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Abstract. Justification logics are epistemic logics that explicitly include
justifications for agents’ knowledge. We present a multi-agent justifica-
tion logic with evidence terms for individual agents as well as for com-
mon knowledge. A Kripke-style semantics similar to Fitting’s semantics
for the Logic of Proofs LP is defined and soundness and completeness
with respect to it are shown along with the finite model property. Fur-
thermore, we demonstrate that our logic is a conservative extension of
Yavorskaya’s minimal bimodal explicit evidence logic, a two-agent ver-
sion of LP. We discuss the relationship to multi-agent modal logic S4 with
common knowledge. Finally, as an illustration we give a brief analysis of
the problem of coordinated attack in the new language.

1 Introduction

Justification logics [6] are epistemic logics that explicitly include justifications
for agents’ knowledge. The first such logic, the Logic of Proofs LP, was developed
by Artemov [3, 4] to provide the modal logic S4 with provability semantics. The
language of justification logics has also been used to provide a new approach to
the logical omniscience problem [7] and to study self-referential proofs [15].

Instead of statements A is known denoted �A, justification logics reason
about justifications directly by using the construct [t]A to formalize statements
t is a justification for A, where evidence term t can be viewed as an informal
justification or a formal mathematical proof depending on the application. Ev-
idence terms are built by means of operations that correspond to the axioms
of S4 as can be seen from Fig. 1.

Artemov [4] showed that the Logic of Proofs LP is an explicit counterpart of
the modal logic S4 in the following formal sense: each theorem of LP becomes
a theorem of S4 if all terms are replaced with modality � and, vice versa, each
theorem of S4 can be turned into a theorem of LP by replacing occurrences
of modality with suitable terms. The latter process is called realization, and
the statement of correspondence is called a realization theorem. Although the
operation + introduced by the sum axiom in Fig. 1 does not have a modal
? The first and second authors are supported by Swiss National Science Foundation
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S4 axioms LP axioms
�(A→ B)→ (�A→ �B) [t](A→ B)→ ([s]A→ [t · s]B) (application)
�A→ A [t]A→ A (reflexivity)
�A→ ��A [t]A→ [!t][t]A (inspection)

[t]A ∨ [s]A→ [t + s]A (sum)

Fig. 1. Axioms of S4 and LP

analog, it is an essential part of the proof of the realization theorem in [4].
Explicit counterparts for many normal modal logics between K and S5 have
been developed, see a recent survey in [6] and a uniform proof of realization
theorems for all single-agent justification logics forthcoming in [8].

The notion of common knowledge is essential in the area of multi-agent sys-
tems, where coordination among a set of agents is a central issue. The text-
books [11, 17] provide excellent introductions to epistemic logics in general and
common knowledge in particular. Informally, common knowledge of A is defined
as the infinitary conjunction everybody knows A and everybody knows that every-
body knows A and so on. This is equivalent to saying that common knowledge
of A is the greatest fixed point of

λX.(everybody knows A and everybody knows X) . (1)

Artemov [5] created an explicit counterpart of McCarthy’s any fool knows
common knowledge modality [16], where common knowledge of A is defined as
an arbitrary fixed point of (1). The relationship between the traditional common
knowledge from [11, 17] and McCarthy’s version is studied in [2].

In this paper, we present a multi-agent justification logic with evidence terms
for individual agents as well as for common knowledge, with the intension to
provide an explicit counterpart of the modal logic of traditional common knowl-
edge S4C

h.
To the best of our knowledge, the only existing multi-agent justification logics

with evidence terms for each agent are due to Yavorskaya [20], where the two-
agent case is considered. We will show that in the case of two agents our system
is a conservative extension of Yavorskaya’s minimal bimodal explicit evidence
logic, which is an explicit counterpart of S42.

An epistemic semantics for LP, F-models, was created by Fitting in [12] by
augmenting Kripke models with an evidence function that specifies which for-
mulae are evidenced by a term at a given world. It is easily extended to the
whole family of single-agent justification logics (for details, see [6]). In [5] Arte-
mov extends F-models to justification terms for McCarthy’s common knowledge
modality in the presence of several ordinary modalities, creating the most general
type of epistemic models, sometimes called AF-models, where common evidence
terms are given their own accessibility relation not directly dependent on the ac-
cessibility relations for individual modalities. Yavorskaya in [20] proves a stronger
completeness theorem with respect to singleton F-models, independently intro-
duced by Mkrtychev [18] and now known as M-models, where the role of the
accessibility relation is completely taken over by the evidence function.



The paper is organized as follows. In Sect. 2, we introduce the language
and give the axiomatization of a family of multi-agent justification logics with
common knowledge. In Sect. 3, we prove their basic properties including the in-
ternalization property, which is characteristic of all justification logics. In Sect. 4,
we give a Fitting-style semantics similar to AF-models and prove soundness and
completeness with respect to this semantics as well as with the respect to single-
ton models, thereby demonstrating the finite model property. In Sect. 5, we show
that for the two-agent case our logic is a conservative extension of Yavorskaya’s
minimal bimodal explicit evidence logic. In Sect. 6 we show how our logics are
related to traditional modal logics of common knowledge and discuss the prob-
lem of realization. Finally, in Sect. 7 we provide an analysis of the problem of
coordinated attack in our logic.

