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We give an explicit Gross–Zagier formula which relates the height of an explicitly

constructed Heegner point to the derivative central value of a Rankin L-series.

An explicit form of the Waldspurger formula is also given.
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1. Main results

1A. Introduction. The Gross–Zagier formula and the Waldspurger formula are

probably the two most important analytic tools known at present for studying the

still largely unproven conjecture of Birch and Swinnerton-Dyer. Much work has

already been done on both formulae. In particular, the recent book by Yuan, Zhang

and Zhang [Yuan et al. 2013] establishes what is probably the most general case
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of the Gross–Zagier formula. Nevertheless, when it comes to actual applications

to the arithmetic of elliptic curves or abelian varieties, one very often needs a more

explicit form of the Gross–Zagier formula than that given in [Yuan et al. 2013],

and similarly a more explicit form of the Waldspurger formula than one finds in the

existing literature. This is clearly illustrated, for example, by the papers [Bertolini

and Darmon 1997; Tian 2014; Tian et al. 2013; Coates et al. 2014]. Our aim here is

to establish what we believe are the most general explicit versions of both formulae,

namely Theorems 1.5 and 1.6 for the Gross–Zagier formula, and Theorems 1.8

and 1.9 for the Waldspurger formula. Our methods have been directly inspired by

[Yuan et al. 2013], and also the ideas of [Gross 1988] and [Gross and Prasad 1991].

In the remainder of this introduction, we would like to explain in detail our explicit

formulae in the simplest and most important case of modular forms over Q. Let φ

be a newform of weight 2, level Ŵ0(N ), with Fourier expansion φ =
∑∞

n=1 anqn

normalized so that a1 = 1. Let K be an imaginary quadratic field of discriminant D
and χ a primitive ring class character over K of conductor c, i.e., a character of

Pic(Oc), where Oc is the order Z+ cOK of K . Assume the Heegner conditions (first

introduced by Birch in a special case):

(1) (c, N )= 1, no prime divisor p of N is inert in K , and p must split in K if p2|N .

(2) χ([p]) 6= ap for any prime p|(N , D), where p is the unique prime ideal of OK

above p and [p] is its class in Pic(Oc).

Let L(s, φ, χ) be the Rankin L-series of φ and the theta series φχ associated to χ

(without the local Euler factor at infinity). It follows from the Heegner conditions

that the sign in the functional equation of L(s, φ, χ) is −1. Let (φ, φ)Ŵ0(N ) denote

the Petersson norm of φ:

(φ, φ)Ŵ0(N ) =
∫∫

Ŵ0(N )\H

|φ(z)|2 dx dy, z = x + iy.

Let X0(N ) be the modular curve over Q whose C-points parametrize isogenies

E1 → E2 between elliptic curves over C whose kernels are cyclic of order N . By

the Heegner conditions, there exists a proper ideal N of Oc such that Oc/N ∼= Z/NZ.

For any proper ideal a of Oc, let Pa ∈ X0(N ) be the point representing the isogeny

C/a→ C/aN
−1, which is defined over the ring class field Hc over K of conductor c

and only depends on the class of a in Pic(Oc). Let J0(N ) be the Jacobian of X0(N ).
Writing ∞ for the cusp at infinity on X0(N ), we have the morphism from X0(N )
to J0(N ) over Q given by P 7→ [P − ∞]. Let Pχ be the point

Pχ =
∑

[a]∈Pic(Oc)

[Pa − ∞]⊗χ([a]) ∈ J0(N )(Hc)⊗Z C

and write Pφχ for the φ-isotypical component of Pχ .
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The following theorem was proved in the case c = 1 in the celebrated work by

Gross and Zagier [1986], and follows immediately from the general explicit Gross–

Zagier formula in Theorem 1.5 (see Special case 2, and the Example following).

Theorem 1.1. Let φ, χ be as above satisfying the Heegner conditions (1) and (2).
Then

L ′(1, φ, χ)= 2−µ(N ,D) · 8π2(φ, φ)Ŵ0(N )

u2
√

|Dc2|
· ĥK (P

φ
χ ),

where µ(N , D) is the number of prime factors of the greatest common divisor of
N and D, u = [O×

c : Z×] is half of the number of roots of unity in Oc, and ĥK is the
Néron–Tate height on J0(N ) over K . In particular, if φ is associated to an elliptic
curve E over Q via Eichler–Shimura theory and f : X0(N ) → E is a modular
parametrization mapping the cusp ∞ to the identity O ∈ E , then the Heegner
divisor P0

χ ( f ) :=
∑

[a]∈Pic(Oc)
f (Pa)⊗χ([a]) ∈ E(Hc)C satisfies

L ′(1, E, χ)= 2−µ(N ,D) · 8π2(φ, φ)Ŵ0(N )

u2
√

|Dc2|
·

ĥK (P0
χ ( f ))

deg f
,

where ĥK is the Néron–Tate height on E over K and deg f is the degree of the
morphism f .

Comparing the above Gross–Zagier formula with the conjecture of Birch and

Swinnerton-Dyer for L(E/K , s), we immediately are led to:

Conjecture. Let E be an elliptic curve defined over Q of conductor N and let K be
an imaginary quadratic field of discriminant D such that for any prime ℓ dividing N ,

either ℓ splits in K , or ℓ is ramified in K and E has nonsplit semistable reduction at
ℓ. Let f : X0(N )→ E be a modular parametrization mapping ∞ to O. Let N ⊂ OK

be any ideal with OK /N ∼= Z/NZ, let P ∈ X0(N )(HK ) be the point representing the
isogeny (C/OK → C/N−1), and write PK ( f ) := TrHK /K f (P) ∈ E(K ). Assume
PK ( f ) is not torsion. Then

√
#X(E/K )= 2−µ(N ,D) · [E(K ) : ZPK ( f )]

C · [O×
K : Z×] ·

∏
ℓ|N/(N ,D) mℓ

,

where mℓ = [E(Qℓ) : E0(Qℓ)] and C is the positive integer such that if ω0 is a
Néron differential on E then f ∗ω0 = ±C · 2π iφ(z) dz.

We next state our explicit Waldspurger formula over Q. Let φ =
∑∞

n=1 anqn

in S2(Ŵ0(N )) be a newform of weight 2 and level Ŵ0(N ). Let K be an imaginary

quadratic field and χ : Gal(Hc/K )→ C× a character of conductor c. Assume the

conditions:

(i) (c, N )= 1 and, if p|(N , D), then p2 ∤ N .
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(ii) Let S be the set of places p|N∞ nonsplit in K such that, for a finite prime p,

ordp(N ) is odd if p is inert in K , and χ([p]) = ap if p is ramified in K .

Then S has even cardinality.

It follows that the sign of the functional equation of the Rankin L-series L(s, φ, χ)
is +1. Let B be the quaternion algebra over Q ramified exactly at places in S. Note

that condition (ii) implies that there exists an embedding of K into B, which we fix

once and for all. Let R ⊂ B be an order of discriminant N with R∩K = Oc. Such an

order exists and is unique up to conjugation by K̂ ×. Here, for an abelian group M ,

we define M̂ = M ⊗Z Ẑ, where Ẑ =
∏

p Zp with p running over all primes. By the

reduction theory of definite quadratic forms, the coset X := B×\B̂×/R̂× is finite,

say of order n. Let g1, . . . , gn in B̂× represent the distinct classes [g1], . . . , [gn].
For each i = 1, . . . , n, let Ŵi = (B× ∩ gi R̂×g−1

i )/{±1}. Then Ŵi is a finite group,

and we denote its order by wi . Let Z[X ] denote the free Z-module of formal sums∑n
i=1 ai [gi ] with ai ∈ Z, and define a height pairing on Z[X ] by

〈∑
ai [gi ],

∑
bi [gi ]

〉
=

n∑

i=1

ai biwi ,

which is positive definite on R[X ] := Z[X ] ⊗Z R and has a natural Hermitian

extension to C[X ] := Z[X ] ⊗Z C. Define the degree of a vector
∑

ai [gi ] ∈ Z[X ]
to be

∑
ai and let Z[X ]0 denote the degree-0 submodule of Z[X ]. Then Z[X ] and

Z[X ]0 are endowed with actions of Hecke operators Tp, Sp, p ∤ N , which are linear

and defined as follows: For any prime p ∤ N , B×
p /R×

p
∼= GL2(Qp)/GL2(Zp) can

be identified with the set of Zp-lattices in a 2-dimensional vector space over Qp.

Then, for any g = (gv) ∈ B̂×,

Sp([g])= [g(p)sp(gp)] and Tp([g])=
∑

h p

[g(p)h p],

where g(p) is the p-off part of g, namely g(p) = (g(p)v ) with g(p)v = gv for all v 6= p
and g(p)p =1; if gp corresponds to lattice3, then sp(gp) is the coset corresponding to

the homothetic lattice p3; and h p runs over p+1 lattices3′ ⊂3 with [3 :3′] = p.

There is a unique line Vφ ⊂ C[X ]0 where Tp acts as ap and Sp acts trivially for all

p ∤ N . Recall that the fixed embedding of K into B induces a map

Pic(Oc)= K ×\K̂ ×/̂O×
c −→ X = B×\B̂×/R̂×, t 7−→ xt ,

using which we define an element in C[X ],

Pχ :=
∑

χ−1(t)xt ,

and let Pφχ be its projection to the line Vφ . The following explicit height formula

for Pφχ , which was proved by Gross [1987] in some cases, is a special case of the
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explicit Waldspurger formulas in Theorems 1.8 and 1.10 (with Proposition 3.8).

Theorem 1.2. Let (φ, χ) be as above satisfying the conditions (i) and (ii). Then we
have

L(1, φ, χ)= 2−µ(N ,D) · 8π2(φ, φ)Ŵ0(N )

u2
√

|Dc2|
· 〈Pφχ , Pφχ 〉,

where µ(N , D) and u are as in Theorem 1.1. Let f =
∑

i f (gi )w
−1
i [gi ] be any

nonzero vector on the line Vφ , and let P0
χ ( f )=

∑
t∈Pic(Oc)

f (t)χ(t). Then the above
formula can be rewritten as

L(1, φ, χ)= 2−µ(N ,D) · 8π2(φ, φ)Ŵ0(N )

u2
√

|Dc2|
·
|P0
χ ( f )|2

〈 f, f 〉 .

Notation for first two sections. We denote by F the base number field of degree

d =[F :Q] over Q and O=OF its ring of integers with different δ. Let A = FA be the

adèle ring of F and A f its finite part. For any Z-module M , we let M̂ = M ⊗Z Ẑ and

Ẑ =
∏

p Zp. For example, F̂ = A f . Let | · |A : A× → R
×
+ denote the standard adelic

absolute value, so that d(ab) = |a|A db for any Haar measure db on A. Let | · |v
denote the absolute value on F×

v for each place v of F , with |x |A =
∏
v |xv|v for

any x = (xv) ∈ A×. For any nonzero fractional ideal b of F , let ‖b‖ denote the

norm of b. For any x ∈ A
×
f , we also write ‖x‖ for ‖bx‖, where bx is the ideal

corresponding to x , so that ‖x‖ = |x |−1
A

; and for any nonzero fractional ideal b we

also write |b|A for |xb|A for any xb ∈ A
×
f whose corresponding ideal is b, so that

|b|A = ‖b‖−1. For a finite place v, sometimes we also denote by v its corresponding

prime ideal and write qv = #O/v. For a fractional ideal b of F , we write |b|v = |xb|v
for xb ∈ Fv with xbOv = bOv, denote by ordv(b) the additive valuation of b at v

such that ordv(v) = 1, and write v‖b if ordv(b) = 1. We denote by ∞ the set of

infinite places of F . Denote by L(s, 1F ) the complete L-series for the trivial Hecke

character 1F on A×, so that L(s, 1F )= ŴR(s)r1ŴC(s)r2ζF (s), where r1 and r2 are

the number of real and complex places of F , ζF (s) is the usual Dedekind zeta

function of F , ŴR(s)= π−s/2Ŵ(s/2), and ŴC(s)= 2(2π)−sŴ(s). For each place v

of F , let L(s, 1v) denote the local Euler factor of L(s, 1F ) at v. Let DF denote the

absolute discriminant of F , and δ ⊂ O the different of F , so that ‖δ‖ = |DF |.
In the first two sections, we let K be a quadratic extension over F , D = DK/F ⊂ O

be the relative discriminant of K over F , and DK be the absolute discriminant of K .

Let K ab be the maximal abelian extension over K and σ : K ×
A
/K × → Gal(K ab/K )

be the Artin reciprocity map in class field theory. For any nonzero ideal b of O,

let Ob = O + bOK be the unique O-order of K satisfying [OK : Ob] = #O/b, and we

call b its conductor. For any finite place v of F , Ob,v = Ob ⊗O Ov only depends on

ordv b. Thus, for a fractional ideal b and a finite place v of F , Ob,v makes sense if



2528 Li Cai, Jie Shu and Ye Tian

ordv b ≥ 0. Let PicK/F (Ob)= K̂ ×/K × F̂×
Ô

×
b . Then there is an exact sequence

Pic(OF )−→ Pic(Ob)−→ PicK/F (Ob)−→ 0.

Let κb be the kernel of the first map, which has order 1 or 2 if F is totally real

and K is a totally imaginary quadratic extension over F (see [Washington 1997,

Theorem 10.3]).

For any algebraic group G over F , let GA = G(A) be the group of adelic points

on G. For a finite set S of places of F , let GS =
∏
v∈S G(Fv) (resp. G(S)

A
= G(A)(S))

be the S-part of GA (resp. the S-off part of GA) viewed as a subgroup of GA naturally

so that the S-off components (resp. S-components) are constant 1. More generally,

for a subgroup U of GA of the form U = UT U T for some set T of places disjoint

with S, where UT ⊂
∏
v∈T G(Fv) and U T =

∏
v /∈T Uv with Uv a subgroup of G(Fv),

we may define U (S), US , and view them as subgroups of U similarly. For any ideal

b of O, we also write U (b) for U (Sb) and Ub for USb , where Sb is the set of places

dividing b. Let U0(N ) and U1(N ) denote subgroups of GL2(̂O) defined by

U0(N )=
{(

a b
c d

)
∈ GL2(̂O)

∣∣∣∣ c ∈ N Ô

}
,

U1(N )=
{(

a b
c d

)
∈ U0(N )

∣∣∣∣ d ≡ 1 mod N Ô

}
.

When F is a totally real field and σ is an automorphic cuspidal representation of

level N such that σv is a discrete series for all v|∞, for an automorphic form φ

of level U1(N ) we let (φ, φ)U0(N ) denote the Petersson norm defined using the

invariant measure dx dy/y2 on the upper half-plane.

1B. The explicit Gross–Zagier formula. Let F be a totally real number field of

degree d , A = AF the adèle ring of F , and A f its finite part. Let B be an incoherent

quaternion algebra over A, totally definite at infinity. For each open compact

subgroup U of B
×
f = (B ⊗A A f )

×, let XU be the Shimura curve over F associated

to U and ξU ∈ Pic(XU )Q the normalized Hodge class on XU , that is, the unique

line bundle which has degree one on each geometrically connected component and

is parallel to

ωXU /F +
∑

x∈XU (F)

(1 − e−1
x )x .

Here ωXU /F is the canonical bundle of XU and ex is the ramification index of x in

the complex uniformization of XU , i.e., for a cusp x , ex = ∞, so that 1 − e−1
x = 1;

for a noncusp x , ex is the ramification index of any preimage of x in the map

XU ′ → XU for any sufficiently small open compact subgroup U ′ of U such that

each geometrically connected component of XU ′ is a free quotient of H under the

complex uniformization. For any two open compact subgroups U1 ⊂ U2 of B
×
f ,
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there is a natural surjective morphism XU1
→ XU2

. Let X be the projective limit of

the system (XU )U , which is endowed with the Hecke action of B× where B×
∞ acts

trivially. Note that each XU is the quotient of X by the action of U .

Let A be a simple abelian variety over F parametrized by X in the sense that there

is a nonconstant morphism XU → A over F for some U . Then, by Eichler–Shimura

theory, A is of strict GL(2)-type in the sense that M := End0(A)= End(A)⊗Z Q

is a field and Lie(A) is a free module of rank one over M ⊗Q F by the induced

action. Let

πA = Hom0
ξ (X, A) := lim−−→

U
Hom0

ξU
(XU , A),

where Hom0
ξU
(XU , A) denotes the morphisms in Hom(XU , A) ⊗Z Q using ξU

as a base point: if ξU is represented by a divisor
∑

i ai xi on XU,F , then for

f ∈ HomF (XU , A)⊗Z Q,

f ∈ πA ⇐⇒
∑

i

ai f (xi )= 0 in A(F)Q := A(F)⊗Z Q.

