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Abstract. Despite their wide presence in various models in the study of
collective behaviors, explicit swarming patterns are difficult to obtain.
In this paper, special stationary solutions of the aggregation equation
with power-law kernels are constructed by inverting Fredholm integral
operators or by employing certain integral identities. These solutions are
expected to be the global energy stable equilibria and to characterize the
generic behaviors of stationary solutions for more general interactions.

1. Introduction

The mathematical analysis of equilibria and traveling wave type patterns
in many body descriptions of collective behavior models is one of the basic
scientific problems in the explanation of coherent structures in mathemat-
ical biology and technology. They naturally appear in swarming of animal
species, cell movement by chemotaxis, granular media interaction and self-
assembly of particles, see for instance [33, 16, 31] and the references therein.
Consensus in orientation patterns have been reported in the seminal pa-
pers [37, 25] in which they numerically show the asymptotic stability of
compactly supported groups of particles moving in a fixed direction. The
amazing feature of these flock patterns is that the consensus in orientation
can be established based only on attraction and repulsion effects. More pre-
cisely, the movement of each particle is assumed to follow the equations of
motion
(1)

d

dt
xi = vi,

d

dt
vi = f(|vi|)vi−∇x





1

N

∑

j 6=i

∇K(|xi − xj |)



 , i = 1, · · · , N ,
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where f is a function modeling the self-propulsion at low speed and friction
at high speed, andK is the radial pairwise interaction potential. As the total
number of individuals is large, the system of differential equations is difficult
to analyse and usually a continuum description based on mean-field limits is
adopted, either at the kinetic level for the particle distribution function [15,
16] or at the hydrodynamic level for the macroscopic density and velocities
[24, 15]. Different stationary patterns were observed for the system at the
equilibrium speed s0 (with f(s0) = 0), for instance coherent moving flocks
and single or double rotating mills [37, 25, 15, 19, 20]. The stability of
these patterns at the discrete particle level was analysed in [7, 2, 18]. At the
continuum level, these patterns are characterized by searching for continuous
probability densities or probability measures ρ of particle locations such that
the total force acting on each individual balances out. This is equivalent to
finding probability densities or measures ρ such that

(2) ∇K ∗ ρ = 0 on supp(ρ) .

Being the problem posed on the support of the unknown density ρ implies
that the equation (2) is highly nonlinear. In fact, characterizing the interac-
tion potentials K such that these profiles are continuous or regular in their
support has recently triggered lots of attention. The richness of the quali-
tative properties of particular steady solutions depending on the potential
K was reported in [34]. They numerically investigate the shape of the most
stable solution for the first order dynamics associated to (1) given by

(3)
d

dt
xi = −∇x





1

N

∑

j 6=i

∇K(|xi − xj |)



 , i = 1, · · · , N ,

and they characterize several bifurcations starting from the particular solu-
tion of the Delta ring, a solution concentrated on a circle. However, getting
conclusions about the qualitative properties of the continuum problem (2)
turned out to be mathematically involved. The existence of explicit formulas
for flock and mill patterns for particular potentials such as the Morse po-
tentials, originally used in [25], was possible due to the particular properties
of associated differential operators [36, 6, 21, 17]. Let us point out that mill
patterns are also characterized by a probability density or measure satisfying
a similar equation to (2) giving the balance between attractive-repulsive and
centrifugal forces of the form ∇K ∗ ρ = −s0∇ ln |x| in supp(ρ).

The continuum evolution model associated to the particle system (3) via
the mean-field limit [12] is given by

(4) ρt = ∇ · (ρ∇K ∗ ρ),

where ρ(t, x) is the mass density function or measure of particles/individuals
in space at time t ≥ 0. This equation is known as the aggregation equation
and it has been proposed for swarming modeling in [38] as the inertia-less
continuous system associated to (1). This model has been thoroughly stud-
ied with attractive and repulsive-attractive potentials, see [12, 23] and the
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references therein. Depending on the singularity of the potential at the ori-
gin, the solutions enjoy different regularity properties or propagate certain
regularity in time (even sometimes uniformly in time). All these early results
imply that the regularity of the stationary states depends on the singularity
or the strength of the repulsion of the potential K at the origin. In other
words, the stationary states’ regularity is deeply connected with the dissipa-
tion properties of the evolution (4). In fact, this equation has a gradient flow
structure related to probability measures [22, 41, 14, 4], whose implication
for our problem here is that stable stationary states of the dynamics of (4)
should be among the local minimizers in suitable topology of the interaction
energy functional

(5) E [ρ] =

∫

ρ(K ∗ ρ) dx ,

defined over all positive measures of mass M0. Actually, it is shown [3] that
the local minimizers ρ of the interaction energy (5) in suitable transport
distance topology have to satisfy the Euler-Lagrange equations:

(6) K ∗ ρ = E in supp(ρ) and K ∗ ρ ≥ E in R
d

with EM0 = E [ρ]. The previous conditions have to be understood ρ-a.e for
the first condition and a.e. Lebesgue for the second one in case ρ/M0 is
just a mere probability measure instead of a density function. Using these
Euler-Lagrange conditions, it was shown that the dimension of the support
of local minimizers depends strongly on the singularity of the potential at
origin [3]; that local minimizers can be bounded, compactly supported or
continuous on the support if the singularity is strong enough [13]. The last
point was shown by using a hidden connection discovered in [13] between the
Euler-Lagrange conditions (6) and the classical obstacle problem for ellip-
tic operators. Finally, the existence of global minimizers of the interaction
energy has been obtained just recently under quite sharp conditions [9, 40].
Therefore, we know the existence of solutions to the Euler-Lagrange equa-
tions (6) for a quite large family of potentials including the Morse potentials
under the non H-stability condition [25, 9] and all power law potentials

(7) K(x) =
|x|a

a
−

|x|b

b

with a > b > −d. Let us remind the reader that the convention |x|0

0 := log(x)
is used. Because of the simpler topology, the one-dimensional case is in
general better understood, see [27, 28, 11] and the references therein.

