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We classify all biharmonic Legendre curves in a Sasakian space form and
obtain their explicit parametric equations in the (2n + 1)-dimensional unit
sphere endowed with the canonical and deformed Sasakian structures de-
fined by Tanno. We also show that, under the flow-action of the character-
istic vector field, a biharmonic integral submanifold becomes a biharmonic
anti-invariant submanifold. Then, we obtain new examples of biharmonic
submanifolds in the Euclidean sphere S7.

1. Introduction

Biharmonic maps between Riemannian manifolds φ : (M, g) → (N , h) are the
critical points of the bienergy functional E2(φ) =

1
2

∫
M |τ(φ)|

2 vg and represent
a natural generalization of the well-known harmonic maps [Eells and Sampson
1964], the critical points of the energy functional E(φ)= 1

2

∫
M |dφ|

2 vg. The Euler–
Lagrange equation for the energy functional is τ(φ)=0, where τ(φ)= trace∇dφ is
the tension field, and the corresponding Euler–Lagrange equation for the bienergy
functional was derived by G. Y. Jiang [1986]:

τ2(φ) = −1τ(φ)− trace RN (dφ, τ(φ))dφ = 0.

Since any harmonic map is biharmonic, we are interested in nonharmonic bihar-
monic maps, which are called proper-biharmonic.

A special case of biharmonic maps is represented by the biharmonic Riemann-
ian immersions, or biharmonic submanifolds, that is, submanifolds for which the
inclusion map is biharmonic. We note that the biharmonic submanifolds in Eu-
clidean spaces are the same as those defined by B.-Y. Chen [1996], that is, they
are characterized by the equation 1H = 0, where H is the mean curvature vector
field.
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There are several classification results for proper-biharmonic submanifolds in
space forms [Balmuş et al. 2008; Caddeo et al. 2001a; Chen 1996; Dimitrić 1992;
Montaldo and Oniciuc 2006], while in spaces of nonconstant sectional curvature
only a few results were obtained [Arslan et al. 2007; Ichiyama et al. 2008; Inoguchi
2004; Sasahara 2005; Zhang 2007].

A different and active direction is the study of proper-biharmonic submanifolds
in pseudo-Riemannian manifolds (for example, see [Arvanitoyeorgos et al. 2007]
and [Chen 2008]).

Among proper-biharmonic submanifolds, particular attention has been paid to
proper-biharmonic curves parametrized by arc length. R. Caddeo, S. Montaldo
and P. Piu [Caddeo et al. 2001b] proved that the proper-biharmonic curves in the
unit Euclidean 2-dimensional sphere S2 are circles of radius 1/

√
2. Caddeo, Mon-

taldo, and the second author [Caddeo et al. 2001a] also showed that the proper-
biharmonic curves in S3 are the geodesics of the minimal (harmonic) Clifford
torus S(1/

√
2)×S(1/

√
2) with slope different from ±1. The proper-biharmonic

curves of S3 are helices. Further, the proper-biharmonic curves of Sn , n > 3,
are, up to a totally geodesic embedding of S3 in Sn , those of S3 [Caddeo et al.
2002]. Classification results for proper-biharmonic curves in 3-dimensional spaces
of nonconstant sectional curvature were obtained in [Caddeo et al. 2006; Cho et al.
2007; Fetcu and Oniciuc 2007; Inoguchi 2004], and it turn out that, in the studied
cases, they are helices.

Biharmonic submanifolds in Euclidean spheres has proved to be an interesting
subject. Since the odd-dimensional unit Euclidean spheres can be thought as a
particular class of Sasakian space forms (which do not have, in general, constant
sectional curvature), it seems that the next step would be the study of biharmonic
submanifolds in Sasakian space forms.

In the present paper we classify all proper-biharmonic Legendre curves in Sasa-
kian space forms of any dimension. Because of the complexity of the biharmonic
equation, we must do case-by-case analysis, and the classification is given by The-
orems 3.3, 3.6, 3.7 and 3.9. As a by-product we prove that in a 5-dimensional
Sasakian space form, all proper-biharmonic curves are helices (Theorem 3.12).
Then we consider the (2n + 1)-dimensional unit sphere S2n+1 endowed with the
canonical and deformed Sasakian structures defined by Tanno as a model for the
Sasakian space forms, and obtain the explicit parametric equations of proper-
biharmonic Legendre curves (Theorems 3.14, 3.17 and 3.18).

In Section 4 we prove that, by composing with the flow of the characteristic
vector field of a Sasakian space form, we can render a proper-biharmonic integral
submanifold onto a proper-biharmonic anti-invariant submanifold (Theorem 4.1).
This result allows us to obtain all proper-biharmonic surfaces which are invariant
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under the flow-action of the characteristic vector field (Theorem 4.3) and to con-
struct new examples of proper-biharmonic submanifolds (Section 5).

For a general account of biharmonic maps see [Montaldo and Oniciuc 2006]
and The bibliography of biharmonic maps [BibBhM 2008].

Conventions. We work in the C∞ category, which means manifolds, metrics,
connections and maps are smooth. The Lie algebra of the vector fields on M is
denoted by C(TM).

2. Preliminaries

In this section we briefly recall basic things from the theory of Sasakian manifolds
(for example, see [Blair 2002]) which we shall use throughout the paper.

A contact metric structure on an odd-dimensional manifold N 2n+1 is given by
(ϕ, ξ, η, g), where ϕ is a tensor field of type (1, 1) on N , ξ is a vector field, η is
an 1-form and g is a Riemannian metric such that

ϕ2
=−I + η⊗ ξ, η(ξ)= 1,

and

g(ϕX, ϕY )= g(X, Y )− η(X)η(Y ), g(X, ϕY )= dη(X, Y ), ∀X, Y ∈ C(TN ).

A contact metric manifold (N , ϕ, ξ, η, g) is called Sasakian if it is normal, meaning
that

Nϕ + 2dη⊗ ξ = 0,

where Nϕ is the Nijenhuis tensor field of ϕ, given by

Nϕ(X, Y )= [ϕX, ϕY ] −ϕ[ϕX, Y ] −ϕ[X, ϕY ] +ϕ2
[X, Y ], ∀X, Y ∈ C(TN );

or, equivalently, that

(∇Xϕ)(Y )= g(X, Y )ξ − η(Y )X, ∀X, Y ∈ C(TN ).

We note that from the above formula it follows ∇Xξ =−ϕX .
The contact distribution of a Sasakian manifold (N , ϕ, ξ, η, g) is defined by
{X ∈ TN :η(X)=0}. We say that a submanifold M of N is an integral submanifold
if η(X)= 0 for any vector X tangent to M ; in particular, an integral curve is called
a Legendre curve. The maximum dimension for an integral submanifold of N 2n+1

is n. A submanifold M of N which is tangent to ξ is said to be anti-invariant if ϕ
maps any vector tangent to M and normal to ξ to a vector normal to M .

