938 . Hans Maal

fen o< Wes < B eine Schranke der Arb e~ gefunden  werden mit
positiven Konstanten ¢ und ¢, die nur von a, 8, f, ¢ abhingen. Mithin
stellt (34), also anch (25) eine ganze Funktion dar. Die Invarianz von {34)
beziiglich s—2k—}—s folgt sofort aus der von (13) beziiglich s—>i—s.
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Introduction.

1. Put
H = {geC| Tme > 0}, I =SL(2, £)/(+1),

o= £ i)

Consider a cusp form @{z) of weight—2 for a congruence subgroup A
o I'(N). By definition, this means that @ (z)dz is induced by a differential
of the first kind on the compactifieation of I"\NH'. Let 7, be the nth
Hecke operator, (n, N) =1, and suppose that @|T, = 1,9, i,¢C. In
thig note we give “explicit formulas™ for the eigenvalues 4, having a very
simple arithmetic structure, and discuss some of the consequences. These

. formulas were first stated in [1], § 7, for the group

I = Iy(F) = {(g Z)[ ¢ =0mod ¥

and for forms P eatistying the condition [ P(2)de = 0. Here we show
o

how one can geb rid of these restrietions.

2. To state our main result we need some more definitions.

Tet 4> 1 be an integer. A solution (4, 4°, 8, &') of the. equation
d = Ad’ L 8§ is called admissible if it congists of integers satisfying
the following supplementary conditions: '

(4,8 =48y =1, 4>6>0

and

either A'> 8 >0, 0r 4 =d, 4 =1, 6K d<df2, § =0.

Let P < ZxZ be the sot of all pairs of coprime integers. A function
y: P—C is called locally constant (implying adelic topology) if there exists
an integer M such that y(a,b) depends only on (amod M, b mod M}.
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Tet e: Z— € be a Dirichlet character. For « > (¢ put

7.(d) st(d);

aln

Tinally, given a locally constant fovetion y: P-»C and a Dirichlet
character ¢, define a sequence of complex numbersd

& =Y (Ha-wl3) > via0)

dln e a}-08"

where the inner sum is faken over all admissible solutions (and is
zero for @ = 1).

3. TamorEM. Let ® be a cusp form of weight —2 for a econgruence
subgroup I < I. Suppose that @ belongs to the Divichlet character e (for
the definition see below, §1) and that |1, = A, D for all n eoprime with

a certaim inieger.
Then there exist a primilive mehlet chamcter z (possibly principal),
@ locally comstant fumction y and an integer M such that

@) Ay =) Ay, ex®)  Jor all m,  (n, M) =1.

In particular, if I'" = Ty(N) and. | D(e)de 5= 0, one may take y = s =1,
0 : . .
and (4, 8) depends only on (A:8)mod NV, where we put

M = 2N,
Ayt 8y = Ay: S mod N, if there emisis an acZ, (4, N) =1 such that

ad, = 4, mod N, ad, = d, mod N. _

The proof together with the explicit construction of the functmn
¥ = yg i8 given in §§ 1-3. Before proceeding 130 it, we reprcduce two
. numerical examples from [1], § 8.

4, Examprss. (a) IV = IY(11), ¥

where
’ ] : 00
D(z) = 2 A e _ omis H(] - eﬂninz)E (1 mezzmsng)z_
fm=l w1 '

The function ¥4,(4, 8) du;pends only on A: dmod 11 and is given in the
following table:

A: ¢ mod 11 [o | ml;};l':}:iﬂl:{:i&lﬂ:él =B
51 -5 | ~10

Yu l 2 |"'2‘ 0 ’101
Formulas (1), (2) for a prime n = p # 2, 11 take the form:
(82) ~ . A=At = D yu(4,9).

P=AA"4 5y

= 11; here e = 1 and f B(z)de # 0,
0
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The left-hand side of (3a) has also a very simple number-
theoretic meaning, that is, it coincides with the number of solutions
of the congruence y*+y =2 —2*—102—20 mod p (including the solu-
tion “at infinity”). As this last number can be caleulated in terms of the
eigenvalues of a Frobenius, we can consider (3a) as a nonecommutative
reciprocity relation (cf. below, §4).