For each open compact subgroup U of B
×
f , let JU denote the Jacobian of XU . Then

πA = Hom0(J, A) := lim−−→
U

Hom0(JU , A),

where Hom0(JU , A) = HomF (JU , A)⊗Z Q. The action of B× on X induces a

natural B×-module structure on πA so that EndB×(πA)= M and there is a decompo-

sition πA =
⊗

M πA,v , where πA,v are absolutely irreducible representations of B×
v

over M . Using the Jacquet–Langlands correspondence, one can define the complete

L-series of πA,

L(s, πA)=
∏

v

L(s, πA,v) ∈ M ⊗Q C,

as an entire function of s ∈ C. Let L(s, A,M) denote the L-series of the ℓ-adic

Galois representation with coefficients in M ⊗Q Qℓ associated to A (without local

Euler factors at infinity); then Lv(s, A,M) = L
(
s − 1

2
, πv

)
for all finite places v

of F . Let A∨ denote the dual abelian variety of A. There is a perfect B×-invariant

pairing

πA ×πA∨ −→ M

given by

( f1, f2)= Vol(XU )
−1( f1,U ◦ f ∨

2,U ), f1,U ∈ Hom(JU , A), f2,U ∈ Hom(JU , A∨),

where f ∨
2,U : A → JU is the dual of f2,U composed with the canonical isomorphism

J∨
U ≃ JU . Here Vol(XU ) is defined by a fixed invariant measure on the upper
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half-plane. It follows that πA∨ is dual to πA as representations of B× over M . For

any fixed open compact subgroup U of B
×
f , define the U -pairing on πA ×πA∨ by

( f1, f2)U = Vol(XU )( f1, f2), f1 ∈ πA, f2 ∈ πA∨,

which is independent of the choice of measure defining Vol(XU ). If A is an elliptic

curve and we identify A∨ with A canonically then, for any morphism f : XU → A,

we have ( f, f )U = deg f , the degree of the finite morphism f .

Let K be a totally imaginary quadratic extension over F with associated quadratic

character η on A×. Let L be a finite extension of M and χ : K ×\K ×
A

→ L× an

L-valued Hecke character of finite order. Let L(s, A, χ) be the L-series (without

Euler factors at infinity) of the ℓ-adic Galois representations associated to A tensored

with the induced representation of χ from Gal(K/K ) to Gal(Q/Q). Assume that

ωA ·χ |A× = 1,

where ωA is the central character of πA on A
×
f and that, for each finite place v of F ,

ǫ(πA,v, χv)= χvηv(−1)ǫ(Bv),

where ǫ(Bv)= 1 if Bv is split and is −1 otherwise, and ǫ(πA,v, χv)= ǫ
(

1
2
, πA,v, χv

)

is the local root number of L(s, πA, χ). It follows that the global root number of

the L-series L(s, πA, χ) is −1 and there is an embedding of KA into B over A. We

fix such an embedding once for all and then view K ×
A

as a subgroup of B×.

Let N be the conductor of π JL, D the relative discriminant of K over F , and

c ⊂ O the ideal that is maximal such that χ is trivial on
∏
v∤c O

×
Kv

∏
v|c(1 + cOK ,v).

Define the set of places v of F dividing N ,

61 := {v|N nonsplit in K | ordv(c) < ordv(N )}.

Let c1 =
∏

p|c,p/∈61
pordp c be the 61-off part of c, N1 the 61-off part of N , and

N2 = N/N1.

Let v be a place of F and ̟v a uniformizer of Fv . Then there exists an Ov-order

Rv of Bv with discriminant NOv such that Rv ∩ Kv = Oc1,v. Such an order Rv is

called admissible for (πv.χv) if it also satisfies the conditions (1) and (2) that follow.

Note that up to K ×
v -conjugate there is a unique such order when v ∤ (c1, N ), and

that B must be split at places v|(c1, N ) by Lemma 3.1.

(1) If v|(c1, N ), then Rv is the intersection of two maximal orders R′
v, R′′

v of Bv

such that R′
v ∩ Kv = Oc,v and

R′′
v ∩ Kv =

{
Oc/N ,v if ordv(c/N )≥ 0,

OK ,v otherwise.

Note that, for v|(c1, N ), there is a unique order up to K ×
v -conjugate satisfying

condition (1), unless ordv(c1) < ordv(N ). In the case 0 < ordv(c1) < ordv(N ),
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v must split in K by the definition of 61 and there are exactly two K ×
v -conjugacy

classes of orders satisfying condition (1), which are conjugate to each other by a

normalizer of K ×
v in B×

v . Fix an Fv-algebra isomorphism Kv
∼= F2

v and identify Bv

with EndFv (Kv). Then the two classes contain, respectively, orders Ri,v= R′
i,v∩R′′

i,v ,

i = 1, 2 as in (1) such that R′
i,v = EndO(Oc), i = 1, 2, R′′

1,v = EndOv
((̟ n−c

v , 1)OKv
)

and R′′
2,v = EndOv

((1,̟ n−c
v )OKv

).

(2) If 0 < ordv(c1) < ordv(N ), then Rv is K ×
v -conjugate to some Ri,v such that

χi has conductor ordv(c), where χi , i = 1, 2, is defined by χ1(a)= χv(a, 1)

and χ2(b)= χv(1, b).

Definition 1.3. An Ô-order R of B f is called admissible for (π, χ) if, for every

finite place v of F , Rv :=R⊗
Ô

Ov is admissible for (πv, χv). Note that an admissible

order R for (π, χ) is of discriminant N Ô such that R ∩ K̂ = Ôc1
.

Let R be an Ô-order of B f with discriminant N such that R∩ KA f = Ôc1
and that

Rv := R ⊗
Ô

Ov is admissible for (πv, χv) at all places v. Note that Rv is unique up

to K ×
v -conjugate for any v ∤ (c1, N ).

Let U = R
× and U (N2) := R

× ∩ B×(N2)
f . For any finite place v|N1, Bv must be

split (by Lemma 3.1(5)). Let Z ∼= A
×
f denote the center of B

×
f . The group U (N2)

has a decomposition U (N2) = U ′ · (Z ∩ U (N2)), where U ′ =
∏
v∤N2∞ U ′

v is so that,

for any finite place v ∤ N2, U ′
v = Uv if v ∤ N and U ′

v
∼= U1(N )v otherwise. View ω

as a character on Z . We may define a character on U (N2) that is ω on Z ∩ U (N2)

and trivial on U ′. This character is also denoted by ω.

Definition 1.4. Let V (π, χ) denote the space of forms f ∈ πA ⊗M L which are

ω-eigenforms under U (N2) and χ−1
v -eigenforms under K ×

v for all places v ∈ 61.

The space V (π, χ) is actually a one-dimensional L-space (see Proposition 3.7).

Consider the Hecke action of K ×
A

⊂ B× on X . Let X K ×
be the F-subscheme of X

of fixed points of X under K ×. The theory of complex multiplication asserts that

every point in X K ×
(F) is defined over K ab and that the Galois action is given by the

Hecke action under the reciprocity law. Fix a point P ∈ X K ×
and let f ∈ V (π, χ)

be a nonzero vector. Define a Heegner cycle associated to (π, χ) by

P0
χ ( f ) :=

∑

t∈PicK/F (Oc1
)

f (P)σtχ(t) ∈ A(K ab)Q ⊗M L ,

where PicK/F (Oc1
) = K̂ ×/K × F̂×

Ô
×
c1

and t 7→ σt is the reciprocity law map in

class field theory. The Néron–Tate height pairing over K gives a Q-linear map

〈 , 〉K : A(K )Q ⊗M A∨(K )Q → R. Let 〈 , 〉K ,M : A(K )Q ⊗M A∨(K )Q → M ⊗Q R

be the unique M-bilinear pairing such that 〈 , 〉K = trM⊗R/R〈 , 〉K ,M . The pairing

〈 , 〉K ,M induces an L-linear Néron–Tate pairing over K ,

〈 , 〉K ,L : (A(K )Q ⊗M L)⊗L (A
∨(K )Q ⊗M L)−→ L ⊗Q R.
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The B×-invariant M-linear pairing ( , )U : πA ×πA∨ → M induces a B×-invariant

L-linear pairing

( , )U : (πA ⊗M L)× (πA∨ ⊗M L)−→ L .

The Hilbert newform φ in the Jacquet–Langlands correspondence σ of πA on

GL2(A) is the form satisfying these conditions:

• φ is of level U1(N ).

• For each v|∞, the action of SO2(R) ⊂ GL2(Fv) on φ is given by σ(kθ )φ =
e4π iθφ, where kθ =

(
cos θ

− sin θ
sin θ
cos θ

)
∈ SO2(R).

• Let d×a be the Tamagawa measure so that Ress=1

∫
|a|≤1,a∈F×\A× |a|s−1 d×a =

Ress=1 L(s, 1F ); then

L(s, π)= 2d · |δ|s−1/2
A

· Z(s, φ) with Z(s, φ)=
∫

F×\A×
φ
(a

1

)
|a|s−1/2

A
d×a,

where δ is the different of F .

Note that φ(g)φ(g) is a function on

GL2(F)+\GL2(F∞)+ × GL2(A f )/Z(A) · (U1,∞ × U0(N ))
∼= GL2(F)+\H

d × GL2(A f )/U0(N )A
×
f .

We define the Petersson norm (φ, φ)U0(N ) by the integration of φφ with measure

dx dy/y2 on each upper half-plane. One main result of this paper is the following:

Theorem 1.5 (explicit Gross–Zagier formula). Let F be a totally real field of
degree d. Let A be an abelian variety over F parametrized by a Shimura curve X
over F and φ the Hilbert holomorphic newform of parallel weight 2 on GL2(A)

associated to A. Let K be a totally imaginary quadratic extension over F with
relative discriminant D and discriminant DK . Let χ : K ×

A
/K × → L× be a finite

Hecke character of conductor c over some finite extension L of M := End0(A).
Assume that:

(1) ωA ·χ |A× = 1, where ωA is the central character of πA;

(2) for any place v of F , ǫ(πA,v, χv)= χvηv(−1)ǫ(Bv).

For any nonzero forms f1 ∈ V (πA, χ) and f2 ∈ V (πA∨, χ−1), we have an equality
in L ⊗Q C,

L ′ (6)(1, A, χ)= 2−#6D · (8π
2)d · (φ, φ)U0(N )

u2
1

√
|DK |‖c2

1‖
·
〈P0
χ ( f1), P0

χ−1( f2)〉K ,L

( f1, f2)R×
,
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where
6:= {v|(N , Dc) | if v‖N then ordv(c/N )≥ 0},
6D:= {v|(N , D) | ordv(c) < ordv(N )},

the ideal c1|c is the 61-off part of c as before, u1 = #κc1
· [O×

c1
: O

×] and κc1
is

the kernel of the morphism from Pic(O) to Pic(Oc1
), which has order 1 or 2, and

(φ, φ)U0(N ) is the Petersson norm with respect to the measure dx dy/y2 on the
upper half-plane.

Remark. The assumption ωA|A× · χ = 1 implies L(s, A, χ) = L(s, A∨, χ−1).

Let φ∨ be the Hilbert newform associated to A∨. Then (φ∨, φ∨)U0(N )= (φ, φ)U0(N ).

We may state the above theorem in simpler way under some assumptions. First

assume that ωA is unramified and, if v ∈61, then v ∤ c.

Given this, c1 = c. Fix an infinite place τ of F and let B be the nearby quaternion

algebra whose ramification set is obtained from that of B by removing τ . Then

there is an F-embedding of K into B which we fix once and for all and view K ×

as an F-subtorus of B×. Let R be an admissible O-order of B for (π, χ), by which

we mean that R̂ is an admissible Ô-order of B f = B̂ for (π, χ). Note that R is of

discriminant N and that R ∩ K = Oc. Let U = R̂× ⊂ B̂× and let XU be the Shimura

curve of level U , so that it has complex uniformization

XU,τ (C)= B×
+\H × B̂×/U ∪ {cusps},

where B×
+ is the subgroup of elements x ∈ B× with totally positive norms. Let

u = #κc · [O×
c : O

×]. By Proposition 3.8, we have that V (πA, χ)⊂ (πA ⊗M L)R̂×
.

Special case 1. Further assume that (N , Dc) = 1. Then there is a nonconstant

morphism f : XU → A mapping a Hodge class on XU to the torsion of A and, for

any two such morphisms f1, f2 : XU → A, n1 f1 = n2 f2 for some nonzero integers

n1, n2. Let h0 be the unique fixed point of K × and let P = [h0, 1] ∈ XU . Replace

χ by χ−1; there is a nonconstant morphism XU → A∨ with similar uniqueness.

For any such f1 : XU → A and f2 : XU → A∨, let ( f1, f2) = f1 ◦ f ∨
2 . Then we

have an equality in L ⊗Q C,

L ′(1, A, χ)= (8π2)d(φ, φ)U0(N )

u2 ·
√

|DK |‖c2‖
·
〈P0
χ ( f1), P0

χ−1( f2)〉K ,L

( f1, f2)U
.

Special case 2. Further assume that ωA is trivial — or, more generally, that ωA(̟v)

is in Aut(A)2 ⊂ M×2 for all places v dividing (N , D) but not c, where ̟v is a

uniformizer of Fv. For each place v that divides (N , D) but not c, K ×
v normal-

izes R×
v (see Lemma 3.4) and a uniformizer ̟Kv

of Kv induces an automorphism

T̟Kv
: XU → XU over F . Note that χv(̟Kv

) ∈ Aut(A) ⊂ M×. There exists a

nonconstant morphism f : XU → A mapping a Hodge class to the torsion point
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such that T̟Kv
f = χ−1(̟Kv

) f for each place v dividing (N , D) but not c. Such

an f has the same uniqueness property as in special case 1. Then, for any such

f1 : XU → A and f2 : XU → A∨, we have an equality in L ⊗Q C,

L ′ (6)(1, A, χ)= 2−#6D · (8π
2)d(φ, φ)U0(N )

u2 ·
√

|DK |‖c2‖
·
〈P0
χ ( f1), P0

χ−1( f2)〉K ,L

( f1, f2)U
,

where 6 is now the set of places v|(cD, N ) of F such that, if v‖N , then v ∤ D.

Example. Let φ ∈ S2(Ŵ0(N )) be a newform. Let K be an imaginary quadratic

field of discriminant D and χ a primitive character of Pic(Oc). Assume that (φ, χ)

satisfies the Heegner conditions (1)–(2) in Theorem 1.1; then, by Lemma 3.1(1)

and (3), ǫ(φ, χ) = −1 and B = M2(Q). The Heegner conditions also imply that

there exist a, b ∈ Z with (N , a, b)= 1 such that a2−4Nb = Dc2. Fix an embedding

of K into B by

(Dc2 +
√

Dc2)/2 7−→
(
(Dc2 + a)/2 −1

Nb (Dc2 − a)/2

)
.

Then R :=
{(a

c
b
d

)
∈ M2(Z)

∣∣ N |c
}

is an order of B such that R̂ ∩ K = Oc. Let A be

an abelian variety associated to φ via Eichler–Shimura theory and f : X0(N )→ A
any nonconstant morphism mapping cusp ∞ to O ∈ A. Then f ∈ V (πA, χ). Let

z ∈ H be the point fixed by K ×; then Nbz2 − az + 1 = 0, Oc = Z + Zz−1, and

n−1 = Z+ZN−1z−1, so that Oc/n∼= Z/NZ. The point on X0(N ) corresponding to z
via complex uniformization represents the isogeny C/(Z+Zz)→ C/(N−1Z+Zz),
or C/Oc → C/n−1. Thus Theorem 1.1 now follows from Theorem 1.5.

For various arithmetic applications, we may need explicit formulas for different

test vectors, which we now give. Let v be a finite place of F , fix 〈 , 〉v a B×
v -invariant

pairing on πA,v ×πA∨,v and a Haar measure dtv on F×
v \K ×

v . For any f ′
1,v ∈ πA,v,

f ′
2,v ∈ πA∨,v with 〈 f ′

1,v, f ′
2,v〉v 6= 0, let

β0( f ′
1,v, f ′

2,v)= β0( f ′
1,v, f ′

2,v, dtv)=
∫

F×
v \K ×

v

〈πA,v(tv) f ′
1,v, f ′

2,v〉v
〈 f ′

1,v, f ′
2,v〉v

χv(tv) dtv.

For any two nonzero pure tensor forms f ′ =
⊗

v f ′
v , f ′′ =

⊗
v f ′′

v ∈ π , we say that

f ′ and f ′′ differ at a place v if f ′
v and f ′′

v are not parallel, and that they coincide

otherwise. This is independent of the decompositions. In particular, if two nonzero

pure tensor forms coincide locally everywhere then they are the same up to a scalar.

Theorem 1.6 (variation of the Gross–Zagier formula). Let (A, χ), f1 ∈ V (πA, χ)

and f2 ∈ V (πA∨, χ−1) be as in Theorem 1.5. Let S be a finite set of finite places
of F , f ′

1 ∈ πA, f ′
2 ∈ πA∨ be vectors such that f ′

i and fi coincide for any v /∈ S,
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i = 1, 2, and 〈 f ′
1,v, f ′

2,v〉v 6= 0 and β0( f ′
1,v, f ′

2,v) 6= 0 for any v ∈ S. Define

P0
χ ( f ′

1)= # Pic(Oc1
)

Vol(K × F̂×\K̂ ×, dt)
·
∫

K × F̂×\K̂ ×
f ′
1(P)

σtχ(t) dt,

and define P0
χ−1( f ′

2) similarly. Then, with notations as in Theorem 1.5, we have

L ′ (6)(1, A, χ)

= 2−#6D · (8π
2)d · (φ, φ)U0(N )

u2
1

√
|DK |‖c2

1‖
·
〈P0
χ ( f ′

1), P0
χ−1( f ′

2)〉K ,L

( f ′
1, f ′

2)
×
R

·
∏

v∈S

β0( f1,v, f2,v)

β0( f ′
1,v, f ′

2,v)
,

which is independent of the choice of Haar measure dtv for v ∈ S.

