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EXPLICIT FORMULAS AND ASYMPTOTIC
EXPANSIONS FOR CERTAIN MEAN SQUARE
OF HURWITZ ZETA-FUNCTIONS I

MASANORI KATSURADA* and KOHJI MATSUMOTO

1. Introduction.

Lets = ¢ + it be a complex variable, « > 0, and (s, «) the Hurwitz zeta-function
defined by the analytic continuation of the Dirichlet series Y 2 o(n + @)™
Define {(s, a) = {(s,a) — «~%, and '

1
I(s) = L I 4(s, )| dor..

The integral I(5 + it) was first studied by Koksma-Lekkerkerker [10], who
proved the upper-bound I(3 + it) = O(logt) for any t 2 2. Gallagher [4] applied
this result to the study of Dirichlet L-functions. Balasubramanian [3] gave an
improvement, that is the asymptotic formula

I} + it) = logt + O(loglog ),
and the error term was refined to O(1) by Rane [13]. A further improvement was
obtained by Sitaramachandrarao [14], who proved
(1.1 IG + it) = log(t/2n) + y + O(t~3'%(log t)¥®),

where y is Euler’s constant. Sitaramachandrarao’s work was announced in p. 28
of Hardy-Ramanujan Journal, volume 10(1987), but it seems that his paper [14]
has not yet been published. Meanwhile, independent of Sitaramachandrarao,
Zhang [17] obtained the essentially same result as (1.1), and then, he improved
the error term to O(t ~ 73 (log t)**/*8) in [ 18]. In these papers, Zhang conjectured

(1.2) IG + it) = log(t/2m) +y + O™ "),
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Perhaps this conjecture had been well-known among Indian number theorists.
When Professor K. Ramachandra visited Japan, he mentioned (1.2) as an
interesting conjecture, in a private discussion with the authors.

The main tool in the aforementioned papers is the approximate functional
equation of {(s, o), but this is actually insufficient for the problem of evaluating
I + it), as has turned out in the following works. In December 1992, the authors
found a proof of the conjecture (1.2), and wrote a brief sketch of the method in [ 7].
The author’s method is a variant of Atkinson’s device, and the basic idea is due to
Atkinson [2], Motohashi {12] and the authors [6], concerning the mean values
of the Riemann zeta and Dirichlet L-functions. However, in March 1993, the
preprint of Zhang [19] arrived at the second-named author. In this article, by an
ingenious simple argument based on the functional equation of {(s, &) ((2.17.3) of
Titchmarsh [15]), Zhang proved the stronger result

1 .
(1.3) I + it) = log(t/2m) + y — 2ReC(T2-:I——.”:l
3+t

+ 0™,
where {(s) is the Riemann zeta-function. Later, the authors noticed the existence
of Andersson’s article [ 1], in which a different proof of (1.3) is given. Andersson’s
proof is based on Mikolas’ idea [11] of using Parseval’s identity.

By refining the argument of the authors sketched in [7], it is possible to give an
alternative proof of (1.3). In fact, the authors’ method can give more precise
information. The main result in the present paper is the explicit formula (2.1),
stated in the next section. As special limit cases of this main formula, we can
deduce two kinds of refinements of (1.3) (Corollaries 2 and 5).

Here we list up several advantages of our method. Our method supplies a clear
view of the structure of the whole theory (see “a little digression” in Section 6).
Also we can treat the discrete mean square

)

where g is a positive integer, by the same method (see the remark in Section 4).
Moreover, our main theorem is important as the starting point of further
researches, which will be given in forthcoming papers.

The authors would like to thank Professor Zhang Wenpeng who kindly sent
the preprint of [19] to them. They would also like to thank Professor K.
Ramachandra for the information concerning the history of the problem of
evaluating I(} + it), and for stimulating discussion.

2

(1.4) Y

1sagyq

k4
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2. Statement of results.

Let u, v be complex variables, and E the set of (u, v) at which some factor in (2.1)
below has a singularity. Let I'(s) be the gamma-function, and Y(s) = (I'"/I')s). We
use the Pochhammer symbol (s), = I'(s + n)/I'(s) for any integer n. In what
follows, the empty sum is to be considered as zero. The main general result of the
present paper can be stated as follows.

