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We consider interacting particle systems and their mean-field limits, which are frequently

used to model collective aggregation and are known to demonstrate a rich variety of pattern

formations. The interaction is based on a pairwise potential combining short-range repulsion

and long-range attraction. We study particular solutions, which are referred to as flocks in

the second-order models, for the specific choice of the Quasi-Morse interaction potential.

Our main result is a rigorous analysis of continuous, compactly supported flock profiles for

the biologically relevant parameter regime. Existence and uniqueness are proven for three

space dimensions, while existence is shown for the two-dimensional case. Furthermore, we

numerically investigate additional Morse-like interactions to complete the understanding of

this class of potentials.
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1 Introduction

Self-organization, complex pattern formation, and rich dynamic structures are common

features of collective motion of individuals. Fish shoals, bird flocks, insects swarms,

myxobacteria formations, and many others are just particular instances of these fascinating

phenomena [8, 14]. A large number of models have been introduced based on social

interaction mechanisms between individuals, namely: long-range attraction, short-range

repulsion, and alignment; see [18, 21, 26], for example.

Here we concentrate on the by-now classical models in which the attraction and

repulsion between individuals are taken into account via a pairwise radial potential

W (x) = U(|x|). The first-order aggregation model of swarming ( [6, 19, 20, 28]) then reads

dxi

dt
= − 1

N

∑
j�i

∇W (xi − xj). (1.1)

For the second-order model of swarming, an asymptotic cruise speed is fixed by the balance

of self-propulsion and friction terms, see [15, 24]. The governing system of equations for
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the particle dynamics (xi, vi) ∈ �n × �n, i = 1, 2, . . . , N is

dxi

dt
= vi,

dvi

dt
= αvi − β|vi|2vi − 1

N

∑
j�i

∇W (xi − xj).
(1.2)

The self-propulsion term αvi − β|vi|2vi with the Rayleigh-type dissipation can also be

generalized to the form f(|vi|)vi for some function f : [0,∞) → �, such that f(0) > 0

and f(υ) becomes negative when υ is large enough. In both models, the potential W is

assumed to be repulsive at short range (U(r) decreases for small r > 0) and attractive

at long range (U(r) increases for r large enough). The most popular one used in the

literature is the Morse-type potential [15, 24]:

U(r) = CRe
−r/�R − CAe−r/�A , (1.3)

where CR, CA specify the strength of the repulsive and attractive forces, and �R, �A specify

their length scales.

Depending on the parameters, system (1.2) exhibits a rich variety of patterns: flocks,

rotating mills, rings, and clumps [15, 24]. To further study the emergence and bifurcation

of these patterns, one has to resort to the corresponding continuum equations, derived

from either kinetic theory or mean field approximation in the limit when the number of

particles N goes to infinity. The system of equations for the continuous density ρ and the

velocity u reads [9, 13, 24]

∂ρ

∂t
+ div(ρu) = 0,

∂u

∂t
+ (u · ∇)u = (α − β|u|2)u − ∇W � ρ,

(1.4)

where W � ρ is the convolution between W and ρ. In particular, a coherent moving flock

is a solution such that u(x, t) = u0, ρ(x, t) = ρF (x − u0t) for some constant velocity u0

with |u0|2 = α
β
, and steady density ρF satisfying the equation ∇W �ρF = 0 on the support

of ρF [1, 9, 11, 12]. If we deal with densities supported on an open set, the existence of

flock solutions for (1.2) is reduced to W � ρ = D, on supp[ρ] for some constant D, where

the subscript F for the steady flock solution ρF is dropped in the rest of the paper for

simplicity.

As a matter of fact, flock solutions in this generality coincide with the stationary

solutions for the first-order continuum model derived from (1.1), which reads

∂ρ

∂t
+ div((−∇W � ρ)ρ) = 0. (1.5)

The existence of some particular explicit stationary solutions where the density is

uniformly concentrated on a ring [3,23], for both discrete model (1.1) and continuum case

(1.5), has led to a thorough study of their stability and properties in the framework of the

first-order models [2,3,7,23,30,31]. The stability of the ring flock solutions for the second-

order model (1.2) has been recently tackled in [1]. However, in many instances, as in the
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archetypical Morse potentials, we do observe nicely compactly supported radial flocks in

simulations. In the rest of this work, we will concentrate in finding non-concentrated flock

profiles for both (1.4) and (1.5).

Definition 1.1 (Flock profile) For a given W , a flock profile is defined as a radially sym-

metric continuous probability density ρ(r), compactly supported on a ball of radius RF

satisfying the characteristic equation

W � ρ = D, on supp[ρ] = B(0, RF ) for some constant D. (1.6)

Despite their observation in simulations of (1.2) with a variety of attractive–repulsive

potentials, there is nearly no analytical study on the existence and bifurcation of these

flocks in the parameter space. The reason lies in the great difficulties in solving the integral

equation (1.6) for popular potentials such as (1.3). Multiple solutions may exist (see [24])

by a Newton solver, where the non-physical solutions are shown to be unstable. Other

available solutions are in general asymptotic, when the the density is concentrated on a

thin annulus [4]. Another fully explicit case corresponds to the Newtonian repulsion with

quadratic confinement W (x) = |x|2
2

− |x|2−n

2−n
, for which the solution is the characteristic

function of a ball with suitable radius. However, for any other member of the family of

potentials

W (x) =
|x|a
a

− |x|b
b

, a > b � 2 − n ,

with the convention that |x|0
0

= log x, they are no longer explicit, see [2,16,17]. Moreover,

flock profiles play an important role on the dynamics of (1.2) since they form a stable

family of attracting solutions as shown in [10] for general potentials under suitable

conditions.

One approach to get explicit solutions of equation (1.6) is to replace W with an ana-

lytically more tractable kernel, for instance, the so-called Quasi-Morse potential proposed

in [12], instead of (1.3). The great simplification with the Quasi-Morse potential comes

from an explicit expression of ρ, characterized by only three parameters, which is ob-

tained by solving an ordinary differential equation (ODE) derived from (1.6). The three

parameters are found in [12] by a numerical procedure involving the computation of the

convolution on the left-hand side of (1.6). The resulting numerical solutions in two and

three dimensions agree very well with those approximated from particle simulations. In

this paper, we show that this computationally intensive convolution can be evaluated

as a few algebraic terms, hence the existence/non-existence of the flock profile in the

parameter space can be discussed in detail.

We start in Section 2 by summarizing the properties of the Quasi-Morse potentials

and deriving new explicit formulas for the convolution (1.6). Section 3 is devoted to the

analysis of existence and uniqueness of flock profiles in a three-dimensional (3D) case

with respect to the parameter space of the potential. In Section 4, we perform a similar

analysis in two dimensions to identify the existence of flock profiles in parameter space.

Due to the simplification of the Bessel functions in three dimensions, the expressions are

easier to manage, and the result obtained is more complete in three dimensions. Section 5
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deals with further remarks on the Quasi-Morse potentials and asymptotic cases. Finally,

we end this work in Section 6 by investigating similar properties in Morse-like potentials

to numerically ascertain how generic is the case of the Quasi-Morse potential.

2 The Quasi-Morse potential and explicit flock profiles in general dimensions

For completeness, we first review the basic properties and the explicit solutions proposed

in [12]. The new pairwise Quasi-Morse potential W (x) = U(|x|) still assumes the form

U(r) = V (r) − V�(r), where now V (r) is the fundamental solution of the second-order

differential operator Δ − k2 Id (i.e., ΔV − k2V = δ0) and V�(r) = CV (r/�) is a rescaled

version of V (r) (i.e., ΔV� − k2

�2 V� = �n−2δ0). For simplicity, here the attraction strength CA
and the length scale �A are normalized to be unity, and then C = CR and � = �R.