Example. Let A be the elliptic curve X0(36) with the cusp ∞ as the identity point

and let K = Q(
√

−3). Let p ≡ 2 mod 9 be a prime; then the field L ′ = K ( 3
√

p ) is

contained in H3p. Let χ :Gal(L ′/K )→ K × be the character mapping σ to ( 3
√

p )σ−1.

Fix the embedding K → M2(Q) mapping w := (−1 +
√

−3)/2 to
( −1

6/p
−p/6

0

)
.

For f ′ = id : X0(36) → A, let P ∈ X0(36) be the point corresponding to

−pw/6 ∈ H. The Heegner divisor P0
χ ( f ′) is

P0
χ ( f ′)= 1

9

∑

t∈Pic(O6p)

f ′(P)σtχ(t).

One can show that P0
χ ( f ′) is nontrivial (see [Satgé 1987; Dasgupta and Voight

2009; Cai et al. 2014]) and then it follows that the prime p is the sum of two rational

cubes. By the variation formula, one can easily obtain the height formula of P0
χ ( f ′):

let φ ∈ S2(Ŵ0(36)) be the newform associated to A, and note that #6D = 1, u1 = 1

and c1 = p in the variation

L ′(1, A, χ)= 9 · 8π2 · (φ, φ)Ŵ0(36)√
3p2

· 〈P0
χ ( f ′), P0

χ−1( f ′)〉K ,K .

In fact, U = R
× in Theorem 1.5 is given by

R =
{(

a b/6
6c d

)
∈ M2(Q̂)

∣∣∣∣ a, b, c, d ∈ Ẑ, p−1b + pc, a + pc − d ∈ 6Ẑ

}

and f ∈ V (πA, χ) is a χ−1
v -eigenform for v = 2, 3. Then

( f ′, f ′)= Vol(XU )

Vol(X0(36))
= 2

9
.

The ratio β0( fv, fv)/β0( f ′
v, f ′

v) equals 1 at v = 2, and 4 at v = 3.
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1C. The explicit Waldspurger formula. Let F be a general base number field.

Let B be a quaternion algebra over F and π a cuspidal automorphic representation

of B×
A

with central character ω. Let K be a quadratic field extension of F and η the

quadratic Hecke character on F×\A× associated to the quadratic extension. Let χ be

a Hecke character on K ×
A

. Write L(s, π, χ) for the Rankin L-series L(s, π JL ×πχ ),
where π JL is the Jacquet–Langlands correspondence of π on GL2(A) and πχ is the

automorphic representation of GL2(A) corresponding to the theta series of χ , so

that L(s, πχ )= L(s, χ). Assume that

ω ·χ |A× = 1.

Then, for any place v of F , the local root number ǫ
(

1
2
, πv, χv

)
of the Rankin

L-series is independent of the choice of additive character. We also assume that,

for all places v of F ,

ǫ
(

1
2
, πv, χv

)
= χvηv(−1)ǫ(Bv),

where ǫ(Bv) = −1 if Bv is division and +1 otherwise. It follows that the global

root number ǫ
(

1
2
, π, χ

)
equals +1 and there exists an F-embedding of K into B.

We fix such an embedding once and for all and view K × as an F-subtorus of B×.

Let N be the conductor of π JL, D the relative discriminant of K over F , c ⊂ O

the ideal maximal such that χ is trivial on
∏
v∤c O

×
Kv

∏
v|c(1 + cOK ,v). Define the

following set of places v of F dividing N :

61 := {v|N nonsplit in K | ordv(c) < ordv(N )},

Let c1 =
∏

p|c,p/∈61
pordp c be the 61-off part of c, N1 the 61-off part of N , and

N2 = N/N1 the 61-part of N .

Let R be an admissible O-order of B for (π, χ) in the sense that Rv is admissible

for (πv, χv) for every finite place v of F . It follows that R is an O-order with

discriminant N such that R ∩ K = Oc1
.

Let U =
∏
v Uv ⊂ B×

A
be a compact subgroup such that, for any finite place v,

Uv = R×
v , and that, for any infinite place v of F , Uv is a maximal compact subgroup

of B×
v such that Uv ∩ K ×

v is the maximal compact subgroup of K ×
v . For any finite

place v|N1, Bv must be split. Let Z ∼= A
×
f denote the center of B̂×. The group

U (N2∞) has a decomposition U (N2∞) = U ′ · (Z ∩U (N2∞)), where U ′ =
∏
v∤N2∞ U ′

v

is such that, for any finite place v ∤ N2, U ′
v =Uv if v ∤ N and U ′

v
∼=U1(N )v otherwise.

View ω as a character on Z and we may define a character on U (c2∞) that is ω on

Z ∩ U (c2∞) and trivial on U ′; we also denote this character by ω.

Definition 1.7. Let V (π, χ) denote the space of forms f =
⊗

v fv ∈ π such that f
is an ω-eigenform under U (N2∞); for all places v ∈61, f is a χ−1

v -eigenform under

K ×
v ; and, for any infinite place v, f is a χ−1

v -eigenform under Uv∩ K ×
v with weight

minimal. The space V (π, χ) is actually one-dimensional (see Proposition 3.7).
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Let r , s, t be integers such that B ⊗Q R = Hr × M2(R)
s × M2(C)

t , and let XU

denote the U -level real manifold

XU = B×
+\(Hs

2 × H
t
3)× B̂×/U,

which has finitely many connected components, where H2,H3 are the usual hyper-

bolic spaces of dimension two and three, respectively. Define the volume of XU ,

denoted by Vol(XU ), as follows:

• If s + t > 0, then XU is the disjoint union of manifolds of dimension 2s + 3t ,

XU = B×
+\(Hs

2 × H
t
3)× B̂×/U =

⊔

i

Ŵi\(Hs
2 × H

t
3),

for some discrete subgroup Ŵi ⊂ B×
+ ∩

∏
v|∞, Bv not division(Bv)

×, then define

the volume of XU with the measure dx dy/(4πy2) on H2 and the measure

dx dy dv/π2v3 on H3. Here the notation H3 is the same as in [Vignéras 1980].

• If s+t =0, then F is totally real and B is totally definite. For any open compact

subgroup U of B̂×, the double coset B×\B̂×/U is finite; let g1, . . . , gn ∈ B̂×

be a complete set of representatives for the coset. Let µZ = F̂× ∩U ; then, for

any g ∈ B̂×, B× ∩ gUg−1/µZ is a finite set. Define the volume of XU to be

the mass of U :

Vol(XU )= Mass(U )=
n∑

i=1

1

#(B× ∩ giUg−1
i )/µZ

.

For any automorphic forms f1 ∈ π and f2 ∈ π̃ , 〈 f1, f2〉Pet is the Petersson pairing

of f1, f2, defined by

〈 f1, f2〉Pet =
∫

B×A×\B×
A

f1(g) f2(g) dg,

where dg is the Tamagawa measure on F×\B×, so that B×A×\B×
A

has total

volume 2. For any f1 ∈ V (π, χ) and f2 ∈ V (π̃, χ−1), one may define the U -level

pairing as

〈 f1, f2〉U = 1
2
〈 f1, f2〉Pet · Vol(XU ).

For any f ∈ V (π, χ), define the c1-level period of f ∈ V (π, χ) as follows: let

K ×
∞/F×

∞ be the closure of K ×
∞/F×

∞ in the compact group K ×
A
/A×K × and endow

K ×
∞/F×

∞ with the Haar measure dh of total volume one; then, let

P0
χ ( f )=

∑

t∈PicK/F (Oc1
)

f 0(t)χ(t), f 0(t)=
∫

K ×
∞/F×

∞

f (th)χ(h) dh.

The function f 0(t)χ(t) on K ×
A is constant on K ×

61
, so can be viewed as a function

on PicK/F (Oc1
)= K̂ ×/K × F̂×

Ô
×
c1

. Note that, when F is totally real and all infinite

places v of F are inert in K , f 0 = f .
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Notations. Let b be an integral ideal of F ; we define the relative regulator Rb to

be the quotient of the regulator of O
×
b by the regulator of O

× and wb = #O
×
b,tor/#O

×
tor.

Denote by κb the kernel of the natural homomorphism from Pic(O) to Pic(Ob).

Define νb = 2−rK/F R−1
b · #κb ·wb, where rK/F = rank O

×
K − rank O

×. For example,

if F is a totally real field of degree d and K is a totally imaginary quadratic field

extension over F , then νb = 21−d · #κb · [O×
b : O

×], where κb ⊂ κ1 and #κ1 = 1 or 2

[Washington 1997, Theorem 10.3].

For an infinite place v of F , let Uv denote the maximal compact subgroup

of GL2(Fv), which is O2 if v is real and U2 if v is complex, and let U1,v ⊂ Uv

denote its subgroup of diagonal matrices
(a

1

)
for a ∈ F×

v with |a|v = 1. For

a generic (gv,Uv)-module σv and a nontrivial additive character ψv of Fv, let

W(σv, ψv) be the ψv-Whittaker model of σv . There is an invariant bilinear pairing

on W(σv, ψv)× W(̃σv, ψ
−1),

〈W1,W2〉v :=
∫

F×
v

W1

[(
a

1

)]
W2

[(
a

1

)]
d×a,

with the measure d×a = L(1, 1v) da/|a|v , where da equals [Fv : R] times the usual

Lebesgue measure on Fv. Let W0 ∈ W(σv, ψv) be the vector invariant under U1,v

with minimal weight such that

L(s, πv)= Z(s,W0), where Z(s,W0) :=
∫

F×
v

Wσv

[(
a

1

)]
|a|s−1/2

v d×a

with d×a the Tamagawa measure. Similarly, define W̃0 for σ̃v . Then�σv :=〈W0,W̃0〉v
is an invariant of σv which is independent of the choice ofψv (see an explicit formula

for �σv before Lemma 3.14 ). We associate to (σv, χv) a constant by

C(σv, χv) :=
{

2−1π ·�−1
σv

if Kv is nonsplit,

�σv⊗χ1,v
·�−1

σv
if Kv is split,

(1-1)

where for split Kv
∼= F2

v , embedded into M2(Fv) diagonally, the character χ1 is

given by χ1,v(a) := χv
[(a

1

)]
. If v is a real place of F and σv is a discrete series

of weight k, then C(σv, χv)= 4k−1π k+1Ŵ(k)−1 when Kv
∼= C, and C(σv, χv)= 1

when Kv
∼= R2.

Let σ be the Jacquet–Langlands correspondence of π to GL2(A); the normalized

new vector φ0 =
⊗

v φv ∈ σ is the one fixed by U1(N ) and φv is fixed by U1,v with

weight minimal for all v|∞ such that

L(s, σ )= |δ|s−1/2
A

Z(s, φ0), where Z(s, φ0) :=
∫

F×\A×
φ0

(
a

1

)
|a|s−1/2

A
d×a

with the Tamagawa measure on A×, so that

Ress=1

∫

|a|≤1,a∈F×\A×
|a|s−1 d×a = Ress=1 L(s, 1F ).
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When F is a totally real field and σ a cuspidal automorphic representation such

that σv is a discrete series for any infinite place v, the normalized new vector φ0 is

not parallel to the Hilbert newform φ: they are different at infinity. If σ is unitary

and φ0 is the normalized new vector of σ , then σ ∼= σ̃ and φ0 is the normalized

new vector of σ . We will see that (φ, φ)U0(N ) = (2π)d〈φ0, φ0〉U0(N ).

Theorem 1.8 (explicit Waldspurger formula). Let F be a number field. Let B be a
quaternion algebra over F and π an irreducible cuspidal automorphic represen-
tation of B×

A
with central character ω. Let K be a quadratic field extension of F

and χ a Hecke character of K ×
A

. Assume that:

(1) ω ·χ |A× = 1;

(2) ǫ
(

1
2
, πv, χv

)
= χvηv(−1)ǫ(Bv) for all places v of F.

Then, for any nonzero forms f1 ∈ V (π, χ) and f2 ∈ V (π̃, χ−1), we have

L(6)
(

1
2
, π, χ

)
= 2−#6D+2 · C∞ · 〈φ0

1, φ
0
2〉U0(N )

ν2
c1

√
|DK |‖c1‖2

·
P0
χ ( f1)P0

χ−1( f2)

〈 f1, f2〉R̂×
,

where φ0
1 ∈ π JL and φ0

2 ∈ π̃ JL are normalized new vectors, 6 is the set of places
v|(cD, N )∞ of F such that if v‖N then ordv(c/N )≥ 0, and if v|∞ then Kv

∼= C.
The constant C∞ =

∏
v|∞ Cv, c1|c and 6D are the same as in Theorem 1.5, and

Cv = C(π JL
v , χv) is given in (1-1).

For many applications, we need an explicit form of the Waldspurger formula for

different test vectors. The following variation of the formula is useful. For each place

v of F , fix a B×
v -invariant pairing 〈 , 〉v on πv × π̃v . Here, if v|∞, we mean it is the

restriction of a B×
v -invariant pairing on the corresponding smooth representations.

For any f ′
1,v ∈ πv, f ′

2,v ∈ π̃v with 〈 f ′
1,v, f ′

2,v〉v 6= 0, define β0( f ′
1,v, f ′

2,v) as in

Theorem 1.6.

Theorem 1.9 (variation of the Waldspurger formula). Let (π, χ) and f1 ∈ V (π, χ),
f2 ∈ V (π̃, χ−1) be as in Theorem 1.8. Let S be a finite set of places of F , f ′

1 ∈ π ,

f ′
2 ∈ π̃ be pure vectors which coincide with f1, f2 respectively outside S such that

〈 f ′
1,v, f ′

2,v〉v 6= 0 and β0( f ′
1,v, f ′

2,v) 6= 0 for all v ∈ S. Here β0 is similarly defined
as in Theorem 1.6. Define

P0
χ ( f ′

1)= # PicK/F (Oc1
)

Vol(K ×A×\K ×
A
, dt)

·
∫

K ×A×\K ×
A

f ′(t)χ(t) dt,

and define P0
χ−1( f ′

2) similarly. Then, in the notation of Theorem 1.8, we have

L(6)
(

1
2
, π, χ

)
=2−#6D+2·C∞· 〈φ0

1, φ
0
2〉U0(N )

ν2
c1

√
|DK |‖c2

1‖
·
P0
χ ( f ′

1)P
0
χ−1( f ′

2)

〈 f ′
1, f ′

2〉R̂×
·
∏

v∈S

β0( f1,v, f2,v)

β0( f ′
1,v, f ′

2,v)
,



2540 Li Cai, Jie Shu and Ye Tian

Example. Let φ =
∑

anqn ∈ S2(Ŵ0(N )) be a newform of weight 2 and p a good

ordinary prime of φ, K an imaginary quadratic field of discriminant D and χ a char-

acter of Gal(Hc/K ) of conductor c that is prime to p. Assume that the conditions

(i)–(ii) in Theorem 1.2 are satisfied. Let B be the quaternion algebra, π the cuspidal

automorphic representation on B×
A

, and identify π̃ with π . Let f ∈ π R̂× = V (π, χ)
be a nonzero test vector as in Theorem 1.8. Define the p-stabilization of f by

f † = f −α−1π

(
1

p

)
f,

where α is the unit root of X2−ap X+p and β= p/α is another root. By the variation

of the Waldspurger formula and Theorem 1.2, one may easily obtain a formula for

P0
χ ( f †), which is used to give the interpolation property of anticyclotomic p-adic

L-functions:

L(1, φ, χ)= 2−µ(N ,D) · 8π2(φ, φ)Ŵ0(N )

[O×
c : Z×]2

√
|Dc2|

·
|P0
χ ( f †)|2

( f †, f †)R̂×
· ep,

where

ep = β0(W,W )

β0(W †,W †)
= L(2, 1p)

L(1, πp, ad)
· (1 −α−1χ1(p))

−1(1 −β−1χ−1
1 (p))−1.

Here W is a new vector of the Whittaker model W(πp, ψp) with ψp(x)= e−2π i ι(x),

where ι : Qp/Zp → Q/Z is the natural embedding and W † := W −α−1πp
(

1
p

)
W

is its stabilization, where K ×
p

∼= Q×2
p is embedded into GL2(Qp) as a diagonal

subgroup and χ1(a)= χ
(a

1

)
.

Now we consider the situation that:

(1) F is a totally real field and K is a totally imaginary quadratic extension over F ,

(2) for any place v|∞ of F , π JL
v is a unitary discrete series of weight 2,

(3) (c, N )= 1.

Let φ be the Hilbert newform as in Theorem 1.5 (which is different from the

one we chose in Theorem 1.8). We are going to give an explicit form of the

Waldspurger formula following [Gross 1988], which is quoted in many references.

