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Abstract
A pair of separable polynomials (g, h) over a finite field F is said

to be a strong Davenport pair if g(K) = h(K) for all finite extension
fields K/F , where g(K) = { g(a) | a ∈ K }. We construct examples
for which g is a projective or additive polynomial, and we find a
factorization of g(x)−h(y). In addition, we prove that |g−1(a)∩K| =
|h−1(a) ∩ K| for all a ∈ K. Though the existence of such examples
was known to Fried, the explicit formulas for g and h are new, as are
our methods of proof. This article also contains new results about
additive and projective polynomials.
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1. Introduction

Let F be a finite field and F its algebraic closure. Two separable polyno-
mials g, h ∈ F [x] are said to be a strong Davenport pair if g(K) = h(K) for
all finite extensions K/F , where g(K) = { g(b) | b ∈ K }. We will say that g
and h are isovalent if for any finite extension field K/F and any a ∈ K,

|g−1(a) ∩ K| = |h−1(a) ∩ K|.
Note that a ∈ g(K) if and only if g−1(a) ∩ K is nonempty, so if g, h are
isovalent then they are a strong Davenport pair.

Let q be a power of char(F ). We adopt the notation: 〈j〉 = (qj −1)/(q−
1) ∈ Z if j ≥ 0. Then 〈0〉 = 0, 〈1〉 = 1, and 〈j〉 = 1 + q + q2 + · · ·+ qj−1 for
j ≥ 2. Note that 〈n〉 − 〈j〉 = qj〈n − j〉 when n ≥ j. We now present our
main result.

Theorem 1.1 Let n ≥ 2, δ1, . . . , δn−1 ∈ F , and

p1(x) = x〈n〉 +
n−1∑
j=1

δjx
〈j〉, p2(x) = xqn−1

(
x〈n−1〉 +

n−1∑
j=1

δq−j

j xqn−j〈j−1〉

)
.

(1)

Then p1(x
m) and p2(x

m) are isovalent, for all m|(q − 1). Further, we have
a factorization

p1(x) − p2(y) = G(x, y)
(
x G(x, y)q−1 − yqn−1

)
,(2)



where G(x, y) ∈ F [x, y] is the polynomial of total degree 〈n − 1〉 given in
equation (5). (Also, degx(G) = degy(G) = 〈n − 1〉.)

This theorem is essentially known to Fried; see [8], Section 5. In par-
ticular, Fried anticipated the factorization of p1(x) − p2(y) and calculated
the degrees of the factors, and his proof shows that the isovalency condition
holds. Further insights can be found in Guralnick [10], Section 6; in par-
ticular, the isovalency condition is carefully explained both at ramified and
unramified points. The polynomial p1(x) is called a projective polynomial
and has been studied by Abhyankar. The contribution of this article is that
formulas for p2(y) and for the factorization of p1(x)−p2(y) are given explic-
itly; also the methods of proof are new. The study of pairs (g, h) such that
g(x) − h(y) is reducible has a long history; see the articles of Cassels, Dav-
enport, Lewis, Schinzel, Fried, Feit, Cassou-Noguès and Couveignes, and
Bilu and Tichy in the bibliography. Our theorem provides examples of such
factorizations.

The factors G(x, y) and H(x, y) := x G(x, y)q−1 − yqn−1
of p1(x) − p2(y)

turn out to be absolutely irreducible in many examples. They satisfy a
curious dependence: for any a ∈ F , at least one of the polynomials G(x, a)
or H(x, a) has a root in K = F (a), because p1(x) − p2(a) has a root in K.
Similarly, G(a, y) or H(a, y) has a root in K.

Our proof of Theorem 1.1 is based on arithmetic properties of the roots
of additive polynomials and their duals, which are derived in Section 2. For
example, we prove that a separable additive or projective polynomial over
a finite field F has the same number of rational roots as its dual. (This is
false when the field F is infinite.)