The biologically relevant cases correspond to the radial potential U(r) possessing a

unique global minimum at some positive radius. It was proven in [12] that the biologically

relevant parameter region is C�n−2 > 1 and � < 1 for dimensions one to three. The explicit

expressions for V (r) in these dimensions are given in [12] as −e−kr/2k, −K0(kr)/2π, and

−e−kr/4πr respectively. To present the discussion in a unified context for dimension n, we

write V (r) in terms of the modified Bessel functions of the second kind [25], i.e.,

V (r) = − (2π)− n
2 r1− n

2 k
n
2 −1Kn

2 −1(kr),

and correspondingly

U(r) = (2π)− n
2 r1− n

2 k
n
2 −1

(
C�

n
2 −1Kn

2 −1

(
kr/�

)
− Kn

2 −1

(
kr

))
. (2.1)

In particular, U reduces to the conventional Morse potential (1.3) in dimension one as

K− 1
2
(x) =

√
π
2x
e−x (see Appendix A, with other properties of the Bessel function Jν(x)

and the modified Bessel functions Kν(x) and Iν(x) used later).

One of the advantages of the Quasi-Morse potential (2.1) is that the integral equa-

tion (1.6) can be transformed into a second-order ODE for the radial density ρ(r).

Applying the operators Δ − k2 Id and Δ − k2

�2 Id to both sides of (1.6) as in [4, 12], the

density ρ now satisfies

Δρ + Aρ =
k4

�2 − C�n
D, on supp ρ,

with the aggregate potential parameter A = k2
(
1 − C�n

)
/
(
C�n − �2

)
. In radial coordinate

r, this equation reads

1

rn−1

d

dr
rn−1 dρ

dr
± a2ρ =

k4

�2 − C�n
D, a =

√
|A|. (2.2)

The general solution, assumed to be bounded at the origin, takes the form (see [12] for

n = 2, 3)

ρ(r) =

⎧⎪⎪⎨
⎪⎪⎩
μ1r

1− n
2 J n

2 −1(ar) + μ2, A > 0,

μ1r
2 + μ2, A = 0,

μ1r
1− n

2 I n
2 −1(ar) + μ2, A < 0,

(2.3)
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on [0, R] and ρ(r) ≡ 0 on (R,∞). For any fixed radius R, parameters μ1 and μ2 have to be

adjusted to fit the integral equation (1.6) and ensure positivity of ρ(r) on r ∈ [0, R]. In fact,

this is exactly how the numerical solutions are obtained in [12], where the observed flock

profiles exist only when A > 0. Despite the perfect agreement with particle simulations,

the convolution W �ρ remains the bottleneck of the computation. In this paper, we show

that the convolution can also be reduced to a few algebraic terms, eventually leading

to the rigorous existence/non-existence proofs of radial solutions in different parameter

regimes.

The simplification of the convolution W � ρ is suggested by the following observation:

When operators Δ − k2 Id and Δ − k2

�2 Id are applied on both sides of (1.6), we get a

fourth-order ODE (in the radial coordinate r),

(
1

rn−1

d

dr
rn−1 d

dr
− k2

�2

) (
1

rn−1

d

dr
rn−1 d

dr
− k2

)
W � ρ =

k4

�2
D

for the radial function W � ρ, which is equivalent to (2.2). The general solution of the

fourth-order ODE takes the form

(W � ρ)(r) = D + λ1r
1− n

2 I n
2 −1(kr/�) + λ2r

1− n
2 I n

2 −1(kr)

+ λ3r
1− n

2 Kn
2 −1(kr/�) + λ4r

1− n
2 Kn

2 −1(kr), 0 � r � R, (2.4)

for some coefficients λ1, . . . , λ4. We will find the desired flock profiles when all λi vanish

and thus (1.6) is fulfilled. We first note that λ3 and λ4 have to vanish in order to have a

bounded solution at the origin with bounded derivatives. Imposing that λ1 and λ2 vanish

will lead to necessary and sufficient conditions for a flock profile. Following this strategy,

D, λ1, and λ2 will be expressed in terms of the support size R and the coefficients μ1, μ2

by inserting (2.3) on the left-hand side of (2.4).

First, we compute λ1, λ2 for the explicit solution in (2.3). It turns out that the convolution

W � ρ can be obtained by direct integrations. To start, because of the radial symmetry,

W � ρ can be written as

(W � ρ)(x) =

∫
|y|�R

W (x − y)ρ(|y|)dy =

∫ R

0

(∫
∂B(0,1)

W (x − sω)dω

)
ρ(s)sn−1ds. (2.5)

This convolution, as a function of r = |x|, simplifies in the particular case of the Quasi-

Morse potential W (x) = V (|x|)−CV (|x|/�). In fact, the integral on the unit sphere ∂B(0, 1)

above can be evaluated using the following formula (see [27, p. 90]):

∫ π

0

(
a2 + b2 − 2ab cos θ

)−ν/2
Kν

((
a2 + b2 − 2ab cos θ

)1/2
)

sin2ν θdθ

= π1/2Γ
(1

2
+ ν

)( 2

ab

)ν

Iν
(
min(a, b)

)
Kν

(
max(a, b)

)
. (2.6)

Let us detail the computation of this angular integral for the second component V�(r) =

CV (r/�) of W , as the integral for V (r) is the special case of C = � = 1. Setting ν = n/2−1,
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a = kr/�, and b = ks/�, the angular integration involving V� in (2.5) reads

∫
∂B(0,1)

V�(x − sω)dω = −C
2π

n−1
2

Γ
(
n−1
2

) (2π)− n
2 kn−2

∫ π

0

D(θ)−ν/2Kν

(
D(θ)1/2

)
sin2ν θdθ

= −C�n−2(rs)1− n
2 I n

2 −1

(k

�
min(r, s)

)
Kn

2 −1

(k

�
max(r, s)

)
, (2.7)

where D(θ) = k2

�2 (r
2 + s2 − 2rs cos θ). As a result, the convolution (2.5) becomes an integral

in s only and the convolution of the repulsive potential V� with a density ρ supported on

the ball B(0, R) is

V� � ρ(x) = C�n−2r1− n
2

[
Kn

2 −1(kr/�)

∫ r

0

s
n
2 I n

2 −1(ks/�)ρ(s)ds

+ I n
2 −1(kr/�)

∫ R

r

s
n
2 Kn

2 −1(ks/�)ρ(s)ds

]
, (2.8)

for 0 � r = |x| � R. This integral, when ρ takes the special form (2.3), can be further sim-

plified using various integral identities of (modified) Bessel functions. Since these algebraic

manipulations do not bring any further insights, we postponed these to Appendix B. The

final result, whose general forms are already expected from (2.4), is as follows.

Proposition 2.1 Given the Quasi-Morse potential W (x) = U(|x|) in (2.1) and ρ defined in

(2.3), the convolution W � ρ has the expression:

W � ρ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ2

k2 (C�n − 1) + R
n
2

k
r1− n

2

[
B+(1)Kn

2
(kR)I n

2 −1(kr)

−C�n−1B+(�)Kn
2
(kR/�)I n

2 −1(kr/�)
]

A > 0,

2nμ1

k4 (C�n+2 − 1) + R
n
2 r1− n

2

[
B0(1)Kn

2
(kR)I n

2 −1(kr)

−C�n−1B0(�)Kn
2
(kR/�)I n

2 −1(kr/�)
]

A = 0,

μ2

k2 (C�n − 1) + R
n
2

k
r1− n

2

[
B−(1)Kn

2
(kR)I n

2 −1(kr)

−C�n−1B−(�)Kn
2
(kR/�)I n

2 −1(kr/�)
]

A < 0,

(2.9)

where B+(ξ) = B̃+(ξ)μ1 + μ2, B0(ξ) = B̃0(ξ)μ1 + μ2, B−(ξ) = B̃−(ξ)μ1 + μ2, and

B̃+(ξ) = R1− n
2

(
1 +

a2ξ2

k2

)−1
[
J n

2 −1(aR)
Kn

2 −2

(
kR/ξ

)
Kn

2

(
kR/ξ

) +
aξ

k
J n

2 −2(aR)
Kn

2 −1

(
kR/ξ

)
Kn

2

(
kR/ξ

)
]
,

B̃0(ξ) =
2ξ

k
R
Kn

2 +1

(
kR/ξ

)
Kn

2

(
kR/ξ

) + 1, (2.10)

B̃−(ξ) = R1− n
2

(
1 − a2ξ2

k2

)−1
[
I n

2 −1(aR)
Kn

2 −2

(
kR/ξ

)
Kn

2

(
kR/ξ

) +
aξ

k
I n

2 −2(aR)
Kn

2 −1

(
kR/ξ

)
Kn

2

(
kR/ξ

)
]
.
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Table 1. Formulas for λ1 and λ2 in (2.4) when ρ is given by (2.3)

λ1 λ2

A > 0 −C R
n
2

k
�n−1B+(�)Kn

2
(kR/�) R

n
2

k
�n−1B+(1)Kn

2
(kR)

A = 0 −CR
n
2 �n−1B0(�)Kn

2
(kR/�) R

n
2 �n−1B0(1)Kn

2
(kR)

A < 0 −C R
n
2

k
�n−1B−(�)Kn

2
(kR/�) R

n
2

k
�n−1B−(1)Kn

2
(kR)

From now on, subscripts of B or B̃, which indicate the sign of A, will be omitted

when the discussion is relevant to all three cases (similarly for other variables such as the

coefficient matrix M mentioned below).

