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EXPLICIT FUNCTIONAL DETERMINANTS IN FOUR DIMENSIONS

THOMAS P. BRANSON AND BENT 0RSTED

(Communicated by Palle E. T. Jorgensen)

Abstract. Working on the four-sphere S4 , a flat four-torus, S x S , or a
compact hyperbolic space, with a metric which is an arbitrary positive function
times the standard one, we give explicit formulas for the functional determi-
nants of the conformai Laplacian (Yamabe operator) and the square of the Dirac
operator, and discuss qualitative features of the resulting variational problems.
Our analysis actually applies in the conformai class of any Riemannian, locally
symmetric, Einstein metric on a compact 4-manifold; and to any geometric dif-
ferential operator which has positive definite leading symbol, and is a positive
integral power of a conformally covariant operator.

1. Introduction. Functional determinants in two dimensions

Let (M, g) be an «-dimensional compact manifold without boundary, and
let A be a formally selfadjoint, geometric partial differential operator with
positive definite leading symbol. The order of A is then necessarily a positive
even integer 21. We further assume that A scales as its leading term does: if

2 — — Itg = c g , 0 < c G R, then A = c A . For example, A could be the Laplacian
on some tensor bundle, or, if M has spin structure, the square of the Dirac
operator.

Heat equation theory (see, e.g., [Se, Gl, G3]) tells us that the trace of the
heat operator exp(-M), t > 0, has a small-time asymptotic expansion

oo

TrL2exp(-M) ~ T t(2i~n)'2ta\A\,   í 1 0,
M)

in which the coefficients a ¡[A] are integrals of universal local expressions U\A].
(Addition of universal exact divergences to the Ui does not change the ai, but
the Ui are fixed by the requirement that they appear in the pointwise asymptotic
expansion of the fiberwise trace of the heat kernel.)
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670 T. P. BRANSON AND BENT 0RSTED

Our analytic assumptions guarantee that A will have pure real eigenvalue
spectrum {Xj | j £ N} bounded below ( N denoting the natural numbers), and
in fact that A ~ const • j l'n as / Î oo. The zeta function CA(s) is defined for
large Re s by

Za(s) = E\xj\~S>
XjftO

and analytic continuation gives a meromorphic extension with isolated simple
poles. ÇA(s) is regular at the nonpositive integers; in particular, ÇA(0) + q[A] -
an,2[A], where q[A] is the number of zero modes, and an/2[A] is taken to be
zero when n is odd. The functional determinant of A is defined by

log \detA\ = -£>),    sign det .4 = (-1)#{A><0}.

Note that the determinant is not scale-invariant:

(1.1) g = c2g, 0 < c £ R => det A = c~2íí<(0)det A.

But this says exactly that the functional

ivolg\2e^0)/n
Pa(s)={-^) act A,

where vQ is a positive constant, is scale-invariant. (Note that ÇA(0) is also
scale-invariant.) As an alternative to looking at the functional pA, we could
freeze out scale changes by demanding that all our manifolds have volume v0 .

A conformally covariant operator is a geometric differential operator A for
which pointwise scaling of the metric ~g = e wg, co a smooth function, pro-
duces a change

—7 —bco   .   awA = e      Ae
in the operator, for some constants a and b . (The eaw on the right is to be
interpreted as a multiplication operator.) Under our scaling assumptions, b is
necessarily a + 21. Conformai covariance can be rephrased in terms of con-
formal invariance of an operator between density bundles, but we shall refrain
from doing so here. For a conformally covariant operator A satisfying our an-
alytic assumptions, an,2[A], q[A], and thus their difference CA(0), as well as
#{A. < 0} are conformai invariants [B01]; C^(0) is sometimes called the trace
anomaly of A . The conformai variation of det A is given by a local formula
[B03, Theorem 3.7]:

(1.2) (d/du)\u=0C'A(0) = 21 f to I Un/2[A] - £ |^.|2    dvol

Here we allow the metric to run through the conformai curve e uw g, and the
<Pj are an orthonormal basis of the zero eigenspace in the background metric
g. In addition, we have the same formulas for the conformai variations of
CA(0) and C'A(0) even when A is only a positive integral power of a conformai
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EXPLICIT FUNCTIONAL DETERMINANTS IN FOUR DIMENSIONS 671

covariant B [B02, B03] (A need not be conformally covariant and B need
not have positive definite leading symbol), the prototypical example being the
square of the Dirac operator. Note that (1.2) can also be written

(1.3) (d/du)\u=0(-\ogpA(g)) = 2£v0((coWn/2y-œïVn/2),

where Wn/2 = Un/2-'Ll =0\<pÀ  , and a tilde denotes the average over (M, dvol).