In this paper, we consider certain special exact stationary solutions in
the sense that they satisfy the first condition of the Euler-Lagrange equa-
tions (6) K ∗ ρ = E on the support of density ρ for certain ranges of the
power-law potentials. In our examples, we will find compactly supported,
radially symmetric densities ρ which are continuous inside its support. The
power-law potentials might be considered a very restrictive case, however
they are the typical examples obtained by asymptotics expansions and they
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should show the generic boundary behavior near the support of the station-
ary states. They also allow direct connections to more classical problems
involving the Laplacian or its fractional counterparts. In fact, certain range
of interactions are intimately connected to fractional diffusions [23, 32]. Fi-
nally, having explicit solutions allows for excellent test cases for numerical
schemes [8, 10].

In this paper, we will always look for radial symmetric solutions associated
with the power-law kernel (7), which are supported on a ball BR and are
continuous inside. Explicit solutions are constructed in the range of parame-
ters corresponding to −d < b < a, b ≤ 2 when either a or b is an even integer.
These solutions are derived from the condition K ∗ ρ = E on the support
of density ρ with mass M0, and are reasonable candidate to be global min-
imizers of the interaction energy. The paper is organized as follows. Some
basic integral equations and their solutions in one dimension are discussed
in Section 2, but detailed derivations are deferred in in the Appendix. The
one dimensional case with either a = 2 or b = 2 is studied thoroughly in
Section 3, where some key observations allow a unified yet simpler approach
in multidimensional case treated in Section 4. We finally conclude discussing
possible extensions, and comment on certain open problems and conjectures
of the generic behavior of solutions to (6).

2. Fredholm integral equations and integral identities

To derive the exact steady states governed by (6) with either a or b being
an even integer, the key is to invert the Fredholm integral operator of the
form

L[ρ](x) :=

∫

BR

|x− y|pρ(y)dy , p ∈ (−1,∞),

that is, to find the solution of L[ρ] = f . In one dimension, singular integral
equations with power-law kernel like this have been studied extensively [26],
usually in connection with the theory of complex variables. The first step
in solving L[ρ](x) = f(x) is to differentiate both sides of the equation such
that the kernel |x − y|p becomes weakly singular, with exponent p between
−1 and 0. Depending on the precise value of p, we have the following two
cases.

If p ∈ (2k−1, 2k) for some non-negative integer k, upon taking derivatives
2k times, the integral equation becomes

(8)

∫ R

−R
|x− y|−νρ(y)dy = f(x)
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with ν = 2k−p ∈ (0, 1). The solution is given by (see [26] for the derivation)

ρ(x) =
sinπν

2π

d

dx

∫ x

−R

f(y)

(x− y)1−ν
dy

(9)

−
cos2 πν

2

π2
(

R2 − x2
)

ν−1

2 P.V.

∫ R

−R

(R2 − y2)
1−ν

2

y − x

{

d

dy

∫ y

−R

f(z)

(y − z)1−ν
dz

}

dy,

including a Cauchy principal value integral in the second term. Explicit
solutions can be obtained for special right hand side f like polynomials. For
example, if f(x) = 1,

(10) ρ(x) =
cos πν

2

π
(R2 − x2)

ν−1

2 ,

and if f(x) = x2,

(11) ρ(x) = −
2 cos πν

2

ν(ν + 1)π
(R2 − x2)

ν+1

2 +
cos πν

2

πν
R2(R2 − x2)

ν−1

2 .

The detailed derivation, mainly involving the evaluation of the principal
value integrals, is given in Appendix B.

If p ∈ (2k, 2k+1) for some non-negative integer k, upon taking derivatives
2k + 1 times, the integral equation becomes

(12)

∫ R

−R
(x− y)|x− y|−ν−1ρ(y)dy = f(x)

with ν = 2k + 1 − p ∈ (0, 1). The solution is given by (see [26] for the
derivation)

ρ(x) =
c sin πν

2

π
(R2 − x2)

ν

2
−1 +

sinπν

2π

d

dt

∫ x

−R

f(y)

(x− y)1−ν
dy

(13)

+
sin2 πν

2

π2
(

R2 − x2
)

ν

2
−1

P.V.

∫ R

−R

(R2 − y2)1−
ν

2

y − x

{

d

dy

∫ y

−R

f(z)

(y − z)1−ν
dz

}

dy.

In addition to similar principal value integrals as in (9), the solution consists

of a non-trivial null space spanned by the function (R2 − x2)
ν

2
−1. Explicit

solutions can also be obtained when f is a polynomial. For example, if
f(x) = x, then

(14) ρ(x) =
sin πν

2

νπ
(R2 − x2)

ν

2 + c
sin πν

2

π
(R2 − x2)ν/2−1 , c ∈ R .

Besides the appearance of solutions to (8) or (12), certain integral identi-
ties have also to be established when the in order to eliminate free parameters
in the final steady states. In many cases, the energy has to be calculated, to
select the unique stable state. These special integrals turn out to be iden-
tities intimately connected to the solutions given above. For example, from
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the solution (10) for f(x) = 1, we obtain the identity

(15)

∫ R

−R
|x− y|−ν(R2 − y2)

ν−1

2 dy =
π

cos νπ
2

,

valid for ν ∈ (−1, 1) and x ∈ (−R,R). Other identities with higher expo-
nents can be obtained by successive integrations. For example, integrating
twice on both sides of (15) gives

∫ R

−R
|x− y|2−ν(R2 − y2)

ν−1

2 dy =
(2− ν)(1− ν)π

2 cos νπ
2

x2 +
(1− ν)π

2 cos πν
2

R2,

where the integration constant (by evaluating at x = 0) is represented as
special integrals from Appendix A. Since the exponent of the kernel |x− y|
is usually fixed in the problem, it is more convenient to change ν to ν +2 in
the previous identity to have the same interaction kernel |x− y|−ν , that is,

(16)

∫ R

−R
|x− y|−ν(R2 − y2)

ν+1

2 dy = −
ν(ν + 1)π

2 cos πν
2

x2 +
(ν + 1)π

2 cos πν
2

R2,

which is valid for ν ∈ (−3,−1). In fact, this identity holds for a wider range
of parameter ν ∈ (−3, 1), precisely when the integral on the right hand side
of (16) is well-defined. As we will see, these identities are more useful than
the general solutions formula (9) and (13), because the former can provide a
unified approach for the construction of the steady states, regardless of the
range of the parameters. When p is an integer, the solution for the integral
equation (8) has to be derived differently, but usually can be established
equivalently from the above results by taking the limit. For this reason,
the special cases of integer exponents are not discussed separately in the
following sections.