THEOREM. Let N = 1 be an integer, —N + 1 <Reu < N + 1, -N+1<
Rev < N + 1, and (u,v) & E. Then it holds

1
2.1 L {1, 0)C (v, @) dot

- —1——+I’(u+v—1)C(u+U—1)<

ra —v F(l—u))
u+v—1

I'(w) I'(v)
—SN(u’ U) - SN(U’ ll) - TN(“7 U) - TN(U, u),

where

SN(u, v) = Nil _(u_),,___

w=o (1 = Uyt

(u+mn—1)

TN(u,U) =——(u)—N—— i ll—-u_,,J;mﬁu-@-v—Z(l +ﬁ)—u_Ndﬂ.

) ¥

Moreover, Ty(u, v) has the expression

22 Tywo) = il (-1 2= s ,i R+ T

_ C—u—o)kMy-k & j1-u-v|” uto—K-2(] ~u-N+K g
+ (=K > ﬁ B (1+p B

(1 — o)y =1

for any integer K 2 0.

It is easy to see that (i, v) belongs to E if and only if u + v is an integer (£ 2). or
uis an integer, or v is an integer. The above theorem in particular shows that our
method works not only on the critical line (or in the critical strip), but on the
whole plane. In the case of Dirichlet L-functions such a phenomenon has been
observed in Katsurada [5] and the authors [9].

Taking u = ¢ + it and v = ¢ — it in the theorem, we have

COROLLARY 1. Let N, K be integers with N =2 1 and K 2 0. Then, for any
o satisfying —N + 1 <o <N + 1,20 — 14{1,0, -1, —2,---}andany t = 1, we
have
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@3) Ko +if)
1 ra —o+if

=25 1 + 2I'2e — 1){(20 — 1)Re T + i)

N= (6 +it),

—2R 0T W
2Re X ot iths

)k—l (2 - 20’)k_1(0' + it)N—k
(1—0+it)y

o +it+n—1)

K -]
—2Re Y (~1 Y ITHI 4 7)o Nkl
k=1 =1

+ 017%™,
where the O-constant depends only on N, K and o.
The error estimate O(t ~*~*) in (2.3) follows from the facts

(2 — 20)k(0 + i)y
(1 -0+ lt)N

=0t %

and

s

ll—ZnJmﬂZa—K-Z(l + ﬁ)—-a—i:—N+K dﬂ — O(t_l),
1

=1

]

where the last estimate can be proved by integration by parts.
Choose N = 1,and puto = § + -g—in (2.3), where d is a small positive number.

In view of the formulas I'(6) = 6~ — y + O(d) and {(§) = —} — L (log2m)d +
0(3?), taking the limit § — 0, we obtain the following refinement of (1.3).

COROLLARY 2. For any integer K = 0 and any real t = 1, we have the asym-
ptotic expansion

1y
IG +if) =y — log2n + ey} + if) — 2Re 2 F =1
3+ it
K k-1
(= 1}~k — 1)t ® sl
'—'2R l kl 1 +k—it
e X G k+nG ki GrmLl @+D72
+ 07,

where the O-constant depends only on K.

REMARK. Since Rey(} + it) = logt + O(t~?), Corollary 2 implies (1.3).

Other exceptional cases can also be treated as the limit cases. For example,
since (2 —u —v),-; =0for k 2 2if u + v = 2, taking the limit 4 — 1 + it and
v— 1 — it in the theorem, we have



EXPLICIT FORMULAS AND ASYMPTOTIC EXPANSIONS FOR CERTAIN MEAN . .. 165

COROLLARY 3. For any integer N = 1 and any real t = 1, we have

1(1+it)=1—t-2—2Re1/’(1—,;“—t)
i

18t 1 & 1
—2Re— 1 it) - 1) —2Re— ) —— o,
it ,,;,(C( et —1)- it ,Z I + N+
Next, let No 21 be an integer, —No+ 1 <Reu<Ny+1, —Ny+ 1<
Rev < Ny + 1, and (u,v) ¢ E. Then the theorem holds for any N = N,. By using
Stirling’s formula we have