(b) I'" = Ih(27), ¥ =27, @®(z) is the unique cusp form for this

(=]

group. Again [ @(s)ds £ 0, ¢ = 1. The function y,, depends only on
d ‘
A: §mod 27 and is given in the following table:

4:§mod 27 | 0| cx:|i1|i2]¢3[i4|i5|i6|ivlisfig{im illlil?':l;lS
on | 22 ol o 3l 3 3| 1]-s| o]—1| o _a -3 _s

4: & mod 27 | 1:3 | 2:3 | 4:3 | 5:3 J 7:3 | 8:3 | 1:8 | 2:9

| -3 | o | o a|-a| 1]

Putting @7, == p, @ we again have
(3D) Tepiptp = D wnl4, 8),

pe=AA" 488"

P #F2,3.

The left-hand sgide of (3b) coincides with the number of solutions of
¥? = 42® +1 mod p. It can also be classically expressed by means of some
exponential sums or of Hecke’s Grissencharaktere. (The reason is that
the elliptic curve %? = 42*+1 has complex multiplication, unlike the
cage N =11.)

§ E. The main identity. Let us fix ¥ and a cusp form @D(2) for the
group I'(N})as in n°l. Denote by R,<l'for (@, N} = 1 a substitution repre-

a4l
sented by a matrix E(O O) mod N. Then the coset I'(N )R,l and

the form @|R, are well defined. The form @ is said to belong to the Dirichlet
character ¢, if PR, == e(a)D for all a, (0, §) = 1. Pub

TN = {(‘G‘ §)| (f fz) = (3 ;) mod N} = ().

On the space of the cusp forms for the group [ (V) Hecke operators
&, (for (n, N) = 1) are given by the formula

- [njd b
(4 no=3 3 Ry )

2in bmodd

The following amndfud lemma shows that it sufflceb fo consider eigen-

values of T, only on forms for Iy ()

‘2 — Acta Arithmetica XXIV.3
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B LmyvyA, Let @ be a cusp form for (W) belonging to the character 2
and et ®|T, = 2,D for all n, (n, N} = 1. Put ¥(2) = ®(Nz). Then

(a) ¥ is o cusp form for I'\(N®), belonging to e. '

(by ¥\ T, = A,¥ for all m, (n, N) = 1.

Proof. First of all,

g g = i 3

iy
(¢ o ersr,
then
oy Por

50 that ¥(2) is a cusp form for I {N®). Moreover, if

(s g) = (g 2_1) mod N,

(%_10 gb) == (g 2_1) mod N,
Hence ¥ belongs to the same character ¢ as @ does. To check the lagh
statement one ean make s divect ealculation or apply a Hecke theorem
{Ogg [2], Theorem 1.2, p. IV-22) to the ecffect that @ (and ¥) are eigen-
tunctions for T, and R, (p1 N prime) if and only if their Mellin transforms
have an Buler product for p of a definite type. This last property of ¥
eaglly follows from the corresponding property of @.Q.I1.D,

6. Limvma, Det @ be a cusp form for I'y(N) belonging to & and let
P|T, =2, D for some n, (#, N} = 1. Then

then

bd  —bid

(8) (Ze(n/d)d——ﬂﬂ)}mﬁdz=2n(n/d) S+ [ o

d|n 1] din D<hedfs 0
. (b, @)=1

Proof. Integrate the identity 2,@(2)dz = &[T, d¢ along the imag-
inary half axis. Using (4} and @|R,; = e¢(n/d)P we get:

[ ou= Sowo 3 fofier? .

bmodd 0
io0

w.‘Zﬂ%/d IR ff)

modd bid ico

Hmplicit formulas for the cigenvalues of Hecke operators 243

Transfer all the last infegrals to the leff-hand side and change the signs:

bid

(6) (Za(n/d)dqln)f)@dz = Me(nja) [ @(2)dz

ain ] ain

Each fraction b/d with (b, d)= 1 enters the right-band side of (6) (as
an upper limit of integration) 7, (n/d) times as bé/dé for din/d. The coeffi-
cient of the corresponding integral is e(n/d8) and 2 eg{n/dd) = T, (n/d}.