Equipped with these expressions of the convolution, we further study the existence/non-

existence of the flock profile in parameter space. As mentioned above, the explicit formulas

allow us to write λ1 and λ2, by plugging (2.9) into (2.4), in terms of μ1, μ2, and R. Since

r1−n/2I n
2 −1(kr) and r1−n/2I n

2 −1(kr/�) are independent, we deduce the formulas in Table 1.

For the flock profile we are interested in, λ1 and λ2 must be zero. In view of Table 1,

this is equivalent to the conditions B(�) = 0, B(1) = 0, since Kν(x) is non-zero on (0,∞).

Therefore, there exists a flock profile only if the homogeneous equations for μ = (μ1, μ2)
T

Mμ =

(
B̃(�) 1

B̃(1) 1

) (
μ1

μ2

)
=

(
0

0

)
(2.11)

are satisfied. These two homogeneous equations, together with the total unit mass con-

straint for the non-negative density ρ, determine the three characterizing parameters

(μ1, μ2, RF ) of flock profile.

A careful examination of the three equations shows that the radius of the support R

is determined by the scalar equation detM = B̃(�) − B̃(1) = 0, since μ1 and μ2 must be

nontrivial solutions of (2.11). In fact, all the subsequent results are based on studying the

roots of detM and the properties of B̃(ξ) as functions of R. Below we focus on the physical

2D and 3D cases, on the biologically relevant regime � < 1, C�n−2 > 1. However, unlike

the unified derivation of the convolution to (2.9), the existence/non-existence question is

much more complicated and has to be treated separately.

The main results of this paper (Theorems 3.1 and 4.1) in the biologically relevant

regimes are summarized in Figure 1. We show the existence and uniqueness of flock

profiles in the 3D case for A > 0 and non-existence otherwise. In the 2D case, we show

the existence of flock profiles for A > 0 and non-existence otherwise. However, we cannot

conclude the uniqueness of flock profiles. Because of the connection of the (modified)

Bessel functions in three dimension (and odd dimensions in general) with the well-known

trigonometric functions, we consider this case first.

3 Existence theory of flock profiles in three dimensions

We first turn to the existence theory of flock profiles in three space dimensions, as in

this case the Bessel functions in the potential as well as in all subsequent computations

reduce to trigonometric functions (see Appendix A). The aggregate potential parameter
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(a) Results of Section 3, n = 3
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(b) Results of Section 4, n = 2

Figure 1. (Colour online) Phase-diagrams of parameters C, � for the Quasi-Morse potential illus-

trating the combined results of Theorems 3.1 and 4.1. For both dimensions n = 2, 3, the aggregate

parameter A divides the biologically relevant parameter space {(C, �) | C�n−2 > 1, � < 1} into two

subregions I and II by the curve C�n = 1. In region I, A > 0, a flock profile always exists. In

region II and the separatrix, A � 0, no flock profiles exist. When n = 3, existing flock profiles are

additionally known to be unique.

A is computed as

A = k2
(
1 − C�3

)
/
(
C�3 − �2

)
, (3.1)

and the expressions (2.10) used in the explicit convolution (2.9) simplify to

B̃+(ξ) =

√
2

aπ

(
1 +

a2ξ2

k2

)−1 [
sin aR +

aξ

k
cos aR

] k

kR + ξ
, (3.2a)

B̃0(ξ) =
2ξ

k2

(kR)2 + 3kRξ + 3ξ2

kR + ξ
+ 1, (3.2b)

B̃−(ξ) =

√
2

aπ

(
1 − a2ξ2

k2

)−1 [
sinh aR +

aξ

k
cosh aR

] k

kR + ξ
, (3.2c)

as K3/2(x)/K1/2(x) = 1 + 1/x and K5/2(x)/K3/2(x) = (x2 + 3x + 3)/x(x + 1). Based on

numerical findings, it has been conjectured in [12] that flock profiles can be found only for

the Quasi-Morse potentials where A > 0. The insight from the above explicit calculations

enables us now to prove existence and uniqueness of flock profiles, and thus to analytically

investigate the phase diagram of parameters C, � in the biologically relevant scenarios

C� > 1, � < 1 (see Figure 1). In fact, the following theorem holds.

Theorem 3.1 Let W be a Quasi-Morse potential in space dimension n = 3 with parameters

within the biologically relevant regime C� > 1, � < 1. Then flock profiles exist if and only if

A > 0. Furthermore, if A > 0, there exists a unique flock profile.

To prove Theorem 3.1, we begin with the discussion on the non-existence of flock

profiles for A � 0.
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Proof (Theorem 3.1, non-existence for A � 0) When A = 0, for all R, we can show

detM0 = B̃0(�) − B̃0(1) < 0 by a straightforward explicit computation using (3.2b). We

skip that calculation here as the case A = 0 will also be proven in general dimensions in

Theorem 4.1.

Next, suppose that A < 0. From (3.1), this implies C�3 > � as C� > 1, � < 1 and

furthermore, we have a2 = −A = k2(1 − C�3)/(�2 − C�3). The determinant of M−
simplifies to

detM− = B̃−(�) − B̃−(1) =

√
2

πaR2

�2(C� − 1)

1 − �2
·[(

1

C�3

kR

kR + �
− kR

kR + 1

)
sinh aR +

a

k

(
1

C�2

kR

kR + �
− kR

kR + 1

)
cosh aR

]

=

√
2

πa

k�2(C� − 1)

1 − �2

cosh aR

C�3(kR + �)(kR + 1)
f−(R),

where

f−(R) =
a�

k
(1 − C�3) + kR(1 − C�3) tanh aR + (� − C�3)aR + (1 − C�4) tanh aR. (3.3)

Clearly, the sign of detM− is determined by the sign of f−(R). The first two terms in (3.3)

are negative. If C�4 > 1, the last two terms are negative as C�3 > 1 ⇒ C�3 > �. If to the

contrary C�4 � 1, the sum of the last two terms in (3.3) satisfies

(� − C�3)aR + (1 − C�4) tanh aR < (1 + � − C�3 − C�4)aR = (1 + �)(1 − C�3)aR < 0,

as tanh aR � aR. Thus, detM− < 0 for all R > 0 and there is no real positive root of

detM−. �

Proving existence of a unique flock profile when A > 0 is more difficult and relies on

various properties of the trigonometric representation of the original half-integer order

Bessel functions. Our goal is to show that detM+ is oscillatory with decaying amplitude,

implying the existence of infinitely many positive roots R∗
j , j = 1, 2, . . . , for detM+ = 0.

However, only the first positive root gives rise to a strictly positive density on the support

[0, R∗
1], and the density for any other roots must be negative somewhere on the support

[0, R∗
j ], j � 2. This asserted behaviour of detM+ for R > 0 is illustrated in Figure 2, with

particular parameters taken from [12].

Proof (Theorem 3.1, existence and uniqueness for A > 0) The proof is separated into

several steps.

1. There are infinitely many positive roots for detM+ = 0. From (3.2a), the determinant

detM+ = B̃+(�) − B̃+(1) can be written as

detM+ = k

√
2

aπ

(
1

(1 + a2�2/k2)(kR + �)
− 1

(1 + a2/k2)(kR + 1)

)
sin aR

+

√
2a

π

(
�

(1 + a2�2/k2)(kR + �)
− 1

(1 + a2/k2)(kR + 1)

)
cos aR. (3.4)
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Figure 2. (Colour online) Multiple zeros R∗ of the equation detM+ = 0 (left) and the corresponding

densities (right). Only the first zero R∗
1 gives rise to strict positive density ρ(r) on the support. Here

the parameters, C = 1.255, � = 0.8, k = 0.2, A = 5.585 (or a = 2.362), are the same as in [12].