(Wn
(1 - o)y

= O(NKC('HV)— 1),

where the O-constant depends on u and v. Combining this estimate with the
inequality

i ll—u—vjmﬂu+v—2(1 + ﬁ)—u—Ndﬂ\
=1 13

< 2—N+No i ll—Re(u+v)J‘mﬂRe(u+u)—2(l + ﬂ)‘Reu—NOdﬂ
1=1 1
«< 27N
with the implied constant depending on u, v and N,, we have
TN(u, v) << 2—N Nke(u+v)—1,

hence Ty(u,v) » 0as N — co. Therefore, letting N — oo in the theorem, we obtain
the following explicit formula.

COROLLARY 4. Let u, v be complex numbers with (u,v)¢ E. Then

1
J;) Cl(u’ a)(l(v, fl) da

F(l—v)+ F(l—u))

_______1__+ Tu+v—1){u+v-— 1)( T r(v)

ut+v—1
i ()n _ _ = (U),, _1
T T T gy e =D

Note that Andersson [1] proved this result as well as the next Corollary § in
a different way. By taking the limit u — § + it and v —» % — it in Corollary 4, we
obtain another refinement of (1.3).
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COROLLARY 5. For any real t we have

, 2 {G+n+i)—1
L) — 1 — 2R .
IG +it) =y — log2n + Rey(} + it) ﬂ;, Tinti

We note that the special case t = 0 in Corollary 5 is given in Zhang [19].
Once the statement of Corollary 2 has been known, it is actually possible to
find a simple argument by which one can deduce Corollary 2 from Corollary 5. In

~k
fact, expanding <1 - ﬁ) (I = 1) by the binomial theorem we find

& (=1 Yk — 1)
LG —k+ing—k+inG+ip

oo

= Y (4 )P4, (p)

p=0

l—k(l + 1)—%+k—i:

where

Y lp+1)-(p+k—1)
G-k+it)-G+i

K ¢
IRCED) (-1

Induction on K shows that

_ 1 ) 'e+) @+ K)
Ax(p)-li+%+it<1+ G-K+ity--G+ip) >
1
S FErral L

Since )5, 50 P (1 + )77 -3 is convergent, the double sum in Corollary 2 is

equal to

@© 3 it) — 1
{p+3 :‘ l ) + Ot~ V).
p=0 p +'2’+ it

Therefore, Corollary 2 is a consequence of Corollary 5. However, this argument
does not give a way of finding the formula in Corollary 2.

The above mentioned results except Corollary 3 have been announced in [8].
The rest of this paper is devoted to the proof of the theorem.

3. Atkinson’s dissection.

Let u, v be complex variables, « > 0, and at first assume Reu > 1, Rev > 1. Then

(o)) = 3 Y (m+a)n+a),

m=0n=0
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and dividing this sum into three parts corresponding to the conditions m = n
m < nand m > n, we have

>

(3.1) {u, (v, @) = Lu + v,0) + fu,5;0) + f(o,u;0),
where
Sw,va)= i (m+o)~ i m+n+a)
m=0 n=1

Let n 2 0, and now assume Reu > 0, Rev > 1 and Re(u + v) > 2. Then the
infinite series

0 0 ,—(at+tmy. . v-1
(x + m)"‘f f————L~dy
=0 n

v _
m e —1

is convergent absolutely, uniformly with respect to 5, because the above integral
is bounded by

o]

1
<« f e—(a+m)yyllcv—2dy + J‘ e—(a+m+1)nyev—1 dy

n 1

< (x+m RN (Rev — 1) + (@ + m + 1) R*T'(Rev)
< (o + m) Revtl

where the implied constants are independent of 5. Therefore,

0 v—1 o Ll-ay(x+y) . u—1
y e P
. dxd
3.2) L e”—lL 1 Y

© yu-l @ ©
= limf Y | et@rmEtnye-lgxdy
ni0Jn e —1 m=0,0

0 -—(a+m)yyv—l

= lim I'(u) i (¢ +m)~ 71

710 m=0 n

P T o s P
m=0 0 n=1

dy

=Twlw) Y @+m™)Y (c+m+n)"
m=0 n=1
which gives the analytic continuation of f(u,v;a) to Reu >0, Rev > 1 and
Re(u + v) > 2.
For any complex z, put
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(1 —a)z 1
h(z; o) = ¢