Let X = B×\B̂×/R̂× and let g1, . . . , gn ∈ B̂× be a complete set of representa-

tives of X . Write [g] ∈ X for the class of an element g ∈ B̂×. For each gi , let

Ŵi = (B× ∩ gi R̂×g−1
i )/O×, which is finite, and denote by wi its order. Let Z[X ] be

the free Z-module (of rank #X ) of formal sums
∑

i ai [gi ]. There is a height pairing

on Z[X ] × Z[X ] defined by
〈∑

ai [gi ],
∑

bi [gi ]
〉
=

∑

i

ai biwi .

By Eichler’s norm theorem, the norm map

N : X −→ C+, where X := B×\B̂×/R̂×, C+ := F×
+ \F̂×/̂O×,
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is surjective. For each c ∈ C+, let Xc ⊂ X be the preimage of c and Z[Xc] be the

submodule of Z[X ] supported on Xc. Then Z[X ] =
⊕

c∈C+ Z[Xc]. Let Z[Xc]0

be the submodule of classes
∑

ai [gi ] ∈ Z[Xc] with degree
∑

i ai = 0, and let

Z[X ]0 =
⊕

c∈C+ Z[Xc]0 and C[X ]0 = Z[X ]0 ⊗Z C. Note that V (π, χ) ⊂ π R̂×
by

Proposition 3.8, and then there is an injection

V (π, χ)−→ C[X ]0, f 7→
∑

f ([gi ])w−1
i [gi ],

so we can view V (π, χ) as a line on C[X ]0. It follows that 〈 f, f 〉 = 〈 f, f 〉R̂× . The

fixed embedding K → B induces a map

Pic(Oc)−→ X, t 7−→ xt ,

using which we define an element in C[X ],

Pχ :=
∑

t∈Pic(Oc)

χ−1(t)xt ,

and let Pπχ be its projection to the line V (π, χ). Then the explicit formula in

Theorem 1.8 implies:

Theorem 1.10. Let (π, χ) be as above with conditions (1)–(3). The height of Pπχ
is given by the formula

L(6)
(

1
2
, π, χ

)
= 2−#6D · (8π

2)d · (φ, φ)U0(N )

u2
√

|DK |‖c‖2
· 〈Pπχ , Pπχ 〉,

where

6 := {v|(N , D)∞|if v‖N then v ∤ D}, 6D := {v|(N , D)},

u = #κc · [O×
c : O

×], and φ ∈ π JL is the Hilbert newform as in Theorem 1.5. For any
nonzero vector f ∈ V (π, χ), let P0

χ ( f )=
∑

t∈Pic(Oc)
f (t)χ(t); then we have

L(6)
(

1
2
, π, χ

)
= 2−#6D · (8π

2)d · (φ, φ)U0(N )

u2
√

|DK |‖c‖2
·
|P0
χ ( f )|2

〈 f, f 〉 .

Remark. When c and N have a common factor, one can still formulate an explicit

formula in the spirit of Gross by defining a system of height pairings 〈 , 〉U in the

same way as Theorem 1.8.

As a byproduct, we obtain the following result about the relation between the

Petersson norm of a newform and a special value of the adjoint L-function:

Proposition 1.11. Let F be a totally real field and σ a cuspidal unitary automorphic
representation of GL2(A) of conductor N such that, for any v|∞, σv is a discrete
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series of weight kv. Let φ be the Hilbert newform in σ as in Theorem 1.5. Then

L(S)(1, σ, ad)

(φ, φ)U0(N )
= 2d−1+

∑
v|∞ kv · ‖Nδ−2‖−1 · h−1

F ,

where S is the set of finite places v of F with ordv(N )≥ 2 and ordv(N ) > ordv(C),
C is the conductor of the central character of σ , hF is the ideal class number of F ,

and

(φ, φ)U0(N ) =
∫∫

XU0(N )

|φ|2
( ∧

v|∞
ykv−2
v dxv dyv

)
, zv = xv + yvi.

Or, equivalently,

L(S∞)(1, σ, ad)

(φ, φ)U0(N )
= 1

2
· ‖Nδ−2‖−1 · h−1

F ·
∏

v|∞

4kvπ kv+1

Ŵ(kv)
.

Proof. This follows from Proposition 2.1, Lemma 2.2, and Proposition 3.11. Here

[Tunnell 1978, Proposition 3.4] is also used. �

Example. Assume that F = Q and σ is the cuspidal automorphic representation

associated to a cuspidal newform φ ∈ Sk(SL2(Z)). Then we have that

L(1, σ, ad)= 2k · (φ, φ)SL2(Z), L(∞)(1, σ, ad)= 22k−1π k+1

Ŵ(k)
· (φ, φ)SL2(Z).

2. Reduction to local theory

We now explain how to obtain the explicit formulas in Theorems 1.5 and 1.8 from

the original Waldspurger formula and the general Gross–Zagier formula proved in

[Yuan et al. 2013]. We first consider the Waldspurger formula. Let B be a quaternion

algebra over a number field F and π a cuspidal automorphic representation on B×
A

with central character ω. Let K be a quadratic field extension over F and χ be a

Hecke character on K ×
A

. Assume that: (1) ω · χ |A× = 1; and (2) for any place v

of F , ǫ
(

1
2
, πv, χv

)
= χvηv(−1)ǫ(Bv). Define the Petersson pairing on π ⊗ π̃ by

〈 f1, f2〉Pet =
∫

B×A×\B×
A

f1(g) f2(g) dg

with the Tamagawa measure, so that the volume of B×A×\B×
A

is 2. Let Pχ denote

the period functional on π

Pχ ( f )=
∫

K ×A×\K ×
A

f (t)χ(t) dt for all f ∈ π.

Then Waldspurger’s period formula [Waldspurger 1985; Yuan et al. 2013, The-

orem 1.4] says that, for any pure tensors f1 ∈ π , f2 ∈ π̃ with 〈 f1, f2〉Pet 6= 0,
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Pχ ( f1)Pχ−1( f2)

〈 f1, f2〉Pet

=
L
(

1
2
, π, χ

)

2L(1, π, ad)L(2, 1F )−1
·
∏

v

β( f1,v, f2,v), (2-1)

where L(1, π, ad) is defined using the Jacquet–Langlands lifting of π . Here, for

any place v of F , let 〈 , 〉v : πv × π̃v → C be a nontrivial invariant pairing; then

β( f1,v, f2,v)= L(1, ηv)L(1, πv, ad)

L
(

1
2
, πv, χv

)
L(2, 1Fv )

∫

K ×
v /F×

v

〈π(tv) f1,v, f2,v〉v
〈 f1,v, f2,v〉v

χ(tv) dtv,

where local Haar measures dtv are chosen so that
⊗

v dtv = dt is the Haar measure

on K ×
A
/A× in the definitions of Pχ and Pχ−1 , and the volume of K ×\K ×

A
/A× with

respect to dt is 2L(1, η). Note that the Haar measure dt is different from the one

used in [Yuan et al. 2013, Theorem 1.4]. To obtain the explicit formula, we first

relate Pχ ( f ), L(1, π, ad), and 〈 f1, f2〉Pet to the corresponding objects with levels

in Theorem 1.8, and reduce to local computation.

For our purpose, it is more convenient to normalize local additive characters

and local Haar measures as follows. Take the additive character ψ =
⊗

v ψv on A

given by

ψv(a)=





e2π ia if Fv = R,

e4π iRe(a) if Fv = C,

ψp(trF/Qp(a)) if Fv is a finite extension of Qp for some prime p,

where ψp(b) = e−2π i ι(b) and ι : Qp/Zp → Q/Z is the natural embedding. It

turns out that ψ is a character on F\A. For any place v of F , let dav denote

the Haar measure on Fv self-dual to ψv and let d×av denote the Haar measure

on F×
v defined by d×av = L(1, 1v) dav/|av|v. Let L be a separable quadratic

extension of Fv or a quaternion algebra over Fv, and q the reduced norm on L;

then (L , q) is a quadratic space over Fv. Fix the Haar measure dx on L to be the

one self-dual with respect to ψv and q, in the sense that ̂̂8(x) = 8(−x) for any

8 ∈ S(L), where 8̂(y) :=
∫

L 8(x)ψv(〈x, y〉) dx is the Fourier transform of 8 and

〈x, y〉 = q(x + y)− q(x)− q(y) is the bilinear form on L associated to q . Fix the

Haar measure d×x on L× to be the one defined by

d×x =





L(1, 1v)
2 dx
|q(x)|v

if L = F2
v ,

L(1, 1L)
dx

|q(x)|v
if L is a quadratic field extension over Fv,

L(1, 1v)
dx

|q(x)|2v
if L is a quaternion algebra.

Endow L×/F×
v with the quotient Haar measure. Let K be a quadratic field extension

of F and B a quaternion algebra over F . For local Haar measures on K ×
v /F×

v and
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B×
v /F×

v , their product Haar measures on K ×
A
/A× and B×

A
/A× satisfy

Vol(K ×\K ×
A
/A×)= 2L(1, η) and Vol(B×\B×

A
/A×)= 2.

Thus, these measures can be taken as the ones used in the above statement of

Waldspurger’s formula. From now on, we always use these measures and the

additive character ψ on A.

2A. Petersson pairing formula. Let σ be a cuspidal automorphic representation of

GL2(A) and σ̃ its contragredient; let N be the unipotent subgroup N =
{(

1 x
1

)∣∣x ∈ F
}

of GL2. View ψ as a character on N (F)\N (A) and the Haar measure da on A

as the one on N (A). For any φ ∈ σ , let Wφ ∈ W(σ, ψ) be the Whittaker function

associated to φ,

Wφ(g) :=
∫

N (F)\N (A)
φ(ng)ψ(n) dn.

Recall there is a GL2(Fv)-pairing on Wσv,ψv × Wσ̃v,ψ
−1
v

: for any local Whittaker

functions W1,v ∈ W(σv, ψv), W2,v ∈ W(̃σv, ψ
−1
v ),

〈W1,v,W2,v〉v =
∫

F×
v

W1,v

(
a

1

)
W2,v

(
a

1

)
d×a.

Define the Petersson pairing on σ × σ̃ by

〈φ1, φ2〉Pet :=
∫

Z(A)GL2(F)\ GL2(A)

φ1(g)φ2(g) dg, φ1 ∈ σ, φ2 ∈ σ̃ ,

where Z ∼= F× is the center of GL2.

Proposition 2.1. For any pure tensors φ1 ∈σ , φ2 ∈ σ̃ , with Wφi =
⊗

v Wi,v , i = 1, 2,

〈φ1, φ2〉Pet = 2L(1, σ, ad)L(2, 1F )
−1

∏

v

α(W1,v,W2,v), (2-2)

where, for any place v of F ,

α(W1,v,W2,v)= 1

L(1, σv, ad)L(1, 1v)L(2, 1v)−1
· 〈W1,v,W2,v〉.

Proof. We may assume that the cuspidal automorphic representation σ is also

unitary and identify σ̃ with σ . Let G = GL2 over F , P the parabolic subgroup of

upper triangular matrices in G, and let U =
∏
v Uv be a maximal compact subgroup

of G(A). For any place v of F , with respect to the Iwasawa decomposition of G(Fv),

g = a

(
1 x

1

) (
1

b

)
k ∈ G(Fv), a, b ∈ F×

v , x ∈ Fv, k ∈ Uv.

Choose the measure dk on Uv such that dg = |b| dx d×a d×b dk is the fixed local

Haar measure on G(Fv). For v nonarchimedean, Uv has volume L(2, 1v)
−1|δv|1/2
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with respect to dk and has volume L(2, 1v)
−1|δv|2 with respect to the fixed measure

on G(Fv); for v archimedean, Uv has volume L(2, 1v)
−1 with respect to dk.

By [Jacquet and Chen 2001, Lemma 2.3], for any Bruhat–Schwartz function

8v ∈ S(F2
v ) we have

∫

F×
v ×Uv

8([0, b]k)|b|2 d×b dk = 8̂v(0),

where 8̂v is the Fourier transformation of 8v and 8̂v(0) is independent of the

choice of the additive character ψv. For any 8 ∈ S(A2), let

F(s, g,8)= |det g|s
∫

A×
8([0, b]g)|b|2s d×b,

and define the Eisenstein series

E(s, g,8) :=
∑

γ∈P(F)\G(F)

F(s, γ g,8), Re(s)≫ 0.

By the Poisson summation formula,

E(s, g,8)= |det g|s
∫

F×\A×

( ∑

ξ∈F2\{0}
8(aξg)

)
|a|2s d×a

= |det g|s
∫

|a|≥1

( ∑

ξ∈F2\{0}
8(aξg)

)
|a|2s d×a

+ |det g|s−1

∫

|a|≥1

( ∑

ξ∈F2\{0}
8̂(g−1ξ t a)

)
|a|2−2s d×a

+ |det g|s−18̂(0)

∫

|a|≤1

|a|2s−2 d×a − |det g|s8(0)
∫

|a|≤1

|a|2s d×a.

It follows that E(s, g,8) has meromorphic continuation to the whole s-plane, has

possible poles only at s = 0 and 1, and its residue at s = 1 is equal to

Ress=1 E(s, g,8)= 8̂(0) lim
s→1

(s − 1)

∫

|a|≤1

|a|2s−2 d×a = 1
2
8̂(0)Ress=1 L(s, 1F ),

which is independent of g. By unfolding the Eisenstein series and Fourier expansions

of φi ,

Z(s, φ1, φ2,8) :=
∫

[Z\G]
φ1(g)φ2(g)E(s, g,8) dg

=
∫

N (A)\G(A)
|det g|s Wφ1

(g)Wφ2
(g)8([0, 1]g) dg
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has an Euler product if 8 ∈ S(A2) is a pure tensor. For each place v of F and

8v ∈ S(F2
v ), denote

Z(s,W1,v,W2,v,8v)=
∫

N (Fv)\G(Fv)
|det g|s W1,v(g)W2,v(g)8v([0, 1]g) dg,

which has meromorphic continuation to the whole s-plane; and moreover, for v ∤∞,

the fractional ideal of C[qs
v, q−s

v ] of all Z(s,W1,v,W2,v,8v)with W1,v ∈W(σv, ψv),

W2,v ∈ W(̃σv, ψ
−1
v ) and8v ∈ S(F2

v ) is generated by L(s, σv× σ̃v). It is also known

([Jacquet and Chen 2001, p. 51]) that, for each v,

Z(1,W1,v,W2,v,8v)

=
∫

F×
v

W1,v

(
a

1

)
W2,v

(
a

1

)
d×a ·

∫∫

F×
v ×Uv

8v([0, b]k)|b|2 d×b dk,

with the Haar measures chosen above. Let 8=
⊗

v 8v ∈ S(A2) be a pure tensor

such that 8̂(0) 6= 0 and take residue at s = 1 on the two sides of

Z(s, φ1, φ2,8)=
∏

v

Z(s,W1,v,W2,v,8v).

We have

〈φ1, φ2〉Pet Ress=1 E(s, g,8)= Ress=1 L(s, σ × σ̃ )8̂(0)
∏

v

〈W1,v,W2,v〉v
L(1, σv × σ̃v)

,

or
L(1, σ, ad)

〈φ1, φ2〉Pet

= 1

2

∏

v

L(1, σv, ad)L(1, 1Fv )

〈W1,v,W2,v〉v
.

The formula in the proposition follows. �

2B. U-level pairing.

Lemma 2.2. Let B be a quaternion algebra over a number field F and denote by
r , s, t integers such that B ⊗Q R ∼= Hr × M2(R)

s × M2(C)
t . For U ⊂ B̂× an open

compact subgroup, the volume of XU , defined after Definition 1.7, is given by

Vol(XU )= 2(4π2)−d#(A×
f /F×UZ ) ·

Vol(UZ )

Vol U
,

where UZ = U ∩ F̂× and the volumes Vol(UZ ) and Vol U are with respect to
Tamagawa measure, so that

Vol(GL2(Ov))= L(2, 1v)
−1 Vol(Ov)

4,

Vol(B×
v )= L(2, 1v)

−1 Vol(Ov)
4(qv − 1)−1 for Bv division.

In particular, if U contains Ô
× then — where hF is the class number of F —

Vol(XU )= 2(4π2)−d |DF |−1/2 · hF · Vol(U )−1.
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Proof (see also [Yuan et al. 2013] for the case s = 1 and t = 0). Let q be the reduced

norm on B, and B1 := {b ∈ B× | q(b) = 1}. For each place v of F , we have the

exact sequence

1 −→ B1
v −→ B×

v −→ q(B×
v )−→ 1,

and define the Haar measure dhv on B1
v so that the Haar measure on q(B×

v )—

obtained by the restriction of the Haar measure on F×
v — equals the quotient of

the Haar measure on B×
v by dhv. The product of these local measures give the

Tamagawa measure on B1
A

, so that Vol(B1\B1
A
) = 1. This follows from the fact

that the Tamagawa numbers of B1 and B× are 1 and 2, respectively. Assume that

B ⊗Q R = Hr × M2(R)
s × M2(C)

t . We assume that s + t > 0 first and let 6 ⊂ ∞
be the subset of infinite places of F where B splits. By the strong approximation

theorem, B1
A

= B1 B1
∞U 1, where U 1 = U ∩ B1

A f
is an open compact subgroup

of B1
A f

. It follows that

B1\B1
A = B1\B1 B1

∞U 1 = (Ŵ\B1
6)B

1,6
∞ U 1,

where Ŵ = B1 ∩ U 1, and we identify Ŵ\B1
6 with the fundamental domain of this

quotient.