We observe that the coefficient of sin aR in the above expression is positive, since (1 +

a2�2/k2)−1 > (1 + a2/k2)−1 and (kR + �)−1 > (kR + 1)−1. Evaluating detM+ at R̃j =

(j − 1/2)π/a, j = 1, 2, . . ., the roots of cos aR, we deduce that

detM+

∣∣∣
R=R̃j

= (−1)jk

√
2

aπ

(
1

(1 + a2�2/k2)(kR̃j + �)
− 1

(1 + a2/k2)(kR̃j + 1)

)

has alternating signs. Therefore, there is at least one root between (R̃j , R̃j+1), proving the

existence of infinitely many positive roots for detM+ = 0.

2. The function detM+ has no root on (0, R̃1) and has a unique root R∗
j on (R̃j , R̃j+1),

j = 1, 2, . . .. We write detM+ in the following form,

detM+

cos aR
= k

√
2

aπ

(
1

(1 + a2�2/k2)(kR + �)
− 1

(1 + a2/k2)(kR + 1)

)(
tan aR + g(R)

)
,

where

g(R) =
a

k

(a2� − k2)kR + a2�(� + 1)

a2(� + 1)kR + k2 + a2(�2 + � + 1)
(3.5a)

=
a

k

[
a2� − k2

a2(� + 1)
+

(k2 + a2)(k2 + a2�2)

a2(� + 1)
(
a2(� + 1)kR + k2 + a2(�2 + � + 1)

)
]
. (3.5b)

It is easy to check that the roots of detM+ = 0 are the same as the roots of tan aR+g(R) =

0, and this auxiliary function g is used to show various estimates at various stages of

the proof below. Note now that function tan aR + g(R) is strictly increasing on (R̃j , R̃j+1),
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Figure 3. (Colour online) Illustrations of the generic properties proved in three dimensions when

A > 0: (a) tan aR and g(R) intersects only once at R∗
j in the interval [R̃j , R̃j+1); (b) Density ρ(r) with

support R∗
j , j � 2 has opposite signs at the origin and at R̃2, while that with R∗

1 is monotonically

decreasing from the origin.

since d
dR

tan aR � a and

g′(R) > g′(0) = −a
(k2 + a2)(k2 + a2�2)(
k2 + a2(�2 + � + 1)

)2
> −a.

Combining this with the fact that

lim
R→R̃∓

j

(tan aR + g(R)) = ±∞,

we obtain that there is a unique root R∗
j on (R̃j , R̃j+1), as illustrated in Figure 3(a). There

is no positive root on (0, R̃1) because detM+ is an increasing function on (0, R̃1) and

detM+|R=0 =

√
2a

π

(
(1 + a2�2/k2)−1 − (1 + a2/k2)−1

)
> 0.

3. If j � 2, then the density corresponding to the root R∗
j cannot be positive at both

origin and R̃2. Let μ = (μ1, μ2)
T be the (nontrivial) solution of M+|R=R∗

j
μ = 0, then the

corresponding density is given by

ρ(r) = μ1r
−1/2J1/2(ar) + μ2 = μ1

(√
2

aπ

sin ar

r
− B̃+(1)|R=R∗

j

)
.

A direct evaluation of ρ leads to

ρ(0)ρ(R̃2) =

(√
2a

π
− B̃+(1)

∣∣∣
R=R∗

j

)(
−

√
8a

9π3
− B̃+(1)

∣∣∣
R=R∗

j

)
μ2

1.
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Using (3.2a) and the inequality | sin aR + aξ
k

cos aR| � (1 + a2ξ2

k2 )1/2, we get

|B̃+(ξ)| =

∣∣∣∣∣
√

2

aπ

(
1 +

a2ξ2

k2

)−1 [
sin aR +

aξ

k
cos aR

] k

kR + ξ

∣∣∣∣∣
�

√
2

aπ

(
1 +

a2ξ2

k2

)−1/2
k

kR + ξ
.

Therefore, since R∗
j > R̃2,

∣∣∣B̃+(1)|R=R∗
j

∣∣∣ �

√
2

aπ

(
1 +

a2

k2

)−1/2
k

kR∗
j + 1

<

√
2

aπ

1

R̃2

=

√
8a

9π3
<

√
2a

π
.

These estimates imply that ρ(0)ρ(R̃2) < 0, while the physical density ρ must be non-

negative on the support.

4. The density ρ(r) corresponding to the root R∗
1 is decreasing and strictly positive on its

support [0, R∗
1]. Let us first show that B̃+(�)|R=R∗

1
= B̃+(1)|R=R∗

1
< 0. Assume that this is

not the case, then B̃+(�)|R=R∗
1
= B̃+(1)|R=R∗

1
� 0. Since cos aR < 0 for R ∈ (R̃1, R̃2),

sin aR∗
1 +

a�

k
cos aR∗

1 > sin aR∗
1 +

a

k
cos aR∗

1 � 0.

This, together with (1+ a2�2/k2)−1 > (1+ a2/k2)−1 and (kR∗
1 + �)−1 > (kR∗

1 + 1)−1, implies

that B̃+(�)|R=R∗
1
> B̃+(1)|R=R∗

1
� 0, leading to a contradiction. Therefore, combining

B̃+(1)|R=R∗
1
< 0 with the fact that μ2 = −B̃+(1)|R=R∗

1
μ1 and ρ(0) =

√
2a
π
μ1 + μ2 > 0, both

μ1 and μ2 must be positive.

It is easy to check that r−1/2J1/2(ar) =
√

2
aπ

sin ar
r

is a decreasing function till its first

local minimum r̄1, determined by

0 =
d

dr
r−1/2J1/2(ar)

∣∣∣∣
r=r̄1

=

√
2

aπ

ar cos ar − sin ar

r2

∣∣∣∣∣
r=r̄1

,

or equivalently ar̄1 = tan ar̄1 > 0 with r̄1 ≈ 4.49/a ∈ (R̃1, R̃2). Using the definition (3.5a)

of g,

tan ar̄1 + g(r̄1) = ar̄1 + g(r̄1) =
a3

k

(� + 1)(1 + kr̄1)(� + kr̄1)

a2(� + 1)kr̄1 + k2 + a2(�2 + � + 1)
> 0.

Since R∗
1 is the unique root of the strictly increasing function tan aR+g(R) on the interval

(R̃1, R̃2), the fact that tan ar̄1 + g(r̄1) > 0 implies that r̄1 > R∗
1 . Therefore, the density ρ(r)

is a decreasing function on [0, R∗
1], as illustrated in Figure 3(b). Finally, evaluating ρ(r) at
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the boundary R = R∗
1 , we get

ρ(R∗
1) = μ1

(√
2

aπ

sin aR∗

R∗
1

− B̃+(1)
∣∣∣
R=R∗

1

)

= −μ1

√
2

aπ

(
1 +

a2

k2

)−1 [
a

kR∗
1 + 1

+

(
k

kR∗
1 + 1

− 1

R∗
1

(
1 +

a2

k2

))
tan aR∗

1

]
cos aR∗

1

= −μ1

√
2

aπ

(
1 +

a2

k2

)−1 [
a

kR∗
1 + 1

−
(

k

kR∗
1 + 1

− 1

R∗
1

(
1 +

a2

k2

))
g(R∗

1)

]
cos aR∗

1

= −μ1

√
2a

π

1

kR∗
1

1 + � + kR∗
1

a2(� + 1)kR∗
1 + k2 + a2(�2 + � + 1)

cos aR∗
1 > 0.