F—1 z’

and by A¥(z; «) we mean the Nth derivative of h(z; «) with respect to z. Let € be
the contour which consists of the half-line on the positive real axis from infinity to
a small positive constant J, a circle of radius d counterclockwise round the origin,
and the other half-line on the positive real axis from J to infinity. Note that h(z; o)
is holomorphic at z = 0. We now prepare

LemMma 1. For any integer N = 0, we have
KM (x + ty;0) = O@Ne 4 + (x| + 1)"V"1)

with a positive absolute constant A, uniformly for any x, ye € L [0, + c0),t€[0, 1]
and any a = 0.

Proor. We have

EN(z; )

¢ (N ke &1 —1)*N!
=k§o<k)(—a)N e urii—z"<e’—1 * 1)_ ( z"’)+1
i} 1 N N P — 1N
= (—a)'e “(ez_l +1)+k§1<k>(—a)” kg=az % _k(l)iﬂ" ( z”)“ ,

where Py(x) is, as we can see inductively, a polynomial of degree k in x (see the
proof of Lemma 1 in [6]). Hence the assertion of the lemma follows when
[x + 7yl > 1. Next, let C = {z}|z| =1} and D = {z||z| < 1}. For any « =0,
h™(z,a) is holomorphic on D, hence we can find a point z,€C such that
K™z &)} < |K¥)(z,; a)| for any z € D. Since h™)(z; «) is continuous on C x [0, 1] as
afunction in (z, «), we conclude that K¥(z; a) is uniformly bounded on D x [0, 1].
This implies Lemma 1 in case |x + 1y] £ 1.
Using Lemma 1 and the fact

-] xu—l 1
L x+ydx—y“ Iwr — u) (y>0,0<Reu<1),

we obtain from (3.2) that

o

] _ 1 © yv—l . et
(33) fluve= T@re) L e’—lL h(x + y;a)x* "t dxdy

1 ] yv-l @ xu—l
+
@ L P L prravield

=gu,v,a) + Iu+v— 1)U +v—~ DA —wle)*
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fora > 0,0 <Reu < 1and Re(u + v) > 2, where

1
T = 1) ~ 1)

glu,v; o) =

v—1
y . u—1
X L o Lh(x+y,oc)x dx dy,

x* = €"'8%, " = ¢"'%¥ and Im(log x), Im (log y) vary from 0 to 2% round . Since
g(u, v; &) is convergent absolutely for Reu < 1 and any complex v, from (3.1) and
(3.3) we now obtain

LEMMA 2. Let o > 0,Reu < 1 and Rev < 1. Then

(34 {(u, @)iv,@)

={u+v,a)+Tu+v—Du+v-— 1){”;,(;;‘) + F(;(;)v)}
+ glu, v;0) + glv, u; ).

ReMARk. This is an analogue of [6, (2.2)], which is originally due to Mo-
tohashi [12].

Since {y(s, ®) = {(s, %) — a ™%, it immediately follows from Lemma 2 that

(3.5) i, )4 (v, )

ra —uw F(l——v)}
e | rw

=0u+v,)+ Tu+v—1)u+v— 1){
+ g(u, v;0) + g(v,u;0) — a™*C4(v, o) — o™ *4(u, ).
This identity has already been stated in [ 7, (3.1)], and plays the fundamental role
in our method.
4. The analytic continuation of g(u, v; a).