In particular, metrics g = e wg critical for pA(g) when co is restricted by
/ co — 0 must have constant W n ,2.

The situation in dimension two has been considered by many authors [Polyl-
2, Pole, Wel-2, OPS]. Here the Laplacian A = öd = -V'V, is conformally
covariant, and Un/2[A] = UX[A] = K/24n , where K = R,].. is the scalar curva-
ture. The Laplacian has one zero mode, the constant functions, and thus

CA(0) = lM^dVo\-l = ^6x(M)-l,

where #(M) is the Euler characteristic. (1.2) in this case gives

(d/du)\u=0C'A(0) = 2 [ co(Ux[A] - V-')dvol,
JM

where v is the area of g . Now a conformai change ~g = e w g has the effects

(1.4) K = e~2w(K + 2Aco)

2(0.on the scalar curvature, and dvol = e   dvol on the area element, so that (1.2)
gives

¿ .i ,m        1     f     ,„ , -   .   ,,    ,     d(logv(e uwg))
-3-Ca (0) = TT- /   œ(K + 2uAco)dvol- ,-—du &« I2n JM du

as ~g runs through the e2uwg . Integrating to u = l , we get

CÎ70) = Ck(0) = C>) + ¿ jM co(K + AW)dvol - log^^.

Concentrating on the case of the two-sphere M = S , if g is the standard
uniform metric (of scalar curvature 2 and area 4n ), then A has eigenvalues
A, = j(j + l) with multiplicities 2j + 1. A long calculation with these data
gives ÇA(0) = -\, and ÇA(0) = 4^R(-\) - \, where ÇR(s) is the classical
Riemann zeta function. (See [Wei, Appendix C]. In the notation of §4.e below,
CA(s) = f{(s).) Thus in this case,

CA(0) = 4Ç'R(-l)-l- + ^(2Js2CO + js2\dco\2)-lof,V- iß   s)
4it     '

The extremal problem that makes sense in this context is to maximize the de-
terminant within the conformai class of the standard metric, subject to the
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672 T. P. BRANSON AND BENT 0RSTED

area-preservation constraint / e w — 4n . Equivalently, we could maximize the
functional

.2ft,.        fj_£»
4itP(co)=PA(e wg)= \ ^-^r )       det A,

taking as our constraint any rule which distinguishes one member of each trans-
lation class {co + a \ a £ R} ; most convenient is the linear constraint / co = 0.
If co solves this last problem, its translate

1,     Je2»
co- - log ■2    °   4it

solves the original problem. Thus our problem is to minimize

¿/,^-I,ogj/>
subject to / co = 0. A delicate analysis [OPS, §2.3] shows that this functional is
bounded below; by the remark following (1.3), minima can occur only at con-
stant scalar curvature metrics. The uniformization theorem now guarantees that
the minimum is attained exactly when g is (up to multiplication by a positive
constant) obtained by a Möbius transformation (conformai diffeomorphism)
from the standard metric g . Thus the maximum value of the determinant is
its value at co = 0, that being

e i/2-<(-i) = 3.19531

2. Functional determinants in four dimensions

Suppose A is a differential operator in dimension n satisfying our analytic
assumptions, and that A is insensitive to changes in orientation. By Weyl's
invariant theory, U2[A], and in fact every local scalar 0(«)-invariant of its
homogeneity, is a linear combination of |C| , \B\ , J , and AJ, where J =
K/2(n - 1), B is the trace-free Ricci tensor (r - Kg/n)/(n - 2), C is the
Weyl conformai curvature tensor, |7?| = BlJBt , and similarly for |C| . J,
B, and C are the projections of the Riemann tensor onto the 0(«)-irreducible
summands of the vector bundle of algebraic curvature tensors. The orientation-
insensivity assumption is unnecessary except in dimension four, where (on an
oriented manifold) C breaks up under 50(4) into self-dual and anti-self-dual
parts C± . This adds a new invariant, |C+| - |C_|2, to our basis. This extra
invariant shows up, for example, in the index theory of the signature and spin
complexes, whose Laplacians are orientation-sensitive. Locally conformally flat
metrics have C = 0; Einstein metrics have B = 0; by the second Bianchi
identity, Einstein metrics in dimension greater than two have constant scalar
curvature. A metric is locally symmetric if V7, V5, and VC vanish, and
flat if J, B, and C vanish. We shall use V = B + Jg/n to simplify the
appearance of some formulas.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



explicit functional determinants in four dimensions 673

If A is a positive integral power of a conformai covariant, there is a relation
among the coefficients of the four basic local invariants in the expression for
U2[A] [B02, §5]; in dimension four, this relation says that U2[A] is of the form