This shows that ρ(R∗
1) > 0, and therefore ρ(r) is strictly positive on its support, which

completes the proof. �

4 Existence theory of flock profiles in two dimensions

We now turn our attention to two space dimensions, where the involved Bessel functions

do not reduce to standard trigonometric expressions. For n = 2,

A = k2(1 − C�2)/(C − 1)�2, (4.1)

and

B̃+(ξ) =

(
1 +

a2ξ2

k2

)−1 [
J0(aR) − aξ

k
J1(aR)

K0(kR/ξ)

K1(kR/ξ)

]
, (4.2a)

B̃0(ξ) =
2ξ

k
R
K5/2(kR/ξ)

K3/2(kR/ξ)
+ 1, (4.2b)

B̃−(ξ) =

(
1 − a2ξ2

k2

)−1 [
I0(aR) +

aξ

k
I1(aR)

K0(kR/ξ)

K1(kR/ξ)

]
. (4.2c)

The numerical investigations carried out in [12] led to assertion that flock profiles can

only be found when A > 0. As in the 3D case, we can now give a rigorous theorem and

proof, thanks to the explicit computations in Section 2.

Theorem 4.1 Let W be a Quasi-Morse potential in space dimension n = 2 with parameters

within the biologically relevant regime C > 1, � < 1. Then flock profiles exist if and only if

A > 0 or equivalently C�2 < 1.

We begin by proving a general monotonicity result on the ratio of two modified Bessel

functions, which will be used repeatedly throughout the section.

Lemma 4.2 For any ν � 0, functions Kν+1(x)/
(
xKν(x)

)
, Kν(x)/

(
xKν+1(x)

)
, and

Kν+1(x)/Kν(x) are strictly decreasing functions on (0,∞).
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Proof Let w(x) = Kν+1(x)/(xKν(x)), which is positive and smooth on (0,∞). We take the

derivative of both sides of Kν+1(x) = xw(x)Kν(x) and use the recurrence relation

−Kν(x) − (ν + 1)Kν+1(x)/x = w(x)Kν(x) + xw′(x)Kν(x) + w(x)
(
νKν(x) − xKν+1(x)

)
,

which is equivalent to the differential equation for w

2(ν + 1)w(x) + xw′(x) − x2w(x)2 + 1 = 0. (4.3)

Taking the derivative of (4.3) w.r.t. x,

(2ν + 3)w′(x) + xw′′(x) − 2xw(x)2 − 2x2w(x)w′(x) = 0. (4.4)

We can first get the “boundary conditions” for w near the origin or infinity by asymptotic

expansions. When x is close to the origin, one uses (A 6) to deduce

w(x) ∼ 2νx−2, w′(x) ∼ −4νx−3 < 0, w′′(x) ∼ 12νx−4 > 0,

for ν > 0 and

w(x) ≈ 1

x2(− 1
2
ln x − γ)

, w′(x) ∼ 4

x3 ln x
< 0, w′′(x) ∼ − 12

x4 ln x
> 0 ,

for μ = 0. When x is large, by the asymptotic expansion (A 7), one gets

w(x) ∼ 1

x

(
1 − 2ν + 1

2x

)
, w′(x) ∼ − 1

x2
< 0, w′′(x) ∼ 2

x3
> 0.

Therefore, w(x) > 0, w′(x) < 0, w′′(x) > 0 when x is near origin and x → ∞. Moreover,

w has no local maximum on (0,∞). Otherwise, if there is a local maximum at x0, then

w′(x0) = 0, w′′(x0) � 0. On the other hand, by (4.4), w′′(x0) = 2w(x0)
2 > 0, a contradiction.

Next, we show that w′(x) < 0 on (0,∞). If w′(x) > 0 at some point x1 > 0, then

by the fact that w′(x) < 0 when x is large, w must have a local maximum on (x1,∞)

(because w first increases and then decreases). If w′(x) = 0 at x2 > 0, then by (4.4),

w′′(x2) = 2w(x2)
2 > 0. Hence, there is a point x̃2 > x2, such that w′(x̃2) > 0, and it is

reduced to the previous case. Therefore, in either situation, there exists a local maximum

on (0,∞), contradicting the statement proved in the last paragraph. This concludes the

proof of the strict monotonicity of w on (0,∞).

Similarly, the monotonicity of w2(x) = Kν(x)/(xKν+1(x)) and w3(x) = Kν+1(x)/Kν(x)

can be proved by using the second-order ODEs,

(2ν − 2)w′
2(x) + 2x2w2(x)w′

2(x) + 2xw2(x)2 − xw′′
2 (x) = 0

and

2x2w3(x)w′
3(x) + (2ν + 1)w3(x) − 2(ν + 1)xw′

3(x) − x2w′′
3 (x) = 0 .

In all the three cases, the key ingredients of the proof are the right “boundary condition”

near the origin and infinity, and w′′(x) > 0 at any point x such that w′(x) = 0. �
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Lemma 4.2 is needed in the proof of Theorem 4.1, where contrary to the 3D counterpart,

the ratios of the Bessel functions do not simplify for even dimensions. The structure of

the proof given below would apply in a similar fashion in three dimensions to obtain

Theorem 3.1 if the simplified expressions (3.2a)–(3.2c) were omitted. We begin with a

discussion of the case A = 0 for any dimension.

Proof (Theorem 4.1) Suppose A = 0. Then, in general dimension n,

detM0 = B̃0(�) − B̃0(1) = 2R2

[
1

kR/�

Kn
2 +1(kR/�)

Kn
2
(kR/�)

− 1

kR

Kn
2 +1(kR)

Kn
2
(kR)

]
< 0,

as � < 1 and the strict monotonicity of Kn
2 +1(x)/(xKn

2
(x)) is provided by Lemma 4.2.

Hence, no real positive roots of detM0 exist in any dimension. Let us return to the case

n = 2 and suppose A < 0, then C�2 > 1 by (4.1) and detM can be expressed as

detM− = B̃−(�) − B̃−(1) =

[(
1 − a2�2

k2

)−1

−
(

1 − a2

k2

)−1
]
I0(aR)

+
a

k

[
�

(
1 − a2�2

k2

)−1
K0(kR/�)

K1(kR/�)
−

(
1 − a2

k2

)−1
K0(kR)

K1(kR)

]
I1(aR)

=
(C − 1)(1 − C�2)

C(1 − �2)
I0(aR) +

(C − 1)a�2

k(1 − �2)

(
1

C�

K0(kR/�)

K1(kR/�)
− K0(kR)

K1(kR)

)
I1(aR),

(4.5)

using (4.2c). The coefficient of I0(aR) is obviously negative. By the monotonicity of

K0(x)/(xK1(x)),

1

C�

K0(kR/�)

K1(kR/�)
− K0(kR)

K1(kR)
< �

K0(kR/�)

K1(kR/�)
− K0(kR)

K1(kR)

< kR

(
�

kR

K0(kR/�)

K1(kR/�)
− 1

kR

K0(kR)

K1(kR)

)
< 0.

This implies that detM− < 0. Therefore, there is no flock profile when A � 0.

Next, consider the case A > 0. The determinant of the coefficient matrix is given as

detM+ =
(C − 1)(1 − C�2)

C(1 − �2)
J0(aR) − (C − 1)a�2

k(1 − �2)

[
1

C�

K0(kR/�)

K1(kR/�)
− K0(kR)

K1(kR)

]
J1(aR).

Let 0 = R̃0 < R̃1 < · · · be the simple zeros of J1(aR), then by the relation J ′
0(x) = J1(x),

R̃j are also the critical points of J0(aR). Since detM+|R=R̃j
has alternating signs, detM+

has at least one root on (R̃j , R̃j+1), and therefore infinitely many roots on (0,∞).

Let R∗ be the first root in the first interval (R̃0, R̃1), then we must have B̃+(�)|R=R∗ =

B̃+(1)|R=R∗ < 0, as illustrated in Figure 4(a). Otherwise, if B̃+(�)|R=R∗ = B̃+(1)|R=R∗ � 0,

using (4.2a) we deduce

J0(aR
∗) �

a�

k
J1(aR

∗)
K0(kR

∗/�)

K1(kR∗/�)
, J0(aR

∗) �
a

k
J1(aR

∗)
K0(kR

∗)

K1(kR∗)
.
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Figure 4. (Colour online) The roots of determinant M+ and the corresponding flock profiles. Only

the first zero R∗
1 is physically relevant, as the densities become negative on the support (0, R∗

k ) for

the other roots R∗
k . The parameters, C = 10/9, � = 0.75, k = 1/2, and A = 1.5, are the same as

in [12].

