ward propagation effect on the elements of the mass matrix and the vector of non-
linear velocity terms, while these elements are affected by the mass properties of all
links for a space manipulator. Therefore, any deviation in the estimation of mass
parameters has a more drastic effect on the performance of model-based control
algorithms in space. Computation of the obtained dynamics can be done either
by numerical or symbolical programming tools. It was shown that calculation of
each term for numerical programming usually divides into several branches, while
by means of the symbolical tools, each term can be analytically calculated. Also,
using different mathematical identities and factorization techniques, the result can



Explicit dynamics of space free-�yers with multiple manipulators via SPACEMAPLE 239

be simpli� ed to reduce the obtained analytical expressions. Therefore, derivation
of the dynamics equations has been programmed symbolically as SPACEMAPLE
for a general multiple-manipulator space robotic system with rigid elements. De-
veloping another simpler code and comparing the numerical results of the two in
numerous cases vigorously veri� ed the code. Research institutes interested in ob-
taining SPACEMAPLE, should send their requests to the authors.
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APPENDIX: THREE FORMATS USED IN MATHEMATICAL ANALYSES

As discussed in Section 3, the system kinetic energy is composed of three typical
terms, which have to be differentiated according to (1). Differentiation of these
terms, is presented in this Appendix to obtain three formats as used in deriving the
system dynamics model.

Considering the � rst typical term, as given in (11a) and repeated here:

a1 D
1

2
mPr ¢ Pr: (11a)

Its differentiation with respect to Pqi as an arbitrary generalized speed is obtained as:

@a1

@ Pqi

D m
@ Pr
@ Pqi

¢ Pr: (A.1)

It should be noted that for the implementation of the following formulation, r has
to be differentiated in the inertial frame.1 Then, Pr D dr=dt can be calculated as:

Pr D
NX

sD1

@r
@qs

Pqs ; (A.2)

which yields:

@ Pr
@ Pqi

D
@r
@qi

: (A.3)

Substitution of (A.3) into (A.1) yields:

@a1

@ Pqi

D m
@r
@qi

¢ Pr; (A.4)

1If r is not differentiated in the inertial frame, then:

Pr D B Pr C !B £ r; (A.1a)

where B Pr is time differentiation of r when expressed in a frame B which has an angular velocity of
!B with respect to the inertial frame, and can be computed as

B Pr D
NX

sD1

B@r
@qs

Pqs C
B@r
@t

: (A.1b)

Note that a left superscript on partial derivatives denotes the frame in which the differentiationhas to
be taken. Therefore, unless B@r=@t D 0, it can be seen that:

B@ Pr
@qs

6D
B@r
@qs

; (A.1c)

which necessitates the condition of differentiating r in the inertial frame, for writing (A.2) and (A.3).
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which can be differentiated with respect to time, to obtain:

d

dt

³
@a1

@ Pqi

´
D m

@ Pr
@qi

¢ Pr C m
@r
@qi

¢ Rr: (A.5)

Also, a1 can be differentiated with respect to qi as an arbitrary generalized
coordinate:

@a1

@qi

D m
@ Pr
@qi

¢ Pr: (A.6)

Therefore, based on (A.5) and (A.6), we can writte:

d

dt

³
@a1

@ Pqi

´
¡

@a1

@qi

D m
@r
@qi

¢ Rr; (A.7)

where Rr can be obtained as:

Rr D
NX

sD1

(
@

@qs

Á
NX

t D1

@r
@qt

Pqt

!

Pqs C @r
@qs

Rqs

)
: (A.8)

Substitution of (A.8) into (A.7), and further simpli� cations, yield:

d

dt

³
@a1

@ Pqi

´
¡

@a1

@qi

D
µ
m

@r
@qi

¢
@r
@q1

¢ ¢ ¢ m
@r
@qi

¢
@r

@qN

¶
Rq

C
"

m
@r
@qi

¢

Á
NX

sD1

@2r
@qs@q1

Pqs

!

¢ ¢ ¢ m
@r
@qi

¢

Á
NX

sD1

@2r
@qs@qN

Pqs

!#

Pq;

(A.9)

which describes format-I, given as (12), where r has to be differentiated in the
inertial frame.

Next, considering the second term as given in (11b):

a2 D
1

2
! ¢ I ¢ !: (11b)

Its differentiation with respect to qi as an arbitrary generalized coordinate is:

@a2

@qi

D ! ¢ I ¢
@!

@qi

; (A.10)

where ! is differentiated in the body frame. Also, differentiation of a2 with respect
to Pqi as an arbitrary generalized speed, is obtained as:2

@a2

@ Pqi

D ! ¢ I ¢
@!