(2.1) a1|C|2+a2(|5|2-|/2)+a3A7.

The four-dimensional Pfajfian (Gauss-Bonnet integrand)

(2.2) Pff=—^    (|c|2-8|£|2 + 6/2)

is also of the form (2.1), so U2[A] is a linear combination of |C|2, Pff, and
AJ.

There is a fourth-order operator which turns out to be very natural in this
setting, playing some of the roles in dimension four that the Laplacian plays in
dimension two. Paneitz' operator, originally introduced in connection with the
interaction between the gauge and conformai groups for Maxwell's equations,
[Pa, B2, ES, B3] is P = P0 + (n - 4)Q, where P0 is the operator

P0 = A2 + S{(n - 2)J - 4V-}d

on functions ( V- is the natural action of a two-tensor on one-forms), and Q
is the quantity

Q = (-4\V\2 + nJ2 + 2AJ)/4.
In fact, P is conformally covariant:

— 2a y¡ -(«+4)<u/2 n   (n-4)<u/2g = e   g =*• P - e Pe        ' .

Applying this conformai covariance relation to the function 1 and taking ad-
vantage of the fact that P0 annihilates constants, we get

(„ _ 4)ß = e-^W^i»-^2 -f 1) + (H - 4)e~AwQ.

Analytically continuing in n and dividing by n - 4, we get

(2.3) Q = e-4a(Q + {P0co),   n = 4.

(Note the similarity to (1.4) in dimension two.) Of course, it is hard to justify
analytic continuation in the dimension, but explicit calculation with the local
invariants involved also leads to (2.3). Since Q = (-4|5|2 + 3/2 + 2AJ)/4, like
the Pfaffian, is of the form (2.1) in dimension four,

(2.4) U2[A] = ßx\C\2 + ß2Q + ß3AJ

for some constants ßm , provided A is a positive integral power of a conformai
covariant. Since \C\2 = e~ 0J\C\ , the only additional information we need is
a formula for A7 . Working just in dimension four,

J = e~2w(J + Aco-\dco\2),
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674 T. P. BRANSON AND BENT 0RSTED

and S satisfies the conformai covariance relation ô = e~4wôe2co , so that

Ä7 = SdJ = e~Aw(AJ + A2co - 2JACO + 2(dJ, dco)

- A\dco\2 - 2(Aco)2 + 2(dco, dAco)
2 2+ 2|iTco| Aco - 2(dco, d\dco\ )),   n = 4.

Thus for conformai, orientation-insensitive A in dimension four,

-Aw(tt r Ji _l I(2.5) U2[A] = e ™(U2[Ä\ + \ß2PQco + ß^bx(co) + b2(co) + b,(co)}),

where b^co) is /-homogeneous in co:

b.(co) = A co- 2JAco + 2(dJ, dco),

b2(co) = -A\dco\2 - 2(Aco)2 + 2(dco, dAco)

L(co) = 2\dco\2Aco - 2(dco, d\dco\2).

Now allow g to run through the conformai curve gu = e ucog, and assume for
the time being that A has no zero modes. Then (1.2), together with dvolu =
e4"wdvol, gives

j-C'A (0) = 21 \ co(u2[A] + \ß2uP^co
t~> ¿\ aU      " JM      \ Z(2.6)

+ ß3{ubx(co) + u b2(co) + u b3(co)} jdvol,

where dvol = dvol0 . Integrating to u = 1, we get
(2.7)

CA(0) = CA(0)

+ 21 j co(u2[A] + \ß2P0co + ßz{\bx(co) + \b2(co) + iô3(û>)})dvol.