On the other hand, since J1(aR
∗) is positive together with the monotonicity of

K0(x)/(xK1(x)),

J0(aR
∗) − a�

k
J1(aR

∗)
K0(kR

∗/�)

K1(kR∗/�)
> J0(aR

∗) − a

k
J1(aR

∗)
K0(kR

∗)

K1(kR∗)
� 0,

and consequently

B̃+(�) =

(
1 +

a2�2

k2

)−1 [
J0(aR

∗) − a�

k
J1(aR

∗)
K0(kR

∗/�)

K1(kR∗/�)

]

>

(
1 +

a2

k2

)−1 [
J0(aR

∗) − a

k
J1(aR

∗)
K0(kR

∗)

K1(kR∗)

]
= B̃+(1), (4.6)

contradicting the fact that R∗ satisfies detM+|R=R∗ = B̃+(�)|R=R∗ − B̃+(�)|R=R∗ = 0.

Since μ2 = −B̃+(1)|R=R∗μ1, μ1 and μ2 have the same sign. If the corresponding density

ρ(r) = μ1J0(ar) + μ2 at the origin is non-negative, then both μ1 and μ2 are positive. We

first factor out J0(aR
∗) from equation B̃+(�)|R=R∗ − B̃+(�)|R=R∗ = 0, i.e.,

J0(aR
∗) =

1

ak(1 − �2)

[
�(k2 + a2)

K0(kR
∗/�)

K1(kR∗/�)
− (k2 + a2�2)

K0(kR
∗)

K0(kR∗)

]
.

Substituting this into ρ(R∗) = μ1J0(aR
∗) + μ2 = μ1(J0(aR

∗) − B̃+(�)|R=R∗ ), we conclude

ρ(R∗) =
a�2

k2R(1 − �2)

[
kR∗

�

K0(kR
∗/�)

K1(kR∗/�)
− kR∗ K0(kR

∗)

K1(kR∗)

]
J1(aR

∗)μ1 > 0.

Finally, since R∗ is smaller than the first local minimum R̃1 of J0(ar), ρ(r) = μ1J0(aR)+μ2

is decreasing on [0, R∗]. Thus, the strict positivity of ρ(r) on [0, R∗] results from the strict

positivity of ρ(R∗). �
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Remark 4.3 Theorem 4.1 lacks the uniqueness result of Theorem 3.1. However, numerical in-

vestigations point towards a uniqueness result similar to three dimensions. As an example, we

illustrate detM+ and the densities associated to its roots for a set of parameters investigated

in [12] in Figure 4. To prove uniqueness in two dimensions, the possibility of non-negative

densities for roots R∗ > R̃2 and the possibility of multiple solutions detM+ = 0 in (R̃0, R̃1)

have to be ruled out.

5 Further properties of flock profiles for the Quasi-Morse potential

Let us remark that there are parameters (C, �) such that the convolution equation (1.6)

has a solution even though they do not belong to the biologically relevant cases. Flock

profiles, as defined in Definition 1.1, can be found by similar proofs as in the previous two

sections in the region {(C, �) | � > 1, C�n−2 > 1, C�n < 1}, where U has a positive global

maximum. These flock profiles are in fact those that have corresponding stable steady

solution in the time-reversed first-order swarming system (6.2), and are not observed in

simulations, since they are unstable, for both the first-order and the second-order particle

models.

The proofs in the previous two sections also indicate the dependence of flock profiles

with respect to the size of their support R∗ parameterized by �, at least in the asymptotic

limit of � approaching its lower and upper limits. For example, in 3D, since R∗ ∈ (R̃1, R̃2)

and R̃j ∼ O(a−1), we have R∗ ∼ O(a−1).

In three dimensions, for fixed parameters C and k, if � is close to its upper limit C−1/3

in the parameter space, then a = k
√

(1 − C�3)/(C�3 − �2) is close to zero, and for the

auxiliary function g(R) defined in (3.5a), we have

g(R) =
a

k

(a2� − k2)kR + a2�(� + 1)

a2(� + 1)kR + k2 + a2(�2 + � + 1)
≈ −aR.

The desired root R∗ can be approximated from the simplified equation tan aR − aR = 0,

which is simply R∗ ≈ r̄1 ≈ 4.49/a in the last step of the proof of Theorem 3.1. Therefore,

as � increases to C−1/3, the radius of support of the flock profile also approaches the first

minimum of r−1/2J0(ar).

On the other hand, if � is close to its lower limit C−1, then a diverges, and

g(R) ≈ a

k

�kR + �2 + �

(� + 1)kR + �2 + � + 1
.

Since � is close to C−1 and the desired root R∗ ∼ a−1 is close to zero, g(R) can be further

simplified to

g(R) ≈ a

k

C + 1

C2 + C + 1
:= aC̄,

a constant proportional to a. From the asymptotic equation tan aR∗ + aC̄ = 0, aR∗

approaches π/2 from above, or R∗ ≈ π/(2a).

Summarizing, in term of the original parameters k, C, and �,

R∗ =
4.49

√
1 − C−2/3

k
(1 − C�3)−1/2 + O(|1 − C�3|) (5.1)
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Figure 5. (Colour online) Comparison between the radius of support R∗ by a root-finding

algorithm of detM+ = 0 and the asymptotic expansion given by (5.1) and (5.2).

when � is close to C−1/3 and

R∗ =
π

2k
√
C2 − 1

(C� − 1)1/2 + O(|C� − 1|) (5.2)

when � is close to C−1. The comparison between these asymptotic expansions of R∗ with

those obtained from solving detM+ = 0 by a root-finding algorithm is shown in Figure 5.

Substituting the above expressions into M+, the expansions for μ1 and μ2 can be obtained

accordingly.

In two dimensions, the leading-order asymptotic expansion of R∗ can be derived

similarly. When � is close to zero, a ≈ k/(�
√
C − 1) is large and R∗ ∼ a. Assuming

R∗ = �R0 + O(�2) for some R0 > 0, then

B̃+(�)|R=R∗ ≈ C − 1

C

[
J0

(
kR0/

√
C − 1

)
− 1√

C − 1
J1

(
kR0/

√
C − 1

)K0(kR0)

K1(kR0)

]
= O(1)

and

B̃+(1)|R=R∗ ≈ �2(C − 1)

[
J0

(
kR0/

√
C − 1

)
− 1

�
√
C − 1

J1

(
kR0/

√
C − 1

)K0(kR0/�)

K1(kR0/�)

]
.

Since K0(kR0/�)
K1(kR0/�)

→ 1 as � → 0, we have B̃+(1)|R=R∗ = O(�) and B̃+(�)|R=R∗ � B̃+(1)|R=R∗

unless the leading order in B̃+(�)|R=R∗ vanishes. Therefore, the coefficient R0 is determined

by

J0

(
kR0/

√
C − 1

)
=

1√
C − 1

J1

(
kR0/

√
C − 1

)K0(kR0)

K1(kR0)
,

where the positive number kR0/
√
C − 1 is smaller than the first positive root of J0 since

this equation has infinitely many roots.
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When � is close to C−1/2, a is small and detM+ is

a2(1 − �2)

k2(1 + a2/k2)(1 + a2�2/k2)
J0(aR

∗) − a(C − 1)�2

k(1 − �2)

[
1

C�

K0(kR
∗/�)

K1(kR∗/�)
− K0(kR

∗)

K1(kR∗)

]
J1(aR

∗).

From the fact that R∗ diverges,

1

C�

K0(kR
∗/�)

K1(kR∗/�)
− K0(kR

∗)

K1(kR∗)
→ 1

C�
− 1 ≈ C−1/2 − 1� 0.

Therefore, detM+ = 0 only if J1(aR
∗) vanishes to have both terms above of order a2. In

other words, R∗ converges to the first positive root of J1(ar). Consequently, the expansions

of R∗ in two dimensions can be obtained.