In view of Lemma 1, we can divide

1
g(u, v, 0) = r(u)r(u)(eZuiu - 1)(e2niv -1

v—1
X L ef_ T(@1) + 9200 + g3 () dy

for a > 0, Reu < 1 and any v, where



170 MASANORI KATSURADA AND KOHJI MATSUMOTO
g1(u) = J (h(x + y;0) — h(x;a))x*~ ! dx,
€

e(l—-a)x s
gZ(u)=Jgf—1x dx

and

gs(u) = —j x* 2 dx.
¢

Tt is obvious that g;(u) = 0 for Reu < 1. Also it is well-known that
(4.1 g2(4) = (> — DI u)(u, o)
(see Whittaker-Watson [16], Chap. 13). Therefore we have

1
F(u)r(v)(eZniu . 1)(e2m'v . 1)
for Reu < 1 and any v.

Let N be a positive integer. Integrating by parts (N — 1)-times, we have

(42) gl vo)= j Y0 4yt sto)
73 e —1
h(x + y;a) — h(x; o)

- f T MG de

X

x+y a ,
_ j SFl+y— DG de

x+ N
z s f y("—+—¥——ﬁ)_,——lh‘"’(é; 0)dE
N-1 _ AN
= Y h"(x; oz)—::—: + (I(—N—l)—Tl—h("’(x + ty;a)dr.
n=1 . ]
Hence,
g:1{u)

N-1 yn . 1 (1 )N 1
=Y | W% a)x* " tdx + y¥ f ————~h‘")(x + Tty a)x* " Ldvdx.
n=1 n! <€ €JO (N )

Integrating by parts repeatedly and using Lemma 1 and (4.1), we have
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j B a)x* " dx = (= 1)"(u — 1)~ (u — n)f h(x; @)=~ 1 dx
¢ €

e(l—a)x
u—n-1
1" dx

= (=10~ 1)~ n)f
€

= (= 1) (e*™ — DI w)(u — n,a)
for Reu < 1. Substituting these results into (4.2), we have

1 1Nty
Tw)e*™ —1) Je e — 1 "; n!

+ C(uy (X)C(U) + ry (ua v; (Z)

4.3) glu,v;0) =

yv+n—lc(u —n, a)dy

N-1/
= Z < )C(u—n,a)((v+n)+rN(u,v;a),

n=0 n

where

» o 1 j‘(l«r)"‘1
4.4) ra(u, v;0) = I‘(u)l"(v)(ez""‘ _ 1)(82"i" -1)J, (N=1)

v+N—1
xJ J Jh‘”’(x+ry;a)x““‘dxdydr.
€ 1 Je

The above calculations are justified by Fubini’s theorem and Lemma 1. Since the
integrals in (4.4) are convergent absolutely for Reu < N + 1and any v, (4.3) gives
the analytic continuation of g(u, v;a) to Reu < N + 1 and any v, for any a > 0.
Therefore, (3.5) is now valid for Reu < N + I,Rev < N + land o > 0.

REMARK. Here we mention how to treat the discrete mean square (1.4).
Substitute (4.3) into (3.4), put « = a/q, and sum up with respecttoa = 1,2,...,q.
Noting the relations

a)\_ .a =h(£>-—-1,
1§§§qc<s’4) ) 1§Ea:§qh(z’ ‘1> q

where h(z) = e(e* — 1)”! — z7!, we obtain [7,(2.4)], from which Theorems
1 and 2 in [7] can be easily deduced.

S. Several auxiliary lemmas.

For any « 2 0, the expression

1 2 le—az
(5.1) Cl(ss a) = r(s)(eris — 1) J;, & — 1 dz



172 MASANORI KATSURADA AND KOHJI MATSUMOTO

can be proved in a standard way (similar to the proof of (4.1)), and from which the
following two lemmas can be deduced easily.

LeMMA 3. Let oy = 0,a, = 0, and s(¥F 1) be a complex number. Then we have

(€16 — Lag) = {i(s — L)),

a2 1
(52) f Lils, @) da = —
in particular,
t 1
(53) fo CI(S, (1) do = ;:—1— .

LEMMA 4. For any o = 0 and any complex s(#+ 1), {1(s, o) is differentiable with
respect to o, and

(-gl)"cl(s, @) = (~17(Dalifs + .9
x

for any non-negative integer n.
From (5.3) and the relation {(s, ) = {,(s,a) + &%, we have

LeMMA 5. ForRes < 1,
1
j {(s,a)do = 0.
0

We note that this result was noticed by Mikolas [11,(5.1)]. (He misprinted the
condition Reu < 1 as Reu > 1.)