The functional pA (with v0 = v(g)) can now be written

- log \pA\(e2cog) + log \pA\(g)

(2.8) = 2£ jœ(U2^ + ^2^ + /?3 {¿ W + \b2^) + 4^)})

- ^4it2ß2x(M) + (jsx - i/?2) j |C|2}logi^- ,

using the fact that, in the absence of zero modes,

(2.9) ^(0) = j U2[A] = 4it2ßlX(M) + (V, - |/?2) J \C\2.

Let us now specialize to the case in which g has constant scalar curvature.
(Schoen's proof of the Yamabe conjecture [Sc] shows that this is no loss of
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EXPLICIT FUNCTIONAL DETERMINANTS IN FOUR DIMENSIONS 675

generality.) There are many ways of writing the integral involving the b^co) in
(2.8); one which we believe will be useful is obtained by integration by parts:

j co iy\bx(co) + l-b2(co) + ±o3(<u)} = \ j(Aco - \dto\2)2 -J j \dco\2

-i/(£),-'/w-
If we make the stronger assumption that g is locally symmetric, then |C|   and
U2[A] will be constants related by

1 o \ ,^2 ,  4it2ßlX(M)
U2W = [ß! - ^2) \C\   +-^

If g is Einstein, then PQ= A2 + JA. Thus we have:

Proposition 2.1. Let (M, g) be a compact, locally symmetric, Einstein four-
manifold, and let co g C°°(M). Suppose A is a formally self adjoint positive
power of a conformally covariant operator, that A is orientation-insensitive, that
A has positive definite leading symbol, and that A has no zero spectrum on
(M, g). Let 6/ and c denote, respectively, the constant values of the scalar
curvature and the norm-squared of the Weyl tensor. Then the functional pA at
~g = e wg is related to that at g by signp.Çg) = sign o,(g),

Je
A IVoy   i   •■"bWA I

4ft,

4n2ß2x(M) + fa - i/?2) v2] \^-\J- log
0       4 "o    J

+ \ß2j(AW)2+^-ß2-ß^J j\daj\2 + \ß,jfaf
where all integrals are taken with respect to the original metric g, and U2[A] =
ßx\C\2 + ß2Q + ß3AJ on general four-manifolds, Q = (-4|TT|2 + 3J2 + 2AJ)/4.
The functional determinant of A at ~g is related to that at g by sign det A =
sign det A,

(-log |det ^| + log |det A\)/2i

4n2ß2x(M)+fa-l-ß2y/^

+ X-ß2j(Aw)2+(^-ß2-ß,y ¡\dœ\2 + ̂ lfapj   .
Remark 2.2. The effect of zero modes on our formulas is as follows. Let gu =
e2ucog, and let {<pj u) be an L2(e4MWdvol)-orthonormal basis of the null space

2 2
yV(Au).   Then $>u(x) = YlWj M(x)lw  *s independent of our choices, and is
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676 T. P. BRANSON AND BENT 0RSTED

jointly smooth in x and u . We get an extra term —21 fM coQ>ue Uft,dvol on the
right in (2.6), leading to an extra -2£Wx(co) = -21 ¡M co{JQl $>2ue4uü} du) dwo\ on
the right in (2.7). (2.9) becomes

^(0) = -q[A] + j U2[A] = -q[A] + 4n2ß2x(M) + (ßx - \ß2) j \C\2 ,

so that if *¥2(co) = \q[A] log(fe4w/v0), there is an extra 2¿(¥2(co) - ^(«u))
on the right in (2.8). 4*2 - 4*, should be added on the right in the first formula
of Proposition 2.1, -x¥l in the second. This seems fairly unsatisfying, as y¥x
still involves the whole conformai curve of metrics. But in many important
applications, we have explicit enough knowledge of the null spaces of the Au
that we can express XYX just in terms of the volumes of these metrics, and
sometimes (as in the two-dimensional case) we can perform the remaining u-
integration explicitly. (See §3.b below.)