3. Exact steady states in one dimension

In this section, we derive explicit expressions of the steady states in one
dimension from the governing equation

(GE)
1

a

∫ R

−R
|x− y|aρ(y)dy −

1

b

∫ R

−R
|x− y|bρ(y)dy = E, x ∈ (−R,R) ,

when either a or b is 2. These compactly supported symmetric steady states
exist only in the parameter regime {(a, b)| − 1 < b < 2, b < a} shown
in Figure 1: the potential integral is well-defined only for b > −1, but the
steady states becomes two delta masses as b exceeds 2 (see [4, 27, 28]). Upon
repeated differentiation on both sides of (GE), different integral equations of
the form (8) or (12) appear, as summarized in Figure 1. In the special cases
when either a or b is 2 of our interests, only the solutions (10), (11) and (14)
are employed below. The solutions are assumed to be radially symmetric and
supported on some ball BR with unknown radius R. The precise expressions
are derived first, and then the radius R is determined from various self-
consistency conditions like the definitions of certain moments. Without loss
of general, we take the total mass M0 given.
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2

1

−1

0

1 2 43

b

a

∫ R

−R
|x− y|b−2ρ(y)dy = M0

b−1

∫ R

−R
(x− y)|x− y|b−2ρ(y)dy = xM0

∫ R

−R
(x− y)|x− y|a−3ρ(y)dy = 0

(GE)

Figure 1. The steady states exist only on the shaded region
and their expressions are obtained from the reduced govern-
ing equation.

3.1. The case when b = 2, a > 2. We focus on the case a ∈ (2, 3) first.
Taking derivative three times to (GE), we get the homogeneous equation

∫ R

−R
(x− y)|x− y|a−4ρ(y)dy = 0 .

From (13), the solution is given by

(17) ρ(x) = −c
cos aπ/2

π
(R2 − x2)

1−a

2 .

To determine the parameter c, we first use the definition of the total mass
M0, that is,

(18) M0 =

∫ R

−R
ρ(x) dx = −cR2−aB

(

1

2
,
3− a

2

)

cos aπ/2

π
.

On the other hand, certain information is lost during the differentiation and
has to be retrieved upon substituting the solution (17) back into (GE). By
the special integral (42) in Appendix A, we infer that
∫ R

−R
|x−y|2ρ(y)dy =M0x

2+

∫ R

−R
y2ρ(y)dy =M0x

2−cR4−aB

(

3

2
,
3− a

2

)

cos aπ/2

π
.

From the identity (16) with ν = −a,
∫ R

−R
|x− y|aρ(y)dy = −c

cos aπ/2

π

∫ R

−R
|x− y|a(R2 − y2)

1−a

2 ds =
c(a− 1)

2

(

ax2 +R2).

Therefore, the left hand side of the governing equation (GE) is reduced to

(19)

(

c(a− 1)

2
−
M0

2

)

x2 +
c(a− 1)

2a
R2 + cR4−aB

(

3

2
,
3− a

2

)

cos aπ/2

π
.

For this expression to be a constant, the coefficient of x2 should vanish,
leading to the condition M0 = c(a − 1). This, together with (18), can be
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simplified to determine the radius of the support

(20) R =

[

−
cos aπ/2

π(a− 1)
B

(

1

2
,
3− a

2

)] 1

a−2

,

and therefore the solution (17).
It is also instructive to calculate the associated energy in this case, because

the parameter b = 2, a ∈ (2, 3) lies on the boundary separating compactly
supported solutions that we are seeking and solutions consisting of two delta
masses [3, 7]. From (19) and (20), the energy can be simplified as

(21) E =
c(a− 1)

2a
R2 + cR4−aB

(

3

2
,
3− a

2

)

cos aπ
2

π
=

2− a

a(4− a)
M0R

2.

On the other hand, the more singular solutions consisting of two delta masses
can be written as

(22) ρδ(x) =
M0

2

(

δ0(x−R0) + δ0(x+R0)
)

.

Here the radius R0 can be calculated in different ways, for example by min-
imizing the total energy

Eδ :=
1

M0

∫

R

ρδ(K ∗ ρδ) dx =
M0

2
K(2R0).

This optimization procedure gives R0 = 1/2 with the total energy Eδ = (2−
a)M0/4a. Though difficult to compare analytically, numerical calculation
shown in Figure 2(a) implies that E given by (21) is always less than Eδ

above, indicating the solution given by (25) is more stable and it is believed
to be the global stable solution in the sense of the global minimizer of the
interaction energy (5), see [9]. The convolution K ∗ ρ, shown in Figure 2(b)
for a = 5/2, is constant on [−R,R] (the solid line between two dots) and is
larger outside the support. In contrast, K∗ρδ for a = 5/2 behaves differently:
although R0 is the optimal radius, the fact K ∗ ρδ has a local maximum at
±R0 implies that the energy can be reduced by making the density less
concentrated.

We can proceed in the same way to find solutions for the other case when
a ≥ 3 and b = 2, by differentiating the governing equation (GE). If a ∈
(2k− 1, 2k) for some integer k ≥ 2, the resulting homogeneous solution is of
the form (8) and has only zero solution. If a ∈ (2k, 2k + 1) for k ≥ 2, the

solution ρ(x) is proportional to (R2 − x2)(2k−1−a)/2 , whose coefficient must
be zero to make sure no higher order terms appear in (GE). In fact, densities
like (22) consisting two delta masses are the only stable steady states in this
case.

3.2. The case when a = 2,−1 < b < 2. For a = 2, the governing equation
becomes

(23)
1

2

∫ R

−R
|x− y|2ρ(y)dy −

1

b

∫ R

−R
|x− y|bρ(y)dy = E.