LEMMA 6. For any complex s{ 1) and any o = 0, we have
R 1)"(S)..a

li(s,)= ) {s+n)
n=0
1(1 _ aN-1
+ (= DF(s)ya® , —Q(N—;T-)—W—Cl(s + N,at)dt

for any positive integer N.

PRrOOF. Integrating by parts repeatedly, we have

{uls, ) = 04(s,0) + f P =z Guls, O d¢

~teo+ x| - & nf’ el
a(a C)N 1

o=

5” S (s, ) dE.
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Therefore, using Lemma 4 and changing the variable by 1 = « ™ ¢ in the last
integral, we obtain the assertion of the lemma.

LemMa 7. Let s(# 1) be complex with ¢ = Res > 0. Then for any a 2 0, we
have

{is,0) = O((1 + 0)'79),
where the implied constant depends on o and t.
ProOF. If 0 > 1, then using the Euler-Maclaurin summation formula we have

0! -i»oz)1 s

(54) Lo = =7

+31+a0)7° “Sjw(x —[x] = Px + a) " 1dx.
1

The last integral is convergent absolutely for ¢ > 0, hence (5.4) gives the
meromorphic continuation of {,(s, ) to the region o > 0. Lemma 7 follows by
estimating the right-hand side of (5.4) trivially.
6. A vanishing result and a formula of Mikolés.
By using (4.3) and Lemma 6, it follows that
(6.1) g(w, v;a) — a™*{4(v, )
N (=D
= —T

n=0

{u ~ n,a)(v + n) + ry(u, v;0)

N-1¢_ 1\
g

n=0
W-1
+ (= M)y j —Q——T)——"C v+ N, cx‘c)dr}

= 5 IL__ln)_(_u)lcl(u — n,0)l(v + n) + ry(u, v;0)

n=0

u 1 (1 o ‘L’)N—l
—(=D)*)va” N

for Reu < N + 1 and any v. It should be noted that in the resulting expression,
the singularities in {(# — n,a) (0 £ n £ N — 1) with respect to o at o« = 0 are
cancelled away, so we can integrate both sides with respect to « from 0 to 1. To
carry out the integration, we need the following

{i(v + N,ar)dr

LemMMA 8. For any positive integer N, we have
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1
f ry(u,v;00)doa =0

0
for Reu < N + 1 and any v.

ReMARK. Using Lemma 1, we can see that the integrals in (4.4) are convergent
absolutely when a = 0, so ry(u, v;0) can be well-defined.

To prove Lemma 8, integrating by parts repeatedly and using Lemma 1, we
have

J' ¥ + ty; 0 tdx = (= DNMu — 1) (u — N)f h(x + Ty;ox" "N "1 dx.
€ €
Substituting this into (4.4), changing the order of integrations and using the fact

1 e(l —a)z o 1
J‘O h(z,oz)da = |:-— m b ;]azo = 0,

we obtain Lemma 8. To verify the change of the order of integrations we note that

(1 “‘L')N 1 v+N—1 et 1
f (N — 1) J‘g 7 1 f x J‘O Kx + ty;a)dadxdydz

is convergent absolutely for Reu < N + 1, because in view of Lemma 1, we have
1
J‘ [h(x + Ty; )| do << |x| L.
o]

Now, integrating both sides of (6.1) with respect to « and applying Lemmas
3 and 8, we obtain

N-1/_ 1\
(6.2) J (g(u, v;0) — 0 ™*( (v, o)) dox Z ( 1)!(v),,.uc(_v : _n)l

. ( 1 — ‘l')N 1
—(—1 (v)NJ J ~ 1y —{,(v + N,at)drdoa.
IfReu < N + 1and Rev > — N, then by using Lemma 7, we can see that the last
double integral is convergent absolutely.
Here we make a little digression. Taking N = 1 in (4.3), and applying Lemmas
5 and 8, we find