2 Syntax

To create an explicit counterpart of modal logic of common knowledge we use
its axiomatization via the induction axiom from [17] rather than via the induc-
tion rule to facilitate the proof of the internalization property for the resulting
justification logic. We supply each agent with its own copy of terms from the
Logic of Proofs, while terms for common and mutual knowledge employ addi-
tional operations. As motivated in [10], a proof of CA can be thought of as an
infinite list of proofs of the conjuncts EmA in the representation of common
knowledge through an infinite conjunction. To generate a finite representation
of this infinite list, we use an explicit counterpart of the induction axiom

A ∧ [t]C(A→ [s]EA)→ [ind(t, s)]CA

with a binary operation ind(·, ·). On the other hand, to access the elements of the
list, explicit counterparts of the co-closure axiom provide evidence terms that
can be seen as splitting the infinite list into head and tail,

[t]CA→ [ccl1(t)]EA , [t]CA→ [ccl2(t)]E [t]CA ,

by means of two unary co-closure operations ccl1(·) and ccl2(·). Evidence terms
for mutual knowledge are represented as tuples of individual agents’ evidence
terms with the standard operation of tupling and h unary projections. While
only two of the three operations on LP terms are adopted for common knowledge
evidence and none for mutual knowledge evidence, it will be shown in Sect. 3 that
most remaining operations are definable with the notable exception of inspection
for mutual knowledge.

We consider a system of h agents. Throughout the whole paper, i always
denotes an element of {1, . . . , h}, ∗ always denotes an element of {1, . . . , h,C},
and ~ always denotes an element of {1, . . . , h,E,C}.

Let Cons~ := {c~1 , c
~
2 , . . . } and Var~ := {x~

1 , x
~
2 , . . . } be countable sets

of proof constants and proof variables respectively for each ~. The sets Tm1,
. . . , Tmh, TmE, and TmC of evidence terms for individual agents, mutual, and
common knowledge respectively are inductively defined as follows:



1. Cons~ ⊆ Tm~;
2. Var~ ⊆ Tm~;
3. !it ∈ Tmi for any t ∈ Tmi;
4. t+∗ s ∈ Tm∗ and t ·∗ s ∈ Tm∗ for any t, s ∈ Tm∗;
5. 〈t1, . . . , th〉 ∈ TmE for any t1 ∈ Tm1, . . . , th ∈ Tmh;
6. πit ∈ Tmi for any t ∈ TmE;
7. ccl1(t) ∈ TmE and ccl2(t) ∈ TmE for any t ∈ TmC;
8. ind(t, s) ∈ TmC for any t ∈ TmC and s ∈ TmE.

Tm := Tm1 ∪ · · · ∪ Tmh ∪ TmE ∪ TmC denotes the set of all evidence terms.
The indices of the operations !, +, and · will usually be omitted if they can be
inferred from the context.

Let Prop := {P1, P2, . . . } be a countable set of propositional variables. For-
mulae are denoted by A, B, C, etc. and defined by the following grammar

A ::= Pj | ¬A | (A ∧A) | (A ∨A) | (A→ A) | [t]~A ,

where t ∈ Tm~. The set of all formulae is denoted by FmLPC
h
. We adopt the

following convention: whenever a formula [t]~A is used, it is assumed to be well-
formed, i.e. it is implicitly assumed that term t ∈ Tm~. This enables us to omit
the explicit typification of terms.
The axioms of LPC

h are

1. all propositional tautologies
2. [t]∗(A→ B)→ ([s]∗A→ [t · s]∗B) (application)
3. [t]∗A→ [t+ s]∗A, [s]∗A→ [t+ s]∗A (sum)
4. [t]iA→ A (reflexivity)
5. [t]iA→ [!t]i [t]iA (inspection)
6. [t1]1A ∧ · · · ∧ [th]hA→ [〈t1, . . . , th〉]EA (tupling)
7. [t]EA→ [πit]iA (projection)
8. [t]CA→ [ccl1(t)]EA, [t]CA→ [ccl2(t)]E [t]CA (co-closure)
9. A ∧ [t]C(A→ [s]EA)→ [ind(t, s)]CA (induction)

A constant specification CS is any subset

CS ⊆
⋃

~∈{1,...,h,E,C}

{
[c]~A : c ∈ Cons~ and A is an axiom of LPC

h

}
.

A constant specification CS is called C-axiomatically appropriate if, for each
axiom A, there is a proof constant c ∈ ConsC such that [c]CA ∈ CS. A constant
specification CS is called pure, if CS ⊆ {[c]~A : c ∈ Cons~ and A is an axiom}
for some fixed ~, i.e. if for all [c]~A ∈ CS, the constants c are of the same type.