Let (N , ϕ, ξ, η, g) be a Sasakian manifold. The sectional curvature of a 2-plane
generated by X and ϕX , where X is an unit vector orthogonal to ξ , is called the
ϕ-sectional curvature determined by X . If the ϕ-sectional curvature is a constant c,
then (N , ϕ, ξ, η, g) is called a Sasakian space form and it is denoted by N (c).
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The curvature tensor field of a Sasakian space form N (c) is given by

R(X,Y )Z

=
1
4(c+3){g(Z ,Y )X − g(Z , X)Y }

+
1
4(c−1)

{
η(Z)η(X)Y − η(Z)η(Y )X + g(Z , X)η(Y )ξ − g(Z ,Y )η(X)ξ

+g(Z ,ϕY )ϕX − g(Z ,ϕX)ϕY + 2g(X,ϕY )ϕZ
}
.

The classification of complete, simply connected Sasakian space forms N (c) was
given in [Tanno 1969]. When c > −3, N (c) is isometric to the unit sphere S2n+1

endowed with the Sasakian structure defined by Tanno. This structure is given as
follows (see [Tanno 1968]).

Let S2n+1
={z∈Cn+1

: |z|=1} be the unit (2n+1)-dimensional sphere endowed
with its standard metric field g0. Consider the following structure tensor fields on
S2n+1: ξ0 = −Iz for each z ∈ S2n+1, where I is the usual complex structure on
Cn+1 defined by

Iz = (−y1, . . . ,−yn+1, x1, . . . , xn+1),

for z= (x1, . . . , xn+1, y1, . . . , yn+1), and ϕ0= s ◦I, where s : TzCn+1
→ TzS2n+1

denotes the orthogonal projection. Equipped with these tensors, S2n+1 becomes a
Sasakian space form with the ϕ0-sectional curvature equal to 1.

Now, consider the deformed structure on S2n+1

η = aη0, ξ =
1
a
ξ0, ϕ = ϕ0, g = ag0+ a(a− 1)η0⊗ η0,

where a is a positive constant. The structure (ϕ, ξ, η, g) is still a Sasakian structure
and (S2n+1, ϕ, ξ, η, g) is a Sasakian space form with constant ϕ-sectional curvature
c = 4/a− 3, c >−3.

We end this subsection recalling that a contact metric manifold (N , ϕ, ξ, η, g)
is regular if for any point p ∈ N there exists a cubic neighborhood such that any
integral curve of ξ passes through it at most once; and it is strictly regular if all
integral curves of ξ are homeomorphic to each other.

3. Biharmonic Legendre curves in Sasakian space forms

We shall work with Frenet curves of osculating order r , parametrized by arc-length,
which we recall here (see [Baikoussis and Blair 1995]).

Definition 3.1. Let (N m, g) be a Riemannian manifold and γ : I → N a curve
parametrized by arc length, that is, |γ′(s)| = 1. Then γ is called a Frenet curve of
osculating order r , 1≤ r ≤m, if there are orthonormal vector fields E1, E2, . . . , Er
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along γ such that
E1 = γ

′
= T,

∇T E1 = κ1 E2,

∇T E2 =−κ1 E1+ κ2 E3

...

∇T Er =−κr−1 Er−1,

where κ1, . . . , κr−1 are positive functions on I .

Remark 3.2. A geodesic is a Frenet curve of osculating order 1, a circle is a Frenet
curve of osculating order 2 with κ1 = constant, and a helix of order r , r ≥ 3, is a
Frenet curve of osculating order r with κ1, . . . , κr−1 constants. A helix of order 3
is called, simply, a helix.

Now let (N 2n+1, ϕ, ξ, η, g) be a Sasakian space form with constant ϕ-sectional
curvature c and γ : I → N a Legendre Frenet curve of osculating order r . Since

∇
3
T T = (−3κ1κ

′

1)E1+ (κ
′′

1 − κ
3
1 − κ1κ

2
2 )E2+ (2κ ′1κ2+ κ1κ

′

2)E3+ κ1κ2κ3 E4,

R(T,∇T T )T =−
(c+3)κ1

4
E2−

3(c−1)κ1

4
g(E2, ϕT )ϕT,

we obtain the expression of the bitension vector field

(3-1) τ2(γ)=∇
3
T T − R(T,∇T T )T

= (−3κ1κ
′

1)E1+

(
κ ′′1−κ

3
1−κ1κ

2
2+
(c+3)κ1

4

)
E2+ (2κ ′1κ2+κ1κ

′

2)E3

+ κ1κ2κ3 E4+
3(c−1)κ1

4
g(E2, ϕT )ϕT .

We shall solve the biharmonic equation τ2(γ) = 0. Because of the last term of
τ2(γ) we must do a case by case analysis.

Case I: c = 1. In this case, from (3-1), it follows that γ is proper-biharmonic if
and only if

κ1 = constant> 0, κ2 = constant, κ2
1 + κ

2
2 = 1, κ2κ3 = 0.

One obtains:

Theorem 3.3. Let N 2n+1(1) be a Sasakian space form and γ : I → N a Legendre
Frenet curve of osculating order r . If n ≥ 2, then γ is proper-biharmonic if and
only if it is a circle with κ1 = 1, or a helix with κ2

1 + κ
2
2 = 1.

Remark 3.4. If n = 1 and γ is a nongeodesic Legendre curve we have ∇T T =
±κ1ϕT and then E2 = ±ϕT and ∇T E2 = ±∇TϕT = ±(ξ ∓ κ1T ) = −κ1T ± ξ .
Therefore κ2 = 1 and γ cannot be biharmonic.
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Case II: c 6= 1, E2 ⊥ ϕT . From (3-1) we obtain that γ is proper-biharmonic if
and only if

κ1 = constant> 0, κ2 = constant, κ2
1 + κ

2
2 = (c+3)/4, κ2κ3 = 0.

Before stating the theorem we need the following lemma which imposes a restric-
tion on the dimension of the manifold N 2n+1(c).

Lemma 3.5. Let γ be a Legendre Frenet curve of osculating order 3 such that
E2 ⊥ ϕT . Then {T = E1, E2, E3, ϕT, ξ,∇TϕT } is linearly independent, in any
point, and hence n ≥ 3.

Proof. Since γ is a Frenet curve of osculating order 3, we have

E1 = γ
′
= T,

∇T E1 = κ1 E2,

∇T E2 =−κ1 E1+ κ2 E3,

∇T E3 =−κ2 E2.

It is easy to see that, in an arbitrary point, the system

S1 = {T = E1, E2, E3, ϕT, ξ, ∇TϕT }

has only nonzero vectors and

T ⊥ E2, T ⊥ E3, T ⊥ ϕT, T ⊥ ξ, T ⊥∇TϕT .

Thus S1 is linearly independent if and only if S2 = {E2, E3, ϕT, ξ,∇TϕT } is lin-
early independent. Further, since we have the relations

E2⊥ ξ, E2⊥∇TϕT, E3⊥ ξ, E3⊥∇TϕT, ϕT ⊥ ξ, ϕT ⊥∇TϕT, E2⊥ E3⊥ϕT,

it follows that S2 is linearly independent if and only if S3 = {ξ,∇TϕT } is linearly
independent. But ∇TϕT = ξ + κ1ϕE2, κ1 6= 0, and therefore S3 is linearly inde-
pendent. �

Theorem 3.6. Let N 2n+1(c) be a Sasakian space form with c 6= 1 and γ : I → N
a Legendre Frenet curve of osculating order r such that E2 ⊥ ϕT .