Suppose again that JV(A) = 0. As in dimension two, we have the choice
of extremizing the determinant subject to Je w = vQ, or extremizing pA(co)
subject to / co = 0 ; if co solves the latter problem,

1,    ¡e4w
CO - -rlOg^-

4 V0

solves the former. Thus our problem is to extremize

F (co) = l-ß2 j(Aco)2 +{\ß2~ /?3) J j \do>\2 + \ ß3 j (çf-

n2ß2x(M)+l-(ßx-\ß2\vQci -1 4(0

V0

subject to / co = 0. A reasonable goal might be to prove that the determinant
is extremized only at a uniform metric and its conformai transforms (if any). If
we are to imitate the treatment of the Laplacian in two dimensions [OPS], we
should use a convexity argument to prove that F(co) is bounded from one side,
and then prove that constant U2[A] (which we must have at critical metrics)
implies uniformity. This last hurdle might be cleared just by tensor calculations
as in Obata's theorem, which states that a constant scalar curvature metric in
the conformai class of the standard metric g on the sphere S" , n > 3 , must
be obtained from g by a conformai diffeomorphism. More likely, one would
have to show that the gradient flow of F(co) always leads to uniform metrics.
The character of this problem will obviously depend heavily on the topology
and geometry of (M, g) (through ^(AT), c2, and J), and on the operator
A (through the ßm ). Not all of the topological/geometric data is independent,

2 2 2as x{M) = (c +6/ )v0/32it . Note that by (2.2), a manifold supporting an
Einstein metric g in dimension four has x(Af) > 0, with ^(AT) = 0 if and
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EXPLICIT FUNCTIONAL DETERMINANTS IN FOUR DIMENSIONS 677

only if g is flat. There are many manifolds and operators to choose from; we
discuss a few of these in the following sections.

3. Special manifolds

a. Let M be the four-sphere S4 , and let g be the standard metric (the pullback
of the standard R   metric to the unit sphere). Suppose that JV(A) = 0. Our

2 2constants are /(AT) = 2, c  =0, 7 = 2, and v0 = 871 /3, so that

F(co) = \ß2 ¡(Aco)2 + (±ß2 - 2/?3) j \dco\2

1.   ffAeœ\2    .  2R.    3je4w

Thus F(co) is never just the integral of a nonnegative quantity. Of course,
F(co) is obliged to be complicated (unless it vanishes identically) in the case of
the four-sphere, since elements of the fifteen-dimensional group of conformai
diffeomorphisms (like any diffeomorphisms) will carry a geometrically natural
operator to an isospectral operator; thus the functional determinant at e w g
will agree with that at g when the conformai factor co is implemented by
a one-parameter group of conformai diffeomorphisms. (Note that such an co
need not satisfy the constraint / co = 0, so F will only annihilate the translate
co - (J co)/vQ .) Thus there should be no isolated extremals.

On the other hand, we can show that any curve e uwg of extremal metrics
with / co = 0 ( u £ (-E, e), e > 0 ) must be implemented by a one-parameter
group of conformai diffeomorphisms. Indeed, at an extremal, U2[A] = const,
so for our extremal curve,

(d/du)\u=0U2[AJ = const.
But the conformai invariance of the trace anomaly / U2[A] shows that

(d/du)\u=QU2[AJ = -4coU2[A] + divergence,

so
(d/du)\u=0U2[AJ = -12U2[A]£^ = 0.

arc
By (2.5),

(d/du)\u=0U2[Au] = {(I/?2 + /?3)A2 + (ß2 - 4/?3)A - l2ß2}co
= {(2rß2 + ß3)A + 3ß2}(A-4)co.

Thus co must be in the 4-eigenspace of the Laplacian A ; that is, co must be
a first-order spherical harmonic, so long as ß2 and /?3 are not both zero, and
the number -6ß2/(ß2 + 2ß3) is not a higher eigenvalue of the Laplacian. (In
the cases of the conformai Laplacian and the square of the Dirac operator,
this number is -2 and -11/3 respectively; see §4 below.) But the first-order
spherical harmonics (the span of the 5 homogeneous coordinate functions on
S4 ) generate the nonisometric conformai diffeomorphism directions.
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678 T. P. BRANSON AND BENT 0RSTED

b. Let (AT, g) be a flat four-torus R4/T, where Y is a discrete subgroup of
full rank, with the inherited metric. Here we expect to deal with zero modes,
but very tractable ones. Our constants are /(AT) = c  = J = 0, so that

F(co) = \ß2j(Au)2 + \ß3jfafr
In particular, replacing co by uco and letting u —> oc , we see that F(co) cannot
be bounded below if ß3 < 0, or above if ß3 > 0.