Let CS be a constant specification. The deductive system LPC
h(CS) is the

Hilbert systems given by the axioms of LPC
h above and rules modus ponens and

axiom necessitation:

A A→ B

B
,

[c]~A
, where [c]~A ∈ CS.



By LPC
h we denote the system LPC

h(CS) with

CS =
{

[c]CA : c ∈ ConsC and A is an axiom of LPC
h

}
. (2)

For an arbitrary CS, we write ∆ `CS A to state that A is derivable from ∆
in LPC

h(CS) and omit the mention of CS when working with the constant speci-
fication from (2) by writing ∆ ` A. We use ∆,A to mean ∆ ∪ {A}.

3 Basic Properties

In this section we show that our logics possess the standard properties expected
of any justification logic. In addition, we show that the operations on terms
introduced in the previous section are sufficient to express the operations of sum
and application for mutual knowledge evidence and the operation of inspection
for common knowledge evidence. This is the reason why +E, ·E, and !C are not
primitive connectives in the language. It should be noted that no inspection
operation for mutual evidence terms can exist, which follows from Lemma 26 in
Sect. 6 and the fact that EA→ EEA is not a valid modal formula.

We begin with the following easy observation.

Lemma 1. For any constant specification CS and any formulae A and B:
1. `CS [t]EA→ A for all t ∈ TmE. (E-reflexivity)
2. For any t, s ∈ TmE there is a term t ·E s ∈ TmE such that
`CS [t]E(A→ B)→ ([s]EA→ [t ·E s]EB). (E-application)

3. For any t, s ∈ TmE there is a term t+E s ∈ TmE such that
`CS [t]EA→ [t+E s]EA and `CS [s]EA→ [t+E s]EA. (E-sum)

4. For any t ∈ TmC and any i ∈ {1, . . . , h} there is a term ↓ it ∈ Tmi such that
`CS [t]CA→ [↓ it]iA. (i-conversion)

5. `CS [t]CA→ A for all t ∈ TmC. (C-reflexivity)

Proof. 1. Immediate by projection and reflexivity axiom.
2. Set t ·E s := 〈π1t ·1 π1s, . . . , πht ·h πhs〉.
3. Set t+E s := 〈π1t+1 π1s, . . . , πht+h πhs〉.
4. Set ↓ it := πiccl1(t).
5. Immediate by 4 and the reflexivity axiom. ut

Unlike the statements from the previous lemma, the ones from the next
lemma require the constant specification CS to be C-axiomatically appropriate.

Lemma 2. Let CS be C-axiomatically appropriate and A be a formula.
1. For any t ∈ TmC there is a term !Ct ∈ TmC such that
`CS [t]CA→ [!Ct]C [t]CA. (C-inspection)

2. For any t ∈ TmC there is a term W t ∈ TmC such that
`CS [t]CA→ [W t]C [ccl1(t)]EA. (C-shift)

Proof. 1. Set !Ct := ind(c, ccl2(t)), where [c]C([t]CA→ [ccl2(t)]E [t]CA) ∈ CS.
2. Set W t := c ·C (!Ct), where [c]C([t]CA→ [ccl1(t)]EA) ∈ CS. ut



The following two theorems are standard in justification logics. Their proofs
can be taken almost word for word from [4] and are, therefore, omitted here.

Lemma 3 (Deduction Theorem). Let CS be a constant specification and
∆ ∪ {A,B} ⊆ FmLPC

h
. Then ∆,A `CS B if and only if ∆ `CS A→ B.

Lemma 4 (Substitution). For any constant specification CS, any proposi-
tional variable P , any ∆ ∪ {A,B} ⊆ FmLPC

h
, any x ∈ Var~, and any t ∈ Tm~,

if ∆ `CS A, then ∆(x/t, P/B) `CS(x/t,P/B) A(x/t, P/B) ,

where A(x/t, P/B) denotes the formula obtained by simultaneously replacing all
occurrences of x in A with t and all occurrences of P in A with B, accordingly
for ∆(x/t, P/B) and CS(x/t, P/B).

The following lemma states an important property, namely that our logic can
internalize its own proofs. It can be shown by induction on the derivation of A.

Lemma 5 (C-lifting). Let CS be a pure C-axiomatically appropriate constant
specification. If

[s1]CB1, . . . , [sn]CBn, C1, . . . , Cm `CS A ,

then for each ~ there is a term t~(x1, . . . , xn, y1, . . . , ym) ∈ Tm~ such that

[s1]CB1, . . . , [sn]CBn, [y1]~C1, . . . , [ym]~Cm `CS [t~(s1, . . . , sn, y1, . . . , ym)]~A

for fresh variables y1, . . . , ym ∈ Tm~.

Corollary 6 (Constructive necessitation). Let CS be a pure C-axiomatically
appropriate constant specification. For any formula A, if `CS A, then for each ~
there is a ground term t ∈ Tm~ such that `CS [t]~A.

Corollary 7 (Internalized induction rule). Let CS be a pure C-axiomatical-
ly appropriate constant specification. For any formula A, if `CS A→ [s]EA, there
is a term t ∈ TmC such that `CS A→ [ind(t, s)]CA.

