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EXPLICIT ESTIMATES ON DISTANCE ESTIMATOR METHOD
FOR JULIA SETS OF POLYNOMIALS

MAsSAYO FUJIMURA, YASUHIRO GOTOH AND SATOSHI Y OSHIDA

Abstract

The distance estimator method is well-known as an iterative method which
estimates the Euclidean distance between a given point and Julia set. Although it
brings a remarkable effect in drawing Julia set, it seems to be not known about how
accurate this method is. In the present paper, we give explicit estimates on this method.

1. Introduction and results

Let P be a polynomial with degree d > 2, and J the Julia set of P. Let
A= A(0) = C=CU{oo} be the basin of the super attracting fixed point at oo
of P, and K = C\A4 the filled-in Julia set. The domain A is the component of
the Fatou set F of P containing oo.

Throughout the present paper, we assume that

(I) the domain A is simply connected,

(II) P is monic, and K contains the origin.

The condition (I) holds if and only if the forward orbit {P"(z)} of z is bounded
for each critical point z (# o) of P ([1], [3], [6]). Typical example is given by
P(z) = z¢ + ¢, where {P"(0)} is bounded. The condition (II) is not essential.
Indeed, if P satisfies (I), then the conjugate polynomial Q = T o Po T~! satisfies
(I1) for some linear transformation 7'(z) = az + b.

To draw the filled-in Julia set K (or J = 0K), we need approximation
algorithms for K. The level set method (LSM) is the simplest one. Let R > 4
and N e N. For a given point z € C, set z, = P"(z) (n=0,1,2,...) and n(z, R)
=min{n||z,| > R}. A point z belongs to K if and only if n(z,R) = co. Let

KLS]\/[(N,R) :{Z€C|H(Z,R) >N}
=KU{ze dy|n(z,R) > N},
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where 4y = A\{oo}. Then Kigm | K as point sets as N — oo, although unfortu-
nately Kygm is not a good approximation of K for the purpose of drawing K in
general (Figure 1). Much better approximation can be obtained by estimating
the Euclidean distance between z and K.

The Bottcher map

0(z) = lim g,(2) (p,(2) = (P"(2))"""")
is a conformal map of 4 onto C\E satisfying

0(P(2) = (9(2)",

where A = {|z| < 1} ([1]). Then, appealing to the K&be one-quarter theorem (see
Proposition 1 below), we obtain

Vol _ vl ld
4 d(z,J) ~ dw,0A) —  d(z,J)’

where d denotes the Euclidean distance, which means

z € Ay, w = 9(z2),

-1 -1
de )~ PO lpC)
¢’ (2)] |0,,(2)]
Moreover, if z € Ay is near J, then

y ZGA().

1
|Pn(2)] = 1 = loglg,(2)] = — log|P"(2)],

o= Ly (- _ L2 @IEY P @)
04(2)| = 2 (P ()] 1P (2) P TP

It follows that if z e 4y is near J and n is sufficiently large, then
(l) d(Z,J)%dn(Z”]),

where
dy(z,J) =

Since z, and z, satisfy
/ I i /
0=z, zo=1, zy=P(z), 2z, =2z,P(z4),

the result (1) provides an algorithm to draw the ¢ like neighborhood of K, which
is known as the distance estimator method (DEM) ([7], [9]). Much clear pictures
can be obtained by virtue of DEM (Figure 2).

However, since the argument above utilizes the sequence ¢,, it seems difficult
to obtain explicit bounds for d(z,J)/d,(z,J). The main aim of the present paper
is to give its explicit bounds by appealing to another argument, which utilizes
mainly the invariance of the hyperbolic metric under covering maps.
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THEOREM 1. Let z€ Ay, R >4, and |z,| = R Then
1 |z| 4 d(z,J) 4
“(1-=)1-=5< <211+-=).
2 ( 12) ( R> SaGn = UTR

The left-hand side estimate is not good, unless z is near the origin, even if z is
near J. We can improve this point as follows.