Because of the presence of zero modes, what we really need to extremize
(recalling Remark 2.2) is F(co) + *F2(eu) - xYx(co). Since A is geometric, it is
built polynomially from the covariant derivative and curvature, so for the flat
metric, A = AXV for some differential operator Ax . The vector bundle in which
A acts will be globally trivial, and in fact will admit a global orthogonal frame
{»•} of parallel sections of length  l/^/v0~; these will be an L -orthonormal
basis of JV(A). Now introduce the conformai curve of metrics gu = e2ucog .
Our operator A is a positive integral power of a conformai covariant B ; say
ord B = r, so that A = B . For some constant a , Bu = e~ UC1 BQeauw , so
the e~auwcp- will be a gu-orthogonal global frame. By [B03, Equation (4.1)],
formal selfadjointness forces

-auu)     ,2 j     , ruco,      ,2 ,     ,
<Pj\uáy0lU=e        IP;lodVOlO

so that the
Vq      —auw

y  uru/4

are an L (dvolj-orthonormal basis of ./f"(,4J; in particular, <f>u = 0t;~l4etr~4)"<a,
where q = q[A]. Thus, performing the «-integration of Remark 2.2 explicitly,
we get

¥.(<«) = - log ̂ .
1 r        vQ

Recalling that 1*2(cy) = (q/4)\og(vx/v0), we see that the correction
vl/4v-[/r

V2(co)-Vx(co) = qlog   \/r:/44
vo

vanishes when r = 4 (for example, if A is Paneitz' operator). If r < 4, the
correction is easily estimated in terms of v0 and vx : by the convexity of the
exponential function, vr,A >vx   , so

u/ max(V^)    /"Wf,    aw,^„i^i/4-i/>g log ";/4m%(rV l)'l/r * ^2(0» - TtW < gtog^u

If r = 4 and /i2/33 > 0, F(co) is bounded on one side by zero, so the
original flat metric will be an extremal. If r = 4, ß2 ^ 0 and ß2ß3 > 0, the
original metric will be the unique absolute extremal, since Aco = 0 together
with / co = 0 implies <y = 0.
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EXPLICIT FUNCTIONAL DETERMINANTS IN FOUR DIMENSIONS b79

2 2 2c. Let (A7, g) be S   x S   with the product of standard 5   metrics.   Then
X(M) = 4, J = 2/3, and v0 = 16ft2, so that c2 = 16/3 by (2.2). (That this
space is conformally curved is perhaps contrary to naive expectation; we remark
that the standard pseudo-Riemannia
conformally flat.) Our functional is

F(co) = l-ß2 J(Aco)2 + (±ß2 - |/?3) J \dco\,2

l0   f(Aew\2     4it2r^0      onr    Je403
+ ^ß-K / \-j3-)   - -5-[16yS, + /52]log-J2^J \e°> )        3 i^i-"2^l07r2-

d. Let (AT, g) be a compact hyperbolic four-space T\H , T a compact dis-
continuous group of isometries. Then c = 0 and / < 0. If we normalize
the El metric so that J = -2 (i.e., so the sectional curvatures are -1 ), then
X(M) = 3i>0/4ft2 by (2.2); in particular, this number is a positive integer. If
there are no zero modes, our functional is

F(°>) = \ß2 /(W - 2 (\ß2 - ß3) J \da>\
2

2 i r   4c«

+ ^/(^)   -n2ß2x(M)\og-l^-e" ) * 4itzx(M)

Thus if ß2 = 0 # ß3, the original metric is the unique absolute extremal.

4. Special operators. Remarks
a. In n dimensions, the conformai Laplacian D = A + (n - 2)K/4(n - 1) =
A-\-(n- 2)7/2 on scalar functions is conformally covariant:

In dimension 4,

_ 2&) -=r -(«+2)ß)/2 _,   (n-2)ft)/2g = é>   g => Z) = e v        ' De'

(4ft)2 • 180i72[TJ>] = |C|2 + 4|5|2 - 3/2 - 6A7J2

by, e.g., [Gl, p. 610], [H], or [B01, §4.b]; that is,

(4ft)2-180(7?,,/?2,/?3)[7J>] = (1,-4,-4).

b. The square of the Dirac operator is also grist for our mill. Let (AT, g ,tf, y)
be a compact, oriented spin manifold of dimension n . Here cf is the orienta-
tion and y the fundamental section of T ® Z <g> Z*, where T is the tangent and
Z the spinor bundle. Let f = y'Vj : C°°(AT, Z) -► C°°(AT, Z) be the Dirac
operator. By, e.g., [K],  f   satisfies a conformai covariance relation

— 2œ        — -ft) -=r -(n+l)û»/2 ,-,    (n-l)ft>/2£ = <?    g,  7 = e     y=>y=é>'     ''fe' .