(1) If c ≤−3 then γ is biharmonic if and only if it is a geodesic.

(2) If c >−3 then γ is proper-biharmonic if and only if either

(a) n ≥ 2 and γ is a circle with κ2
1 = (c+3)/4, in which case the vectors

{E1, E2, ϕT, ξ} are linearly independent, or
(b) n ≥ 3 and γ is a helix with κ2

1 + κ
2
2 = (c+3)/4, in which case the vectors

{E1, E2, E3, ϕT, ξ,∇TϕT } are linearly independent.
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Case III: c 6= 1, E2 ‖ ϕT . In this case, from (3-1), γ is proper-biharmonic if and
only if

κ1 = constant> 0, κ2 = constant, κ2
1 + κ

2
2 = c, κ2κ3 = 0.

We can assume that E2 = ϕT . Then ∇T T = κ1 E2 = κ1ϕT , ∇T E2 = ∇TϕT =
ξ − κ1T . That means E3 = ξ and κ2 = 1. Hence ∇T E3 =∇T ξ =−ϕT =−E2.

Therefore:

Theorem 3.7. Let N 2n+1(c) be a Sasakian space form with c 6= 1 and γ : I → N
a Legendre Frenet curve of osculating order r such that E2 ‖ ϕT . Then {T, ϕT, ξ}
is the Frenet frame field of γ and we have:

(1) If c < 1 then γ is biharmonic if and only if it is a geodesic.

(2) If c > 1 then γ is proper-biharmonic if and only if it is a helix with κ2
1 = c−1

(and κ2 = 1).

Remark 3.8. If n=1, for any Legendre curve E2 ‖ϕT , and we reobtain Inoguchi’s
result in [2004].

Case IV: c 6=1 and g(E2, ϕT ) is not constant 0, 1 or−1. Assume that γ is a proper-
biharmonic Legendre Frenet curve of osculating order r such that g(E2, ϕT ) is not
constant 0, 1 or −1. One can check that, in this case, 4 ≤ r ≤ 2n+ 1, n ≥ 2, and
ϕT ∈ span{E2, E3, E4}.

Now, we denote f (s)= g(E2, ϕT ) and differentiating it we obtain

f ′(s)= g(∇T E2, ϕT )+ g(E2,∇TϕT )= g(∇T E2, ϕT )+ g(E2, ξ + κ1ϕE2)

= g(∇T E2, ϕT )= g(−κ1T + κ2 E3, ϕT )

= κ2g(E3, ϕT ).

Since ϕT = g(ϕT, E2)E2 + g(ϕT, E3)E3 + g(ϕT, E4)E4, the curve γ is proper-
biharmonic if and only if

κ1 = constant> 0, κ2
1 + κ

2
2 =

1
4(c+3)+ 3

4(c−1) f 2,

κ ′2 =−
3
4(c−1) f g(ϕT, E3), κ2κ3 =−

3
4(c−1) f g(ϕT, E4).

Using the expression of f ′(s) we see that the third equation of this system is equiv-
alent to

κ2
2 =−

3
4(c−1) f 2

+ω0,

where ω0 = constant. Substituting in the second equation, it follows that

κ2
1 =

c+3
4
−ω0+

3(c−1)
2

f 2,
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which implies f = constant. Thus κ2 = constant > 0, g(E3, ϕT ) = 0 and then
ϕT = f E2 + g(ϕT, E4)E4. It follows that there exists a unique constant α0 ∈

(0, 2π) \
{
π
2 , π,

3π
2

}
such that f = cosα0 and g(ϕT, E4)= sinα0.

We can state:

Theorem 3.9. Let N 2n+1(c) be a Sasakian space form with c 6= 1, n ≥ 2, and
γ : I → N a Legendre Frenet curve of osculating order r such that g(E2, ϕT ) is
not constant 0, 1 or −1.

(1) If c ≤−3 then γ is biharmonic if and only if it is a geodesic.

(2) If c>−3 then γ is proper-biharmonic if and only if ϕT = cosα0 E2+sinα0 E4,
κ1, κ2, κ3 = constant> 0,

κ2
1 + κ

2
2 =

1
4(c+3)+ 3

4(c−1) cos2 α0 and κ2κ3 =−
3
8(c−1) sin 2α0,

where α0∈ (0, 2π)\
{
π
2 , π,

3π
2

}
is a constant such that c+3+3(c−1) cos2 α0>

0 and 3(c−1) sin 2α0 < 0.

Remark 3.10. In this case we may obtain biharmonic curves which are not helices.

Proposition 3.11. Assume that c > −3, c 6= 1, and n = 2. Let γ be a proper-
biharmonic Legendre Frenet curve of osculating order r , such that g(E2, ϕT ) is
not constant 0, −1 or 1. Then γ is a helix of order 4 or 5.

Proof. We know that r ∈ {4, 5}. If r = 4, then the result is obvious from Theorem
3.9.

Assume now r = 5. Since ϕT = cosα0 E2+ sinα0 E4, and ξ ⊥ ϕT , ξ ⊥ E2, we
get ξ ⊥ E4, and then, along γ, ξ ∈ span{E3, E5}.

From the Frenet equations of γ it follows that

g(∇T E3, ξ)= g(−κ2 E2+ κ3 E4, ξ)= 0,

g(∇T E5, ξ)= g(−κ4 E4, ξ)= 0.

Then, since ∇g = 0, we obtain (g(E3, ξ))
′
= 0 and (g(E5, ξ))

′
= 0, that is, a =

g(E3, ξ)= constant and b = g(E5, ξ)= constant.
Now, we have

g(∇T E4, ξ)=−κ3g(E3, ξ)+ κ4g(E5, ξ)=−κ3a+ κ4b

and, since g(∇T E4, ξ)= g(E4, ϕT )= sinα0, we get

(3-2) sinα0 =−κ3a+ κ4b

which implies that b = 0 or κ4 = constant.

Case b = 0. Since ξ ∈ span{E3, E5}, we have E3 =±ξ and therefore

∇T E3 =∓ϕT =∓ cosα0 E2∓ sinα0 E4.
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From the third Frenet equation, κ2 =± cosα0, κ3 =∓ sinα0, and then, from The-
orem 3.9, κ2κ3 = −

1
2 sin 2α0 = −(3(c−1)/8) sin 2α0. Thus, we have c = 7

3 and,
again using Theorem 3.9, κ1 = 2/

√
3.

We shall prove now κ4 = κ1, so γ is a helix of order 5. From the last Frenet
equation, we obtain

(3-3) g(∇T E5, ϕT )=−κ4g(E4, ϕT )=−κ4 sinα0.