@ Pqi

; (A.11)

2Considering (A.1a and b), since @!=@t D 0 and ! £ ! D 0, it is preferable to implement
all differentiations related to a2 in an appropriate body frame. Therefore, angular velocity of any
individual body (!) is differentiated in the corresponding body frame, where I is a constant.
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which can be differentiated with respect to time, to obtain:

d

dt

³
@a2

@ Pqi

´
D P! ¢ I ¢

@!

@ Pqi

C ! ¢ I ¢
d
dt

³
@!

@ Pqi

´
: (A.12)

Then, P! can be computed as:

P! D
NX

sD1

»
@!

@qs

Pqs C @!

@ Pqs

Rqs

¼
: (A.13)

Also:

d

dt

³
@!

@ Pqi

´
D

NX

sD1

»
@2!

@ Pqi@qs

Pqs C @2!

@ Pqi@ Pqs

Rqs

¼
D

NX

sD1

@2!

@ Pqi@qs

Pqs : (A.14)

Substitution of (A.13) and (A.14) into (A.12), and subtracting (A.10) from the
result, after further simpli� cations, yield:

d

dt

³
@a2

@ Pqi

´
¡

@a2

@qi

D
µ

@!

@ Pqi

¢ I ¢
@!

@ Pq1
¢ ¢ ¢

@!

@ Pqi

¢ I ¢
@!

@ PqN

¶
Rq

C
µ

@!

@ Pqi

¢ I ¢
@!

@q1
C ! ¢ I ¢

@2!

@ Pqi@q1
¢ ¢ ¢

@!

@ Pqi

¢ I ¢
@!

@qN

C! ¢ I ¢
@2!

@ Pqi@qN

¶
Pq ¡ ! ¢ I ¢

@!

@qi

; (A.15)

which describes format-II, given as (13), and can be considered as contribution of
the second term to the equations of motion. Note that ! is differentiated in a body
frame in which I is considered as a constant dyad.

Finally, considering the third typical term of the system kinetic energy as de� ned
in (11c):

a3 D PRC0 ¢
X

k

mk Prk : (11c)

Its differentiation with respect to qi is:

@a3

@qi

D
@ PRC0

@qi

¢

Á
X

k

mk Prk

!
C PRC0 ¢

Á
X

k

mk

@ Prk

@qi

!
; (A.16)

and its differentiation with respect to Pqi can be obtained as:

@a3

@ Pqi

D
@RC0

@qi

¢

Á
X

k

mk Prk

!
C PRC0 ¢

Á
X

k

mk

@rk

@qi

!
; (A.17)
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where all derivatives are computed in the inertial frame. Then, (A.17) can be
differentiated with respect to time, which yields:

d

dt

³
@a3

@ Pqi

´
D

@ PRC0

@qi

¢
³X

k

mk Prk

´
C @RC0

@qi

¢
³X

k

mk Rrk

´

C RRC0 ¢
³X

k

mk

@rk

@qi

´
C PRC0 ¢

³X

k

mk

@ Prk

@qi

´
; (A.18)

Therefore, subtracting (A.16) from (A.18) yields:

d

dt

³
@a3

@ Pqi

´
¡

@a3

@qi

D
@RC0

@qi

¢
³X

k

mk Rrk

´
C RRC0 ¢

³X

k

mk

@rk

@qi

´
; (A.19)

where Rrk and RRC0 can be written in terms of generalized coordinates, and their
rates as given in (A.8). Substitution of these vectors by appropriate expressions and
further simpli� cations lead to:

d

dt

³
@a3

@ Pqi

´
¡

@a3

@qi

D

"
@RC0

@qi

¢
X

k

mk

@rk

@q1
¢ ¢ ¢

@RC0

@qi

¢
X

k

mk

@rk

@qN

#

Rq

C
"

@RC0

@q1
¢
X

k

mk

@rk

@qi

¢ ¢ ¢
@RC0

@qN

¢
X

k

mk

@rk

@qi

#

Rq

C
"

@RC0

@qi

¢
X

k

mk

Á
NX

sD1

@2rk

@q1@qs

Pqs

!

¢ ¢ ¢
@RC0

@qi

£
X

k

mk

Á
NX

sD1

@2rk

@qN @qs

Pqs

!#

Pq

C
"Á

NX

sD1

@2RC0

@q1@qs

Pqs

!

¢
X

k

mk

@rk

@qi

¢ ¢ ¢

Á
NX

sD1

@2RC0

@qN @qs

Pqs

!

£
X

k

mk

@rk

@qi

#

Pq; (A.20)

which describes format-III given as (14), where RC0 and rk have to be differentiated
in the inertial frame.
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