4 Soundness and Completeness

Definition 8. An AF-model meeting a constant specification CS is a structure
M = (W,R, E , ν), where (W,R, ν) is a Kripke model for S4h with a set of
possible worlds W 6= ∅, a function R : {1, . . . , h} → P(W ×W ) that assigns a
reflexive and transitive accessibility relation on W to each agent i ∈ {1, . . . , h},
and a truth valuation ν : Prop → P(W ). We always write Ri instead of R(i)
and define the accessibility relations for mutual and common knowledge in the
standard way: RE := R1 ∪ · · · ∪Rh and RC :=

⋃∞
n=1(RE)n.

An evidence function E : W × Tm → P
(

FmLPC
h

)
determines the formulae

evidenced by a term at a world. We define E~ := E � (W × Tm~). Note that
whenever A ∈ E~(w, t), it follows that t ∈ Tm~. The evidence function E must
satisfy the following closure conditions: for any worlds w, v ∈W ,



1. E∗(w, t) ⊆ E∗(v, t) whenever (w, v) ∈ R∗. (monotonicity)
2. If [c]~A ∈ CS, then A ∈ E~(w, c). (constant specification)
3. If (A→ B) ∈ E∗(w, t) and A ∈ E∗(w, s), then B ∈ E∗(w, t · s). (application)
4. E∗(w, s) ∪ E∗(w, t) ⊆ E∗(w, s+ t). (sum)
5. If A ∈ Ei(w, t), then [t]iA ∈ Ei(w, !t). (inspection)
6. If A ∈ Ei(w, ti) for all 1 ≤ i ≤ h, then A ∈ EE(w, 〈t1, . . . , th〉). (tupling)
7. If A ∈ EE(w, t), then A ∈ Ei(w, πit). (projection)
8. If A ∈ EC(w, t), then A ∈ EE(w, ccl1(t)) and [t]CA ∈ EE(w, ccl2(t)) (co-closure)
9. If A ∈ EE(w, s) and (A→ [s]EA) ∈ EC(w, t),

then A ∈ EC(w, ind(t, s)). (induction)

When the model is clear from the context, we will directly refer to R1, . . . , Rh,
RE, RC, E1, . . . , Eh, EE, EC, W , and ν.

Definition 9. A ternary relation M, w  A for formula A being satisfied at a
world w ∈ W in an AF-model M = (W,R, E , ν) is defined by induction on the
structure of the formula A:
1. M, w  P if and only if w ∈ ν(P );
2.  respects the propositional connectives;
3. M, w  [t]~A if and only if 1) A ∈ E~(w, t) and 2) M, v  A for all v ∈ W

with (w, v) ∈ R~.
We write M  A if M, w  A for all w ∈ W . We write CS A and say that
the formula A is valid with respect to CS if M  A for all AF-models M
meeting CS.

Lemma 10 (Soundness). Provable formulae are valid: `CS A implies CS A.

Proof. Let M = (W,R, E , ν) be an AF-model meeting CS and let w ∈ W . We
show soundness by induction on the derivation of A. The cases for propositional
tautologies, for the application, sum, reflexivity, and inspection axioms, and for
modus ponens and axiom necessitation rules are the same as for the single agent
case in [12] and are, therefore, omitted. Of the remaining four axioms we show
two representative cases:
(co-closure) Assume M, w  [t]CA. Then 1) M, v  A for all v ∈ W with

(w, v) ∈ RC and 2) A ∈ EC(w, t). It follows from 1) that, for all v′ ∈W with
(w, v′) ∈ RE, we haveM, v′  A since RE ⊆ RC; also, due to the monotonic-
ity closure condition, M, v′  [t]CA since RE ◦ RC ⊆ RC. From 2), by the
co-closure closure condition, A ∈ EE(w, ccl1(t)) and [t]CA ∈ EE(w, ccl2(t)).
Hence, M, w  [ccl1(t)]EA and M, w  [ccl2(t)]E [t]CA.

(induction) AssumeM, w  A andM, w  [t]C(A→ [s]EA). From the second
assumption and the reflexivity of RC we get M, w  A → [s]EA, thus,
M, w  [s]EA by the first assumption. So A ∈ EE(w, s) and, by the second
assumption, A → [s]EA ∈ EC(w, t). By the induction closure condition, we
have A ∈ EC(w, ind(t, s)). It remains to prove M, v  A for all v ∈ W
with (w, v) ∈ RC. This can easily be done by showing M, v  A for all
v ∈W with (w, v) ∈ (RE)n by induction on n ∈ N. Finally, we conclude that
M, w  [ind(t, s)]CA. ut



Definition 11. Let CS be a constant specification. A set Φ of formulae is called
CS-consistent if Φ 0CS φ for some formula φ. A set Φ is called maximal CS-
consistent if it is CS-consistent but has no CS-consistent proper extensions.

Whenever safe, we do not mention the constant specification and only talk about
consistent and maximal consistent sets. It can be easily shown that maximal
consistent sets contain all axioms of LPC

h and are closed under modus ponens.