THEOREM 2. Let z€ Ay, R>9, and |z,| = R Then

% (1 _%) (1 _ d”gii‘”)dn(z, J)<d(zJ) < 2(1 +%>dn(z,J)~

Note that our bounds depend neither on the number n of iteration nor on
the degree d of the polynomial P.
Let

Kpem(R,e) = KU{z € Ao |dy r(z,J) < &}
Our Kpgym is different from the usual, computable version
KDEM (N7 R, 8) = KLSM (N7 R) U KDEM (R7 8)
= KLSM(N7 R) U {Z € Ay |}’I(Z7 R) <N, dn(z,R)(Za J) < 8}.
However, if N is sufficiently large, then Kism(N,R) < Kpem(R,¢), and so these
two types of DEM approximation coincide with each other.

Figures 1 and 2 correspond to Kism(N,R) and f(DEM(N , R, &) respectively,
where

P(z) =z +¢, c¢=—0.770826391 + 0.115528513i,
N =200, R=10, and &= 0.0058. Calculation was performed to 1000 x 1000

lattice points. In this case the set K is connected, but it is too thin to be
captured by LSM.

Ficure 1. LSM. Ficure 2. DEM.

Let K, = {z]d(z,K) < ¢}.
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COROLLARY 1. Let 0<e<1 and R>9. Then

KVéjl c KDEM(R, 8) c K,

£

1 9 € 4
& =§<1 _ﬁ) (1 _ﬁ>8’ 8222(1+E>8.

Note & /e, ¢/eg — 2 as R — oo and ¢ — 0. For instance, if ¢ < 1/100 and
R > 1000, then

where

Ko.495: = Kpem(R, ) < K 008z

We establish Theorems 1 and 2 by showing the fact that DEM is just the
algorithm computing the hyperbolic metric of the domain A4y. Let D = C be a
domain with holomorphic universal covering 7 : A — D. The hyperbolic metric
pp(2)|dz| of D is defined by the equation

R
(Ol =12%)

where z = n({). We obtain a sharp estimate for p, (z)d.(z,J).

)

Pp(2)

THEOREM 3. Let z€ Ay, R> 4, and |z, = R.  Then
P1(R) < p 4, (2)dn(2,J) < pa(R).

As to the functions pi, p;, see §3. In particular
. |
Pay(2) = ’}Ln;m, z € Ay.

Also we give a remark on the conjecture of Milnor ([7]) concerning the
Euclidean distance between a given point and the Mandelbrot set (Remark 6).

We would like to express our thanks to the referee for helpful advices about
the paper.

2. Sharp estimate for p,

Our argument depends on the distortion estimates for conformal maps.

ProrosiTioN 1 (cf. [4], [10]). Let f be a conformal map of A into C
satisfying f(0) =0, f'(0) = L.
(@) Let ze A. Then

gy <
v ==
L=z | /()] 1+
[+ S‘Z.f(Z) STo)

(b) f(A) contains the open disk with center the origin and radius 1/4.
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The first inequality in (a) is known as the Kobe distortion theorem and the result
(b) the Kobe one-quarter thereom.

Let z=¢(w) be the inverse map of the Bottcher map w = ¢(z), and
f(z)=1/¢(1/z). Then, from the condition (II), f satisfies the condition of
the proposition above, and so we obtain the following two lemmas.

LemMmA 1. Let we C\A and z = ¢(w). Then

—1)? 1?2
(jw—=1) o] < (w[+1) ’
[wl [wl
lw] — 1 wl , [w| + 1
< — <
R AT

)-
2 2
2 <m+ m) <ol < (M) 7

2

[w| — 1 lz| |, [w] +1
<

1 = 7= T

However, the left-hand side inequality of (2) holds only for z € Ay satisfying |z| > 4.
Lemma 2. K < {|z] < 4}.

Remark 1. All estimates in Lemma 1 and Corollary 2 are sharp. Let
P(z) = (z—2)*. Then J =[0,4], z=¢(w) = w+w ! +2, and the equalities are
attained on (4,+c0) or on (—o0,0). This example shows the constant 4 in
Lemma 2 is also sharp. B

The hyperbolic metric of the domain C\A is given by

|dw|
s(w)ldw| = ———.
Peya(w)ldv] |w| log|w|

Since p 4, (z) :pC\A(w)\(p/(z)L where w = ¢(z), Corollary 2 implies

3) 1 [w] —1 <p,(2) < 1 lw| +1
2] (] + 1) Toglw| = P40% = 21" (w] = 1) Togw|’

Set

-1
QI(X):{2 x2+4x-log<\/}+\/m)} :
-1
qz(x)ql(x4){2 x24x~log<\/}+;/m>} :
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THEOREM 4.
(a) Let ze€ Ay. Then
P4,(2) Z q([z])-
(b) Let |z| >4. Then
P4,(2) < qa([2])-
Remark 2. These estimates are sharp. Let P(z) = (z —2)* be the polyno-

mial in Remark 1. The equalities hold in the first inequality for z < 0 and in
the second one for z > 4.