Now we make some simple observations that apply generally to isova-
lent polynomials. We will say that two polynomials g, h ∈ F [x] have the
same factorization type if they have the same number of irreducible factors
(counting repeated factors) of degree d, for every d ≥ 1. An equivalent
condition is that g and h have the same number of roots in K (counting
multiplicities) for every finite extension field K/F . Isovalent polynomials do
not always have the same factorization type. The simplest example is the
pair in F2[x], x7 +x3 +x = x(x3 +x+1)2 and x7 +x6 +x4 = x4(x3 +x2 +1).
These are isovalent by Theorem 1.1, but their factorization types are differ-
ent. Nonetheless, it is “usually” true that isovalent polynomials have the
same factorization type, in the sense of the following lemma.

Lemma 1.2 Suppose g, h are isovalent. Then g − a, h − a have the same
factorization type over F (a) for all but finitely many a ∈ F . Thus, g, h have
the same degree.

Proof. For f ∈ F [x] define

S(f) = { a ∈ F | f − a has a multiple root } = { f(b) | b ∈ F , f ′(b) = 0 }.



S = S(g) ∪ S(h) is finite, since g′ and h′ have finitely many roots. Let a ∈
F−S. Since g, h are isovalent, g−a and h−a have the same number of roots
in L for all finite extensions L/F (a), and since they are also multiplicity-free,
they have the same factorization type.

For the polynomials p1, p2 in the theorem, one can show that p′1 = p1/x
and p′2 = x〈n〉−1, so S(p1) = S(p2) = {0}. Thus, the fact that p1 and p2 are
isovalent implies that p1 − a and p2 − a have the same factorization type
over F (a) for all nonzero a ∈ F . When a = 0, p1 − a and p2 − a have differ-
ent factorization types, because (p1, p

′
1) and (p2, p

′
2) have different degrees.

This phenomenon has an interesting interpretation in terms of monodromy
groups. Let z be transcendental over F . By a result of Fried ([8], Section 5),
p1(x) − z and p2(x) − z have the same splitting field over F (z), which we
denote by Ω. Let T1, T2 denote the natural permutation representations of
the monodromy group G = Gal(Ω/F (z)) acting on the roots of p1(x) − z,
p2(x) − z, respectively. Fried [7] showed that T1 and T2 are equivalent as
representations, meaning that they have the same group characters. In par-
ticular, if σ ∈ G then T1(σ

i) and T2(σ
i) have the same number of fixed points

for all i ≥ 0. Consequently, if H is a cyclic subgroup of G, then T1(H) and
T2(H) have the same number of orbits of each size. One could ask whether
the same is true for noncyclic subgroups of G. Apparently the answer is no.
Consider the example n = 3, F = F2, δ1 = δ2 = 1, so p1 = x7 + x3 + x,
p2 = x7 + x6 + x4. Let H denote the inertia group at a place of Ω over
z = 0. It turns out that the roots of p1(x) − z (resp. p2(x) − z) can be put
into bijection with the integers from 1 to 7 in such a way that

T1(H) = {1, (23)(67), (45)(67), (23)(45)},
T2(H) = {1, (45)(67), (46)(57), (47)(56)}.

Thus, T1(H) contains one fixed point and three orbits of size two, while
T2(H) contains three fixed points and one orbit of size four. It would be
interesting to compare the orbits of inertia groups for other isovalent pairs
of polynomials. See Guralnick [10], Section 6 for further insights.

2. Adjoints of Additive Polynomials

This section contains new results about the relation between the roots
of an additive or projective polynomial and the roots of its dual. These
results are of independent interest, but also they are central to the proof
that p1(x

m) and p2(x
m) are isovalent.

As before, let F be a finite field and q a power of p = char(F ). Let
a0, a1, . . . , an ∈ F , a0 an �= 0. Define f1, f2, f 1, and f 2 by the formulas:

f1(x) =
n∑

i=0

aix
qi

, f2(x) =
n∑

i=0

(an−i x)qi

, f i(x
q−1) = fi(x)/x.

The polynomial f1(x) is called a Fq-additive polynomial because it is Fq-
linear as a function on the algebraic closure F . The polynomial f2 is called



the adjoint of f1 and was studied by Oystein Ore [11] in the 1930’s. The
polynomials f 1 and f 2 are called projective polynomials, because their ge-
ometric monodromy groups are contained in the projective linear group
PGL(n, q). Note that f1, f2 have no multiple roots, since their derivatives
are nonzero constants. It follows easily that f i(x

m) has no multiple roots,
for any m|(q − 1).