Definition 12. For a set Φ of formulae we define

Φ/~ := {A : there is a t ∈ Tm~ such that [t]~A ∈ Φ} .

Definition 13. Let CS be a constant specification. The canonical AF-model
M = (W,R, E , ν) meeting CS is defined as follows:
1. W := {w ⊆ FmLPC

h
: w is a maximal CS-consistent set};

2. Ri := {(w, v) ∈W ×W : w/i ⊆ v};
3. E~(w, t) := {A ∈ FmLPC

h
: [t]~A ∈ w};

4. ν(Pn) := {w ∈W : Pn ∈ w}.

Lemma 14. Let CS be a constant specification. The canonical AF-model meet-
ing CS is an AF-model meeting CS.

Proof. The proof of reflexivity and transitivity of each Ri as well as the ar-
gument for the constant specification, application, sum, and inspection closure
conditions is the same as in the single-agent case (see [12]). Of the remaining
five closure conditions we show two representative cases:
(induction) Assume A ∈ EE(w, s) and (A → [s]EA) ∈ EC(w, t). Then we have

[s]EA ∈ w and [t]C(A → [s]EA) ∈ w. From `CS [s]EA → A (Lemma 1.1)
and the induction axiom it follows by maximal consistency that A ∈ w and
[ind(t, s)]CA ∈ w. Therefore, A ∈ EC(w, ind(t, s)).

(monotonicity) We show only the case of ∗ = C since the other cases are the
same as in [12]. It is sufficient to prove by induction on n ∈ N that

if [t]CA ∈ w and (w, v) ∈ (RE)n, then [t]CA ∈ v . (3)

Base case n = 1. Assume (w, v) ∈ RE, i.e. w/i ⊆ v for some i. As [t]CA ∈ w,
[πiccl2(t)]i [t]CA ∈ w by maximal consistency, and hence [t]CA ∈ w/i ⊆ v.
The argument for the induction step is similar.
Now assume (w, v) ∈ RC =

⋃∞
n=1(RE)n and A ∈ EC(w, t), i.e. [t]CA ∈ w. As

shown above, [t]CA ∈ v. Thus, A ∈ EC(v, t). ut

Remark 15. Let R′C denote the binary relation on W given by

(w, v) ∈ R′C if and only if w/C ⊆ v .

An argument similar to the one just used for monotonicity shows that RC ⊆ R′C.
However, the converse does not hold for any pure C-axiomatically appropriate
constant specification, which we show by adapting an example from [17]. Let

Φ := {[sn]E . . . [s1]EP : n ∈ N, s1, . . . , sn ∈ TmE} ∪ {¬ [t]CP : t ∈ TmC} .



This set is consistent for any P ∈ Prop because it is easy to construct a model
for each finite subset of Φ. Thus, there is a maximal consistent set w ⊇ Φ.
Set Ψ := {¬P} ∪ (w/C). Ψ is also consistent, otherwise, by Corollary 6, there
would have existed a term s such that [s]CP ∈ w, which would contradict the
consistency of w. Let v be a maximal consistent set that contains Ψ , i.e. v ⊇ Ψ .

Clearly, w/C ⊆ v, i.e. (w, v) ∈ R′C, but (w, v) /∈ RC because that would imply
P ∈ v, which cannot happen. It follows that RC ( R′C.

Similarly, we could define R′E by (w, v) ∈ R′E if and only if w/E ⊆ v. However,
R′E = RE for any C-axiomatically appropriate constant specification.

Lemma 16 (Truth Lemma). Let CS be a constant specification andM be the
canonical AF-model meeting CS. For all formulae A and all worlds w ∈W ,

A ∈ w if and only if M, w  A .

Proof. The proof is by induction on the structure of A. The cases for proposi-
tional variables and propositional connectives are immediate by the definition
of  and the maximal consistency of w. We check the remaining cases:
Case A is [t]iB. Assume A ∈ w. Then B ∈ w/i and B ∈ Ei(w, t). Consider
any v such that (w, v) ∈ Ri. Since w/i ⊆ v, it follows that B ∈ v and thus, by
induction hypothesis, M, v  B. From this M, w  A immediately follows.

For the converse, assumeM, w  [t]iB. By definition of  we getB ∈ Ei(w, t),
from which [t]iB ∈ w immediately follows by definition of Ei.
Case A is [t]EB. Assume A ∈ w and consider any v such that (w, v) ∈ RE.
Then (w, v) ∈ Ri for some 1 ≤ i ≤ h, i.e. w/i ⊆ v. By definition of EE we get
B ∈ EE(w, t). By maximal consistency of w, it follows that [πit]iB ∈ w, and
thus B ∈ w/i ⊆ v. Since, by induction hypothesis, M, v  B, we conclude that
M, w  A. The argument for the converse repeats the one from the previous
case.
Case A is [t]CB. Assume A ∈ w and consider any v such that (w, v) ∈ RC,
i.e. (w, v) ∈ (RE)n for some n ∈ N. As in the previous cases, B ∈ EC(w, t) by
definition of EC. By (3) we find A ∈ v and thus, by C-reflexivity and maximal
consistency, also B ∈ v. Hence, by the induction hypothesis M, v  B. Now
M, w  A immediately follows. The argument for the converse repeats the one
from the previous cases. ut

Note that the converse directions in the proof above are far from trivial in
the modal case, see e.g. [17]. The last case, in particular, usually requires more
sophisticated methods that guarantee the finiteness of the model.