For a real place v of F , B1
v

∼= SL2(R). By the Iwasawa decomposition, any

element is uniquely of the form

(
1 x

1

) (
y1/2

y−1/2

) (
cos θ sin θ

− sin θ cos θ

)
, x ∈ R, y ∈ R+, θ ∈ [0, 2π).

The measure on B1
v is dx dy dθ/2y2 with dx dy the usual Lebesgue measure, and θ

has volume 2π . For a complex place v of F , B1
v

∼= SL2(C). By the Iwasawa

decomposition, any element in SL2(C) is uniquely of form

(
1 z

1

) (
v1/2

v−1/2

)
u, z ∈ C, v ∈ R+, u ∈ SU2,

The measure on B1
v is dx dy dv du/v3 with z = x + yi , dx , dy, dv the usual

Lebesgue measure, and du has volume 8π2 (see [Vignéras 1980]). It follows that

Vol(Ŵ\B1
6)= 2−t(4π2)s+2tw−1

U · Vol

(
Ŵ\(Hs

2 × H
t
3),

dx dy

4πy2
∧ dx dy dv

π2v3

)
,

where wU = #{±1} ∩ U . But also, for any infinite place v /∈ 6, Vol(B1
v ) = 4π2.

Thus,

w−1
U · 2−t(4π2)d · Vol

(
Ŵ\(Hs

2 × H
t
3),

dx dy

4πy2
∧ dx dy dv

π2v3

)
· Vol(U 1)= 1,
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where d = [F : Q]. Let B×
+ ⊂ B× be the subgroup of elements whose norms are

positive at all real places. Now consider the natural map

(B1 ∩ U 1)\(Hs
2 × H

t
3)−→ (B×

+ ∩ U )\(Hs
2 × H

t
3),

whose degree is just

[(B×
+ ∩ U ) : (B1 ∩ u1)µU ] = [det(B×

+ ∩ U ) : µ2
U ] = [µ′

U : µ2
U ].

Here µU = F× ∩ U and µ′
U = F×

+ ∩ det U , subgroups of O
×
F with finite index. It

follows that

Vol(XU )= Vol((B×
+ ∩ U )\(Hs

2 × H
t
3)) · #(F×

+ \F̂×/ det U )

= 2twU

(4π2)d · Vol(U 1) · [µ′
U : µ2

U ]
· #(F×

+ \F̂×/ det U ).

Note that

#(F̂×/F×
+ det U )

#(F̂×\F×UZ )
= [F×UZ : F×

+ det U ] = [F× : F×
+ ] Vol(UZ )

Vol(det U )
[µ′

U : µU ].

Since [F× : F×
+ ]=2r+s , [µU :µ2

U ]=2r+s+t−1wU , and Vol U =Vol(U 1)Vol(det U ),
we have

Vol(XU )= 2(4π2)−d#(F̂×/F×UZ ) ·
Vol(UZ )

Vol(U )
.

Now assume s = t = 0. The Tamagawa number of B× is 2, Vol(B×
v /F×

v )= 4π2

for any v|∞, and the decomposition

B×
A

×\B×
A

= F×
∞\B×

∞ × B× F̂×\B̂×.

It follows that Vol(B× F̂×\B̂×)= 2(4π2)−d . Let γ1, . . . , γh be a complete set of

representatives in B̂× of the coset B×\B̂×/U . Consider the natural map

B×\B×γiU −→ B× F̂×\B× F̂×γiU,

whose degree is #F̂×/F×UZ . Now

Vol(B× F̂×\B× F̂×γiU )= Vol

(
γi (U/UZ )γ

−1
i

(B× ∩ γiUγ
−1
i )/µZ

)
= Vol(U )/Vol(UZ )

#(B× ∩ γiUγ
−1
i )/µZ

.

Thus,

2(4π2)−d = Vol(B× F̂×\B̂×)

= (#F̂×/F×UZ )
−1 · Vol(U )

Vol(UZ )
·

h∑

i=1

1

#(B× ∩ γiUγ
−1
i )/µZ

. �
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2C. c1-level periods. Now take f1 ∈ V (π, χ), f2 ∈ V (π̃, χ−1) to be nonzero test

vectors as defined before. Let σ = π JL and take φ1 ∈ σ and φ2 ∈ σ̃ to be normalized

new vectors. The c1-level periods P0
χ ( f1), P0

χ−1( f2) are related to the periods in

Waldspurger’s formula by the following lemma:

Lemma 2.3. Let b ⊂ O be a nonzero ideal of F and denote by PicK/F (Ob) the group
K̂ ×/K × F̂×

Ô
×
b . Then there is a relative class number formula,

L(b)(1, η) · ‖DK/F b2δ‖1/2 · 2−rK/F = # PicK/F (Ob) · Rb

#κb ·wb
,

where rK/F = rank O
×
K − rank O

×, wb = [O×
b,tor : O

×
tor], Rb is the quotient of the

regulator of O
×
b by that of O

×, and κb is the kernel of the natural morphism from
Pic(O) to Pic(Ob). Define a constant νb := 2−rK/F R−1

b · #κbwb. Then

Pχ ( f )= 2Lc1
(1, η)‖Dc2

1δ‖−1/2ν−1
c1

· P0
χ ( f ).

Proof. There are exact sequences

1 −→ κb −→ F̂×/F×
Ô

×
F −→ K̂ ×/K ×

Ô
×
b −→ K̂ ×/K × F̂×

Ô
×
b −→ 1

and

1 −→ O
×
K /O

×
b −→ Ô

×
K /̂O

×
b −→ K̂ ×/K ×

Ô
×
b −→ K̂ ×/K ×

Ô
×
K −→ 1.

It follows that

# PicK/F (Ob)= #K̂ ×/K × F̂×
Ô

×
b = hK

hF
· [̂O×

K : Ô
×
b ] · [O×

K : O
×
b ]−1 · #κb,

where hK = #K̂ ×/K ×
Ô

×
K is the ideal class number of K and similarly for hF . By

the class number formula for F and K ,

Ress=1 L(s, 1F )= 2rF +1 RF hF

wF
√

|DF |
, Ress=1 L(s, 1K )= 2rK +1 RK hK

wK
√

|DK |
,

where rF = rank O
×
F , DF is the discriminant of F , RF is the regulator of O

×, hF the

ideal class number of F , wF = #O
×
tor, and similar for rK , DK , RK , hF and wK .

Noting that |DK |/|DF | = |DK/Fδ|−1
A

and [̂O×
K : Ô

×
b ]−1 = Lb(1, η)|b|, we have that

L(1, η)= hK

hF
·2rK/F

RKw
−1
K

RFw
−1
F

·‖DK/Fδ‖−1/2

= # PicK/F (Ob)·Lb(1, η)·2rK/F ·[O×
K : O

×
b ] RKw

−1
K

RFw
−1
F

(#κb)
−1·‖DK/F b2δ‖−1/2.

The relative class number formula then follows. �
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Let N be the conductor of σ = π JL, let U ⊂ B̂× be an open compact subgroup,

and recall

〈 f1, f2〉U = 1
2
〈 f1, f2〉Pet Vol(XU ), 〈φ1, φ2〉U0(N ) = 1

2
〈φ1, φ2〉Pet Vol(XU0(N )).

Applying Proposition 2.1, Lemma 2.2, and Lemma 2.3, Waldspurger’s formula

(2-1) implies the following:

Proposition 2.4. Let U =
∏
v Uv ⊂ B̂× be an open compact subgroup with Ô

× ⊂ U.
Let γv = Vol(U0(N )v)−1 Vol(Uv) for all finite places v and γv = 1 for v|∞. Let
φ1 ∈ π JL, φ2 ∈ π̃ JL be any forms with 〈φ1, φ2〉U0(N ) 6= 0 and let α(W1,v,W2,v) be
the corresponding local constants defined in Proposition 2.1. Let f1 ∈ π , f2 ∈ π̃ be
any pure tensors with ( f1, f2)Pet 6= 0 and β( f1,v, f2,v) the corresponding constants
defined in (2-1). Then we have

(2Lc1
(1, η)|Dc2

1δ|
1/2
A
ν−1

c1
)2 ·

P0
χ ( f1)P0

χ−1( f2)

〈 f1, f2〉U

=
L
(

1
2
, π, χ

)

〈φ1, φ2〉U0(N )
·
∏

v

α(W1,v,W2,v)β( f1,v, f2,v)γv, (2-3)

where νc1
is defined as in Lemma 2.3.

It is now clear that the explicit Waldspurger formula will follow from the com-

putation of these local factors. In the next section, we will choose φ1, φ2 to be

normalized new vectors in π JL and π̃ JL, respectively, choose nonzero f1 ∈ V (π, χ),
f2 ∈ V (π̃, χ), and compute the related local factors in (2-3).

We obtain the explicit Gross–Zagier formula from the Yuan–Zhang–Zhang

formula in a similar way. Let F be a totally real field and X a Shimura curve over F
associated to an incoherent quaternion algebra B. Let A be an abelian variety

over F parametrized by X and let πA = Hom0
ξ (X, A) be the associated automorphic

representation of B× over the field M := End0(A) and ω its central character.

Let K be a totally imaginary quadratic extension over F and χ : K ×
A

→ L× a finite-

order Hecke character over a finite extension L of M such that ω ·χ |A× = 1 and,

for all places v of F , ǫ
(

1
2
, πA, χ

)
= χvηv(−1)ǫ(Bv). Fix an embedding KA → B

with K ×
A

→ B×, let P ∈ X K ×
(K ab), and define

Pχ ( f )=
∫

K ×
A
/K ×A×

f (P)σt ⊗M χ(t) dt ∈ A(K ab)Q ⊗M L ,

where we use the Haar measure so that the total volume of K ×
A
/K ×A× is 2L(1, η),

and η is the quadratic Hecke character on A× associated to the extension K/F . We

further assume for all nonarchimedean places v that the compact subgroup O
×
Kv
/O×

v

has a volume in Q×, and fix a local invariant pairing ( , )v on πA,v × πA∨,v with
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values in M . Define β( f1,v, f2,v) ∈ L for ( f1,v, f2,v)v 6= 0 by

β( f1,v, f2,v)= L(1, ηv)L(1, πv, ad)

L
(

1
2
, πv, χv

)
L(2, 1Fv )

∫

K ×
v /F×

v

(π(tv) f1,v, f2,v)v

( f1,v, f2,v)v
χ(tv) dtv ∈ L ,

where we take an embedding of L into C, and the above integral lies in L and does

not depend on the embedding.

Then, for any pure tensors f1 ∈ πA, f2 ∈ πA∨ with ( f1, f2) 6= 0, Yuan et al.

[2013] obtained the following celebrated formula as an identity in L ⊗Q C:

〈Pχ ( f1), Pχ−1( f2)〉K ,L

Vol(XU )−1( f1, f2)U
=

L ′(1
2
, πA, χ

)

L(1, πA, ad)L(2, 1F )−1

∏

v

β( f1,v, f2,v). (2-4)

Note that we use height over K whereas that used in [Yuan et al. 2013] is over F ,

the Haar measure to define Pχ ( f ) is different from theirs by 2L(1, η), and the

measure to define Vol(XU ) is different from theirs by 2. Similar to Proposition 2.4,

we have:

Proposition 2.5. Let U =
∏
v Uv ⊂ B̂× be a pure product open compact subgroup

such that Ô
× ⊂ U. Let γv = Vol(U0(N )v)Vol(Uv)

−1 for all finite places v and
γv = 1 for v|∞. Let φ ∈ π JL

A be any nonzero form and let α(Wv,Wv) be the
corresponding local constants defined in Proposition 2.1. Let f1 ∈ πA, f2 ∈ πA∨ be
any pure tensors with ( f1, f2) 6= 0 and β( f1,v, f2,v) the corresponding constants
defined in (2-4). Then we have

(2Lc1
(1, η)|Dc2

1δ|
1/2
A
ν−1

c1
)2 ·

〈P0
χ ( f1), P0

χ−1( f2)〉K ,L

( f1, f2)U

=
L ′(1

2
, πA, χ

)

〈φ, φ〉U0(N )

∏

v

αv(W1,v,W2,v)βv( f1,v, f2,v)γv. (2-5)

We will study the local factors appearing in formulas in Propositions 2.4 and 2.5

in the next section.

2D. Proofs of main results. In this subsection, we prove Theorems 1.5, 1.6, 1.8,

1.9 and 1.10, assuming local results proved in Section 3.

Proof of Theorem 1.8. We first give a proof of the explicit Waldspurger formula.

In (2-3), take nonzero f1 ∈ V (π, χ), f2 ∈ V (π̃, χ−1), and φ0
1 (resp. φ0

2) the

normalized new vector of π JL (resp. π̃ JL). Let Wφ0
i

:= Wi =
⊗

v Wi,v be the

corresponding Whittaker functions of φ0
i , i = 1, 2. Let R ⊂ B be the order, as

defined in Theorem 1.8, and U = R̂×. Denote

α := α(W1,v,W2,v) · |δ|1/2v , β := β( f1,v, f2,v) · |Dδ|−1/2
v .
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Then (2-3) becomes

4|Dc2
1δ

2|1/2
A
ν−2

c1

P0
χ ( f1)P0

χ−1( f2)

〈 f1, f2〉U

=
L(6)

(
1
2
, π, χ

)

〈φ0
1, φ

0
2〉U0(N )

L6
(

1
2
, π, χ

)
Lc1
(1, η)−2|c1|−1

A

∏

v

αvβvγv .

Let 6 be the set in Theorem 1.8, 6∞ = 6 ∩ ∞ and 6 f = 6 \6∞. Comparing

with the formula (2-3), the proof of the explicit formula in Theorem 1.8 is reduced

to showing that

L6 f

(
1
2
, π, χ

)
Lc1
(1, η)−2|c1|−1

A

∏

v∤∞
αvβvγv = 2#6D

and

L6∞

(
1
2
, π, χ

) ∏

v|∞
αvβvγv = C−1

∞ ,

which are given by Lemma 3.13 and Lemma 3.14. �

Proof of Theorem 1.10. Given the hypotheses of Theorem 1.10, identify π̃ with π ;

by Theorem 1.8,

L(6)
(

1
2
, π, χ

)
= 2−#6D+2(4π3)d

〈φ0, φ0〉U0(N )

ν2
c1

√
|DK |‖c2

1‖
|P0
χ ( f )|2

〈 f1, f2〉U
.

The formula in Theorem 1.10 follows by noting these facts:

(i) νc1
= 21−du1.

(ii) 〈φ0, φ0〉U0(N ) = (2π)−d(φ, φ)U0(N ), where φ is the Hilbert newform of π JL
A .

This is obtained by applying the formula in Proposition 2.1 to φ and φ0, and

the comparison of local Whittaker pairings at infinity; see the discussion before

Proposition 3.12.

(iii) Let g1, . . . , gn ∈ B̂× be a complete set of representatives of X = B×\B̂×/R̂×

and letwi = #(B×∩gi R̂×g−1
i /O×); then, as in the proof of Lemma 2.2, for U = R̂×,

〈 f, f̄ 〉U = 2−1 Vol(XU )〈 f, f̄ 〉Pet =
n∑

i=1

| f (gi )|2w−1
i

=
〈∑

f (gi )w
−1
i [gi ],

∑
f (gi )w

−1
i [gi ]

〉

= 〈 f, f 〉,

where we identify f with its image under the map V (π, χ)→ C[X ] and 〈 , 〉 is the

height pairing on C[X ]. �
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Proof of Theorem 1.5. To show the explicit Gross–Zagier formula in Theorem 1.5,

similarly to above, we apply the formula (2-5) in Proposition 2.5 to nonzero forms

f1 ∈ V (πA, χ), f2 ∈ V (πA∨, χ−1), φ0 the normalized new vector of π JL
A , and

U = R
× as in Theorem 1.5. By Lemma 3.13 and Lemma 3.14, we have

L ′ (6)(1
2
, π, χ

)
= 2−#6D+2(4π3)d

〈φ0, φ0〉U0(N )

ν2
c1

√
|DK |‖c2

1‖
〈P0
χ ( f1), P0

χ−1( f2)〉K ,L

( f1, f2)U
.

Then the explicit Gross–Zagier formula follows again by noting facts (i) and (ii)

above. �

Proof of Theorems 1.9 and 1.6. We now show that the variations of the explicit

Waldspurger formula in Theorem 1.9 follow from the Waldspurger formula (2-1)

and its explicit form in Theorem 1.8, and similarly for the variation of the explicit

Gross–Zagier formula in Theorem 1.6.

Let f ′
1 =

⊗
v f ′

1,v ∈ π , f ′
2 =

⊗
v f ′

2,v ∈ π̃ be forms different from the test vectors

f1 =
⊗

v f1,v ∈ V (π, χ), f2 =
⊗

v f2,v ∈ V (π̃, χ−1) at a finite set S of places of F ,

respectively, such that 〈 f ′
1,v, f ′

2,v〉v 6= 0 and β( f ′
1,v, f ′

2,v) 6= 0 for any v ∈ S. By the

Waldspurger formula (2-1), we have the formulas

P0
χ ( f1) · P0

χ−1( f2)

〈 f1, f2〉U
= L(π, χ)

∏

v

β( f1,v, f2,v),

P0
χ ( f ′

1) · P0
χ−1( f ′

2)

〈 f ′
1, f ′

2〉U
= L(π, χ)

∏

v

β( f ′
1,v, f ′

2,v),

where

L(π, χ)=
(

# PicK/F (Oc1
)

2L(1, η)

)2

· 2

Vol(XU )
·

L
(

1
2
, π, χ

)

2L(1, π, ad)L(2, 1F )−1
.