Depending on the value of b, derivatives of different orders have to be taken.
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(a) Continuous minimizer

Two delta masses

−1 −0.5 0 0.5 1
−0.055

−0.05

−0.045

−0.04

x

K
∗ρ

 

 

(b) Continuous minimizer

Two Delta Masses

Figure 2. (a) the energy E from the solution (17) compared
with Eδ from two Dirac masses; (b) The function K ∗ ρ and
K ∗ ρδ.

If b ∈ (1, 2), we take derivative twice on (23) to get

(24)

∫ R

−R
|x− y|b−2ρ(y)dy =

M0

b− 1
.

From (10) with ν = 2− b, the solution is given by

(25) ρ(x) =
M0

b− 1

cos π(2−b)
2

π
(R2 − x2)

1−b

2 .

Using the definition of the total mass

M0 =

∫ R

−R
ρ(x)dx =

M0

b− 1

cos π(2−b)
2

π
B

(

1

2
,
3− b

2

)

R2−b,

the radius of the support is then given by

(26) R =

[

cos (2−b)π
2

(b− 1)π
B

(

1

2
,
3− b

2

)

]
1

b−2

.

If b ∈ (0, 1), we take derivative once on (23) to get

(27)

∫ R

−R
(x− y)|x− y|b−2ρ(y)dy = xM0.

From (14) with ν = 1− b, the solution is can be written as

(28) ρ(x) =
M0 cos

πb
2

(1− b)π

[

(R2 − x2)
1−b

2 + cR2(R2 − x2)−
1+b

2

]

,

where c is the free parameter. Because the component (R2−x2)−
1+b

2 is more

singular than (R2 − x2)
1−b

2 near the boundary |x| = R, we must have the
constraint c ≥ 0 for the nonnegativity of the solution. The definition for the
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total mass is equivalent to

(29) 1 =
cos πb

2

(1− b)π

[

B

(

1

2
,
3− b

2

)

+ cB

(

1

2
,
1− b

2

)]

R2−b,

from which c and R are related. Therefore, we have a one family of steady
states parameterized by c ≥ 0. To select the most stable one of the family,
we have to calculate the energy again as a function of c. The integration
with the quadratic potential is straightforward,

1

2

∫ R

−R
|x− y|2ρ(y)dy =

M0

2
x2 +

1

2

∫ R

−R
y2ρ(y)dy

=
M0

2
x2 +

M0 cos
πb
2

2(1− b)π

[

B

(

3

2
,
3− b

2

)

+ cB

(

3

2
,
1− b

2

)]

R4−b.

Using (15) and (16) with ν = −b, we get

∫ R

−R
|x− y|b(R2 − y2)−

1+b

2 dy =
π

cos πb
2

,

and
∫ R

−R
|x− y|b(R2 − y2)

1−b

2 dy =
b(1− b)π

2 cos πb
2

x2 +
(1− b)π

2 cos πb
2

R2.

Collecting all the terms above, the energy can be written as

E =
M0 cos

πb
2

2(1− b)π

[

B

(

3

2
,
3− b

2

)

+ cB

(

3

2
,
1− b

2

)]

R4−b−
M0R

2

b(1− b)

[

c+
1− b

2

]

.

Using the constraint (29), the energy can be simplified as

E =
M0

2

B
(

3
2 ,

3−b
2

)

+ cB
(

3
2 ,

1−b
2

)

B
(

1
2 ,

3−b
2

)

+ cB
(

1
2 ,

1−b
2

)R2 −
M0R

2

b(1− b)

[

c+
1− b

2

]

=M0

[

1

2

(1− b)/(4− b) + c

(1− b) + (2− b)c
−

c

b(1− b)
−

1

2b

]

R2.

Now, we show that c = 0 is the global minimizer of E for c ≥ 0. First
from (29), we can compute the derivative

∂R

∂c
= −

R

(2− b)c+ 1− b
.

After some tedious algebra, we can show that

dE

dc
=
∂E

∂c
+
∂E

∂R

∂R

∂c
=

M0(2− b)R2c2

(1− b)(1− b+ (2− b)c)2
> 0

for any c > 0 and b ∈ (0, 1). Therefore, the energy E is minimized pre-

cisely when c = 0 and there is no singular component (R2 − t2)−
b+1

2 in the
solution (28). The radius R is given by the same formula (26).
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Finally, if b ∈ (−1, 0), no derivative has to be taken and the original
governing equation (GE) can be written as

∫ R

−R
|x− y|bρ(y)dy =

M0b

2
x2 + b

(

M2

2
R2 − E

)

,

with the rescaled second order moment

M2 = R−2

∫ R

−R
|y|2ρ(y) dy .

From (10) and (11) with ν = −b, the solution is given by
(30)

ρ(x) =
M0 cos

πb
2

(1− b)π
(R2 − x2)

1−b

2 +

[

bM2 −M0

2
R2 − bE

]

cos πb
2

π
(R2 − x2)−

1+b

2 .

Define

c =
1− b

M0R2

[

bM2 −M0

2
R2 − bE

]

,

then by exactly the same procedure as for the case b ∈ (0, 1), one can show
that the energy E is an increasing function of c for c > 0. Therefore, the
stable steady state is given by (25) for c = 0 with the radius (20).

Remark 1. From the constraint

bM2 −M0

2
R2 − bE ≥ 0

for the coefficient of the second term in (30), it is tempting to conclude

that the energy is minimized if and only if this coefficient is zero. However,

when E is taken as the only free parameter, both R and M2 solved from

the definition of the first two even moments depend on E too. As a result,

it is not obvious that the coefficient (bM2(E) − M0)R(E)2/2 − bE is an

increasing function of E. One illuminating counterexample is to exam the

case b ∈ (0, 1), where −bE becomes an decreasing function of E but the whole

expression (bM2 −M0)R
2/2− bE has the opposite monotonicity.

Although the approaches are different for b in different ranges of the in-
terval (−1, 2), the final stable solution takes the same form. This uniformity
of the solution is a direct consequence of the fundamental governing equa-
tion (GE), since the integral equations (24) and (27) are obtained from (GE)
by taking derivatives. This observation is the key to derive general solutions
in higher dimensions later.