Proof of Theorem 4. First, let z € Ag. Set 1 =% (+/|z] ++/|z| +4)". Then
-1
1 < |w| <t by Corollary 2. Let g;(x) :xl—l’ x> 1. Since g; is non-
increasing, it follows from (3) that (x+1) log x
gi(lw) _ 91(0)
pA()(Z) > |Z| = |Z| = Q](|Z|)
Next, let |z| > 4. In this case set s = 1 (\/]z[ ++/]z| —4)*. Then |w|>s> 1
1
by Corollary 2 again. Since g,(x) = L, x > 1, is non-increasing, we
obtain (x—1) log x
ga(iwl) _ 9a(s)
pAq(Z) < |Z‘ < |Z| = CIZ(|Z|) D

Remark 3. Our argument actually solves the following extremal problem
for the hyperbolic metric. Let 4" be the family of all full compact sets K < C
satisfying 0 € K and cap(K) = 1, where cap(K) denotes the logarithmic capacity
of K. Then
inf po\x(2) = peyieao(l2l) (= aqi(lz]), z#0,

where the infimum is taken over all K € % satisfying z ¢ K, and

sup pe\k(2) = pevp.a(2) - (= a2(l2l), |2l > 4,
where the supremum is taken over all K € 7.

3. Proof of Theorem 3

Let 2(w) = w?. Then we obtain the following commutative diagram which
consists of covering maps.

Ay LAO

A . c\A
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Since the hyperbolic metric is invariant under covering maps, we obtain

| ——— p DNzl .
|
pezWldn] =——— pez(Wlaw] \w 2 w
Let ze Ay and Z =z, = P"(z). Assume |Z| > 1. Then
|dz|
4 — = (Z)|dZ|.
@) T = Pea(@)liz]
For ze AN (C\A), set
H(z) = M’
pC\A(Z)
equivalently
2] log|7|
() H(z) = || log|zlp4,(2) = o] Tog|w] ' (2)l,  w=0(2).

The functions p;, p, which appeared in Theorem 3 are given by

-1

— -1
pa(x) = (x log x)qa(x) = {2\/ L log <\/)_c+2x—4> } log x.

Theorem 4 gives a sharp estimate
(6) nlz) <H @) < pa(l2l), 12| >4
Since p(x) > (14+4/x)"", pa(x) < (1 —4/x)"', x> 4, we obtain

(7) (1 +é|>_l < H(z) < (1 - |42|>_1, 2| > 4.

Now Theorem 3 is a consequence of the following lemma.

log x,

N

LemMA 3. Let ze Ay and z, € C\A. Then
H(z) = pay(2)da(z, ).

Proof. Let Z =z, = P"(z). Because of (4), we have
)

. P (Z)|dZ| _ P4, (2)|dz] _
(2)|dZ|

H(z,) = = p4,(2)dn(z,J). O
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Remark 4. Theorem 3 provides a sharp estimate. Let P(z) =z?+ 4z,
z>0, and R=2z,>4. Then J=[-4,0] and the equality holds in the left-
hand side inequality. Also, let P(z) = (z —2)%, the polynomial in Remark 1,
z>4, and R=1z, Then the equality holds in the other inequality.

COROLLARY 3. Let ze Ay, R>4, and |z,| = R Then

(1 + %)1 < pa(Dn(z0) < (1 _ %)1.

4. Proof of Theorems 1 and 2

Let B. be the open disc with center z e 4y and radius d(z,J), and Q, =
C\(AUI,), where |w| > 1 and /, = {tw/|w||t < —1}.

LEmMMA 4. Let z€ Ay and w= ¢(z). Then
Pa,(W)e' ()] < pp.(2) < 4po, (W)le'(2)].

Proof. Let y:A— ¢~ '(Q,) be a conformal map satisfying ¥(0) = z.
Applying the Kobe one-quarter theorem, we have

w <d(z,0p71(Q)) <d(z,J).