6 Variants of Morse-type potentials

In the previous sections, we have shown that flock profiles precisely exist for the Quasi-

Morse potential when the parameters C and � are in the region {(C, �) | C�n−2 > 1, � <

1, C�n < 1}, see Figure 1. The conditions C�n−2 > 1 and � < 1 ensure that the potential

U(r) is biologically relevant since it has a positive global minimum, while the condition

C�n < 1 is related to the non-H-stability of the potential. A similar result for the Morse-

potential is presented in [15]. The claim that a positive global minimum of the potential

and non-H-stability imply existence of compactly supported flock solutions also seems to

be true for other similar potentials of the form U(r) = V (r) −CV (r/�), but concentration

of density may appear and the dimensionality of the support can vary with U. We show

some numerical evidence in support of the claim for the generalised Morse-like potential

with

V (r) = −e− rp

p , p > 0. (6.1)

For this potential, the non-H-stability condition C�n < 1 is the same, but the biologically

relevant region is given by � < 1 and C > �p. The numerical simulations were conducted

by finding stationary profiles of the first-order swarming system of particles given by

dxi

dt
= − 1

N

∑
j�i

∇W
(
xi − xj

)
, i = 1, . . . , N. (6.2)

Taking these positions and the common velocity u0 with |u0|2 = α/β as initial data for

the second-order system (1.2), the resulting stationary solution is stable [10].

In Figure 6(a), we observe generic, non-concentrated, compactly supported flock profiles

for the exponent p = 1
2

and � < �∗ = C1/p = 0.36 that appear to converge to a continuous

distribution as N → ∞. The same phenomena are observed for exponents p ∈ (0, 1).

However, this type of aggregation cannot be expected for exponents p ∈ (1, 2). For

C < 1, the density seems to concentrate towards its boundary when � approaches

�∗ = C1/p, as illustrated in Figure 6(b). For C > 1, we observe mixed dimensionality of

the support in Figure 6(c) for varying exponents p approaching the limit case p = 2.

Flock profiles seem to bifurcate as p → 2 leading to a concentration on a ring plus a
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Figure 6. Flock profiles from the particle simulations of the first-order system (6.2) for the

generalised Morse-like potential with V (r) = −er
p/p.

continuous distribution inside. To our knowledge, this surprising phenomenon of mixed

dimensionality of the support has only been reported in 3D simulations in [2, 30] for

purely attractive–repulsive potentials. In a swarming model of locusts in 2D using the

Morse potential [4, 5, 29], the concentration of densities on the (1D) ground can also be

reproduced from observations in nature by including additional external gravity force.

This concentration and dimensionality of the support of the steady density is related

to the singularity of U near the origin, as has already been demonstrated in [2]. Here

we have to argue by numerical experiments as existence proofs will be difficult, partially

because of the absence of explicit formulas. Similarly, discussions can be found in [22]

for solutions perturbed from a ring solution, and in [4,5] for extensive 1D examples with

δ-concentration on a domain boundary. However, a detailed analytical investigation of

these and other properties, such as the integrability of the density near the boundary,

remains a challenging question for the potentials considered.

7 Conclusions

In this paper, we analyzed the solvability of convolution equations that describe partic-

ular solutions in aggregation or self-propelled interacting particle models equipped with

radially symmetric interaction potentials. Although models such as (1.2) and (6.2) have

been frequently used with various potentials, the analysis of particular solutions, such as

flock profiles and rotating mills, is far from complete. We concentrated our attention on

the study of flock profiles, defined as compactly supported continuous radial densities
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satisfying equation (1.6). Focusing on the case of the Quasi-Morse potentials introduced

in [12], we were able to analytically study the parameter phase portrait of these poten-

tials in two and three dimensions, and proved analytically solvability conditions for the

flock profiles that were previously asserted numerically. These findings are summarized in

Figure 1: The aggregate potential parameter A determines solvability in the biologically

relevant parameter regimes. In three dimensions, we showed the existence and uniqueness

of flock profiles for A > 0, whereas no flock profiles exist if A � 0. The same non-existence

result holds true in two dimensions, where flock profiles are shown to exist if and only if

A > 0. The proof of our main Theorems 3.1 and 4.1 is based on a technical discussion

of the Bessel functions contained in the definition of the Quasi-Morse potentials and the

explicit formulas of their flock profiles obtained in [12]. First, an explicit expression for

the convolution W � ρ was derived for the three cases A > 0, A = 0, and A < 0. Then

a detailed analysis of the resulting expressions enabled us to establish our theorems. A

central observation is the fact that the question of existence and uniqueness of flock

profiles reduce to the study of roots of a determinant of the coefficient matrix M. Due to

the simpler functions involved, results obtained in three dimensions are slightly stronger

than those obtained in two dimensions.

In summary, this paper is the first, to our knowledge, to complete a full analytical

study of the existence of flock profiles in a biologically relevant parameter regime, at least

for a particular potential. The analysis of the Quasi-Morse potential and our simulations

seem to indicate the existence of flock solutions as long as the potential has a unique

positive global minimum and is not H-stable. Characterizing when they are flock profiles

is challenging and related to the dimensionality of the support of minimizers of the

interaction energy [2]. Proving or disproving these claims for other potentials in (1.2),

such as the Morse-type potentials (6.1), as well as the question of stability of such states

in the dynamics of the associated partial differential equations (PDEs) however remains

an open and challenging problem.

Appendix A Bessel functions and modified Bessel functions

In this paper, Bessel functions and modified Bessel functions are heavily used to study

the analytically more tractable Quasi-Morse type potential (2.1). The definitions and key

properties of these Bessel functions, found in standard textbooks of special functions [27],

are collected below for readers’ convenience.

The Bessel functions of the first kind Jν(x) and the second kind Yν(x) are solutions of

the equation

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = 0, (A 1)

which are finite and singular at the origin for positive ν respectively. The modified Bessel

function of the first kind Iν(x) and the second kind Kν(x) are solutions of the equation

x2 d
2y

dx2
+ x

dy

dx
− (x2 + ν2)y = 0, (A 2)

which are exponentially growing and decaying respectively.
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In two and three dimensions considered in this paper, the (modified) Bessel functions

with negative order ν can be rewritten in terms of those with positive order. In particular,

in two dimensions we have

J−1(x) = −J1(x), I−1(x) = I1(x), K−1(x) = K1(x), (A 3)

and in three dimensions, we have the following explicit representations using the well-

known (hyperbolic) trigonometric functions

J1/2(x) =

√
2

πx
sin x, J−1/2(x) =

√
2

πx
cos x, (A 4a)

K1/2(x) = K−1/2(x) =

√
π

2x
e−x, (A 4b)

I1/2(x) =

√
2

πx
sinh x, I−1/2(x) =

√
2

πx
cosh x. (A 4c)

Recursive relations. In the proof of Lemma 4.2, the following recursive relations for the

modified Bessel functions Iν(x) and Kν(x) are used:

I ′
ν(x) = Iν−1(x) − ν

x
Iν(x), I ′

ν(x) =
ν

x
Iν(x) + Iν+1(x),

K ′
ν(x) = −Kν−1(x) − ν

x
Kν(x), K ′

ν(x) =
ν

x
Kν(x) − Kν+1(x). (A 5a)

In the equivalent integral form, the following are used to evaluate (2.8) and in the proof

of Proposition 2.1 in Appendix B:∫
xνIν−1(x)dx = xνIν(x),

∫
xνKν−1(x)dx = −xνKν(x). (A 5b)

Asymptotic expansions. In the proof of Lemma 4.2, the following asymptotic expansions

of Kν(x) for x > 0 are also needed. When x > 0 is close to the origin,

Kν(x) ≈
{

− ln x
2

− γ, ν = 0,

Γ (ν)2ν−1x−ν , ν > 0,
(A 6)

with the Euler constant γ. When x is large,

Kν(x) =

(
2

πx

)1/2

e−x

[
1 +

4ν2 − 1

8x
+

(4ν2 − 1)(4ν2 − 9)

2!(8x)2
+ · · ·

]
≈ K1/2(x). (A 7)

Additional identities and integrals. The most important identity to simplify the final

expressions in (2.8) and in the proof of Proposition 2.1 in Appendix B is

Kν+1(x)Iν(x) + Kν(x)Iν+1(x) =
1

x
. (A 8)



Quasi-Morse 575

Finally, we need the following integrals involving products of two Bessel functions [27,

p. 87] to evaluate (2.8),∫
xJν(ax)Kν

(
kx

�

)
dx = − �2

k2 + a2�2

[
axJν−1(ax)Kν

(
kx

�

)
+

kx

�
Jν(ax)Kν−1

(
kx

�

)]
,

(A 9a)∫
xJν(ax)Iν

(
kx

�

)
dx =

�2

k2 + a2�2

[
−axJν−1(ax)Iν

(
kx

�

)
+

kx

�
Jν(ax)Iν−1

(
kx

�

)]
,

(A 9b)∫
xIν(ax)Kν

(
kx

�

)
dx =

�2

a2�2 − k2

[
axIν−1(ax)Kν

(
kx

�

)
+

kx

�
Iν(ax)Kν−1

(
kx

�

)]
,

(A 9c)∫
xIν(ax)Iν

(
kx

�

)
dx =

�2

a2�2 − k2

[
axIν−1(ax)Iν

(
kx

�

)
− kx

�
Iν(ax)Iν−1

(
kx

�

)]
.