As noted in § 1, f is not conformally covariant, but our machinery requires
only a positive integral power of a conformai covariant. By [B02, pp. 98, 99],
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when n = 4,

(4ft)2 • 360U2[P2] = 12AK + 57s:2 - 8|r|2 - 7|7v|2

= 72A7 + 6672 - 88|TT|2 - 7|C|2.

Thus
(4ft)2 • 360(yS,, ß2, ß3)[P2] = (-1, 88, 28).

c. For a general A satisfying our analytic assumptions, a four-homogeneous
term b4(co) would appear in (2.5); remarkably, it is exactly the restriction im-
posed on U2[A] by our conformai assumption that forces it to vanish and gives
us a chance to have a convex F(co). In higher even dimension n, terms of
homogeneity up to n would appear for general A [B2]; it would be interesting
to know whether the conformai assumption also forces the homogeneity n term
to vanish in this setting.

d. Higher powers of f 2 (or of D ) do not provide independent (ßx, ß2, ß3)
[FG]. But there are several other examples of conformai co variants which fit
into our framework [Bl, Pa, B2, B4]. Perhaps most accessible is the Paneitz
operator P, the heat invariants of which are computable from [G2]. Among
the conformai differential form Laplacians of [Bl] is an operator B on the
middle ( n/2 ) forms in even dimensions which has the same leading symbol
as ôd - dô. This implies that B has leading term A , and in fact, B is
an operator of the form treated in [G2]. [B4] gives a complete classification
of second-order conformai covariants on tensor-spinor bundles. Though these
operators almost never have metric leading symbol, many have positive definite
leading symbol. It remains to develop a reasonable scheme for computing the
heat invariants of operators whose leading symbol is not a power of the metric
tensor.

e. Our explicit determinant formulas, are, of course, really formulas for quo-
tients (det A)/(de\ A), where A is computed in the very symmetric background
metric g, and A is computed in the conformai metric ~g = e2w g . It is a matter
of some difficult but straightforward arithmetic to compute the denominators
det A . The necessary techniques are exactly those already employed in the two-
dimensional case [Pole, We 1-2]. We have carried out extensive calculations in
the case of the sphere 5" . Here, remarkably, the zeta functions for all of the
conformally covariant operators mentioned above are built from the special zeta
functions

oo

7=0
oo

faW = £(2J +2a+ WU + «)U + a + !)]"' '
7=0

where a is a positive real number, and from the classical Hurwitz zeta functions
Ca(s) = Z(; + a)~s. (Our explicit spectral computations in the standard metric
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are based on the representation theory of the rotation and spin groups [B4, §5;
B5].) The simplest example is the conformai Laplacian, A'+ 2 in the standard
metric. The eigenvalues of A + 2 are the (;' + l)(j + 2) with multiplicities
(7 + l)(7 + 2)(27 + 3)/6, j = 0, 1,2,...; thus

A computation analogous to that in [Wei, Appendix C] gives

det(A + 2) . exp fa± - |^(-3) - j&i-l)) = 1-04562... ,
where CR(s) = Çx(s) is the classical Riemann zeta function.

f. We expect the determinant to be crucial in the study of isospectral sets of
metrics within a conformai class in dimension 4; partial results (indicating that
such sets are "small" in an appropriate sense) have already been obtained [BCY].
The analogous problem in three dimensions was handled in [BPY, CY1-2]. In
odd dimensions, the determinant is much more rigid under conformai deforma-
tion (the Un/2 term in (1.2) vanishes); as a result, the use of the determinant is
an important qualitative difference between dimensions 3 and 4. Note that the
scale-invariant functionals treated in this paper are, like the determinant, spec-
tral invariants: besides the determinant, they involve the volume (essentially
/ U0 ) and the trace anomaly ¿^(0).

g. Conformai variational formulas for the heat invariants and determinant of
a boundary-value problem, and for the eta function and eta invariant of a first-
order operator [B03, BG1-2] make it possible to use the methods of this paper to
compute the eta invariant in three dimensions, and determinants of boundary-
value problems in three and four dimensions. Formulas for these spectral in-
variants are potentially valuable in the study of corresponding uniformization
and isospectral problems.