Hence
100 bid

(1) (> etnjaya— ;L)qurdz = Mm@y > [ ¢
) d|n din ?;)%Jd:ezo

(@-Byfd —bid

To deduce (b) it suffices to remark that [ &de = f Bz
o 9
because P(z-+1) = D(z). This concludes the proof.

{00 . .
§2. T]_1e case f = 0_. In this section we prove Theorem 3 in the

100 [
case when. [ ®(z)dz 7 0.
0

7. Levuma. Let @ be a cusp form for Iy(N) and ot (Z 3)5813(2, Z).
Pt '

afe —fe
(8) Yod) =] + [ 0@
bid —bid

Then Y{c,d) = ¥ (—e, —d) depends (D being given) only on (¢mod N,
d mod N), hence ¥ is a locally constant function in the sense of nd 2.

Proof. Let X(C) be the Riemann surface, which is a standard com-
pactification of I, (N)\H. For g, f e HUQ U({ c0) denote by {a, } ¢H (X (C),
R) the homelogy class on X (C) of the image of a path from « to § in H.
I this image is not cloged, its homology class is defined by integrating
the differentials of the first kind ag is explained in f1].

Tt suffices to check that {b/d, «/¢c} depends only on {e mod &, d mod ¥},

- bhecause

Y(o, d) ~ [ @
a5

where ¢ ig the differential on X{C) induced by P(z)de. Now

[l [ S ) )
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Moreover {g(a); g()} = {a, B} for each gel'y(N). Hence {bjd, ajc} depends
ab

only on the coset I'(N) (C i
only on {¢mod ¥, d mod N).Q.E.D.

8. Tovua. Under the assumptions of Lemma 8 for all d, (d,2N) =1,
we have .

), which in turn is easily seem to depend

ya  —bd

@ 3+ [ ] o=
0<h<diz 0 0
0, =1

where the right-hand sum is taken over all admissible solulions.

Proof. We reproduce the reasoning of [1]. Let

Y (4, 8)

A d’ 58

b . bn }’n—l }31 =_{,),.
da d, d,, iy 1
be the conmsecutive convergents of b/d. Then b;_;d;—b;d; , = {—1),
that is
by (=10,
i ( ) i1 el
d; (=LY,
Moreover

bjd no bld ~b3 n =byld;
[ o)z = D) [ o), f (Ddzwz [ o
0 i=1 bypldy1 i=1 —by _1fd;—y
Henee by (8)
bld  ~bfd

(of +j]rmz-22m,,dg ).

Now sum over b, 0 < b < @/2, (b, d) =1 and apply a Heilbronn lemma
(f1], Lemma 7.7). Tt states that the family of pairs of denominators
(d,, @&;_,) of the conseeutive convergents of all our b/d coincides with the
tamily of pairs (4, 8) taken from all admissible golutions of d = AA’ + 84"
" This concludes the proof.

9. Trmonmy. Let @ be o cusp form of weight —2 for I'y(N ) belonging
1o & and let ®|\T, = 1, D for all n, (n,2N) =1

a) If }W(Ddz =0, then
(10) - 2% (njd). > ¥(4,8) =0

dln d=add’ +6d'

for all m, (m, 2N) =
ioa
b) If uf Ddz # 0, then puting

(115 o y(4, 8) = T(4, 5)/f Dz
. J
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we have
(12)
Nemidyd—i, = D' (njd) D y(4,8) forallwm, (n,2N)=1.
damn dm A=A 88"

The last sum in (10) and (12) is taken over all admissible solutions. Functions
Y4, 8) and y(d, 6) depend only on (4, 6) mod N.
4o
Proof. To prove (10) substitute (9) in (B). Then divide by [ ®dz
¢
to get (12). Note that (12) is egquivalent to (2) for y = 1.