Since g(E5, ϕT ) = 0 we have g(∇T E5, ϕT )+ g(E5,∇TϕT ) = 0. We can check
that g(E5,∇TϕT )= κ1g(E5, ϕE2), therefore, using (3-3), we get

(3-4) κ1g(E5, ϕE2)= κ4 sinα0.

Next, from the fourth Frenet equation and (3-4),

(3-5) g(∇T E4, ϕE2)= κ4g(E5, ϕE2)=
κ2

4

κ1
sinα0.

Since ϕT = cosα0 E2+ sinα0 E4 it results that g(E4, ϕE2)= 0. It follows that

(3-6)
g(∇T E4, ϕE2)=−g(E4,∇TϕE2)

=−g(E4, ϕ∇T E2)= κ1g(E4, ϕT )= κ1 sinα0.

From (3-5) and (3-6) we obtain κ4 = κ1 = 2/
√

3.

Case b 6= 0. Of course, due to (3-2) κ4 = constant and so γ is a helix. Moreover,
we can obtain an additional relation between the curvatures.

Indeed, since ξ ∈ span{E3, E5} it follows a2
+ b2
= 1. On the other hand

g(∇T E2, ξ)= g(E2, ϕT )= cosα0 = g(−κ1T + κ2 E3, ξ)= κ2a

and as −κ3a+ κ4b = sinα0, replacing in a2
+ b2
= 1 we get

(κ2 sinα0+ κ3 cosα0)
2
+ κ2

4 (cosα0)
2
= κ2

2κ
2
4 . �

From Theorems 3.3, 3.6 and 3.7 and Proposition 3.11 we conclude:

Theorem 3.12. Let γ be a proper-biharmonic Legendre curve in N 5(c). Then
c >−3 and γ is a helix of order r with 2≤ r ≤ 5.

Remark 3.13. In [Fetcu 2008a], a preliminary version of the full classification of
the proper-biharmonic Legendre curves in Sasakian space forms was obtained.

In the following, we shall choose the unit (2n + 1)-dimensional sphere S2n+1

with its canonical and deformed Sasakian structures as a model for the complete,
simply connected Sasakian space form with constant ϕ-sectional curvature c>−3,
and we shall find the explicit equations of biharmonic Legendre curves obtained
in the first three cases, viewed as curves in R2n+2.
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Theorem 3.14. Let γ : I → (S2n+1, ϕ0, ξ0, η0, g0), n ≥ 2, be a proper-biharmonic
Legendre curve parametrized by arc length. Then the equation of γ in the Eu-
clidean space E2n+2

= (R2n+2, 〈 , 〉) is either

γ(s)= 1
√

2
cos(
√

2s)e1+
1
√

2
sin(
√

2s)e2+
1
√

2
e3

where {ei ,Ie j }
3
i, j=1 are orthogonal constant unit vectors, or

γ(s)= 1
√

2
cos(As)e1+

1
√

2
sin(As)e2+

1
√

2
cos(Bs)e3+

1
√

2
sin(Bs)e4,

where

(3-7) A =
√

1+ κ1, B =
√

1− κ1, κ1 ∈ (0, 1),

and {ei }
4
i=1 are orthogonal constant unit vectors, satisfying

〈e1,Ie3〉 = 〈e1,Ie4〉 = 〈e2,Ie3〉 = 〈e2,Ie4〉 = 0, A〈e1,Ie2〉+ B〈e3,Ie4〉 = 0.

Proof. Let us denote by ∇̇ and by ∇̃ the Levi-Civita connections on (S2n+1, g0)

and (R2n+2, 〈 , 〉), respectively.
First, assume that γ is the biharmonic circle, that is, κ1 = 1. From the Gauss

and Frenet equations we get

∇̃T T = ∇̇T T −〈T, T 〉γ = κ1 E2− γ,

∇̃T ∇̃T T = (−κ2
1 − 1)T =−2T,

which implies
γ′′′+ 2γ′ = 0.

The general solution of this equation is

γ(s)= cos(
√

2s)c1+ sin(
√

2s)c2+ c3,

where the ci are constant vectors in E2n+2.
Now, as γ satisfies

〈γ, γ〉 = 1, 〈γ′, γ′〉 = 1, 〈γ, γ′〉 = 0, 〈γ′, γ′′〉 = 0, 〈γ′′, γ′′〉 = 2, 〈γ, γ′′〉 = −1,

and since in s = 0 we have γ = c1+ c3, γ′ =
√

2c2, γ′′ =−2c1, we obtain

c11+ 2c13+ c33 = 1, c22 =
1
2 , c12+ c23 = 0, c12 = 0, c11 =

1
2 , c11+ c13 =

1
2 ,

where ci j denotes 〈ci , c j 〉. The above relations imply that {ci } are orthogonal vec-
tors in E2n+2 with |c1| = |c2| = |c3| = 1/

√
2.

Finally, using that γ is a Legendre curve one obtains easily that 〈ci ,Ic j 〉= 0 for
any i, j = 1, 2, 3. If we denote ei =

√
2ci we obtain the first part of the Theorem.
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Suppose now γ is the biharmonic helix, that is, κ2
1 + κ

2
2 = 1, κ1 ∈ (0, 1). From

the Gauss and Frenet equations we get

∇̃T T = ∇̇T T −〈T, T 〉γ = κ1 E2− γ,

∇̃T ∇̃T T = κ1∇̃T E2− T = κ1(−κ1T + κ2 E3)− T =−(κ2
1 + 1)T + κ1κ2 E3,

∇̃T ∇̃T ∇̃T T =−(κ2
1 + 1)∇̃T T + κ1κ2∇̃T E3

=−(κ2
1 + 1)∇̃T T − κ1κ

2
2 E2 =−2γ′′− κ2

2γ.

Hence
γiv
+ 2γ′′+ κ2

2γ = 0,

whose general solution is

γ(s)= cos(As)c1+ sin(As)c2+ cos(Bs)c3+ sin(Bs)c4,

where A, B are given by (3-7) and {ci } are constant vectors in E2n+2.
Since γ satisfies

〈γ, γ〉 = 1, 〈γ, γ′〉 = 0, 〈γ, γ′′〉 = −1 〈γ, γ′′′〉 = 0,

〈γ′, γ′〉 = 1, 〈γ′, γ′′〉 = 0, 〈γ′, γ′′′〉 = −(1+ κ2
1 ),

〈γ′′, γ′′〉 = 1+ κ2
1 , 〈γ

′′, γ′′′〉 = 0, 〈γ′′′, γ′′′〉 = 3κ2
1 + 1,

and since in s = 0 we have γ = c1 + c3, γ′ = Ac2 + Bc4, γ′′ = −A2c1 − B2c3,
γ′′′ =−A3c2− B3c4, we obtain

c11+ 2c13+ c33 = 1,(3-8)

A2c22+ 2ABc24+ B2c44 = 1,(3-9)

Ac12+ Ac23+ Bc14+ Bc34 = 0,(3-10)

A3c12+ AB2c23+ A2 Bc14+ B3c34 = 0,(3-11)

A4c11+ 2A2 B2c13+ B4c33 = 1+ κ2
1 ,(3-12)

A2c11+ (A2
+ B2)c13+ B2c33 = 1,(3-13)

A4c22+ (AB3
+ A3 B)c24+ B4c44 = 1+ κ2

1 ,(3-14)

A5c12+ A3 B2c23+ A2 B3c14+ B5c34 = 0,(3-15)

A3c12+ A3c23+ B3c14+ B3c34 = 0,(3-16)

A6c22+ 2A3 B3c24+ B6c44 = 3κ2
1 + 1,(3-17)

where ci j = 〈ci , c j 〉. Since the determinant of the system given by (3-10), (3-11),
(3-15) and (3-16) is −A2 B2(A2

− B2)4 6= 0 it follows that

c12 = c23 = c14 = c34 = 0.
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The equations (3-8), (3-12) and (3-13) give

c11 =
1
2 , c13 = 0, c33 =

1
2 ,

and, from (3-9), (3-14) and (3-17) follows that

c22 =
1
2 , c24 = 0, c44 =

1
2 .