We are indebted to John Dillon, who provided the proof of the following
lemma in the case c = 1. The proof is perhaps more interesting than the
lemma itself!

Lemma 2.1 Let c ∈ F , and suppose c q−1 ∈ F×. Then the number of roots
of f1 in cF is equal to the number of roots of f2 in c−1F .

Proof. Consider τ : F → F , defined by τ(x) = xq. Then τ : cF → cF ,
for if λ ∈ F then c−1τ(cλ) = cq−1λq ∈ F . Likewise τ : c−1F → c−1F .
Define T : cF → cF by T (x) =

∑
aiτ

i(x), and define S : F → F by
S = c−1 ◦ T ◦ c. Define T ∗ : c−1F → c−1F by T ∗(x) = τ−n ◦∑

(an−i)
qi
τ i(x),

and S∗ : F → F by S∗ = c ◦ T ∗ ◦ c−1. All these maps are Fp–linear, since τ
is Fp–linear. Consider the nondegenerate bilinear pairing on F ×F given by
〈x, y〉 = Tr(x y), where Tr denotes the absolute trace. For (x, y) ∈ F × F
we have

〈S x, y〉 = Tr
(
c−1T (cx)y

)
= Tr

(∑
ai (cx)qi

c−1y
)

= Tr
∑ (

ai (cx)qi

c−1y
)q−i

= Tr
(∑

cx (aic
−1y)q−i

)
= Tr

(
cx

∑
(an−i c

−1y)qi−n
)

= Tr
(
x c T ∗(c−1y)

)
= 〈x, S∗y〉 .

This shows that S and S∗ are adjoints of one another, hence have the same
rank as endomorphisms of F over Fp. Then Ker(S) and Ker(S∗) have the
same dimension over Fp. But Ker(S) = { a ∈ F | f1(ca) = 0 } and Ker(S∗) =
{ a ∈ F | f2(c

−1a) = 0 }. Thus, the number of roots of f1 in cF equals the
number of roots of f2 in c−1F .

Theorem 2.2 The additive polynomials f1 and f2 have the same factor-
ization type. Also, f 1(x

m) and f 2(x
m) have the same factorization type

whenever m|(q − 1).



Proof. Let K be any finite extension field of F . By replacing F with K in
Lemma 2.1, and setting c = 1, we see that f1 and f2 have the same number
of roots in K, hence they have the same factorization type.

Let m� = q − 1, and set h1 = f 1(x
m), h2 = f 2(x

m); we will prove h1, h2

have the same factorization type. It suffices to prove they have the same
number of roots in K, counting multiplicities. Since h1 and h2 have no
multiple roots, it suffices to prove

|h−1
1 (0) ∩ K| = |h−1

2 (0) ∩ K|.
Suppose r0 is a root of hi, where i ∈ {1, 2}. Then r0 �= 0. There are �
distinct solutions in F to r� = r0, and for each such r, we have fi(r) =
rf i(r

m�) = rhi(r0) = 0. Clearly r0 ∈ K× if and only if r ∈ K�, where

K� = { c ∈ F | c� ∈ K× }.
Thus, there is an � to 1 correspondence between roots of fi which belong to
K� and roots of hi which belong to K, i.e.,

|f−1
i (0) ∩ K�| = �|h−1

i (0) ∩ K|, i = 1, 2.

Let R be a complete set of coset representatives for K�/K
×. Then K� is

a disjoint union:

K� = ∪c∈R cK× = ∪c∈R c−1K×.

We have

� · |h−1
1 (0) ∩ K| = |f−1

1 (0) ∩ K�|
=

∑
c∈R

|f−1
1 (0) ∩ cK×|

=
∑
c∈R

|f−1
2 (0) ∩ c−1K×| by Lemma 2.1

= |f−1
2 (0) ∩ K�|

= � · |h−1
2 (0) ∩ K|.