It follows that

P0
χ ( f1) · P0

χ−1( f2)

〈 f1, f2〉U
=

P0
χ ( f ′

1) · P0
χ−1( f ′

2)

〈 f ′
1, f ′

2〉U
·
∏

v∈S

β( f1,v, f2,v)

β( f ′
1,v, f ′

2,v)
.

The variation formula follows immediately. �

3. Local theory

Notations. In this section, we denote by F a local field of characteristic zero, i.e.,

a finite field extension of Qv for some place v of Q. Denote by | · | the absolute

value of F such that d(ax)= |a| dx for a Haar measure dx on F . Take an element

δ ∈ F× such that δO is the different of F over Qv for v finite and δ= 1 for v infinite.

For F nonarchimedean, denote by O the ring of integers in F , ̟ a uniformizer, p its
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maximal ideal, and q the cardinality of its residue field. Let v : F → Z∪{∞} be the

additive valuation on F such that v(̟)= 1. For µ a (continuous) character on F×,

denote by n(µ) the conductor of µ, that is, the minimal nonnegative integer n such

that µ is trivial on (1 +̟ n
O)∩ O

×. We will always use the additive character ψ

on F and the Haar measure da on F as in Section 2, so that da is self-dual to ψ .

Denote by K a separable quadratic extension of F and, for any t ∈ K , write

t 7→ t̄ for the nontrivial automorphism of K over F . We use similar notations as

those for F with a subscript K . If F is nonarchimedean and K is nonsplit, denote

by e the ramification index of K/F . Denote by trK/F and NK/F the trace and

norm maps from K to F , and let D ∈ O be an element such that DO is the relative

discriminant of K over F . For an integer c ≥ 0, denote by Oc the order O +̟ c
OK

in K . Let η : F× → {±1} be the character associated to the extension K over F .

Let B be a quaternion algebra over F . Let ǫ(B)=+1 and δ(B)= 0 if B ∼= M2(F) is

split, and ǫ(B)=−1 and δ(B)= 1 if B is division. Denote by G the algebraic group

B× over F , and we also write G for G(F). We take the Haar measure on F×, K ×

and K ×/F× as in Section 2. In particular, Vol(O×, d×a)= Vol(O, da)= |δ|1/2 and

Vol(K ×/F×)=





2 if F = R and K = C,

|δ|1/2 if K is the unramified extension field of F,

2|Dδ|1/2 if K/F is ramified.

For F nonarchimedean and n a nonnegative integer, define the following subgroups

of GL2(O):

U0(n) :=
{(

a b
c d

)
∈GL2(O)

∣∣∣∣c ∈p
n

}
, U1(n)=

{(
a b
c d

)
∈U0(n)

∣∣∣∣d ∈1+̟ n
O

}
.

Let π be an irreducible admissible representation of G, which is always assumed

to be generic if G ∼= GL2. Denote by ω the central character of π and by σ = π JL

the Jacquet–Langlands correspondence of π to GL2(F). Let χ be a character on

K × such that

χ |F× ·ω = 1.

For F nonarchimedean, let n be the conductor of σ , i.e., the minimal nonnegative

integer such that the invariant subspace σU1(n) is nonzero, and let c be the minimal

nonnegative integer such that χ is trivial on (1 +̟ c
OK )∩ O

×
K .

Denote by

L(s, π, χ) := L(s, σ ×πχ ) and ǫ(s, π, χ) := ǫ(s, σ ×πχ , ψ)

the Rankin–Selberg L-factor and ǫ-factor of σ ×πχ , where πχ is the representation

on GL2(F) constructed from χ via Weil representation. Denote by πK the base
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change lifting of σ to GL2(K ); then we have

L(s, π, χ)= L(s, πK ⊗χ), ǫ(s, π, χ)= η(−1)ǫ(s, πK ⊗χ,ψK )

Note that ǫ(π, χ) := ǫ
(

1
2
, π, χ

)
equals ±1 and is independent of the choice of ψ .

In the following, we denote by L(s, π, ad) := L(s, σ, ad) the adjoint L-factor of σ .

3A. Local toric integrals. Let P(π, χ) denote the functional space

P(π, χ) := HomK ×(π, χ−1).

By a theorem of Tunnell [1983] and Saito [1993], the space P(π, χ) has dimension

at most one, and equals one if and only if

ǫ(π, χ)= χη(−1)ǫ(B).

Lemma 3.1. Let the pair (π, χ) be as above with ǫ(π, χ)= χη(−1)ǫ(B).

(1) If K is split or π is a principal series, then B is split.

(2) If K/F = C/R, σ is the discrete series of weight k, and χ(z)=|z|s
C
(z/

√
|z|C)m

with s ∈ C and m ≡ k (mod 2), then B is split if and only if m ≥ k.

Furthermore, assume F is nonarchimedean. Then:

(3) If K/F is nonsplit and σ is the special representation sp(2)⊗ µ with µ a
character of F×, then B is division if and only ifµKχ =1 withµK :=µ◦NK/F .

(4) If K/F is inert and c = 0, then B is split if and only if n is even.

(5) If K is nonsplit with c ≥ n, then B is split.

Proof. See [Tunnell 1983, Propositions 1.6, 1.7] for (1), (3), and [Gross 1988,

Propositions 6.5, 6.3(2)] for (2), (4). We now give a proof of (5). If π is a principal

series then, by (1), B is split. If σ is a supercuspidal representation then, by

[Tunnell 1983, Lemma 3.1], B is split if n(χ)≥ ne/2 + (2 − e). It is then easy to

check that, if c ≥ n, this condition always holds. Finally, assume σ = sp(2)⊗µ

with µ a character of F×. By (2), B is division if and only if µKχ = 1. If

µ is unramified, then n = 1 and χ is ramified, which implies that B must be

split. Assume µ is ramified; then n = 2n(µ) and, by [Tunnell 1983, Lemma 1.8],

f n(µK )= n(µ)+n(µη)−n(η), where f is the residue degree of K/F . If K/F is

unramified and µKχ = 1, then c = n(µK )= n(µ)= n/2, a contradiction. If K/F
is ramified and µKχ = 1, then 2c −1 ≤ n(µK ) < 2n(µ)= n, a contradiction again.

Hence, if c ≥ n, B is always split. �

Assume that the pair (π, χ) is essentially unitary, in the sense that there exists a

character µ= | · |s on F× with s ∈ C such that both π⊗µ and χ⊗µ−1
K are unitary.

In particular, if π is a local component of some global cuspidal representation,

then (π, χ) is essentially unitary. Under such an assumption, we study the space
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P(π, χ) via the toric integral
∫

F×\K ×
〈π(t) f1, f2〉χ(t) dt,

where f1 ∈ π , f2 ∈ π̃ , and 〈 · , · 〉 is any invariant pairing on π × π̃ . The following

basic properties for this toric integral are established in [Waldspurger 1985]:

• It is absolutely convergent for any f1 ∈ π and f2 ∈ π̃ .

• P(π, χ) 6= 0 if and only if P(π, χ)⊗ P(π̃, χ−1) 6= 0, and in this case the

above integral defines a generator of P(π, χ)⊗ P(π̃, χ−1).

• For f1 ∈ π , f2 ∈ π̃ such that 〈 f1, f2〉 6= 0, define the toric integral

β( f1, f2) := L(1, η)L(1, π, ad)

L(2, 1F )L
(

1
2
, π, χ

)
∫

F×\K ×

〈π(t) f1, f2〉
〈 f1, f2〉

χ(t) dt.

Then β( f1, f2)= 1 in the case that B = M2(F), K is an unramified extension

of F , both π and χ are unramified, dt is normalized such that Vol(O×
K /O

×)= 1,

and f1, f2 are spherical.

For any pair (π, χ), β is invariant if we replace (π, χ) by (π ⊗µ, χ ⊗µ−1
K ) for

any character µ of F×. Therefore, we may assume π and χ are both unitary from

now on and identify (π̃, χ−1) with (π, χ). Let ( , ) : π ×π → C be the Hermitian

pairing defined by ( f1, f2)= 〈 f1, f2〉.
Let β( f ) := β( f, f̄ ). Then the functional space P(π, χ) is nontrivial if and only

if β is nontrivial. Assume P(π, χ) is nonzero in the following. A nonzero vector

f of π is called a test vector for P(π, χ) if ℓ( f ) 6= 0 for some (thus any) nonzero

ℓ ∈ P(π, χ) or, equivalently, if β( f ) is nonvanishing.

The notion of new vectors in an irreducible smooth admissible representation

of GL2(F) (see [Casselman 1973a] for F nonarchimedean and [Popa 2008] for

F archimedean) can be viewed as a special case of test vectors. Let π be an

irreducible admissible representation of GL2(F). Recall the definition of new
vector line in π , as follows. Denote by T = K × the diagonal torus in GL2(F).
Write T = Z T1 with T1 =

{(∗
1

)}
.

• If F is nonarchimedean, then the new vector line is the invariant subspace πU1(n).

• If F is archimedean, take U to be O2(R) if F = R and U2 if F = C. The new

vector line consists of vectors f ∈ π which are invariant under T1 ∩ U with

weight minimal.

It is known that new vectors satisfy the following properties:

(1) For any s ∈ C, denote by ωs the character on T such that ωs |Z = ω and

ωs |T1
= | · |s−1/2. Then any nonzero f in the new vector line is a test vector

for P(π, ω−1
s ).
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(2) If W(π, ψ) is the Whittaker model of π with respect to ψ , then there is a

vector W0 in the new vector line, called the normalized new vector of π , such

that the local zeta integral |δ|s−1/2 Z(s,W0) equals L(s, π).

3B. Local orders of quaternions. Assume F is nonarchimedean in this subsection.

First, in the case that the quaternion algebra B is split, given nonnegative integers

m and k we want to classify all the K × conjugacy classes of Eichler orders R in B
with discriminant m such that R ∩ K = Ok . For this, identify B with the F-algebra

EndF (K ) which contains K as an F-subalgebra by multiplication. Recall that an

Eichler order in B is the intersection of two maximal orders in B. Then, any Eichler

order must be of the form R(L1, L2) := R(L1)∩ R(L2), where L i , i = 1, 2, are

two O-lattices in K and R(L i ) := EndO(L i ). Denote by d(L1, L2) the discriminant

of R(L1, L2). For any maximal order R(L), there exists a unique integer j ≥ 0

such that L = tO j for some t ∈ K ×. In fact, O j = {x ∈ K | x L ⊂ L}. Thus, any

K ×-conjugacy class of Eichler order contains an order of the form R(O j , tO j ′) with

0 ≤ j ′ ≤ j and t ∈ K × and the conjugacy class is exactly determined by the integers

j ′ ≤ j and the class of t ∈ K × modulo F×
O

×
j ′ . The question is reduced to solving

the equation with variables k ′ and [t],

d(Ok, tOk′)= m, 0 ≤ k ′ ≤ k, [t] ∈ K ×/F×
O

×
k′ .

If (k ′, [t]) is a solution, then so is
(
k ′,

[
t̄
])

. A complete representative system (k ′, t)
with t ∈ K × of solutions to the above equation corresponds to a complete system

R(Ok, tOk′) for K ×-conjugacy classes of Eichler orders R with discriminant m and

R ∩ K = Ok .

Lemma 3.2. Let m, k be nonnegative integers. Let τ ∈ K × be such that OK = O[τ ],
if K is split then τ 2 − τ = 0, and if K is nonsplit then v(τ) = (e − 1)/2. Let
d := k + k ′ − m. Then a complete representative system of (k ′, t) is the following:

• For 0 ≤ m ≤ 2k, k ′ ∈ [|m − k|, k] with d even, so d ∈ 2 · [0, k ′], and

t = 1 +̟ d/2τu, u ∈ (O/̟ k′−d/2
O)×.

In the case k ′ = k − m ≥ 0, the unique class of t is also represented by 1.

• For split K ∼= F2 and k +1 ≤ m, k ′ ∈ [0,min(m −k −1, k)], so d ∈ [k −m, 0),

and

t = (̟±du, 1), u ∈ (O/̟ k′
O)×.

• For nonsplit K and k +1 ≤ m ≤ 2k + e −1, k ′ = m − k − e +1, i.e., d = 1− e,

and

t =̟ x + τ, x ∈ O/̟ k′+e−2
O.
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Proof. The discriminant d(L1, L2) of the Eichler order R(L1, L2) can be computed

as follows. Let ei , e′
i be an O-basis of L i , i = 1, 2, and let A = (ai j ) ∈ GL2(F) so

that A
( e1

e′
1

)
=

( e2

e′
2

)
. Let v : F → Z ∪ {∞} be the additive valuation on F such that

v(̟) = 1. Let α = mini, j v(ai j ) and β = v(det A). Then d(L1, L2) = |2α − β|.
Now solve the equation

d(Ok, tOk′)= m, k ′ ∈ [0, k], t ∈ K ×/F×
O

×
k′ . �

Define

c1 =
{

0 if K is nonsplit and c < n,

c otherwise.

Lemma 3.3. There exists an order R of discriminant n and R ∩ K = Oc1
satisfying

the condition that, if nc1 6= 0, then R is the intersection of two maximal orders R′

and R′′ of B such that R′∩ K = Oc1
, R′′∩ K = Omax{0,c1−n}. Such an order is unique

up to K ×-conjugacy unless 0< c1 < n. In the case 0< c1 < n, there are exactly two
K ×-conjugacy classes which are conjugate to each other by a normalizer of K ×.

Proof. If nc1 = 0, this is proved in [Gross 1988, Propositions 3.2, 3.4]. Now assume

that nc1 6= 0; then B is split and one can apply Lemma 3.2. �

Let R be an O-order of B of discriminant n such that R ∩ K = Oc1
. Such an order

R is called admissible for (π, χ) if the following conditions are satisfied:

(1) If nc1 6= 0 (thus B is split), then R is the intersection of two maximal orders

R′ and R′′ of B such that R′ ∩ K = Oc1
and R′′ ∩ K = Omax{0,c1−n}.

(2) If 0 < c1 < n, fix an F-algebra isomorphism K ∼= F2 and identify B with

EndF (K ). The two K ×-conjugacy classes of O-orders in B satisfying the

above condition (1) contain, respectively, the orders Ri = R′
i ∩ R′′

i , i = 1, 2 with

R′
1= R′

2 =EndO(Oc), R′′
1 =EndO((̟

n−c, 1)OK ) and R′′
2 =EndO((1,̟

n−c)OK ).

Let χ1(a)= χ(a, 1) and χ2(b)= χ(1, b). Then R is K ×-conjugate to some

Ri such that the conductor of χi is c1.

Lemma 3.4. If K is nonsplit, n > 0 and c = 0, then there is a unique admissible
order R for (π, χ).

Proof. Let OB be a maximal order containing OK ; then, by [Gross 1988, (3.3)],

any admissible order for (π, χ) is K ×-conjugate to R := OK + I OB , where I is a

nonzero ideal of OK such that n = δ(B)+ lengthO(OK /I ). If B is nonsplit, then

OB is invariant under B×-conjugations and R is unique. Assume B is split. As

O
×
K ⊂O

×
B , OB is invariant under F×

O
×
K -conjugations. In particular, if K is unramified,

then K × = F×
O

×
K and R is unique. Consider the case that K is ramified. Then

K × = F×
O

×
K ∪̟K F×

O
×
K and it suffices to show that ̟K normalizes R. For this,

embed K into B = M2(F) by ̟K 7→
(

tr̟K
−N̟K

1
0

)
and take OB = M2(O). Then

R = OK +̟ n
K M2(O). Note that R0(1)= OK +̟K M2(O) with R0(1)=

(
O

p

O

O

)
the
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Iwahori order in M2(F). Denote by m the maximal integer such that 2m ≤ n. Then

R = OK +̟m−1̟K R0(1) if n is even, and R = OK +̟m R0(1) if n is odd. As

̟K normalizes R0(1), it also normalizes R and R is unique. �

In the following, take an admissible O-order R of B. Let U = R× and define

γ := Vol(U )

Vol(U0(n))
,

where the Haar measure is taken, so that Vol(GL2(O)) = L(2, 1F )
−1|δ|2 and

Vol(O×
B )= L(2, 1F )

−1(q − 1)−1|δ|2 if B is division.

Lemma 3.5. If either R is not maximal or B is nonsplit, then

γ = L(1, 1F )(1 − e(R)q−1)

where e(R) is the Eichler symbol of R, defined as follows: Let κ(R) = R/rad(R)
with rad(R) the Jacobson radical of R and let κ be the residue field of F. Then

e(R)=





1 if κ(R)= κ2,

−1 if κ(R) is a quadratic field extension of κ,

0 if κ(R)= κ.