3.3. Extension with larger even integers of a and in higher dimen-
sions. As we can see from the previous two subsections, the derivation of
the exact steady states is in general quite involved, with different solutions
to integral equations and the establishment of integral identities in different
parameter regimes. The situation is further complicated by the appearance
of free parameters that usually have to selected by minimizing the energy.

The above approach using explicit solutions of the integral equations (8)
or (12) cannot be easily generalized to higher dimensions either, because
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the explicit dependence on angular integrals. One exception is in three
dimensions, because of the following fact
∫

BR

|x− y|pρ(y)dy = 2π

∫ R

0
s2ρ(s)

∫ π

0

(

r2 + s2 − 2rs cos θ
)p/2

sin θdθds

=
2π

(p+ 2)r

∫ R

0

[

(r + s)p+2 − |r − s|p+2
]

sρ(s)ds,

with r = |x| and s = |y|. This reduction is not useful yet, as there are two
nonlocal terms associated with one single power. But these two terms can
be combined into one integral by extending the radial density ρ(r) evenly on
the interval [−R,R], i.e.,
∫

BR

|x− y|pρ(y)dy = −
2π

(p+ 2)r

∫ R

−R
|r − s|p+2sρ(s)ds, s ∈ [−R,R].

Therefore, the governing equation becomes

−
1

a(a+ 2)

∫ R

−R
|r − s|a+2sρ(s)ds+

1

b(b+ 2)

∫ R

−R
|r − s|b+2sρ(s)ds =

M0E

2π
r,

from which the steady states can be derived similarly as in one dimension,
by taking derivatives on both sides first. Since higher powers appear in the
kernels, the derivative of the steady states is more cumbersome than that in
one dimension, hence is not pursued here.

In summary, the above approach by solving integral equations like (8)
or (12) is getting more involved with larger exponents in one dimension, and
is unlikely to be generalized to higher dimensions. However, certain features
like the universal form of the solutions across different parameter regimes
indicate other unified ways, that we exploit next.

4. Exact solutions in higher dimensions

Now we focus on the construction of the steady states in general dimen-
sions, based on some insights from the case of a = 2 above: the solutions
take the same form in different parameter regimes and certain component
never appears.

Assuming the radial solution ρ is supported on the ball BR = {x ∈
R
d, |x| ≤ R} and a = 2k is an even integer, the left hand side of the equiva-

lent governing equation

(31)

∫

BR

|x− y|bρ(y)dy = b

[

1

2k

∫

BR

|x− y|2kρ(y)dy − E

]

is an even polynomial of degree 2k, whose coefficients can be written as mo-
ments of ρ. It turns out that all the solutions of (31) can be built successively
from the fundamental identity

(32)

∫

BR

(R2 − |y|2)−
b+d

2 |x− y|bdy =
π

d

2
+1

Γ(d2) sin
(b+d)π

2

, b ∈ (−d, 2− d)



EQUILIBRIA FOR THE AGGREGATION EQUATION 13

which is well-known in potential theory [35, Appendix]. This identity (and
the ones with higher exponents below) is expected from dimensional analysis,
by counting the powers of R on both sides.

Once the identity (32) is established, others with larger exponents can
be derived by integration as those in the end of Section 2. Denote ∆x the
Laplace operator, then

∆x

∫

BR

(R2 − |y|2)−
b+d

2 |x− y|b+2dy = (b+ d)(b+ 2)

∫

BR

(R2 − |y|2)−
b+d

2 |x− y|bdy

= (b+ d)(b+ 2)
π

d

2
+1

Γ(d2) sin
(b+d)π

2

.

By the radial symmetry of the integrals, the Laplace operator ∆x can be
inverted easily, giving
∫

BR

(R2 − |y|2)−
b+d

2 |x− y|b+2dy =
(b+ d)π

d

2
+1

Γ(d2) sin
(b+d)π

2

(

b+ 2

2d
|x|2 +

1

2
R2

)

,

where the integration constant can be obtained from special integrals like (43)
in the Appendix, by evaluating both sides at the origin. Replacing b with
b− 2 to keep the same kernel |x− y|b, we arrive at

∫

BR

(R2 − |y|2)1−
b+d

2 |x− y|bdy = −
(b+ d− 2)π

d

2
+1

Γ(d2) sin
(b+d)π

2

(

b

2d
|x|2 +

1

2
R2

)

.

The range of validity for b inherited from (32) is (2 − d, 4 − d), but can
be increased to (−d, 4 − d) by continuation. Integral identities with higher
powers on (R2 − |y|2) can be obtained similarly, which are special cases (for
k being integers) of the relation

(33)

∫

BR

(R2 − |y|2)k−
b+d

2 |x− y|bdy

=
π

d

2

Γ(d2)
B

(

b+ d

2
, k + 1−

b+ d

2

)

R2k
2F1

(

−
b

2
,−k;

d

2
;
|x|2

R2

)

.

in view of the connection to the (negative) fractional Laplacian [32, Eq (9)].
When k is a non-negative integer, the Gauss hypergeometric function 2F1

on the right hand side is a finite polynomial and (33) can be written as

(34)

∫

BR

(R2−|y|2)k−
b+d

2 |x−y|bdy = Ck0R
2k+Ck1R

2|x|2k−2+· · ·+Ckk|x|
2k

with the following expressions

(35) Ckj =
π

d

2

Γ(d2)
B

(

b+ d

2
, k + 1−

b+ d

2

)

(− b
2)j(−k)j

j!(d2)j
.

Here the Pochhammer symbol (r)n = Γ(r+n)/Γ(r) = r(r+1) · · · (r+n−1)
is used. The range of b also increases with larger exponents, which becomes
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(−d, 2+2k−d) for (34), exactly when the components (R2−|y|2)k−
b+d

2 and
|x− y|b of the integrand are integrable.