Since p,-1(q,)(z) = 2/[¥'(0)], we obtain

) 1 1
Pa, W' ()| = py1q,)(2) = 2d(=,7) = ZPB:(Z)'

Next, let ¢(B.)" be the circular symmetrization of the domain ¢(B.) with
respect to the half line {—tw |7 > 0}.

¢(B-) e(Be)’

s
. Qu

7’ 4

. Q

w

Then ¢(B.)" = Q, and p,p.-(w) < p,p,)(w) (cf. [S] Theorem 4.9), hence

P (N0 (D)™ = Py (W) = pyzy (W) = po, (W). O
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LEMMA 5.

(w) = w| +1
Pa ) = o = 1)

Proof: We may assume w > 1. Then the conformal map ¥ :Q, — A is
given by
Y =hsohsohyohyoh,
where

i—z
i+z’

WE) =2, ) = VE ()

n . .
and |arg /z| < 7 Hence, a simple calculation shows

Wl
Pa. 00 = R T Al = 1)

Then Lemmas 4 and 5 mean

COROLLARY 4. Let ze€ Ay and w= ¢(z). Then

wiChw] = 1)
(Iwl+ Dlo’(2)]

(] = 1)

Let G be the Green function of A4 with pole at co. Then G = log|gp|, hence

COROLLARY 5. Let ze Ay. Then

tanh? tanh%
Ve =@ =4 TRepr

If P is a quadratic polynomial, then an improved version can be obtained (§6).

Remark 5. Let P(z) =z>—2. Then z=g¢(w)=w+w! and J =[-2,2].
Hence, if z > 2, then w > 1 and

Pa, (WI9'(2)| = pey(—oo 2 (2) = -2 pp.(2) =

Hence the right-hand side inequality of Lemma 4 (and so the left-hand side
inequalities of Corollaries 4 and 5) is sharp.
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Remark 6. Let P.(z) =z>+c. The Mandelbrot set M is the set of
parameter ¢ € C such that the sequence {P7?(0)} is bounded. Then

po(c) = lim (P (c))"/*

n— o0

is a conformal map of C\M onto C\A ([1]). Hence we can show the cor-
responding result for the Mandelbrot set in the same way;

tanh GOT(Z) tanh GOT(Z)
© WG SEM =t TG FeO

where Gy(z) = log|gy(z)| is the Green function of C\M with pole at 0. Our
estimate (8) improves the known result ([7], [9])

2 sinh Gy(z)

sinh Gy(z)
<d(z,M) < VGo(=)|

26GENGY(2)]

Milnor [7] conjectured that the function p(z) = 2 sinh Go(z)
[VGo(2)]
side gives the right order for d(z, M) in the sense that p(z)/4 < d(z, M) < p(z)
holds near M. Later, he stated in [6] (p. 273) that from the Kobe one-quarter
theorem this inequality holds globally on C\M. However, this claim does not
hold, since d(z, M)|VGy(z)] — 1 as z — oo. We can not apply the Kobe one-
quarter theorem to C\M which is not a plane domain.
4 tanh(Gy(z)/2)

on the right-hand

Our result shows that ¢(z) = —————-—""— 1is just the function which
[VGo(2)]|
provides the right order even in global sense.
Let
x—1
= I.
9(x) (x+1) log x’ =

LEMMA 6. Let z€ Ay and w = ¢(z). Assume |z,| > 4. Then

g(w)) _ d(z,J) g(wl)
®) H(z,) = dy(z,J) S4.H(zn)'

Proof.  Since p,, (2)|dz] :pC\A(W)|dW|, the assertion is a consequence of
Lemma 3 and Corollary 4. O

The factor g(|w|) corresponds to the initial error and H(z,) the terminal error.
It is to be noted that there is no factor corresponding to the process of the
iteration, which is a consequence of the invariance of the hyperbolic metric.
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Proof of Theorem 1. Let ze Ay, w=ep(z), and |z, >4. Set t=
YW+ VA +4)%. Then |w| <1 by Corollary 2. Since ¢ is non-increasing
function satisfying g(1 +0) = 1/2, we have

b

N —

(10) r(lz]) = g(1) < g(Iw)) <

where

r(x) = xi4<210g<%m>>_l, x> 0.