Therefore, we obtain that {ci } are orthogonal vectors in E2n+2 with |c1| = |c2| =

|c3| = |c4| = 1/
√

2.
Finally, since γ is a Legendre curve one obtains the second part of the theorem.

�

Remark 3.15. Vectors {ei } satisfying the conditions in the theorem can be easily
found.

Remark 3.16. If γ is a proper-biharmonic Legendre circle, then E2 ⊥ ϕT . If γ is
a proper-biharmonic Legendre helix, then g0(E2, ϕT )=

√
1+ κ1〈e1,Ie2〉 and we

have two cases: either g0(E2, ϕT ) = 0 and then {ei ,Ie j }
4
i, j=1 is an orthonormal

system in E2n+2, so n ≥ 3, or g0(E2, ϕT ) 6= 0 and in this case g0(E2, ϕT ) ∈
(−1, 1) \ {0}.

Next we shall use the deformed Sasakian structure (ϕ, ξ, η, g) on S2n+1.

Theorem 3.17. Let γ : I → (S2n+1, ϕ, ξ, η, g), n ≥ 2, a > 0, a 6= 1 (so c =
4/a − 3 > −3 and c 6= 1), be a proper-biharmonic Legendre curve parametrized
by arc length such that E2 ⊥ ϕT . Then the equation of γ in the Euclidean space
E2n+2 is either

γ(s)= 1
√

2
cos

(√2
a

s
)

e1+
1
√

2
sin
(√2

a
s
)

e2+
1
√

2
e3,

for n ≥ 2, where {ei ,Ie j }
3
i, j=1 are orthogonal constant unit vectors, or

γ(s)= 1
√

2
cos(As)e1+

1
√

2
sin(As)e2+

1
√

2
cos(Bs)e3+

1
√

2
sin(Bs)e4,

for n ≥ 3, where

(3-18) A =

√
1+ κ1

√
a

a
, B =

√
1− κ1

√
a

a
, κ1 ∈

(
0, 1

a

)
,

and {ei ,Ie j }
3
i, j=1 are orthogonal constant unit vectors.

Proof. Again let us denote by ∇, ∇̇ and by ∇̃ the Levi-Civita connections on
(S2n+1, g), (S2n+1, g0) and (R2n+2, 〈 , 〉), respectively. From the definition of the
Levi-Civita connection, as g0(X, ϕ0Y )= dη0(X, Y ) and g(X, ϕY )= dη(X, Y ), we
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obtain g(∇X Y, Z)= ag0(∇̇X Y, Z), for any vector field Z and for any X , Y which
satisfy X ⊥ ξ , Y ⊥ ξ and X ⊥ ϕY . Further, it is easy to check that we have

(3-19) ∇X Y = ∇̇X Y, ∀X, Y ∈ C(T S2n+1) with X ⊥ ξ, Y ⊥ ξ, X ⊥ ϕY.

First we consider the case when γ is the biharmonic circle, that is, κ2
1 = (c+3)/4.

Let T = γ′ be the unit tangent vector field (with respect to the metric g) along γ.
Using (3-19) we obtain ∇̇T T =∇T T and ∇̇T E2 =∇T E2.

From the Gauss and Frenet equations we get

∇̃T T = ∇̇T T −〈T, T 〉γ = κ1 E2−
1
a
γ and ∇̃T ∇̃T T =

(
− κ2

1 −
1
a

)
T =−2

a
T .

Hence
aγ′′′+ 2γ′ = 0,

whose general solution is

γ(s)= cos
(√2

a
s
)

c1+ sin
(√2

a
s
)

c2+ c3,

where the ci are constant vectors in E2n+2.
Since γ satisfies

〈γ, γ〉 = 1, 〈γ′, γ′〉 = 1
a
, 〈γ, γ′〉 = 0, 〈γ′, γ′′〉 = 0, 〈γ′′, γ′′〉 = 2

a2 , 〈γ, γ
′′
〉 =−

1
a
,

and in s = 0 we have γ = c1+ c3, γ′ = (
√

2/a)c2, γ′′ =−(2/a)c1, one obtains

c11+ 2c13+ c33 = 1, c22 =
1
2 , c12+ c23 = 0, c12 = 0, c11 =

1
2 , c11+ c13 =

1
2 ,

where ci j = 〈ci , c j 〉. Consequently, we obtain that {ci } are orthogonal vectors in
E2n+2 with |c1| = |c2| = |c3| = 1/

√
2.

Finally, using the facts that γ is a Legendre curve and g(∇γ′γ′, ϕγ′) = 0 one
obtains easily that 〈ci ,Ic j 〉 = 0 for any i, j = 1, 2, 3.

Now we assume that γ is a biharmonic helix, that is, κ2
1 + κ

2
2 = (c+3)/4, κ2

1 ∈

(0, (c+3)/4). First, using (3-19), we obtain ∇̇T T = ∇T T , ∇̇T E2 = ∇T E2 and
∇̇T E3 =∇T E3.

From the Gauss and Frenet equations we get

∇̃T T = ∇̇T T−〈T, T 〉γ = κ1 E2−
1
a
γ,

∇̃T ∇̃T T = κ1∇̃T E2−
1
a

T = κ1(−κ1T+κ2 E3)−
1
a

T =−
(
κ2

1+
1
a

)
T+κ1κ2 E3,

∇̃T ∇̃T ∇̃T T =−
(
κ2

1+
1
a

)
∇̃T T+κ1κ2∇̃T E3 =−

(
κ2

1+
1
a

)
∇̃T T−κ1κ

2
2 E2

=−
2
a
γ′′−

1
a
κ2

2γ.
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Therefore
aγiv
+ 2γ′′+ κ2

2γ = 0,

whose general solution is

γ(s)= cos(As)c1+ sin(As)c2+ cos(Bs)c3+ sin(Bs)c4,

where A, B are given by (3-18) and {ci } are constant vectors in E2n+2.
The curve γ satisfies

〈γ, γ〉 = 1, 〈γ, γ′〉 = 0, 〈γ, γ′′〉 = −
1
a
, 〈γ, γ′′′〉 = 0,

〈γ′, γ′〉 =
1
a
, 〈γ′, γ′′〉 = 0, 〈γ′, γ′′′〉 = −

1+ aκ2
1

a2 ,

〈γ′′, γ′′〉 =
1+ aκ2

1

a2 , 〈γ′′, γ′′′〉 = 0, 〈γ′′′, γ′′′〉 =
3aκ2

1 + 1
a3 ,

and in s = 0 we have

γ = c1+ c3, γ
′
= Ac2+ Bc4, γ

′′
=−A2c1− B2c3, γ

′′′
=−A3c2− B3c4.