Equipped with these integral identities, we are now in a position to con-
struct the steady state for general even integer a = 2k. First, the governing
equation (31) can be written as

∫

BR

|x− y|bρ(y)dy = b

[

1

2k

∫

BR

|x− y|2kρ(y)dy − E

]

= F0R
2k + F1R

2k−2|x|2 + · · ·+ Fk|x|
2k,

for some coefficients F0, F1, · · · , Fk depending on the rescaled momentsM2j =
R−2j

∫

BR
|x|2jρ(x)dx. More precisely, the coefficient Fj only depends on the

momentsM0,M2, · · · ,M2(k−j), but not on any higher order moments. From
the integral identities above, the steady states take the form
(36)

ρ(x) = (R2−|x2)−
b+d

2

(

A0R
2k +A1R

2k−2(R2−|x|2)+ · · ·+Ak(R
2−|x|2)k

)

,

for some constants A0, A1, · · · , Ak to be determined. Here appropriate pow-
ers of R are used to make the coefficients Fj and Aj dimensionless and to
simplify the calculations later.

(2, 4− d)

2 4 a

a = b

−d

3− d

b

2− d

b = (3−d)a−10+7d−d2

a+d−3

Figure 3. The compactly supported steady states exist only
in the shaded region.

Motivated by the solutions from the special case derived in the last section,
we now make some formal argument for A0 vanishing identically in (36).
First, recall that we expect the radial steady states of our interest here to
exist only when

b < bmax :=
(3− d)a− 10 + 7d− d2

a+ d− 3
,

as determined in [4]. In fact, for b > bmax the preferred asymptotic radial
stationary state seems to be the uniform measure or Dirac Delta on a par-
ticular (d − 1)-dimensional sphere [34], although it has not been rigorously
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proved. Under the constraint a > b, it is easy to see that bmax is always less
than two and is exactly the reason we only focus on a = 2k, an even integer.
Moreover, we have 3−d < bmax ≤ 4−d, with bmax = 4−d only when a = 2.

Now, we divide the range of b into two intervals, (2−d, bmax) and (−d, 2−
d). For b in the first interval (2 − d, bmax) ⊂ (2 − d, 4 − d), the function

(R2 − |x|2)−
b+d

2 is no longer integrable near the boundary |x| = R. There-
fore, A0 must vanish identically for the density to be well-defined. For b
belonging to the second interval (−d, 2 − d), the density ρ is shown to be
zero in [13] on the boundary |x| = R by formulating the governing equation
(31) as an equivalent obstacle problem, which implies the coefficient A0 of

the unbounded yet integrable component (R2 − |x|2)−
b+d

2 must be zero. In
this range, the corresponding interaction energy is minimized by making a
smooth transition to the zero density outside the support, instead of creating
an unbounded jump when A0 is positive.

With this new information A0 ≡ 0, we can now construct the steady states
in a straightforward way. We show the calculation for a = 2 and a = 4 first
to demonstrate the procedure, and then go to general cases when a is an
even integer. For a = 2, the governing equation is

(37)

∫

BR

|x− y|bρ(y) = b

(

M0

2
|x|2 +

M2

2
R2 − E

)

The parameter A1 in the solution ρ(x) = A1(R
2 − |x|2)1−

b+d

2 is determined
uniquely by matching the coefficient of |x|2 on both sides of (37), to obtain

(38) ρ(x) = −
dM0Γ(

d
2) sin

(b+d)π
2

(b+ d− 2)π
d

2
+1

(R2 − |x|2)1−
b+d

2 .

The radius R is fixed from the definition of the total mass, that is

M0 =

∫

BR

ρ(x)dx = −
M0d sin

(b+d)π
2

(b+ d− 2)π
B

(

d

2
, 2−

b+ d

2

)

R2−b.

In one dimension, (38) reduces to the solution (25).
When a = 4, the governing equation becomes

(39)

∫

BR

|x− y|bρ(y)dy = F0 + F1R
2x2 + F2|x|

4

with

F0 = b

(

M4

4
R4 − E

)

, F1 =
b(d+ 2)

2d
M2, F2 =

bM0

4
.

Upon substituting ρ(x) = (R2 − |x|2)1−
b+d

2 (A1R
2 + A2(R

2 − |x|2)) followed
by the general identity (34), the matching condition of the coefficients of |x|2

and |x|4 on both sides of (39) becomes
(

C11 C21

0 C22

)(

A1

A2

)

=

(

F1

F2

)

.



16 JOSÉ A. CARRILLO AND YANGHONG HUANG

Exacting Ckj from (35), the solution of this linear system is given by

A1 =
Γ(d2)

π
d

2

1

B( b+d
2 , 2− b+d

2 )

[

d+ 2

2
M2 −

d(d+ 2)

2(b− 2)
M0

]

,(40)

A2 =
Γ(d2)

π
d

2

1

B( b+d
2 , 3− b+d

2 )

d(d+ 2)

4(b− 2)
M0,

independent of M4 and R. To decide the radius of the support, we use the
definition of the first two moments,

M0 =

∫

BR

ρ(x)dx = R4−b π
d

2

Γ(d2)

[

A1B

(

d

2
, 2−

b+ d

2

)

+A2B

(

d

2
, 3−

b+ d

2

)]

and

M2 =
1

R2

∫

BR

|x|2ρ(x)dx

= R4−b π
d

2

Γ(d2)

[

A1B

(

1 +
d

2
, 2−

b+ d

2

)

+A2B

(

1 +
d

2
, 3−

b+ d

2

)]

.

From the explicit expressions (40) of A1 and A2, these two definitions of the
moments are homogeneous equations inM0 andM2, and is equivalent to the
eigenvalue problem

Rb−4

(

M0

M2

)

=
(d+ 2)Γ(d2)

2Γ( b+d
2 )Γ(2− b

2)

(

d
4−b 1
d2

(2−b)(6−b)
d

4−b

)

(

M0

M2

)

.

The matrix on the right hand side has all positive entries. By Perron-

Frobenius theorem [5], there is only one positive eigenvector ~M = [M0,M2]
T

corresponding to the unique positive eigenvalue. In this case, the special
eigenvalue can be obtained explicitly, and the resulting radius is given by

R =

[

d(d+ 2)Γ(d2)

2Γ( b+d
2 )Γ(2− b

2)

(

1

4− b
+

1
√

(2− b)(6− b)

)]− 1

4−b

.

The corresponding eigenvector can also be parameterized by the total mass
M0, that is M2 = dM0/

√

(2− b)(6− b) and the coefficient A1 can be sim-
plified as

A1 =
Γ(d2)

π
d

2

1

B( b+d
2 , 2− b+d

2 )

d(d+ 2)

2

[

1
√

(2− b)(6− b)
+

1

2− b

]

M0.