(6.3) f 1g(u, va)do =0
0

for Reu < 1 and any v. This result clarifies why the situation becomes so simple
by taking the mean value with respect to , and such sharp results as Corollaries
2 and 5 can be proved. In fact, in the right hand side of (3.4) or (3.5), the most



EXPLICIT FORMULAS AND ASYMPTOTIC EXPANSIONS FOR CERTAIN MEAN ... 175

difficult part to analyze for individual « is g(u, v; @) + g(v, u; @), but (6.3) implies
that, after integrating with respect to «, the contribution of this part vanishes in
the region Reu < 1, Rev < 1. It may be interesting to recall that in our original
proof [7] of the conjecture (1.2), the relation (6.3) has worked as a key lemma.

Next we mention the connection between our method and a formula of
Mikolas. For Reu < 1, Rev < 1, Re(u + v) < 1, the formula

64) fl Uu, 2)(v, o) daw

=F(u+u—1)c(u+v_1){F(1—u)+ r(1_,,)}

() W)
=222 — u — v)[(1 — w)['(1 — v)cos (—121(14 - v))

is proved by Mikolas [11, (5.2)]. (The second equality follows by a simple
application of the functional equation of {(s).) Here we give two proofs of (6.4) in
the frame of our method. In fact, integrating both sides of (3.4) with respect to
afrom 0to 1,and using Lemma 5 and (6. 3), the relation (6.4) immediately follows.
It is also possible to deduce (6.4) as the limit ¢ — co of our discrete mean value
result [7, Theorem 2].

7. Completion of the proof of the theorem.
Now we assume N <Reu <N +1 and N <Rev < N + 1. Then, by using

Lemma 6, we have

"i‘ =1, Lo+n

a0 M u—n—1

_ Z (@ g, +">f v

= J‘“’ {Cx(v, «) — (= 1) w)ya f (—“‘_“‘"Cx(v + N, O‘T)d‘f}d

1
Substituting this result into (6.2), we have

b3
1) j (g(u, v;0) — a™*C (v, ) dox
0

= jma'“ﬁ(v,a)da - (—1)"(0)~JwaN"“
o]

1
1 (1 —T)N_l

T (v + N,ar)drde = J; — J,, say,
0 - .
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and the absolute convergence of the integrals J; and J, are justified by using

Lemma 7.
Putting ¢ = a1, and using a property of the beta-function, we have

N1 o
Jo = (— 1)) J Q——T—)——rr“'"“f ENTU( + N, dE dr

I'(N)I(u N—u
= (= 0"ON N~ DT 1)'r(u)J (o + N, de
= (U)N N—u
(l_u)Nfé Lilo + N, dE.

Next, in view of Lemmas 4 and 7, integrating by parts N-times we have
_ (U)N ® N-—u
= =Sy, u) + ———— | o« (v + N,a)do.
(I —-uy J1

Substituting these results into (7.1), we obtain

1
(7.2) J-o (gu,v;0) — ™ *{ (v, @) d
= —Syu) — = N e o 4 N, o) da
(1 —uy
= —Sy(v,u) — O ZJ Nl + o)™ N da.
N (1 — U

To verify this termwise integration, puting « = [~ we observe that

(7.3) ‘[1 Ml + @) N da = 11‘"-vr BroT31 + By N dp,
0 !

which is estimated by O(l " ®¢* V), Therefore, the integrals and the infinite series in
the right-hand side of (7.2) is convergent absolutely for Reu < N + 1,
Rev > — N + 1. From (7.2) and (7.3), we obtain

1
(7.4) L (glu,v;00 — a™ ' (v, @) dot = — Sy(v,u) — Ty(v,u).

Therefore, integrating both sides of (3.5) with respect to a from 0 to 1, and using
(5.3) and (7.4), we now arrive at the formula (2.1). Every terms appearing in (2.1)
are well-defined in the region — N+ 1<Reu<N+1, —N+1<Rev<
N + 1, and the expression (2.2) can be proved by integrating by parts K-times.
Thus the proof of the theorem is now completed.
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