It follows that

c11+ 2c13+ c33 = 1,(3-20)

A2c22+ 2ABc24+ B2c44 =
1
a
,(3-21)

Ac12+ Ac23+ Bc14+ Bc34 = 0,(3-22)

A3c12+ AB2c23+ A2 Bc14+ B3c34 = 0,(3-23)

A4c11+ 2A2 B2c13+ B4c33 =
1+ aκ2

1

a2 ,(3-24)

A2c11+ (A2
+ B2)c13+ B2c33 =

1
a
,(3-25)

A4c22+ (AB3
+ A3 B)c24+ B4c44 =

1+ aκ2
1

a2 ,(3-26)

A5c12+ A3 B2c23+ A2 B3c14+ B5c34 = 0,(3-27)

A3c12+ A3c23+ B3c14+ B3c34 = 0,(3-28)

A6c22+ 2A3 B3c24+ B6c44 =
3aκ2

1 + 1
a3 ,(3-29)

where ci j = 〈ci , c j 〉.
The solution of the system given by (3-22), (3-23), (3-27) and (3-28) is

c12 = c23 = c14 = c34 = 0.
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From equations (3-20), (3-24) and (3-25) we get

c11 =
1
2 , c13 = 0, c33 =

1
2 ,

and, from (3-21), (3-26), (3-29),

c22 =
1
2 , c24 = 0, c44 =

1
2 .

We obtain that {ci } are orthogonal vectors in E2n+2 with |c1| = |c2| = |c3| = |c4| =

1/
√

2.
Finally, since γ is a Legendre curve and g(∇γ′γ′, ϕγ′) = 0, one obtains the

conclusion. �

In the third case, just like for S3 (see [Fetcu and Oniciuc 2007]), we obtain:

Theorem 3.18. Let γ : I → (S2n+1, ϕ, ξ, η, g), 0< a < 1 (so c> 1), be a proper-
biharmonic Legendre curve parametrized by arc length such that E2 ‖ ϕT . Then
the equation of γ in the Euclidean space E2n+2 is

γ(s)=

√
B

A+ B
cos(As)e1−

√
B

A+ B
sin(As)Ie1

+

√
A

A+ B
cos(Bs)e3+

√
A

A+ B
sin(Bs)Ie3

=

√
B

A+ B
exp(−iAs)e1+

√
A

A+ B
exp(iBs)e3,

where e1, e3 are constant unit orthogonal vectors in E2n+2 with e3 orthogonal to
Ie1, and

(3-30) A =

√
3− 2a− 2

√
(a− 1)(a− 2)
a

, B =

√
3− 2a+ 2

√
(a− 1)(a− 2)
a

.

Remark 3.19. For the fourth case the ODE satisfied by proper-biharmonic Le-
gendre curves in the (2n + 1)-sphere may be also obtained but the computations
are rather complicated.

4. Biharmonic submanifolds in Sasakian space forms

A method to obtain biharmonic submanifolds in a Sasakian space form is provided
by the following Theorem.

Theorem 4.1. Let (N 2n+1, ϕ, ξ, η, g) be a strictly regular Sasakian space form
with constant ϕ-sectional curvature c and let i : M → N be an r-dimensional
integral submanifold of N , 1≤ r ≤ n. Consider

F : M̃ = I ×M→ N , F(t, p)= φt(p)= φp(t),
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where I = S1 or I = R and {φt }t∈I is the flow of the vector field ξ . Then the
map F : (M̃, g̃ = dt2

+ i∗g)→ N is a Riemannian immersion, and it is proper-
biharmonic if and only if M is a proper-biharmonic submanifold of N .

Proof. From the definition of the flow of ξ we have

d F(t, p)
( ∂
∂t

)
=

d
ds

∣∣∣
s=t
{φp(s)} = φ̇p(t)= ξ(φp(t))= ξ(F(t, p)),

that is, ∂/∂t is F-correlated to ξ and∣∣∣d F(t, p)
( ∂
∂t

)∣∣∣= |ξ(F(t, p))| = 1=
∣∣∣ ∂
∂t

∣∣∣.
The vector X p ∈ Tp M can be identified to (0, X p) ∈ T(t,p)(I ×M) and we have

d F(t,p)(X p)= (d F)(t,p)(γ̇(0))=
d
ds

∣∣∣
s=0
{φt(γ(s))} = (dφt)p(X p).

Since φt is an isometry |d F(t,p)(X p)| = |(dφt)p(X p)| = |X p|. Moreover,

g
(

d F(t,p)
( ∂
∂t

)
, d F(t,p)(X p)

)
= g

(
ξ(φp(t)), (dφt)p(X p)

)
= g

(
(dφt)p(ξp), (dφt)p(X p))= g(ξp, X p

)
= 0

= g̃
( ∂
∂t
, X p

)
,

and therefore F : (I ×M, g̃)→ N is a Riemannian immersion.
Let F−1(TN ) be the pullback bundle over M̃ and ∇F the pullback connection

determined by the Levi-Civita connection on N . We shall prove that

τ(F)(t,p) = (dφt)p(τ (i)) and τ2(F)(t,p) = (dφt)p(τ2(i)),

so, from the point of view of harmonicity and biharmonicity, M̃ and M have the
same behaviour.

We start with two remarks. First, let σ ∈C(F−1(TN )) be a section in F−1(TN )
defined by σ(t,p) = (dφt)p(Z p), where Z is a vector field along M , that is, Z p ∈

Tp N , ∀p ∈ M . One can easily check that

(4-1) (∇F
X σ)(t,p) = (dφt)p(∇

N
X Z), ∀X ∈ C(TM).

Then, if σ ∈C(F−1(TN )), it follows that ϕσ given by (ϕσ)(t,p) = ϕφp(t)(σ(t,p)) is
a section in F−1(TN ) and

(4-2) ∇
F
∂/∂tϕσ = ϕ∇

F
∂/∂tσ.
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Now, we consider {X1, . . . , Xr } a local orthonormal frame field on U , where U is
an open subset of M . The tension field of F is given by

(4-3) τ(F)=∇F
∂/∂t d F

( ∂
∂t

)
−d F

(
∇

M̃
∂/∂t

∂

∂t

)
+

r∑
a=1

{
∇

F
Xa

d F(Xa)−d F(∇ M̃
Xa

Xa)
}
.