Theorem 17 (Completeness). LPC
h(CS) is sound and complete with respect

to the class of AF-models meeting CS, i.e. for all formulae A ∈ FmLPC
h

`CS A if and only if CS A .

Proof. Soundness has already been shown in Lemma 10. For completeness let
M be the canonical AF-model meeting CS and assume 0CS A. Then {¬A} is
CS-consistent and hence contained in some maximal CS-consistent set w ∈ W .
So, by Lemma 16, M, w  ¬A and hence, by Lemma 14, 1CS A. ut



M-models were introduced as semantics for LP by Mkrtychev [18]. They form a
subclass of F-models (see [12]).

Definition 18. An M-model is a singleton AF-model.

Theorem 19 (Completeness with respect to M-models). LPC
h(CS) is also

sound and complete with respect to the class of M-models meeting CS.

Proof. Soundness follows immediately from Lemma 10. Now assume that 0CS A,
then {¬A} is CS-consistent and hence M, w  ¬A for some world w0 ∈ W in
the canonical AF-model M = (W,R, E , ν) meeting CS.

Let M′ = (W ′, R′, E ′, ν′) be the restriction of M to {w0}, i.e. W ′ := {w0},
R′~ := {(w0, w0)} for any ~, E ′ := E � (W ′ × Tm), and ν′(Pn) := ν(Pn) ∩W ′.

SinceM′ is clearly an M-model meeting CS, it remains to demonstrate that
M′, w0  B if and only ifM, w0  B for all formulaeB. We proceed by induction
on the structure of B. The cases where either B is a propositional variable or
its primary connective is propositional are trivial. Therefore, we only show the
case of B = [t]~C. First, observe that

M, w0  [t]~C if and only if C ∈ E ′~(w0, t) . (4)

Indeed, by Lemma 16, M, w0  [t]~C if and only if [t]~C ∈ w0 which, by
definition of the canonical AF-model, is equivalent to C ∈ E~(w0, t) = E ′~(w0, t).

If M, w0  [t]~C, then M, w0  C since R~ is reflexive. By induction
hypothesis,M′, w0  C. By (4) we have C ∈ E ′~(w0, t) and thusM′, w0  [t]~C.

IfM, w0 1 [t]~C, then by (4) we have C /∈ E ′~(w, t) and thusM′, w0 1 [t]~C.
ut

Corollary 20 (Finite model property). LPC
h(CS) enjoys the finite model

property with respect to AF-models.

5 Conservativity

Yavorskaya in [20] introduced a 2-agent version of LP, which we extend to an
arbitrary h in the natural way:

Definition 21. The language of LPh is obtained from that of LPC
h by restricting

the set of operations to ·i, +i, and !i and dropping all terms from TmE and TmC.
The axioms are restricted to application, sum, reflexivity, and inspection for
each i. The definition of constant specification is changed accordingly.

We show that LPC
h is conservative over LPh by adapting a technique from [13].

Definition 22. The mapping × : FmLPC
h
→ FmLPh

is defined as follows:
1. P× = P for propositional variables P ∈ Prop;
2. × commutes with propositional connectives;

3. ([t]~A)× =

{
A× if t contains a subterm s ∈ TmE ∪ TmC,

[t]~A× otherwise.



Theorem 23. Let CS be a constant specification for LPC
h. For an arbitrary for-

mula A ∈ FmLPh
, if LPC

h(CS) ` A then LPh(CS×) ` A.

Proof. Since A× = A for any A ∈ FmLPh
, it suffices to demonstrate that for any

formula D ∈ FmLPC
h
, if LPC

h(CS) ` D, then LPh(CS×) ` D×, which can be done
by induction on the derivation of D.
Case when D is an instance of the application axiom

[t]∗(B → C)→ ([s]∗B → [t · s]∗C).