Thus, from (7) and Lemma 6, we obtain

(11) r(z|)(1 - |:,|) < Zfé”% < 2(1 +|Z4—|>

Hence, Theorem 1 follows from the estimate

r(x)Z%(l—%), x>0. O

Remark 7. The left-hand side inequalities of (9) and (10) are sharp. The
equalities hold for P(z) = (z—2)* and z > 4. Hence the left-hand side inequal-
ity of (11) is also sharp in the sense that we can not replace the function r(|z|)
with larger one.

Proof of Theorem 2. Let zeAy, R>9, and |z,/]>R. Set P()=
P({+a) — o, where o is the point on J satisfying d(z,J) = |z —«|. Then the
Julia set J of P is given by J=J —a. Let Z=z—0a. Then Z,=12z,—«a,
z' =z!. Applying Theorem 1 to P and %, we obtain

{80225
2 12 |Zn| dn(Z, J)
which implies

1 d(z,J) 4 |zw — o log|z, —a|  d(z,J)
1= 1 - < :
12 |z — o |z,| log|z,| dy(z,J)

2
Let u(x) =(x—28)log(x —4) — (x—9)logx, x>9. Then u' is increasing on
9,28 4 8/10], decreasing on [28 4 8v/10, ), u’(x) — +0 (x — ), u(27) > 0.2,
and —0.1 <u’(27) <0 < u'(28) < 0.1. Hence

u(x) > u(xo) > u(27) — 0.1 > 0,
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where xo (27 < xo < 28) is the unique solution of u'(x) =0. Since |z, —a| >
|za| — 4, we have

(1 4 ) |zw — o] log|z, — | - |za| — 8 log(|z,| — 4)
|20 — o |za| log|za| =zl log|z,|

R—38 log(R—4)
- R log R

Y
|

Hence

Therefore

d(z0) > % (1 - %) ((1 - %) % + 1>1dn(z, J)
%(1 _%) (1 —d"(zzé"']))dn(z,]). 0

Proof of Corollary 1. The right-hand side inclusion follows from Theorem
2. Next, let 0<e<1 and ze K. Then, from Theorem 2 again, we have
u(d,(z,J)) < u(e), where u(x) = (1 —x/24)x. Moreover, |z| <& +4 <5. Thus,
from Theorem 1, d,(z,J) <12 holds. Since u is non-decreasing on [0, 12],
we obtain d,(z,J) < e. ]

5. Sharpness of Theorems 1 and 2
Let P(z) =z>+4z. Then J = [-4,0], z=¢(w) =w+w~! =2, and

n 0 21 (w2 — 2"
Zp=w +w = 2, zZ/ = (—])
w—w"

Let z>0. Then w= (3(vz+ \/z+4))2 > 1, d(z,J) =z, and

I w2—1 (w?" —1)logw* + w2 —2)
12 dy(z,J) = — - : !
(12) (z.7) 2n w w2" 4+ 1

2 _
_ (w 32 log w (n— )

- 22(1 +1Z—2) + 0 (z— +0).



EXPLICIT ESTIMATES ON DEM 503

Hence

d(z,J) zw
—
dy(z,J)  (w2—1)logw

:% (1 - %) +0(z%)  (z — +0).

(n— o)

Hence the left-hand side inequality in Theorem 1 is sharp in the sense that we can
not replace the constant 1/12 with smaller one. Similarly, from (12), we can
show that the left-hand side inequality in Theorem 2 is sharp in the sense that
we can not replace the constant 1/24 with smaller one. In particular, if R is
sufficiently large and z is sufficiently near J, then

(13) %(1 —) < i((zz’{]))

<2(1+¢),

by Theorem 2. The constant factor § in (13) is sharp.

Next, we consider about the sharpness of the right-hand side inequality in
Theorem 1. Assume that we can take sequences of polynomial P, and point
20 e ™ d(z® J) -0, so that there exists linear transformation Ty (z) =
ayz + by, satisfying Ty (z%)) =0 and Tk(A(()k)) — A in the sense of kernel con-
vergence with respect to the origin, where A(()k) and J; denote Ay and J
respectively with respect to Py ([4], [10]). Then p «(z*)d(z®),J;) — 2, which
implies the constant factor 1 on the left-hand side inequality in Lemma 4 is
sharp. Hence, the constant factor 2 in Theorem 1 (and so in Theorem 2) is
also sharp.