10. Particular cases. Let n — » be a prime. Identities (10) and (12)
become respectively

(13) > ¥(4,8) =0 for all ptay,
DA+ 65
(14) e(p)—Apkp = % y(4,8) for all ptaN.
p=a4'+3

dco .
8§ 3. Reduction to the case f #+ 0. Let @ be a cusp form fulfilling
Z i ¢ and, for a Dirichlet
n=1
2 x (%) & ezmnﬁ

character y mod m, {(m, N} =1, put P,(e) =
11. LemmA. D, (2) is « cusp form for I'y(m>N) belonging fo the character
x2 Moreover, @, iT, = x(n)A, D, for all n, (n, mN) =1
To prove the lemma, cornbine Theorems 14 and 12 of Ogg’s book [2].

the assumptions of Theorem 9. Let B (2) ==

12, Levwa. Suppose that f @dz = 0. Then there emst an infinity of

primes 1 and primitive cha.mcters ymod 1 such that f D dz #10,

Proof. (a) Let X(C) and {a, §}<H,(X(C), R} be the same as in
the proof of Lemms 7. First we show that the classes {0, 5/l} for all
1> ¢ {any constant) and all » mod I generate the whole group I, (X Y, Z).

In fact, let (c d)el‘l(N). We have

(a by {1 w) * %
e df\o1) cxt-d)
By the Dirichlet theorem we can make oz +& a prime > ¢ choosing

appropriately. Hence I'y(¥) iz generated by (3 i) and matrices whose

lower right coefficient is a big prime. But there is the canonical surjective
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map Iy(N)—H,(X(C), £): g—{0,g(0)} (cf. [1], Proposition 1.4). This
shows that the seb oi clagses {0, b/l}, 1> U coincides in fact with the
whole homology group.

(b) Suppose now that [ @,de =0 for all ymodi, 1> 0. We geb
0

a contradiction.
For y % 1 we have:

0,0 =28 N5 (—noEp

btmodl
where
b
ani-
glx) = D) xl{b)e *5£0
bmodl
iz a Gaugs sum.

Hence

foo foo . g(x)

[ o, - 20 [oma=LE 3y [
] bmodl ol bmodi {bfl, 0}

where ¢ is the differential of the first kind on X () induced by Pdz. (To
change the upper limnit 4 cc 6o 01 in the last integral weuge 3’ z(—b) = 0.)

bmod?
So it f@ dz = 0 for all ymod?, then [ ¢ =0 for all b modl

{1, 0}
But this cannot be true for all primes I > ¢ because in that case the firsh

part of the proof shows that ¢ has zero periods. This concludes the proof
of the lemma.

Combining Lemmas 11 and 12 with Theorem 9 we finally get the
missing part of Theorem 3 (except the statement for I'\(X), which is
proved in [1]). '

io0
13. COROLLARY. Given the assumplions of Theovem 9, suppose that [ @, dz
0

#= 0 for u ﬁwed ymod I (such an y ewists). For all (: Z) eBL(2, Z) pul

ale -a,'c
(15) y{o (wi +~£d)d)(zdz/(ffp iz}

This function de;nends only on (0 mod PN, 4 mod PN). Moreover, for oll

n, {m PN) =1,
(16) Degrn/dyd— y(n)h, = X wa(mid)
: e 44° 188

aln d['n.

y(4, 3)

which is equivalent fo (2).
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§ 4. Corollaries and remarks.

14. The identity (2) means that the two number-theoretical functions
defined by completely different means in fact coincide. Sc we can try
to get some information on the eigenvalues 1, by looking at admissible
solutions or wice versa to interpret the kuown properties of 1,8 as
indicating some features of the distribution of admissible solutions. We
sbate below some results of the second type becaupe the fivst posgibility
has not been explored at all. We would like just to mention onee more
g, parficularly baffling guestion concerning the statistics of admissible
golutions to which ons can redumee the Sato-Tate conjecture [3] on the
digtribution of arguments of the Frobenius automorphisms of elliptic
curves uniformized & la Weil.

15. The distribution of admissible solwtions in residue classes. The
total nmumber of admissible solutions is asymptotically {as d-—»oo)

an PUETE (d)[l d“"Z ”’]+o(2 %)

44" 486"=d 4id

where @(d) is the Eunler function. In particular, for d = p (prime):

plnp+0(p).

(18) D 1= 6ln2
A4 480 =p

The first term in (17) is given by Heilbroun, the second one and the error
term by T. Tonkov; their methods are elementary. The error term is
unusually bad and possibly conceals something interesting. The coeffi-
clent 6In2/n? ariges naturally in the statistics of continued fractions,
irrational ones (distribution “almost everywhere”, Kuzmin, Khintehin,
Lévy) and rational ones (with a fized denominator, Heilbronn).