(A 9d)

Appendix B Proof of Proposition 2.1

Here we focus on the integrals related to V�, because those related to V are obtained by

evaluating at C = 1 and � = 1.

First, we evaluate integral (2.8) when ρ(s) are the linearly independent functions in the

general solution (2.3), i.e. constant 1, r2, r1−n/2Jn/2−1(ar) and r1−n/2In/2−1(ar) respectively.

When ρ(s) = 1,

Kn
2 −1(kr/�)

∫ r

0

s
n
2 I n

2 −1(ks/�)ds + I n
2 −1(kr/�)

∫ R

r

s
n
2 Kn

2 −1(ks/�)ds

=
�

k
Kn

2 −1

(
kr

�

)
s

n
2 I n

2

(
ks

�

)∣∣∣∣
r

s=0

− �

k
I n

2 −1

(
kr

�

)
s

n
2 Kn

2

(
ks

�

)∣∣∣∣
R

s=r

(by (A 5b))

=
�

k
r

n
2

[
Kn

2 −1

(
kr

�

)
I n

2

(
kr

�

)
+ I n

2 −1

(
kr

�

)
Kn

2

(
kr

�

)]
− �

k
R

n
2 I n

2 −1

(
kr

�

)
Kn

2

(
kR

�

)

=
�2

k2
r

n
2 −1 − �

k
R

n
2 I n

2 −1

(
kr

�

)
Kn

2

(
kR

�

)
. (by (A 8))

When ρ(s) = r2, using (A 5b) and integration by parts, we get∫
s

n
2 +2Kn

2 −1(ks/�)ds = −�

k
s

n
2 +2Kn

2

(
ks

�

)
− 2�2

k2
s

n
2 +1Kn

2 +1

(
ks

�

)
,

∫
s

n
2 +2I n

2 −1(ks/�)ds =
�

k
s

n
2 +2I n

2

(
ks

�

)
− 2�2

k2
s

n
2 +1I n

2 +1

(
ks

�

)
,

and hence

Kn
2 −1(kr/�)

∫ r

0

s
n
2 +2I n

2 −1(ks/�)ds + I n
2 −1(kr/�)

∫ R

r

s
n
2 +2Kn

2 −1(ks/�)ds

=
�

k
r

n
2 +2

[
Kn

2 −1

(
kr

�

)
I n

2

(
kr

�

)
+ I n

2 −1

(
kr

�

)
Kn

2

(
kr

�

)]
(B 1a)
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+
2�2

k2
r

n
2 +1

[
I n

2 −1

(
kr

�

)
Kn

2 +1

(
kr

�

)
− Kn

2 −1

(
kr

�

)
I n

2 +1

(
kr

�

)]
(B 1b)

−
[
�

k
R

n
2 +2Kn

2

(
kR

�

)
+

2�2

k2
R

n
2 +1Kn

2 +1

(
kR

�

)]
I n

2 −1

(
kr

�

)

=
�2

k2
r

n
2 +1 +

2�4

k4
r

n
2 −1 − R

n
2 +1

[
�

k
RKn

2

(
kR

�

)
+

2�2

k2
Kn

2 +1

(
kR

�

)]
I n

2 −1

(
kr

�

)
.

Here the terms inside the square bracket of (B 1a) or (B 1b) are equal to �/kr or

2n2�2/(kr)2 by the recursive relations (A 5a) and the identity (A 8).

When ρ(s) = sn/2−1Jn/2−1(as), using (A 9a) and (A 9b),

Kn
2 −1(kr/�)

∫ r

0

sI n
2 −1(ks/�)J n

2 −1(as)ds + I n
2 −1(kr/�)

∫ R

r

sKn
2 −1(ks/�)J n

2 −1(ar)ds

=
rk�

a2�2 + k2

[
I n

2 −1

(
kr

�

)
Kn

2 −2

(
kr

�

)
+ I n

2 −2

(
kr

�

)
Kn

2 −1

(
kr

�

)]
J n

2 −1(ar)

− R�

a2�2 + k2

[
kJ n

2 −1(aR)Kn
2 −2

(
kR

�

)
+ a�J n

2 −2(aR)Kn
2 −1

(
kR

�

)]
I n

2 −1

(
kr

�

)

=
�2

a2�2 + k2
J n

2 −1(ar) − R�

a2�2 + k2

[
kJ n

2 −1(aR)Kn
2 −2

(
kR

�

)

+ a�J n
2 −2(aR)Kn

2 −1

(
kR

�

)]
I n

2 −1

(
kr

�

)
.

Finally, when ρ(s) = sn/2−1In/2−1(as), using (A 9c) and (A 9d),

Kn
2 −1(kr/�)

∫ r

0

sI n
2 −1(ks/�)I n

2 −1(as)ds + I n
2 −1(kr/�)

∫ R

r

sKn
2 −1(ks/�)I n

2 −1(ar)ds

= − rk�

a2�2 − k2

[
I n

2 −1

(
kr

�

)
Kn

2 −2

(
kr

�

)
+ I n

2 −2

(
kr

�

)
Kn

2 −1

(
kr

�

)]
I n

2 −1(ar)

+
R�

a2�2 − k2

[
kI n

2 −1(aR)Kn
2 −2

(
kR

�

)
+ a�I n

2 −2(aR)Kn
2 −1

(
kR

�

)]

= − �2

a2�2 + k2
J n

2 −1(ar) +
R�

a2�2 − k2

[
kI n

2 −1(aR)Kn
2 −2

(
kR

�

)

+ a�I n
2 −2(aR)Kn

2 −1

(
kR

�

)]
I n

2 −1

(
kr

�

)
.

Putting all the integrals together, we conclude the explicit form (2.9) for the convolution

W � ρ. For example, when A > 0, ρ(r) = μ1r
1− n

2 J n
2 −1(ar) + μ2, collecting the terms in the

integral (2.7), we get

(W � ρ)(r) = μ2
C�n − 1

k2
+ μ1r

1− n
2

(
C�n

a2�2 + k2
− 1

a2 + k2

)
J n

2 −1(ar)

− r1− n
2

{
μ1

C�n−1R

a2�2 + k2

[
kJ n

2 −1(aR)Kn
2 −2

(
kR

�

)
+ a�J n

2 −2(aR)Kn
2 −1

(
kR

�

)]
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+ μ2
�

k
Kn

2

(
kR

�

)}
I n

2 −1

(
kr

�

)
+ r1− n

2

{
μ1

R

a2 + k2

[
kJ n

2 −1(aR)Kn
2 −2(kR)

+ aJ n
2 −2(aR)Kn

2 −1(kR) + μ2
1

k
Kn

2
(kR)

]}
I n

2 −1(kr) .

The first term μ2(C�n − 1)/k2 is the desired constant D, and the factor C�n/(a2�2 + k2) −
1/(a2 + k2) in the second term vanishes by the definition of a2. The rest of the terms

are a linear combination of I n
2 −1(kr/�) and I n

2 −1(kr), and they can be rearranged into the

form (2.3) with the coefficient of μ2 normalized to one to simplify the later proofs. The

explicit form for W �ρ when A = 0 or A < 0 has similar structures, and its simplification

leads to the final expression (2.9).
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