We distinguish the following possibilities:
1. Both t and s contain a subterm from TmE ∪ TmC. Then D× has the form

(B× → C×)→ (B× → C×), which is a tautology and, thus, an axiom of LPh.
2. Neither t nor s contains a subterm from TmE∪TmC. Then D× is an instance

of the application axiom of LPh.
3. Term t contains a subterm from TmE ∪ TmC while s does not. Then D× is

(B× → C×) → ([s]iB× → C×), which can be derived in LPh(CS×) from
the reflexivity axiom [s]iB× → B× by propositional reasoning. In this case,
× does not map an axiom of LPC

h to an axiom of LPh.
4. Term s contains a subterm from TmE ∪ TmC while t does not. Then D× is

[t]i(B× → C×)→ (B× → C×), an instance of the reflexivity axiom of LPh.
Cases of other axioms are similar and, thus, omitted here. The only other sit-
uation when an axiom is not mapped to an axiom is an instance of the tupling
axiom [t1]1B ∧ · · · ∧ [th]hB → [〈t1, . . . , th〉]EB with none of ti’s containing any
subterms from TmE ∪ TmC.
Case when D is [c]~B ∈ CS. Then D× is either B× or [c]iB×. In the former
case, B is an axiom of LPC

h and hence B× is derivable in LPh(CS×) as shown
above; in the latter case, [c]iB× ∈ CS×. Case of modus ponens is trivial. ut

Remark 24. Note that CS× need not, in general, be a constant specification
for LPh because, as noted above, for an axiom D of LPC

h its image D× is not
always an axiom of LPh. To ensure that CS× is a proper constant specification
(A → B) → ([s]iA → B) and [t1]1A ∧ · · · ∧ [th]hA → A have to be made
axioms of LPh. Another option is to use Fitting’s concept of embedding one
justification logic into another, which involves replacing constants in D with
more complicated terms in D× (see [13] for details).

6 Forgetful Projection and a Word on Realization

Most justification logics are introduced as explicit counterparts to particular
modal logics in the strict sense described in Sect. 1. Although the realization
theorem for LPC

h remains an open problem, in this section we prove that each
theorem of our logic LPC

h states a valid modal fact if all terms are replaced with
the corresponding modalities, which is one direction of the realization theorem.
We also discuss approaches to the harder opposite direction.



We start with recalling the modal language of common knowledge. Modal
formulae are defined by the following grammar

A ::= Pj | ¬A | (A ∧A) | (A ∨A) | (A→ A) | �iA | EA | CA ,

where Pj ∈ Prop. The set of all modal formulae is denoted by FmS4C
h
.

The Hilbert system S4C
h [17] is given by the modal axioms of S4 for individual

agents, necessitation rule for �1, . . . ,�h and C, modus ponens and the axioms

C(A→ B)→ (CA→ CB), CA→ A, EA↔ �1A ∧ · · · ∧�hA,

A ∧ C(A→ EA)→ CA, CA→ E(A ∧ CA).

Definition 25 (Forgetful projection). The mapping ◦ : FmLPC
h
→ FmS4C

h
is

defined as follows:
1. P ◦ = P for propositional variables P ∈ Prop;
2. ◦ commutes with propositional connectives;
3. ([t]iA)◦ = �iA

◦;
4. ([t]EA)◦ = EA◦;
5. ([t]CA)◦ = CA◦.

Lemma 26. Let CS be any constant specification. For any formula A ∈ FmLPC
h

,
if LPC

h(CS) ` A, then S4C
h ` A◦.

Proof. The proof is by an induction on the derivation of A. ut

Definition 27 (Realization). A realization is a mapping r : FmS4C
h
→ FmLPC

h

such that (r(A))◦ = A. We usually write Ar instead of r(A).

We can think of a realization as a function that replaces occurrences of modal
operators (including E and C) by evidence terms of the corresponding type. The
problem of realization for a given pure C-axiomatically appropriate constant
specification CS can be stated as follows:

Is there a realization r such that LPC
h(CS) ` Ar for any theorem A of S4C

h?

A positive answer to this question constitutes the harder direction of the realiza-
tion theorem, which is often demonstrated using induction on a cut-free sequent
proof of the modal formula.

Cut-free systems for S4C
h are presented in [1] and [9]. They are based on an

infinitary ω-rule of the form

EmA,Γ for all m ≥ 1
CA,Γ

(ω).

However, realization of such a rule meets with serious difficulties in reaching
uniformity among the realizations of the approximants EmA.

A finitary cut-free system is obtained in [14] by finitizing this ω-rule via
the finite model property. Unfortunately, the “somewhat unusual” structural



properties of the resulting system (see discussion in [14]) make it hard to use for
realization.

The non-constructive, semantical realization method from [12] cannot be
applied directly because of the non-standard behavior of the canonical model,
see Remark 15.

Perhaps the infinitary system presented in [10], which is finitely branching
but admits infinite branches, can help in proving the realization theorem for LPC

h.
For now this remains work in progress.

7 Coordinated attack

To illustrate our logic we will now analyze the problem of coordinated attack
along the lines of [11], where also additional references can be found. Let us
briefly recall this classical problem. Suppose two divisions of an army, located
at distinct places, are about to attack an enemy. They have some means of com-
munication, but these may be unreliable, and the only way to secure a victory
is to attack simultaneously. How should generals G and H who command the
two divisions coordinate their attacks? Of course, general G could send a mes-
sage mG

1 with the time of attack to general H. Let us use the proposition del
to denote the fact that the message with the time of attack has been delivered.
If the generals trust the authenticity of the message, say because of a signature,
the message itself can be taken as an evidence that it has been delivered. So
general H, upon receiving the message, knows the time of attack, i.e.