Proof. Let R0 be a maximal order of B containing R. Then we have the formula

(for example, see [Yu 2013])

[R×
0 : R×]

[R0 : R] = |κ(R0)
×|/|κ(R×)|

|κ(R0)|/κ(R)|
.

If B is split and R is not maximal, then

[R0 : R] = qn,
|κ(R0)

×|
|κ(R0)|

= (1 − q−2)(1 − q−1),

|κ(R)|
|κ(R)×| = (1 − q−1)−1(1 − e(R)q)−1,

while, if B is division, then

[R0 : R] = qn−1,
|κ(R0)

×|
|κ(R0)|

= 1−q−2,
|κ(R)|
|κ(R)×| = (1−q−1)−1(1−e(R)q)−1.

Summing up,

[R×
0 : R×] = (q − 1)−δ(B)qn(1 − q−2)(1 − e(R)q−1)−1,

where δ(B) equals 0 if B is split and 1 if B is ramified. Thus
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γ−1 = Vol(U0(n))

Vol(U )
= Vol(GL2(O))

Vol(R×
0 )

[R×
0 : U ]

[GL2(O) : U0(n)]

= L(2, 1)−1

(q − 1)−δ(B)L(2, 1)−1

(q − 1)−δ(B)qn(1 − q−2)(1 − e(R)q−1)−1

qn(1 − q−2)(1 − q−1)−1

= L(1, 1F )
−1(1 − e(R)q−1)−1. �

3C. Test vector spaces.

Definition 3.6. Define V (π, χ)⊂ π to be the subspace of vectors f satisfying the

following conditions:

• For nonarchimedean F , K split or c ≥ n, let U ⊂ G be the compact subgroup

defined before Lemma 3.5, then f is an ω-eigenform under U . Here, write

U = (U ∩ Z)U ′ so that U ′ = U if cn = 0 and U ′ ∼= U1(n) otherwise, and view

ω as a character on U ∩ Z that extends to U by making it trivial on U ′.

• For nonarchimedean F , K nonsplit and c < n, f is a χ−1-eigenform under

the action of K ×.

• For archimedean F , let U be a maximal compact subgroup of G such that

U ∩ K × is the maximal compact subgroup of K ×; then f is a χ−1-eigenform

under U ∩ K × with weight minimal.

Proposition 3.7. The dimension of V (π, χ) is one, and any nonzero vector in
V (π, χ) is a test vector for P(π, χ).

Proof. If F is nonarchimedean, the claim that dim V (π, χ) = 1 follows from

local newform theory [Casselman 1973a]. Assume F is archimedean. If K is

nonsplit, then V (π, χ) is the χ−1-eigenline of K ×. If K is split, then without loss

of generality embed K × into G ∼= GL2(F) as the diagonal matrices and decompose

K × = F×K 1 so that the image of K 1 in G is
(∗

1

)
. Then V (π, χ) is the new vector

line for π ⊗χ1 with χ1 := χ |K 1 .

We shall prove any nonzero vector in V (π, χ) is a test vector in the next subsec-

tion by computing the toric integral β. �

Proposition 3.8. Assume K/F is a quadratic extension of nonarchimedean fields
with n > 0 and c = 0. Then V (π, χ) ⊆ π R×

and dimπ R× = dimπO
×
K ≤ 2. The

dimension of π R×
is one precisely when K/F is inert or K/F is ramified and

ǫ(π, χ1) 6= ǫ(π, χ2), where χi , i = 1, 2, are unramified characters of K × with
χi |F× ·ω = 1.

The proof of this proposition is in [Gross 1988; Gross and Prasad 1991] except

for the case that π is a supercuspidal representation on G = GL2(F). For this

case, the proof in [Gross 1988, §7] is based on a character formula for odd residue

characteristic. We next prove this case with arbitrary residue characteristic.
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Let R0 = M2(O) if e = 1 and the Iwahori order
(

O

p

O

O

)
if e = 2. Fix an embedding

of K into M2(F) such that R0 ∩ K = OK . Consider the filtration of open compact

subgroups of G and K ×

K(r) := (1 +̟ r R0)∩ GL2(O), E(r) := K(r)∩ K ×, r ≥ 0.

Denote by m the minimal integer such that 2m + 1 ≥ n. The proof is based on:

Proposition 3.9. For any integer r ≥ m, πK(r) = πE(r).

Proof. Firstly, note that it is enough to prove Proposition 3.9 for the case π is

minimal, that is, π has minimal conductor among its twists. In fact, assume that

π is not minimal. Denote by n0 the minimal conductor of π . Take a character µ

so that π0 := π ⊗µ has conductor n0. Then, by [Tunnell 1978, Proposition 3.4],

n0 ≤ max(n, 2n(µ)) with equality if π is minimal or n 6= 2n(µ). In particular,

n = 2m with n(µ) = m. Hence, for any r ≥ m, πK(r) = π
K(r)
0 and πE(r) = π

E(r)
0 .

Since r ≥ n0/2, one can apply the proposition to the minimal representation π0.

Assume π is minimal in the following. Since K(r) ⊃ E(r), πK(r) ⊂ πE(r).

It remains to prove that πK(r) and πE(r) have the same dimension. Denote by πD

the representation on D×, where D is the division quaternion algebra over F , so

that the Jacquet–Langlands lifting of πD to G is π . Then πD has conductor n,

that is, π1+̟ n−1
D OD

D = πD and π1+̟ n−2
D OD

D = 0, where ̟D is a uniformizer of D.

Moreover, by [Carayol 1984, Proposition 6.5],

dimπD =
{

2qm−1 if n is even,

qm + qm−1 if n is odd.

For any r ≥ m, E(r) ⊂ (1 +̟ n−1
D OD) ∩ O

×
K . Therefore, by the Tunnell–Saito

theorem, if we denote by X(r) the set of all the characters µ on K × such that

µ|F×ω = 1 and µ|E(r) = 1, then

dimπE(r)+dimπD =
∑

µ∈X(r)

dimπµ+
∑

µ

dimπ
µ

D =
∑

µ∈X(r)

(dimπµ+dimπ
µ

D)=#X(r)

and, on the other hand, the lemma below implies that

dimπK(r) + dimπD = #X(r),

and then the equality dimπE(r) = dimπK(r) holds. �

Lemma 3.10. Let π be minimal. For any integer r ≥ m, we have the dimension
formula

dimπK(r) =





qr + qr−1 − 2qm−1 if n is even and e = 1,

qr + qr−1 − (qm−1 + qm−2) if n is odd and e = 1,

2qr − (qm + qm−1) if n is odd and e = 2,

2qr − 2qm−1 if n is even and e = 2.
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Proof. For r = m and e = 1, this formula occurs in [Casselman 1973b, Theorem 3].

We now use the method in [Casselman 1973b] to prove the dimension formula for

the case n is even and e = 1, while the other cases are similar. Firstly, recall some

basics about the Kirillov model. Let ψ be an unramified additive character of F .

Associated to ψ , we can realize π on the space C∞
c (F

×) of Schwartz functions on

the multiplicative group. For any f ∈ C∞
c (F

×) and any character µ of O
×, define

fk(µ)=
∫

O×
f (u̟ k)µ(u) du,

where we choose the Haar measure on O
× so that the total measure is 1. Define

further the formal power series

f̂ (µ, t)=
∑

k∈Z

fk(µ)t
k,

which is actually a Laurent polynomial in t as f has compact support on F×.

Because f is locally constant, this vanishes identically for all but a finite number

of µ. By Fourier duality for F×, knowing f (µ, t) for all µ is equivalent to

knowing f . For each µ, there is a formal power series C(µ, t) such that, for all

f ∈ C∞
c (F

×),

(π(w) f )̂(µ, t)= C(µ, t) f̂ (µ−1ω−1
0 , t−1z−1

0 ),

C(µ, t)= C0(µ)t
nµ, w =

(
0 1

−1 0

)
,

where ω0 = ω|O× , z0 = ω(̟) and nµ is an integer, nµ ≤ −2. Moreover, if µ= 1,

then −n1 = n. For any character µ of O
×,

−nµ =
{

n if n(µ)≤ m,

2n(µ) if n(µ) > m.

In fact, if we take any character� on F× such that�|O× =µ, denote π ′ =π⊗� and

C ′( · , · ) the monomial that occurs in the above functional equation, then for any char-

acter ν on O
×, C ′(ν, t)=C(νµ,�(̟)t). Therefore, −nµ=n(π ′)=max(n, 2n(µ)).

On the other hand, by [Casselman 1973b, Corollary to Lemma 2], for any r ≥ m,

the subspace πK(r) is isomorphic to the space of all functions f̂ (µ, t) such that

(1) f̂ (µ, t)= 0 unless n(µ)≤ r ;

(2) for each µ, fk(µ)= 0 unless −r ≤ k ≤ nµ + r .

Summing up, for a given µ with conductor n(µ)≤ r , the dimension of the space

consisting of those f̂ (µ, t) with f ∈ πK(r) is
{

2(r − m)+ 1 if n(µ)≤ m,

2(r − n(µ))+ 1 if n(µ) > m.



Explicit Gross–Zagier and Waldspurger formulae 2563

Therefore,

dimπK(r) = (qm −qm−1)(2(r −m)+1)+
∑

m<k≤r

(qk −2qk−1 +qk−2)(2(r −k)+1)

= qr +qr−1 −2qm−1. �

Proof of Proposition 3.8. Note that R× = O
×
K K(m) unless K is ramified with n even

and, once this equation holds, Proposition 3.8 follows directly from Proposition 3.9.

So consider the case K is ramified with n even. Here, R× = O
×
K K

′(m) with

K
′(m)=1+̟ 2m−1

K R0. We want to show πK
′(m)=πE

′(m) with E
′(m)=K

′(m)∩K ×,

and Proposition 3.8 then holds. By [Tunnell 1983, Proposition 3.5], π is not minimal.

Take a character µ such that π0 =π⊗µ has minimal conductor n0. Then n(µ)= m.

Apply Proposition 3.9:

πK
′(m) = π

K
′(m)

0 ⊃ π
K(m−1)
0 = π

E(m−1)
0 .

We claim that π
E(m−1)
0 = π

E
′(m)

0 . If so, π
E(m−1)
0 = πE

′(m) and then πK
′(m) = πE

′(m).

To prove this, note that E
′(m)⊂ E(m −1)⊂ 1+̟ n0−1

D OD . Using the Tunnell–Saito

theorem,

dimπ
E(m−1)
0 + dimπ0,D = #X(m − 1), dimπ

E
′(m)

0 + dimπ0,D = #X
′(m),

where the set X(m − 1) consists of characters � of K × such that �|F× ·ωπ0
= 1

with �|E(m−1) = 1, and the set X
′(m) is defined similarly. As they are nonempty,

#X(m − 1)= #K ×/F×
E(m − 1)= #K ×/F×

E
′(m)= #X

′(m).

Thus, π
E(m−1)
0 = π

E
′(m)

0 and the proof is complete. �

3D. Local computations. Let W(σ, ψ) be the Whittaker model of σ with respect

to ψ and recall that we have an invariant Hermitian form on W(σ, ψ) defined by

(W1,W2) :=
∫

F×
W1

[(
a

1

)]
W2

[(
a

1

)]
d×a.

For any W ∈ σ , denote

α(W )= (W,W )

L(1, σ, ad)L(1, 1F )L(2, 1F )−1
.

Proposition 3.11. Denote by W0 the normalized new vector of σ . If F is non-
archimedean, then

α(W0)|δ|1/2 =
{

1 if σ is unramified,

L(2, 1F )L(1, 1F )
−1L(1, σ, ad)−δσ otherwise,
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where δσ ∈ {0, 1} and equals 0 precisely when σ is a subrepresentation of the
induced representation Ind(µ1, µ2) with at least one µi unramified. If F = R and
σ is the discrete series Dµ(k), then α(W0)= 2−k .

The proposition follows from the explicit form of W0. If F is nonarchimedean,

W0 is the one in the new vector line such that

W0

[(
δ−1

1

)]
= |δ|−1/2

and we have the following list (see [Schmidt 2002, p. 23]):

(1) If σ = π(µ1, µ2) is a principal series, then

W0

[(
y

1

)]
=





|y|1/2
∑

k+l=v(yδ)
k,l≥0

µ1(̟)
kµ2(̟)

l1O(δy) if n(µ1)= n(µ2)= 0,

|y|1/2µ1(δy)1O(δy) if n(µ1)= 0, n(µ2) > 0,

|δ|−1/21O×(δy) if n(µ1) > 0, n(µ2) > 0.

(2) If σ = sp(2)⊗µ is a special representation, then

W0

[(
y

1

)]
=

{|δ|−1/2µ(δy)|δy|1O(δy) if n(µ)= 0,

|δ|−1/21O×(δy) if n(µ) > 0.

(3) If σ is supercuspidal, then

W0

[(
y

1

)]
= |δ|−1/21O×(δy).

If F = R and σ is the discrete series Dµ(k), then

W0

[(
y

1

)]
= |y|k/2e−2π |y|

and, in general, for archimedean cases it is expressed by the Bessel function [Popa

2008]. For F = R and σ a unitary discrete series of weight k, let W ∈ W(σ, ψ) be

the vector satisfying

W

[(
y

1

)]
= |y|k/2e−2π |y|1R

×
+
(y).

Then W can be realized as a local component of a Hilbert newform and

(W0,W0)= 2(W,W ), Z(s,W )= 1
2

L(s, σ ).
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Proposition 3.12. If F is nonarchimedean, let f be a nonzero vector in the one-
dimensional space V (π, χ); then β( f )|Dδ|−1/2 equals:





1 if n = c = 0,

L(1, η)2|̟ c| if n = 0 and c > 0,
L(1, 1F )

L(2, 1F )
L(1, π, ad)δπ if n > 0, c = 0 and K is split,

L(1, 1F )

L(2, 1F )
L(1, η)2|̟ c| L(1, π, ad)δπ

L
(

1
2
, π, χ

) if nc > 0, either K is split or c ≥ n,

e(1 − q−e)
L(1, π, ad)

L
(

1
2
, π, χ

) if n > c and K is nonsplit,

which is independent of the choice of f ∈ V (π, χ).

The proof of Proposition 3.12 is reduced to computing the integral

β0 =
∫

F×\K ×

(π(t) f, f )

( f, f )
χ(t) dt,

where f is any nonzero vector in V (π, χ).
In the case that n > c and K is nonsplit, f is a χ−1-eigenform and it is easy to

see that β0 = Vol(F×\K ×).
From now on assume n ≤ c or K is split. Then B = M2(F) by Lemma 3.1(5).

Recall that the space V (π, χ) depends on a choice of an admissible order R
for (π, χ). Let f be a test vector in V (π, χ) defined by R. For any t ∈ K ×,

f ′ :=π(t) f is a test vector defined by the admissible order R′ = t Rt−1. It is easy to

check that β( f ′)= β( f ). Thus, for a K ×-conjugacy class of admissible orders, we

can pick a particular order to compute β0. There is a unique K ×-conjugacy class of

admissible orders except for the exceptional case 0< c1 < n and n(χ1)= n(χ2)= c.

In this case, there are exactly two K ×-conjugacy classes of admissible orders, which

are conjugate to each other by a normalizer of K × in B×.

Any admissible order (in the case n ≤ c or K is split) is an Eichler order of

discriminant n, i.e., conjugate to R0(n) :=
(

O

pn
O

O

)
. Choose an embedding of K into

M2(F) as follows, so that R0(n) is an admissible order for (π, χ):

(1) If K is split, fix an F-algebra isomorphism K ∼= F2. If c ≥ n or n(χ1) = c,

embed K into M2(F) by

ι1 : (a, b) 7−→ γ−1
c

(
a

b

)
γc, γc =

(
1 ̟−c

1

)
.

If n(χ1) < c < n, embed K into M2(F) by

ι2 : (a, b) 7−→ γ−1
c

(
b

a

)
γc.
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Note that, for any t ∈ K ×, ι1(t)= j ι2(t) j−1 with j = γ−1
c wγc and w =

(
0
1

1
0

)
.

(2) If K is a field, take τ ∈ OK such that OK = O[τ ] and, if K/F is ramified, then

τ is a uniformizer. Embed K into M2(F) by

a + bτ 7−→ γ−1
c

(
a + b tr τ bNτ

−b a

)
γc, where γc =

(
̟ c Nτ

1

)
.

Assume K ∼= F2. If n(χ1) < c < n,

β0 =
∫

F×\K ×

(π(ι2(t))W0,W0)

(W0,W0)
χ(t) dt =

∫

F×\K ×

(π(ι1(t))W0,W0)

(W0,W0)
χ(t) dt,

where χ1 = χ2, χ2 = χ1 and n(χ1)= n(χ2)= c. We reduce to the case c ≥ n or

n(χ1)= c. For the exceptional case, if we take π( j)W0 as a test vector, then

β0 =
∫

F×\K ×

(π(ι1(t) j)W0, π( j)W0)

(W0,W0)
χ(t) dt =

∫

F×\K ×

(π(ι1(t))W0,W0)

(W0,W0)
χ(t̄) dt

with n(χ1) = n(χ2) = c. Thus, even for the exceptional case, we only need to

consider W0 as a test vector. Thus,

β0 = (W0,W0)
−1

∫∫

(F×)2
π(γc)W0

[(
ab

1

)]
π(γc)W0

[(
b

1

)]
χ1(a) d×b d×a

= (W0,W0)
−1

∣∣Z
(

1
2
, π(γc)W0, χ1

)∣∣2
.