Therefore, the solution ρ is completely determined.
Now we can proceed with the general case a = 2k, and the steps are

outlined below:
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Step a) The solution takes the following form

(41) ρ(x) = (R2 − |x|2)−
b+d

2

[

A1R
2k−2(R2 − |x|2)

+A2R
2k−4(R2 − |x|2)2 + · · ·+Ak(R

2 − |x|2)k
]

.

Step b) Write ~A = [A1, A2, · · · , Ak]
T as a function of ~M = [M0,M2, · · · ,M2k−2]

T

by matching the coefficients of |x|2, · · · , |x|2k on both sides of the
governing equation.

Step c) The definitions of the (rescaled) moments

Mj = R−j

∫

BR

|x|jρ(x) dx for j = 0, 2, · · · , 2k

can be formulated as an eigenvalue problem Rb−2k ~M = D ~M . The
radius R is the 1/(b − 2k)-th power of the eigenvalue of D and the
eigenvector, or equivalently the moments, can be parameterized by
the total mass M0.

Remark 2. Explicit forms of the coefficients can be worked out using sym-

bolic packages for the general case a = 2k. But the calculation is more and

more involved, and numerical softwares using floating point are preferred.

Remark 3. The k-by-k matrix D is expected to have positive entries, leading

to a unique eigenvalue R2k−b and a positive eigenvector ~M . However, the

positivity of the moments does not imply that of the solution on the support,

as we will see below.

r

0 0.2 0.4 0.6 0.8

ρ

0

0.5

1

1.5

2

2.5

b = 2 − d

r

0 0.2 0.4 0.6 0.8

0

2

4

6

8
b = (2 + 2d − d2)/(d + 1)

r

0 0.2 0.4 0.6

0

10

20

30
b = (2 + 3d − d2)/(d + 1)

Figure 4. The radial profiles of the constructed solutions
for a = 4. As b increase from 2−d (the Newtonian potential)
to bmax = (2+3d−d2)/(d+1), the solution becomes negative
starting at b̄ = (2 + 2d− d2)/(d+ 1).

However, the solutions constructed in this way are not always physically
relevant, because negative densities could appear. From the expressions (40)
of A1 and A2 for a = 4, it is easy to see that the solution ρ(x) = (R2 −
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|x|2)1−
b+d

2 (A1R
2 +A2(R

2 − |x|2)) becomes negative at the origin when

b > b̄ :=
2 + 2d− d2

d+ 1
∈ (2− d, 3− d).

Since b̄ is less than bmax, ρ(0) is indeed negative for b between b̄ and bmax (see
Figure 4). When a is an even integer larger than 4, numerical experiments
show that the solutions constructed in the above approach is still negative
near the origin, when b is close to its upper bound bmax. In fact, extensive
particle simulations indicate that a void (a region with zero density) starts to
appear near the origin [3]. As b continues to increase, the density becomes
concentrated more and more towards its outer boundary, and eventually
collapses on a sphere as b passes bmax. Because the solution is no longer
supported on a ball, the above approach using integral identities like (33)
does not work, and precise form of the solutions remains unknown.

5. Further discussions, conclusions and conjectures

Besides providing more exact solutions for theoretical analysis and numer-
ical testing, these newly discovered exact solutions confirm many widely ob-
served but yet unproved phenomena about boundary regularity even with the
simplest power-law attractive-repulsive kernels. From the general form (41),
it is easy to see that all constructed stationary solutions in this paper behave
like (R−|x|)1−(b+d)/2 near the boundary, depending only on the singular re-
pulsive part of the kernel. More precisely, the Newtonian repulsive kernel
dictated by b = 2 − d is critical: the solutions is zero on its boundary for
b < 2−d and become infinity (yet integrable) for 2 > b > 2−d, while at the
critical value b = 2− d, the solution is finite on the boundary. We do expect
this behavior to be generic for many potentials with power-law like repul-
sive component. As a result, if this boundary behavior conjecture is true,
any converging solution of the evolution equation (4) can not be uniformed
bounded in time for 2− d < b < 2. Therefore, uniform (in time) Lp bounds
are expected only for 1 ≤ p < 2/(b+ d− 2).

The same boundary behaviors for other general potentials seem to be
supported by extensive analytical and numerical studies. For Newtonian
repulsion and general attraction, bounded density on the boundary is estab-
lished as an eigenvalue problem in [30, 29]. Finite non-zero density on the
boundary is proved for Newtonian-like repulsion like the Quasi-Morse po-
tential [6]. The inverse square root singularity of the solutions for the Morse
potential in two dimension (with b = 1) is also confirmed numerically in [39].
The boundary behaviors are rigorously proved for Newtonian or more singu-
lar than Newtonian repulsions and quite general attractions in [13] using the
equivalence to classical obstacle problems in elliptic equations of the neces-
sary conditions (6). This work may motivate further investigation towards
the regularity of the solutions near boundary.

However, important questions like boundary behaviors are only inferred
from special solutions and observed from limited numerical simulations. The
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extend to which these statements remain true are still widely open, and
rigorous proofs may require sophisticated techniques from harmonic analysis
and potential theory. Because the solutions stop to be valid due to the
appearance of negative density as b is close to bmax, the exact way in which
the solution collapses to a co-dimension one sphere is not clear either. The
construction of these nearly singular solutions is another interesting problem.

Appendix A. Special functions and special integrals

Many special functions appear during the derivation of the exact solutions,
in particular the Euler Gamma function

Γ(x) =

∫ ∞

0
tx−1e−tdt,

and the Beta function

B(α, β) =

∫ 1

0
tα−1(1− t)β−1dt.

The Beta function can be represented using the Gamma function, that is
B(α, β) = Γ(α)Γ(β)/Γ(α+ β). Certain special integrals on the ball BR also
appear repeatedly in this paper, with

(42)

∫ R

−R
|x|α(R2 − |x|2)βdx = Rα+2β+1 B

(

α+ 1

2
, β + 1

)

,

in one dimension and more generally

(43)

∫

BR

|x|α(R2 − |x|2)βdx = Rα+2β+d π
d

2

Γ(d2)
B

(

α+ d

2
, β + 1

)

,

in higher dimensions Rd.