References

[Bl]      T. Branson, Conformally covariant equations on differential forms, Comm. Partial Differ-
ential Equations 7 (1982), 392-431.

[B2]      _, Differential operators canonically associated to a conformai structure, Math. Scand.
57(1985), 293-345.

[B3]      _, Group representations arising from Lorentz conformai geometry, J. Funct. Anal. 74
(1987), 199-291.

[B4]      _, Second-order conformai covariants, preprint.
[B5]      _, Harmonic analysis in vector bundles associated to the rotation and spin groups, J.

Funct. Anal, (to appear).
[BCY]   T. Branson, S.-Y. A. Chang, and P. Yang, Estimates and extremal problems for the zeta

function determinant on four-manifolds, preprint.
[BG1]   T. Branson and P. Gilkey, The asymptotics of the Laplacian on a manifold with boundary,

Comm. Partial Differential Equations 15 (1990), 245-272.
[BG2]   _, Residues of the eta function for an operator of Dirac type, preprint.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



682 T. P. BRANSON AND BENT 0RSTED

[B01]   T. Branson and B. 0rsted, Conformai indices of Riemannian manifolds, Compositio Math.
60(1986), 261-293.

[B02]   _, Conformai deformation and the heat operator, Indiana Univ. Math. J. 37 (1988),
83-110.

[B03]   _, Conformai geometry and global invariants, Differential Geometry and Applications
(to appear).

[BPY]   R. Brooks, P. Perry, and P. Yang, Isospectral sets of conformally equivalent metrics, Duke
Math. J. 58(1989), 131-150.

[CY1]   S.-Y. A. Chang and P. Yang, Compactness of isospectral conformai metrics on S  , Com-
ment. Math. Helv. 64 (1989), 363-374.

[CY2]   _, Isospectral conformai metrics on 3-manifolds, J. Amer. Math. Soc. 3 (1990), 117-145.
[ES]      M. Eastwood and M. Singer, A conformally invariant Maxwell gauge, Phys. Lett. 107A

(1985), 73-74.
[FG]     H. D. Fegan and P. Gilkey, Invariants of the heat equation, Pacific J. Math. 117 (1985),

233-254.
[G1 ]     P. Gilkey, Spectral geometry of a Riemannian manifold, J. Differential Geometry 10 ( 1975),

601-618.
[G2]     _, The spectral geometry of the higher order Laplacian, Duke Math. J. 47 (1980),

511-528.
[G3]     _, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, Publish

or Perish, Wilmington, Delaware, 1984.
[H]       S. W. Hawking, Zeta function regularization of path integrals in curved spacetime, Comm.

Math. Phys. 55 (1977), 133-148.
[K]       Y. Kosmann, Sur les degrés conformes des opérateurs différentiels, C. R. Acad. Sei. Paris

Ser. A 280 (1975), 229-232.
[OPS]   B. Osgood, R. Phillips, and P. Sarnak, Extremals of determinants of Laplacians, J. Funct.

Anal. 80(1988), 148-211.
[Pa]      S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-

Riemannian manifolds, preprint.
[Pole]    J. Polchinski, Evaluation of the one loop string path integral, Comm. Math. Phys. 104 ( 1986),

37-47.
[Polyl] A. Polyakov, Quantum geometry of Bosonic strings, Phys. Lett. B 103 (1981), 207-210.
[Poly2] _, Quantum geometry of Fermionic strings, Phys. Lett. B 103 (1981), 211-213.
[Se]       R. Schoen, Conformai deformation of a Riemannian metric to constant scalar curvature, J.

Differential Geometry 20 (1984), 479-495.
[Se]       R. Seeley, Complex powers of an elliptic operator, Proc. Sympos. Pure Math. 10 (1967),

288-307.
[Wei]   W. Weisberger, Normalization of the path integral measure and the coupling constants for

bosonic strings, Nuclear Physics B 284 (1987), 171-200.
[We2]   _, Conformai invariants for determinants of Laplacians on Riemann surfaces, Comm.

Math. Phys. 112 (1987), 633-638.

Mathematical Institute,  University of Copenhagen,  Universitetsparken 5,  2100
Copenhagen, Denmark

Current address:   Department of Mathematics, University of Iowa, Iowa City, Iowa
52242

Department of Mathematics and Computer Science, Odense University, Campusvej
55, 5230 Odense M, Denmark

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