We remark that Theorem 2.2 is false when f1, f2 are defined over an
infinite field F . Bjorn Poonen supplied a counterexample over the rational
function field F3(a) with a transcendental: the function f1 = x9 +ax3− (a+
1)x vanishes at x = 0, 1, but f2 = x + a3x3 − (a + 1)9x9 has only one root
(x = 0) in F3(a). Nonetheless, it is true in general that f1 and f2 have the
same splitting field; see Goss [9], Theorem 1.7.11. We also remark that (for
a general field F of finite characteristic) Elkies and Poonen independently
found a nondegenerate, bilinear, Galois-invariant pairing between the vector
space spanned by the roots of f1 and the vector space spanned by the roots
of f2 (see [9], Definition 4.14.5). There is a different proof of Lemma 2.1
using their pairing instead of the trace form.



3. Proof of Theorem 1.1

Proof that p1(x
m), p2(x

m) are isovalent. Let K be a finite extension of F .
For a ∈ K and f ∈ K[x], let ZK(f, a) denote the set of roots of f(x) − a
in K. We need to prove that if m|(q − 1), then

|ZK(p1(x
m), a)| = |ZK(p2(x

m), a)|(3)

for all a ∈ K. In general, |ZK(f, 0)| = |K| − ∑
a∈K× |ZK(f, a)|. For this

reason, it will suffice to show that (3) holds when a �= 0. So, let 0 �= a ∈ K,
and define f 1, f 2 ∈ K[x] by

f 1(x) = x〈n〉 − a +
n−1∑
j=1

δj x〈j〉, f 2(x) = −ax〈n〉 + 1 +
n−1∑
j=1

δq−j

j x〈n−j〉.

Then xf 2(x
q−1) is the additive polynomial −axqn

+x+
∑n−1

j=1 δq−j

j xqn−j
, and

xf 1(x
q−1) is the dual polynomial. Theorem 2.2 implies that f 1(x

m) and
f 2(x

m) have the same number of roots in K counting multiplicities. Since
all the roots of these polynomials are simple,

|ZK(f 1(x
m), 0)| = |ZK(f 2(x

m), 0)|.

Clearly |ZK(f 1(x
m), 0)| = |ZK(p1(x

m), a)|, since f 1 = p1 − a. Thus,

|ZK(p1(x
m), a)| = |ZK(f 2(x

m), 0)|.

To prove (3), we just need to show

|ZK(f 2(x
m), 0)| = |ZK(p2(x

m), a)|.(4)

Let f
rev

2 (x) = x〈n〉f 2(1/x), the reverse of f 2. Since the roots of f 2 are
nonzero, f 2(x

m) has the same number of rational roots as f
rev

2 (xm). A sim-
ple calculation using the identities 〈n〉 = qn−1 + 〈n − 1〉 and qn−j〈j − 1〉 =
〈n − 1〉−〈n − j〉 shows that f

rev

2 (x) = p2(x)−a, thus (4) holds as required.

Factorization of p1(x) − p2(y): Define Ri(y) ∈ F [y] for 0 ≤ i < n and
G(x, y) ∈ F [x, y] by

Ri(y) = y〈i〉 +
i∑

j=1

δqj−n

n−j y qj〈i−j〉, G(x, y) =
n−1∑
j=0

Rn−1−j(y) qj

x〈j〉.(5)

Note that R0 = 1 and Ri(y) = yqi−1
Ri−1(y) + δqi−n

n−i when 1 ≤ i ≤ n− 1. We



have

x G(x, y)q =
n−1∑
j=0

Rn−1−j(y) qj+1

x〈j+1〉

= x〈n〉 +
n−1∑
j=1

Rn−j(y) qj

x〈j〉

= x〈n〉 +
n−1∑
j=1

(yqn−j−1

Rn−j−1 + δq−j

j )qj

x〈j〉

= yqn−1
n−1∑
j=1

Rn−j−1(y)qj

x〈j〉 + p1(x)

= yqn−1

(G(x, y) − Rn−1(y)) + p1(x)

= yqn−1

G(x, y) − p2(y) + p1(x).
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