Since

∇
F
∂/∂t d F

( ∂
∂t

)
=∇

N
ξ ξ =0, (∇F

Xa
d F(Xa))(t,p) = (dφt)p(∇

N
Xa

Xa),

∇
M̃
∂/∂t

∂

∂t
=∇

I
∂/∂t

∂

∂t
= 0, d F(t,p)(∇ M̃

Xa
Xa)= (dφt)p(∇

M
Xa

Xa),

substituting in (4-3) we get

τ(F)(t,p) = (dφt)p(τ (i)).

To obtain τ2(F)(t,p) = (dφt)p(τ2(i)), we prove first that ∇F
∂/∂tτ(F)=−ϕ(τ(F)).

Since [∂/∂t, Xa] = 0, a = 1, . . . , r , it follows that

∇
F
∂/∂t d F(Xa)=∇

F
Xa

d F
( ∂
∂t

)
.

But (
∇

F
Xa

d F
( ∂
∂t

))
(t,p)
=∇

N
d F(t,p)Xa

ξ =∇N
(dφt )p Xa

ξ =−ϕ((dφt)p(Xa))

=−(dφt)p(ϕXa),

so

(4-4)
(
∇

F
∂/∂t d F(Xa)

)
(t,p) =−(dφt)p(ϕXa).

We note that

RF
( ∂
∂t
, Xa

)
d F(Xa)=∇

F
∂/∂t∇

F
Xa

d F(Xa)−∇
F
Xa
∇

F
∂/∂t d F(Xa)

and, on the other hand, as N is a Sasakian space form,(
RF
( ∂
∂t
, Xa

)
d F(Xa)

)
(t,p)
= RN

φt (p)(ξ, (dφt)p(Xa))(dφt)p(Xa)= ξ.

Therefore

(4-5) ∇
F
∂/∂t∇

F
Xa

d F(Xa)−∇
F
Xa
∇

F
∂/∂t d F(Xa)= ξ.

Using (4-1) and (4-4), ∇F
Xa
∇

F
∂/∂t d F(Xa) can be written as

(4-6)
(
∇

F
Xa
∇

F
∂/∂t d F(Xa)

)
(t,p) =−(dφt)p(∇

N
Xa
ϕXa)=−(dφt)p(ξ +ϕ∇

N
Xa

Xa).
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Moreover, from (4-4),

(4-7)
(
∇

F
∂/∂t d F(∇ M̃

Xa
Xa)

)
(t,p) =

(
∇

F
∂/∂t d F(∇M

Xa
Xa)

)
(t,p) =−(dφt)p(ϕ∇

M
Xa

Xa).

Substituting (4-6) in (4-5) and using (4-7), we obtain

ξ =∇F
∂/∂t∇

F
Xa

d F(Xa)−∇
F
∂/∂t d F(∇ M̃

Xa
Xa)+∇

F
∂/∂t d F(∇ M̃

Xa
Xa)−∇

F
Xa
∇

F
∂/∂t d F(Xa)

=∇
F
∂/∂t∇d F(Xa, Xa)−(dφt)p(ϕ∇

M
Xa

Xa)+(dφt)p(ξ+ϕ∇
N
Xa

Xa)

=∇
F
∂/∂t∇d F(Xa, Xa)+ϕ(dφt)p(∇

N
Xa

Xa−∇
M
Xa

Xa)+ξ,

so

(4-8)
(
∇

F
∂/∂t∇d F(Xa, Xa)

)
(t,p) =−ϕ(dφt)p(∇di(Xa, Xa)).

Since ∇d F(∂/∂t, ∂/∂t)= 0, summing up in (4-8) we obtain

(4-9) ∇
F
∂/∂tτ(F)=−ϕ(τ(F)).

From (4-2) and (4-9) we have

(4-10) ∇F
∂/∂t∇

F
∂/∂tτ(F)=−∇

F
∂/∂tϕ(τ(F))=−ϕ∇

F
∂/∂tτ(F)= ϕ

2τ(F)=−τ(F),

and from (4-1) (
∇

F
Xa
∇

F
Xa
τ(F)

)
(t,p) = (dφt)p

(
∇

N
Xa
∇

N
Xa
τ(i)

)
,(4-11) (

∇
F
∇

M̃
Xa Xa

τ(F)
)
(t,p) = (dφt)p

(
∇

N
∇

M
Xa Xa

τ(i)
)
.(4-12)

From (4-10), (4-11) and (4-12) we obtain

(4-13) −(1Fτ(F))(t,p) =∇F
∂/∂t∇

F
∂/∂tτ(F)+

r∑
a=1

{
∇

F
Xa
∇

F
Xa
τ(F)−∇F

∇
M̃
Xa Xa

τ(F)
}

=−τ(F)(t,p)− (dφt)p(1
iτ(i)).

Using the form of the curvature tensor field RN , after a straightforward computa-
tion, we get

(4-14) trace RF (d F, τ (F))d F =−τ(F)+ (dφt)p(trace RN
p (di, τ (i))di).

Finally, from (4-13) and (4-14) we conclude

τ2(F)(t,p) = (dφt)p(τ2(i)). �

Remark 4.2. The previous result was expected for the following reason. Assume
that (N 2n+1, ϕ, ξ, η, g) is a compact strictly regular Sasakian manifold and let G :
M→ N be an arbitrary smooth map from a compact Riemannian manifold M . If
F is biharmonic, then the map G is biharmonic, where F : M̃ = S1

× M → N ,
F(t, p)= φt(G(p)).
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Indeed, an arbitrary variation {Gs}s of G induces a variation {Fs}s of F . We
can check that τ(p,t)(Fs) = (dφt)Gs(p)(τp(Gs)) and, from the biharmonicity of F
and the Fubini Theorem, we get

0=
d
ds

∣∣∣
s=0
{E2(Fs)} =

1
2

d
ds

∣∣∣
s=0

∫
M̃
|τ(Fs)|

2 vg̃ =
1
2

2π
d
ds

∣∣∣
s=0

∫
M
|τ(Gs)|

2 vg

= 2π
d
ds

∣∣∣
s=0
{E2(Gs)}.

Since d
ds

∣∣
s=0{E2(Gs)} = 0 for any variation {Gs}s of G, it follows that G is bihar-

monic. In particular, if M is a submanifold of N and G is the inclusion map i, then
we have the direct implication of the Theorem.

Theorem 4.3. Let M2 be a surface of N 2n+1(c) invariant under the flow-action
of the characteristic vector field ξ . Then M is proper-biharmonic if and only if
locally, it is given by x(t, s)= φt(γ(s)), where γ is a proper-biharmonic Legendre
curve.

Proof. A surface M of N 2n+1 invariant under the flow-action of the characteristic
vector field ξ , that is, φt(p) ∈ M , for any t and any p ∈ M , can be written, locally,
x(t, s) = φt(γ(s)), where γ is a Legendre curve in N . Then, from Theorem 4.1,
such a surface is proper-biharmonic if and only if γ is proper-biharmonic. �

Corollary 4.4. Let M2 be a surface of S2n+1 endowed with its canonical Sasakian
structure which is invariant under the flow-action of the characteristic vector field
ξ . Then M is proper-biharmonic if and only if locally, it is given by x(t, s) =
φt(γ(s)), where γ is a proper-biharmonic Legendre curve given by Theorem 3.14.