We expect that such a situation may happen.

CONJECTURE 1. The constant factor 2 in the right-hand side inequality of
Theorem 1 (and so of Theorem 2) is also sharp.

Example 1. Let
P(z) =z +¢, ¢=0.250057091821313095 — 0.000000680499928995,

R =10000000, and z=0.1272+0.2672i (Figure 3). Then d(z,J) = 0.00402,
dy(z,J) ~0.00228, and so

d(z,J)
dy(z,J)

~ 1.76.

Ay is a disk-like domain with center z in the sense of kernel convergence.



504 MASAYO FUJIMURA, YASUHIRO GOTOH AND SATOSHI YOSHIDA

d(z,J . .
FIGURE 3. (ZZ’ ) ~ 1.76. =z is the center point.

6. Julia sets with rotational symmetricity

In the present section, we assume that J is invariant under rotation of order
k, k > 1, with respect to the origin. Such a polynomial P is characterized as a
polynomial of the form

P(z) = 2"Q(z"),

where m is non-negative integer and Q is a polynomial ([1], [2]). Then its square
root transformation of order k

P(z) = (P(Y2)" = 2"(Q(2))"

is also a polynomial, and the Boéttcher map ¢ of P is also given by the square
root transformation of the Bottcher map ¢ of P;

o) = (p(V2)".
The Julia set J of P is given by
J=Jk={|zeJ}.
Hence, applying Lemma 2 to P, we have

Lemma 7. K < {|z| < V/4}.

Remark 8. Let P(z) = z* —2. Then J = [-2,2] is invariant under rotation
of order 2. In this case P(z) = (z — 2)?, which is just the polynomial in Remark
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1, and J = [0,4] = J2. This example shows that if k =2, the lemma above is
sharp. We do not know about the sharpness for general k.
Let Ay be the basin of the super attracting fixed point at oo of P, and
A = aC)
pc\&(z)
Then, Ao = (4o)", and z — 2 = z* induces covering maps of C\A onto C\A and
of 4y onto Ay,. Hence

oo PaGIZl py (2)ldz|

2e AgN(C\A).

H(Z) = S =H(z), z=:~
O = e s O~ pesld ~ 1)
Thus, applying (6) and (7) to H, we have
pll*) < H(z) < pa(l2"), |2l = V4
-1 -1
(14) (1 +%> <H(z) < (1 —ﬁ> = Va.
zZ zZ

Thus, we can generalize Theorem 3 as follows.

THEOREM 5. Let z € Ay, R > /4, and |za| = R Then
p1(121) < pay(2)da(z,) < pa(]2").

Also Theorem 1 can be generalized as follows.
THEOREM 6. Let z€ Ay, R > /4, and |z, > R. Then
1 Bl 4 d(z,J) 4
“Nl-—==](l-=) < <2(14—).
2 ( 12k2> ( Rk) SaGn = U Tre

Proof. Let ¢(w) :A((/ﬁ(W))k, where ¢ is the inverse function of ¢.
Applying Lemma 1 to ¢, we have

k 2
M < |Z|k, z € Ayp.
[l
Since
1 -D*_ 1 (*F=1)?
> —— > - — 1
90 =23~ =5 gz 2L
we obtain
1 wlk —1)2 1 |k
glwy = S U2 1 B
2 24k2|w| 2 24k

Thus Lemma 6 and (14) establish the desired result. O
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Finally, we give a remark on Corollaries 4 and 5. Let P(z) = z> 4+ ¢. Then
J has rotational symmetricity of order 2 with respect to the origin. Hence we
may replace the inclusion ¢(B.)" = Q,, in the proof of Lemma 4 with ¢(B.)" =
D,,, where D,, = {z € C\A|Re(z/w) > 0}, and so we have p,, (w)|¢'(z)| < pp.(2).

\\ ©(B.)*

Since
_ |w\2 +1
w(w|* = 1)

)

Pp, (w

we can improve the right-hand side inequalities of Corollaries 4 and 5 as follows.

PROPOSITION 2. Let ze€ Ay and w = ¢(z). Then

. 2lw|(lw]*> —1) 2 tanh G(z)
R P R
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