Appendix B. Derivation of the solutions to the singular

integral equations

When the right hand sides of two singular integral equations (8) and (12)
are polynomials, the solutions using the complicated formula (9) and (13)
can be simplified significantly. The key step is to evaluate the principal
integral of the form

(44) P.V.

∫ R

−R
(R+ y)n

(

R− y

R+ y

)
1−ν

2 1

y − x
dy

for non-negative integers n and ν ∈ (0, 1). For example, if f(x) = 1 in (8),
then

d

dx

∫ x

−R
(x− y)ν−1f(y)dy = (x+R)ν−1

and the solution (9) is reduced to

ρ(x) =
sinπν

2π
(x+R)ν−1−

cos2 πν
2

π2
(R2−x2)

ν−1

2 P.V.

∫ R

−R

(

R− y

R+ y

)
1−ν

2 1

y − x
dy,
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with n = 0 in (44). Singular integrals like these can be evaluated using
Plemelj Formulae for sectionally analytic functions, which are analytic on
the complex plane except a few contours [1, 26].

R−R

L
Ψ+(x)

x

Ψ−(x)

Figure 5. The two limits of a sectionally analytical function
Ψ along the line segment connecting −R and R.

Let L be the line segment connecting −R and R and ψ be a Hölder
function on L. Then the function defined by

(45) Ψ(z) =
1

2πi

∫

L

ψ(y)

y − z
dy

is analytic on C \ L. For any real number x ∈ (−R,R), Ψ has two limiting
values when approaching x from above and below of L, denoted as Ψ+(x)
and Ψ−(x) (see Figure 5). The Plemelj Formulae relates ψ to the jump and
average of Ψ+(x) and Ψ−(x) in the following way,

ψ(x) = Ψ+(x)−Ψ−(x),(46a)

1

πi
P.V.

∫

L

ψ(y)

y − x
dy = Ψ+(x) + Ψ−(x).(46b)

Now we can calculate principal integrals like (44) using (46b), by find-
ing appropriate complex function Ψ whose jump across L is exactly (R +

y)n [(R− y)/(R+ y)](1−ν)/2.

Let us choose Φ(z) =
(

z−R
z+R

)(1−ν)/2
− 1 on C \ L with the branch cut L.

It is easy to calculate the limiting values of Φ on L as

Φ±(x) =

(

R− x

R+ x

)(1−ν)/2

e±iπ(1−ν)/2 − 1 .

Finally, if we define

ψ(x) := Φ+(x)− Φ−(x) =

(

R− x

R+ x

)
1−ν

2

2i cos
νπ

2
,
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from the relation (46a), the sectionally analytic function Ψ given by (45) has
the same jump ψ across L as Φ. Therefore, Ψ − Φ is continuous across L
and is analytic on the whole complex plane. On the other hand, since both
Ψ and Φ are zero at infinity, so is their difference Ψ − Φ at infinity. Hence
by Liouville’s Theorem, Ψ is identical to Φ, and the second Plemelj formula
(46b) becomes

sin
νπ

2

(

R− x

R+ x

)
1−ν

2

− 1 =
cos νπ

2

π
P.V.

∫ R

−R

(

R− y

R+ y

)
1−ν

2 1

y − x
dy.

As a result, the principal value integral (44) with n = 0 and ν ∈ (0, 1) is
obtained and the solution of (8) with f(x) = 1 can be shown to be (10). The
same procedure can be generalized to larger powers n ≥ 1 and ν ∈ (0, 1), by
choosing

Φ(z) = (z +R)n
(

z −R

z +R

)
1−ν

2

− Pn(z),

where Pn(z) is a polynomial of degree n such that Φ(z) becomes zero at
infinity. For example, we take

Φ(z) = (z +R)

(

z −R

z +R

)
1−ν

2

− z − νR

to get (for n = 1)

sin
νπ

2
(R+x)

(

R− x

R+ x

)
1−ν

2

−x−νR =
cos νπ

2

π

∫ R

−R
(R+y)

(

R− y

R+ y

)
1−ν

2 1

y − x
dy ,

and

Φ(z) = (z +R)2
(

z −R

z +R

)
1−ν

2

− z2 − (1 + ν)zR−
ν2 + 2ν − 1

2
R2

to get (for n = 2)

sin
νπ

2
(R+ x)2

(

R− x

R+ x

)
1−ν

2

− x2 − (1 + ν)xR−
ν2 + 2ν − 1

2
R2

=
cos νπ

2

π

∫ R

−R
(R+ y)2

(

R− y

R+ y

)
1−ν

2 1

y − x
dy .

Once the principal value integral is obtained for any non-negative integer n
and ν ∈ (0, 1) in (44), the solution (9) can be evaluated for any polynomial
left hand side of (8).

The solutions (13) for any polynomial right hand side of (12) require the
evaluation of a slightly different principal value integral

P.V.

∫ R

−R
(R+ y)n(R− y)

(

R+ y

R− y

) ν

2 1

y − x
dy,
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for all non-negative integer n and ν ∈ (0, 1). This can be accomplished by
choosing the appropriate Φ in the Plemelj formula (46a) and (46b). For
example, we take

Φ(z) = (z −R)1−
ν

2 (z +R)
ν

2 − z − (ν − 1)R

to get (for n = 1)

− cos
πν

2
(R−x)1−

ν

2 (R+x)
ν

2−x−(ν−1)R =
sin πν

2

π

∫ R

−R

(R− y)1−
ν

2 (R+ y)
ν

2

y − x
dy ,

and

Φ(z) = (z −R)1−
ν

2 (z +R)1+
ν

2 − z2 − νzR−
ν2 − 2

2
R2

to get (for n = 2)

− cos
πν

2
(R− x)1−

ν

2 (R+ x)1+
ν

2 − x2 − νxR−
ν2 − 2

2
R2

=
sin πν

2

π

∫ R

−R

(R− y)1−
ν

2 (R+ y)1+
ν

2

y − x
dy .
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