Next, consider the unit (2n + 1)-dimensional sphere S2n+1 endowed with its
canonical or deformed Sasakian structure. The flow of ξ is φt(z) = exp(−i t

a )z,
and from Theorems 3.17, 3.18 and 4.1 we obtain explicit examples of proper-
biharmonic surfaces in (S2n+1, ϕ, ξ, η, g), a > 0, of constant mean curvature.

Moreover, we reobtain a result of [Arslan et al. 2007].

Proposition 4.5 [Arslan et al. 2007]. Let F : M̃3
→ (S5, ϕ0, ξ0, η0, g0)⊂ R6 be a

proper-biharmonic anti-invariant immersion. Then

F(t, u, v)=
exp(−it)
√

2

(
exp(iu), i exp(−iu) sin(

√
2v), i exp(−iu) cos(

√
2v)

)
.

Proof. It was proved in [Sasahara 2005] that the proper-biharmonic integral surface
of (S5, ϕ0, ξ0, η0, g0) is given by

f (u, v)=
1
√

2

(
exp(iu), i exp(−iu) sin

√
2v, i exp(−iu) cos

√
2v
)
.

Now, composing with the flow of ξ0 we obtain the result. �
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5. Biharmonic submanifolds of (S7, g0)

First we shall recall the definition of a Sasakian 3-structure. If a manifold N admits
three Sasakian structures (ϕa, ξa, ηa, g), a = 1, 2, 3, satisfying

ϕc =−ϕaϕb+ ηb⊗ ξa = ϕbϕa − ηa ⊗ ξb,

ξc =−ϕaξb = ϕbξa, ηc =−ηa ◦ϕb = ηb ◦ϕa,

for an even permutation (a, b, c) of (1, 2, 3), then the manifold is said to have a
Sasakian 3-structure [Blair 2002]. The dimension of such a manifold is of the form
4n+3. The maximum dimension of a submanifold of a 3-Sasakian manifold N 4n+3

which is an integral submanifold with respect to all three Sasakian structures is n.
We consider now the Euclidean space E8 with three complex structures,

I=

(
0 −I4

I4 0

)
, J=


0 0 0 I2

0 0 −I2 0
0 I2 0 0
−I2 0 0 0

 , K=−IJ,

where In denotes the n×n identity matrix. We define three vector fields on S7 by

ξ1 =−Iz, ξ2 =−Jz, ξ3 =−Kz, z ∈ S7,

and consider their dual 1-forms η1 = η0, η2, η3. Let ϕa defined by

ϕ1 = ϕ0 = s ◦I, ϕ2 = s ◦J, ϕ3 = s ◦K.

Then (ϕa, ξa, ηa, g0), a = 1, 2, 3, determine a Sasakian 3-structure on S7 (see
[Baikoussis and Blair 1995]).

In the following, we shall indicate a method to construct proper-biharmonic
submanifolds in (S7, g0). We consider γ = γ(s) a proper-biharmonic curve in
(S7, g0), parametrized by arc-length, which is a Legendre curve for two of the
three contact structures (it was proved in [Fetcu 2008b] that there is no proper-
biharmonic curve which is Legendre with respect to all three contact structures
on S7). For example, assume that γ is a Legendre curve for η1 and η2. Composing
with the flow of ξ1 (or ξ2) we obtain a biharmonic surface which is Legendre
with respect to η2 (or η1). Then, composing with the flow of ξ2 (or ξ1) we get a
biharmonic 3-dimensional submanifold of (S7, g0).

Using this method, from Theorems 3.14 and 4.1, we obtain 4 classes of proper-
biharmonic surfaces in (S7, g0) and 4 classes of proper-biharmonic 3-dimensional
submanifolds of (S7, g0), all of constant mean curvature.

For example, from Theorems 3.14 and 4.1, composing first with the flow of
ξ1 and then with that of ξ2, we get the explicit parametric equations of proper-
biharmonic 3-dimensional submanifolds of (S7, g0).
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Proposition 5.1. Let M be a 3-dimensional submanifold in S7 such that its posi-
tion vector field in E8 is either

x1 = x1(u, t, s)

=
1
√

2

(
cos(u) cos(

√
2s) cos(t)e1+ cos(u) sin(

√
2s) cos(t)e2

+ cos(u) cos(t)e3− cos(u) cos(
√

2s) sin(t)Ie1

− cos(u) sin(
√

2s) sin(t)Ie2− cos(u) sin(t)Ie3

− sin(u) cos(
√

2s) cos(t)Je1− sin(u) sin(
√

2s) cos(t)Je2

− sin(u) cos(t)Je3− sin(u) cos(
√

2s) sin(t)Ke1

− sin(u) sin(
√

2s) sin(t)Ke2− sin(u) sin(t)Ke3
)
,

where {ei ,Ie j }
3
i, j=1 and {ei ,Je j }

3
i, j=1 are systems of constant orthonormal vectors

in E8, or

x2 = x2(u, t, s)

=
1
√

2

(
cos(u) cos(As) cos(t)e1+ cos(u) sin(As) cos(t)e2

+ cos(u) cos(Bs) cos(t)e3+ cos(u) sin(Bs) cos(t)e4

− cos(u) cos(As) sin(t)Ie1− cos(u) sin(As) sin(t)Ie2

− cos(u) cos(Bs) sin(t)Ie3− cos(u) sin(Bs) sin(t)Ie4

− sin(u) cos(As) cos(t)Je1− sin(u) sin(As) cos(t)Je2

− sin(u) cos(Bs) cos(t)Je3− sin(u) sin(Bs) cos(t)Je4

− sin(u) cos(As) sin(t)Ke1− sin(u) sin(As) sin(t)Ke2

− sin(u) cos(Bs) sin(t)Ke3− sin(u) sin(Bs) sin(t)Ke4
)
,

where
A =

√
1+ κ1, B =

√
1− κ1, κ1 = constant ∈ (0, 1),

and the ei , i = 1, 2, 3, 4 are constant orthonormal vectors in E8 such that

〈e1,Ie3〉 = 〈e1,Ie4〉 = 〈e2,Ie3〉 = 〈e2,Ie4〉 = 0,

〈e1,Je3〉 = 〈e1,Je4〉 = 〈e2,Je3〉 = 〈e2,Je4〉 = 0,

A〈e1,Ie2〉+ B〈e3,Ie4〉 = A〈e1,Je2〉+ B〈e3,Je4〉 = 0.

Then M is a proper-biharmonic submanifold of (S7, g0).

Proof. As the flows of ξ1 and ξ2 are given by

φ1
t (z)= (cos t)z− (sin t)Iz, φ2

t (z)= (cos t)z− (sin t)Jz,

the Proposition follows by a straightforward computation. �
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Remark 5.2. Note that there exist vectors {ei } which satisfy the hypotheses of the
above Proposition. For example the first three, respectively four vectors, from the
canonical basis of E8 satisfy the required properties.
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