Our identities (3a), (3Db), (14) may be interpreted as displaying some
properties . of uniform digtribution of admirsible solutions in residue
classes (modulec the period of ). . For example, we get from (3a) (using

Hagse’s and Richler’s inequality [4,] < 21/5):

) (2 Y1+ Fa)-fz 51+ 3
Ajdz= 42 Afd=43 ) A[dg:hs dffe=t4

p+1 A P -

e e +0(Vp)

The sums are taken over admigsible solutions of AA'+ 88'= p and the
congruences are mod 11. Comparing this with (18) we see that the number
of golutions with A/8 = +2, 43, although asymptotically the same as
the number of solutions with A/ = 44, -5 (counted with weights),
ig still noticeably greater: the main term of the difference is only (const.
Inp) times less than the total number of solutions. The identity (3b)
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can be interpreted similarly. But a suitable distribution modulo 3511 is
much more regular:

(20) 3 (1= 9er) (4, 8) = pp—Ip = 0(/p).

) oceurring for [ ®{2)de = 0 are probably cven
0

D ¥(4,8 =0

P i AP 887

The formulasg (13
rmore surpriging:
for all > C.

Tp ghow the existence of nontrivial identities of this kind, that is
of forms @ with ¥ (4, 8) = 0, one can proceed as follows. Tuke a ctip
form @ for the group I'y() (¢ = 1) with rational coefficients correxponding
to the differential of the firgh kind on an slliptic curve B over @ (cf. [1],

§ 5). The condition f ddz = 0 means that the L-function of X has a zero

in the centre of its cntlca,l 5Lrlp This last condition in the range of tables
(and conjecturally always) means that the rank H{@Q) is greater than 0.

All these condifions are fulfilled, for example, for the curve
E: y*4+y =a*—o with N = 37. For the form & of thiz type we have
Y (4, 8) = 0, because otherwise all periods of ¢ would be imaginary,
which is impossible. It would be interesting to look at some such Y.
They can be calenlated by means of an algorithm described in [1], §8
and applied there to the cases N = 11, 17, 19, 27.

16. The density of some sets of primes. V. Shokurov made the follow-
ing remark: the density of those primes p for which
(21) ' 2 Y11(4, 8) = 0 mod 1

p=Ad 466

(IT#5a leGd prime) i equal to 1/(1—1)
The proof is & combination of the followmg facts. The left-hand side

icm

of (21) coincides with card (& (F,)), where B = Fmod p, I is the clliptic -

curve over €, given in n° 8, Let &; be the Galois group of the extension
of O by the points of the order I on . Serrc {[4], p. 309) showed that

Gy o2 GL{2, F) il T 52 5. On the other bhand, let H; = {(i 2)} < G and

let K; be cqual to the subfield of K, corresponding to H; for T s 5. Then
Shimura [5] showed that the congruence Card(F({F,)) = 0 modl holds
it and only if p hag & prime divigor of degree 1 in X;. The density of such
primes is easily caleulated by means of Tchebotarcv's theorem (cf. [3]).

17. Some non-linear identities. We have A,A, = A,, if (m,n) =1

and A = Apdge1—ple-z, p prime. Applying these identities to the

functions /ln(y, &) we get gome non-linear relations. between them which

Ezplicit formulas for the eigenvalues of Hecke operators 249

can hardly be seen directly. For example the identity A = A}, —p applied
to 4 from (3a) gives

. Z Y (4, 8) =2p

2= A4° 08" D= 56"

Y (4, 8)— Pl 4y )
p=A44"355" -

18. Possible gemeralizations. The methods of this note generalize
to cusp forms of higher weight. This involves the vector forms of
TBichler—Shimura, and will be discussed in a Iater publication. The case
of the Hilbert modular group can probably also be treatecl similatly but

locks more difficult. Finally, the funetional &> f Pdz has inferesting

properties from the point of view of 1epresentapt10n theory. Thiz work
can be considered as a preliminary attempt to get an insight into these
properties.
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