[
mG

1

]
Hdel .

However, since communication is unreliable, G considers it possible that his mes-
sage was not delivered. But if general H sends an acknowledgment mH

2 , he in
turn cannot be sure whether the acknowledgement reached G prompting yet
another acknowledgement mG

3 by general G and so on.
In fact, common knowledge of del is a necessary condition for the attack.

Indeed, it is reasonable to assume it to be common knowledge among the generals
that they should only attack simultaneously or not attack at all, i.e. that they
attack only if both know that they attack: [t]C(att → [s]Eatt) for some terms s
and t. So by the induction axiom we get att → [ind(t, s)]Catt . Another reasonable
assumption is that it is common knowledge that neither general attacks unless
the message with the time of attack has been delivered: [r]C(att → del) for some
term r. Using the application axiom, we obtain att → [r · ind(t, s)]Cdel .

We now show that common knowledge of del cannot be achieved and, there-
fore, no attack will take place, no matter how many messages and acknowledge-
ments mG

1 , mH
2 , mG

3 , . . . are sent by the generals even in the case all messages
are successfully delivered.

In the classical modeling without evidence, the reason is that the sender of
the last message always considers the possibility that his last message, say mH

2k,
has not been delivered. To give a flavor of the argument carried out in de-
tail in [11], we provide a countermodel where mH

2 is the last message, it has
been delivered, but H is unsure of that, i.e.

[
mG

1

]
Hdel ,

[
mH

2

]
G

[
mG

1

]
Hdel , but

¬ [s]H
[
mH

2

]
G

[
mG

1

]
Hdel for all terms s. Indeed, consider the model M with



W := {0, 1, 2, 3}, ν(del) := {0, 1, 2}, RG being the reflexive closure of {(1, 2)},
RH being the reflexive closure of {(0, 1), (2, 3)}, and any evidence function E
such that del ∈ EH(0,mG

1 ) and
[
mG

1

]
Hdel ∈ EG(0,mH

2 ). Then, whatever EC
is, M, 0 1 [s]H

[
mH

2

]
G

[
mG

1

]
Hdel and M, 0 1 [t]Cdel for any s and t because

M, 3 1 del .
In our models with explicit evidence there is an alternative possibility for the

lack of knowledge: the absence of an acceptable evidence. To give an example,
G may receive the acknowledgment mH

2 but not consider it to be an admissible
evidence for

[
mG

1

]
Hdel because the signature of H is missing.

We now demonstrate that common knowledge of the time of attack cannot
emerge, basing the argument solely on the lack of admissible common knowledge
evidence. A corresponding M-model M = (W,R, E , ν) is obtained as follows:
W := {w}, Ri := {(w,w)}, ν(del) := {w}, and E is the minimal evidence
functions such that del ∈ EH(w,mG

1 ) and
[
mG

1

]
Hdel ∈ EG(w,mH

2 ). In this model
M,w 1 [t]Cdel for any evidence term t because del /∈ EC(w, t) for any t. To show
the latter statement, note that for any term t, by Lemma 26,

0
[
mG

1

]
Hdel ∧

[
mH

2

]
G

[
mG

1

]
Hdel → [t]Cdel (5)

because S4C
h 0 �Hdel∧�G�Hdel → Cdel , which is easy to show. Thus, the nega-

tion of the formula from (5) is satisfiable, and for each t there is a world wt in the
canonical AF-model with evidence function Ecan such that del ∈ Ecan

H (wt,m
G
1 )

and
[
mG

1

]
Hdel ∈ Ecan

G (wt,m
H
2 ), but by the Truth Lemma 16, del /∈ Ecan

C (wt, t).
Since Ecan � ({wt} × Tm) satisfies all the closure conditions, minimality of E
implies that EC(w, s) ⊆ Ecan

C (wt, s) for any term s. In particular, del /∈ EC(w, t)
for any term t.

8 Conclusions

We presented an explicit evidence system LPC
h with common knowledge, which is

a conservative extension of the minimal multi-agent explicit evidence logic. The
major open problem at the moment remains proving the realization theorem,
one direction of which we have demonstrated.

Our analysis of the problem of coordinated attack in the language of LPC
h

shows that the access to explicit evidence creates more alternatives than the
classical modal approach. In particular, the lack of knowledge can occur either
because messages are not delivered or because evidence of authenticity is missing.

We mostly concentrated on the study of C-axiomatically appropriate con-
stant specifications. For modeling distributed systems with different reasoning
capabilities of agents, it is also interesting to consider i-axiomatic appropriate,
E-axiomatic appropriate, and mixed constant specification, where only certain
aspects of reasoning are common knowledge.

We established soundness and completeness with respect to AF-models and
singleton M-models. Can other semantics for justification logics such as (arith-
metical) provability semantics [3, 4] and game semantics [19] be adapted to LPC

h?



There are further interesting questions: Is LPC
h decidable and, if yes, what is

its complexity compared to that of S4C
h? How robust is our treatment of common

knowledge if the individual modalities are taken to be of type K, K5, etc.?
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