If c = 0, Z
(

1
2
,W0, χ1

)
=χ1(δ)

−1L
(

1
2
, π⊗χ1

)
and so β0 = (W0,W0)

−1L
(

1
2
, π, χ

)
.

If c > 0, then

Z
(

1
2
, π(γc)W0, χ1

)
=

∫

F×
W0

[(
a

1

)]
ψ(a̟−c)χ1(a) d×a

=
∑

k∈Z

W0

[(
̟ k

1

)] ∫

̟ k O×
ψ(a̟−c)χ1(a) d×a.

Assume n(χ1) = c; then the integral
∫
̟ k O× ψ(a̟−c)χ1(a) d×a vanishes unless

k = −v(δ), while
∣∣∣∣
∫

δ−1O×
ψ(a̟−c)χ1(a) d×a

∣∣∣∣ = L(1, 1F )|δ|1/2q−c/2.

Thus,

β0 = (W0,W0)
−1L(1, 1F )

2q−c.

Assume c ≥ n and n(χ1) < c. Let j be a normalizer of K × with j t = t̄ j for

any t ∈ K ×. As c ≥ n, there exists some t0 ∈ K × such that t0U0(n)t
−1
0 = jU0(n) j−1
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and π(t0)W0, π( j)W0 are in the same line. Thus,

β0 =
∫

F×\K ×

(π(t)W0,W0)

(W0,W0)
χ(t) dt = (W0,W0)

−1L(1, 1F )
2q−c

as n(χ1)= n(χ2)= c.

Remark. Assume n(χ1) < c < n and R is the intersection of two maximal orders

R′ and R′′ with R′ ∩ K = Oc and R′′ ∩ K = OK . If R is not admissible, then the

toric integral for ω-eigenforms f under R× must vanish if c > 1. In the case c = 1,

so that n(χ1)= 0,
∫

F×\K ×

(π(ι1(t))W0,W0)

(W0,W0)
χ(t) dt = (W0,W0)

−1L(1, 1F )
2q−2.

It remains to consider the case K is a field and c ≥ n. Let 9(g) denote the matrix

coefficient:

9(g) := (π(g)W0,W0)

(W0,W0)
, g ∈ GL2(F).

Then

β0 = Vol(K ×/F×)

#K ×/F×O
×
c

∑

t∈K ×/F×O
×
c

9(t)χ(t).

In the case c = 0, π is unramified. Furthermore, if K/F is unramified, then

β0 = Vol(K ×/F×)= |δ|1/2 and, if K/F is ramified, β0 = |Dδ|1/2(1+9(τ)χ(τ)),
where9(τ) is expressed by the MacDonald polynomial and one has β( f )=|Dδ|1/2.

It remains to consider the case c > 0. Denote

Si = {1 + bτ | b ∈ O/pc, v(b)= i}, 0 ≤ i ≤ c − 1,

and

S′ =
{{a + τ | a ∈ p/pc} if e = 1,

{a̟ + τ | a ∈ O/pc} if e = 2.

Then a complete representatives of K ×/F×
O

×
c can be taken as

{1} ⊔
⊔

i

Si ⊔ S′.

Note that 9 is a function on U1(n)\G/U1(n). The following observation is key to

our computation: the images of Si , 0 ≤ i ≤ c − 1, and S′ under the natural map

pr : K × → U1(n)\G/U1(n)

are constant. Precisely,

pr(Si )=
[(

1 ̟ i−c

1

)]
, pr(S′)=

[(
̟−c

−̟ c+e−1

)]
.

From this, it follows that
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∑

t∈K ×/F×O
×
c

9(t)χ(t)= 1 +
c−1∑

i=0

9i

∑

t∈Si

χ(t)+9 ′ ∑

t∈S′

χ(t),

where 9i (resp. 9 ′) are the valuations of 9(t) on Si (resp. S′).
Assume the central character ω is unramified; then we may take ω = 1. If

e = c = 1, we have
∑

t∈S0

χ(t)= −χ(τ)− 1 and
∑

t∈S′

χ(t)= χ(τ).

Otherwise,

∑

t∈Si

χ(t)=
{

0 if c > 1 and 0 ≤ i ≤ c − 2,

−1 if i = c − 1,
and

∑

t∈S′

χ(t)= 0.

Therefore,

∑

t∈K ×/F×O
×
c

9(t)χ(t)=
{

1 + (−χ(τ)− 1)90 +χ(τ)9 ′ if e = c = 1,

1 −9c−1 otherwise.

Note that, if e = 1, then
(

−̟ c
̟−c )

equals
(

1 ̟−c

1

)
in ZU1(n)\G/U1(n) and,

since ω = 1, 9 ′ =90. We obtain
∑

t∈K ×/F×O
×
c

9(t)χ(t)= 1 −9c−1

and reduce to the evaluation of 9c−1. If n = 0, the matrix coefficient 9c−1 is

expressed by the MacDonald polynomial. In particular, if the Satake parameter of

π is (α, α−1), then

1 −9c−1 = (1 −α2q−1)(1 −α−2q−1)

1 + q−1
.

If n = 1, then π = sp(2)⊗µ with µ an unramified quadratic character on F×. By

definition,

9c−1 = |δ|1/2L(1, π, ad)−1

∫

F×
W0

[(
a

1

) (
1 ̟−1

1

)]
W0

[(
a

1

)]
d×a

= |δ|3/2L(1, π, ad)−1

∫

̟−n(ψ)O

ψ(a̟−1)|a|2 d×a

= |δ|3/2L(1, π, ad)−1(−q−1)L(1, π, ad)|δ|−3/2 = −q−1.

If n ≥ 2, then

9c−1 = |δ|−1/2

∫

̟−1−n(ψ)O×
ψ(x) d×x = −q−1L(1, 1F ).
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With these results, we obtain

β0 = Vol(K ×/F×)

#K ×/F×O
×
c

×





L(1, 1F )

L(1, π, ad)(1 + q−1)
if n = 0,

1 + q−1 if n = 1,

L(1, 1F ) if n ≥ 2.

Finally, we deal with the case that ω is ramified. As above, it is routine to check

that 9i for i < c − 1 and 9 ′ are vanishing. Moreover, 9c−1 = 0 if and only if

δπ = 0 and, for δπ = 1,

9c−1 = −q−1L(1, 1F ).

By the definition of δπ , if δπ = 1 then c ≥ 2 and n(ω) < n ≤ c. Thus, for δπ = 1,

0 =
∑

t∈1+̟ c−1OK /1+̟ cOK

χ(t)

=
∑

t∈1+̟ c−1OK /(1+̟ c−1O)(1+̟ cOK )

χ(t)
∑

a∈1+̟ c−1O/1+̟ cO

ω−1(a)

= q
∑

b∈pc−1/pc

χ(1 + bτ).

Therefore, if δπ = 1, then
∑

t∈Sc−1
χ(t)= −1 and

β0 = Vol(K ×/F×)

#K ×/F×O
×
c

×
{

1 if δπ = 0,

L(1, 1F ) if δπ = 1.

The proof of Proposition 3.12 is now complete. �

We finish our discussions of α(W0), β( f ) and γ with Lemmas 3.13 and 3.14.

Lemma 3.13. Let F be nonarchimedean and f a nonzero element in V (π, χ); then

α(W0)β( f )γ |D|−1/2 = 2δ(6D)L
(

1
2
, π, χ

)−δ(6)
L(1, η)2δ(c1)q−c1,

where these δ ∈ {0, 1} are given by:

• δ(6D)= 1 if and only if K is ramified, n > 0 and c < n;

• δ(6)= 1 if and only if n > 0, K is either ramified or c > 0 and, if n = 1, then
c ≥ n;

• δ(c1)= 1 if and only if c1 6= 0.

Proof. We have computed α(W0) in Proposition 3.11 and β( f ) in Proposition 3.12.

When n > 0, by Lemma 3.5, γ = L(1, 1F )(1−e(R)q−1) and it suffices to compute

e(R):

(i) e(R)= 1 and γ = 1 if K is split, or if K is ramified, n = 1 and B is split, or

if K is nonsplit and c ≥ n;
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(ii) e(R) = −1 and γ = L(1, 1F )(1 + q−1) if K is inert and c < n, or if K is

ramified, n = 1, B is division and c = 0;

(iii) e(R)= 0 and γ = L(1, 1F ) if K is ramified, n ≥ 2 and c < n. �

For archimedean places, using Barnes’ lemma we have the following list for

(W0,W0) (see [Tadić 2009] for the classification of unitary dual of GL2(F)):

(1) Assume F = R, σ is the infinite-dimensional subquotient of the induced

representation Ind(µ1, µ2), where µi (a) = |a|si sgn(a)mi with si ∈ C and

mi ∈ {0, 1}. Let k = s1 − s2 + 1, µ= s1 + s2.

(a) If σ = Dµ(k) is the discrete series with k ≥ 2, then (W0,W0) equals

2(4π)−kŴ(k).

(b) If σ = π(µ1, µ2) is a principal series, then (W0,W0) equals

π−1−m1−m2Ŵ
(

1
2
(1+2m1)

)
Ŵ

(
1
2
(1+2m2)

)
B

(
1
2
(k +m1 +m2),

1
2
(2−k +m1 +m2)

)
,

where B(x, y) := Ŵ(x)Ŵ(y)Ŵ(x + y)−1 is the beta function.

(2) Assume F =C, σ =π(µ1, µ2) is a principal series withµi (z)=|z|si

(
z√
|z|C

)mi

and si ∈ C and mi ∈ Z; then (W0,W0) equals

8(2π)−1−|m1|−|m2|Ŵ(1 + |m1|)Ŵ(1 + |m2|)
× B

(
1 + s1 − s2 + 1

2
(|m1| + |m2|), 1 − s1 + s2 + 1

2
(|m1| + |m2|)

)
.

For a pair (π, χ), define

C(π, χ)=
{

2−1π(W0,W0)
−1 if K/F = C/R,

(W ′
0,W ′

0)(W0,W0)
−1 if K = F2.

In the split case, W ′
0 is the new vector of π⊗χ1, where K is embedded into M2(F)

diagonally and χ1(a)= χ
((a

1

))
.

Lemma 3.14. For F archimedean, let f be a nonzero vector in V (π, χ); then

α(W0)β( f )= C(π, χ)−1

{
L
(

1
2
, π, χ

)−1
if K/F = C/R,

1 if K = F2.

In particular, if σ = Dµ(k) is a discrete series with weight k, then

C(π, χ)=
{

4k−1π k+1Ŵ(k)−1 if K = C,

1 if K = R2.

Proof. By definition,

α(W0)β( f )= L(1, η)

L(1, 1F )
L
(

1
2
, π, χ

)−1
(W0,W0)β

0



Explicit Gross–Zagier and Waldspurger formulae 2571

with

β0 =
∫

F×\K ×

(π(t) f, f )

( f, f )
χ(t) dt, f ∈ V (π, χ).

If K/F = C/R, then β0 = Vol(K ×/F×) = 2. If K is split, taking f = W ′
0, then

β0 = L
(

1
2
, π, χ

)
(W ′

0,W ′
0)

−1. If σ = Dµ(k), the value for (W0,W0) is given in (1a)

in the above list and we note that, if K = R2, then (W ′
0,W ′

0) = (W0,W0) as, for

any χ1, π ⊗χ1 and π have the same weight. �
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[Tadić 2009] M. Tadić, “GL(n,C)∧ and GL(n,R)∧”, pp. 285–313 in Automorphic forms and
L-functions, II: Local aspects, Contemp. Math. 489, Amer. Math. Soc., Providence, RI, 2009.

MR 2010j:22020 Zbl 1186.22021

[Tian 2014] Y. Tian, “Congruent numbers and Heegner points”, Cambridge J. Math. 2:1 (2014),

117–161. Zbl 06324779

[Tian et al. 2013] Y. Tian, X. Yuan, and S. Zhang, “Genus periods, genus points and congruent

number problem”, preprint, 2013. arXiv 1411.4728

[Tunnell 1978] J. B. Tunnell, “On the local Langlands conjecture for GL(2)”, Invent. Math. 46:2

(1978), 179–200. MR 57 #16262 Zbl 0385.12006

[Tunnell 1983] J. B. Tunnell, “Local ǫ-factors and characters of GL(2)”, Amer. J. Math. 105:6 (1983),

1277–1307. MR 86a:22018 Zbl 0532.12015

[Vignéras 1980] M.-F. Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathe-

matics 800, Springer, Berlin, 1980. MR 82i:12016 Zbl 0422.12008

[Waldspurger 1985] J.-L. Waldspurger, “Sur les valeurs de certaines fonctions L automorphes en leur

centre de symétrie”, Compositio Math. 54:2 (1985), 173–242. MR 87g:11061b Zbl 0567.10021

[Washington 1997] L. C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in

Mathematics 83, Springer, New York, 1997. MR 97h:11130 Zbl 0966.11047

[Yu 2013] C. Yu, “Variants of mass formulas for definite division algebras”, preprint, 2013. arXiv

1304:6175

[Yuan et al. 2013] X. Yuan, S.-W. Zhang, and W. Zhang, The Gross-Zagier formula on Shimura curves,

Annals of Mathematics Studies 184, Princeton University Press, Princeton, NJ, 2013. MR 3237437

Zbl 1272.11082

Communicated by John Henry Coates

Received 2014-10-03 Revised 2014-10-21 Accepted 2014-11-23

lcai@math.tsinghua.edu.cn Mathematical Sciences Center, Tsinghua University,

Jin Chun Yuan West Bldg. 248, Beijing, 100084, China

shujie09@mails.gucas.ac.cn Academy of Mathematics and Systems Science,

Morningside Center of Mathematics,

Chinese Academy of Sciences, Beijing, 100190, China

ytian@math.ac.cn Academy of Mathematics and Systems Science,

Morningside Center of Mathematics,

Chinese Academy of Sciences, Beijing, 100190, China

mathematical sciences publishers msp

http://www.numdam.org/item?id=CM_1993__85_1_99_0
http://msp.org/idx/mr/93m:22021
http://msp.org/idx/zbl/0795.22009
http://dx.doi.org/10.1007/BF01389425
http://msp.org/idx/mr/88d:11057
http://msp.org/idx/zbl/0616.14023
http://msp.org/idx/mr/2003g:11056
http://msp.org/idx/zbl/0997.11040
http://dx.doi.org/10.1090/conm/489/09551
http://msp.org/idx/mr/2010j:22020
http://msp.org/idx/zbl/1186.22021
http://dx.doi.org/10.4310/CJM.2014.v2.n1.a4
http://msp.org/idx/zbl/06324779
http://msp.org/idx/arx/1411.4728
http://dx.doi.org/10.1007/BF01393255
http://msp.org/idx/mr/57:16262
http://msp.org/idx/zbl/0385.12006
http://dx.doi.org/10.2307/2374441
http://msp.org/idx/mr/86a:22018
http://msp.org/idx/zbl/0532.12015
http://msp.org/idx/mr/82i:12016
http://msp.org/idx/zbl/0422.12008
http://www.numdam.org/item?id=CM_1985__54_2_173_0
http://www.numdam.org/item?id=CM_1985__54_2_173_0
http://msp.org/idx/mr/87g:11061b
http://msp.org/idx/zbl/0567.10021
http://dx.doi.org/10.1007/978-1-4612-1934-7
http://msp.org/idx/mr/97h:11130
http://msp.org/idx/zbl/0966.11047
http://msp.org/idx/arxiv/1304.6175
http://msp.org/idx/arxiv/1304.6175
http://msp.org/idx/mr/3237437
http://msp.org/idx/zbl/1272.11082
mailto:lcai@math.tsinghua.edu.cn
mailto:shujie09@mails.gucas.ac.cn
mailto:ytian@math.ac.cn
http://msp.org


Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Georgia Benkart University of Wisconsin, Madison, USA

Dave Benson University of Aberdeen, Scotland

Richard E. Borcherds University of California, Berkeley, USA

John H. Coates University of Cambridge, UK

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad University of Michigan, USA

Hélène Esnault Freie Universität Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Barry Mazur Harvard University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Bernd Sturmfels University of California, Berkeley, USA

Richard Taylor Harvard University, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Efim Zelmanov University of California, San Diego, USA

Shou-Wu Zhang Princeton University, USA

PRODUCTION

production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2014 is US $225/year for the electronic version, and $400/year (+$55, if shipping outside the US)
for print and electronic. Subscriptions, requests for back issues and changes of subscribers address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans
Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage
paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2014 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 8 No. 10 2014

2297K3 surfaces and equations for Hilbert modular surfaces
NOAM ELKIES and ABHINAV KUMAR

2413Intermediate co-t-structures, two-term silting objects, τ -tilting modules, and torsion
classes

OSAMU IYAMA, PETER JØRGENSEN and DONG YANG

2433A p-adic Eisenstein measure for vector-weight automorphic forms
ELLEN EISCHEN

2471Explicit points on the Legendre curve III
DOUGLAS ULMER

2523Explicit Gross–Zagier and Waldspurger formulae
LI CAI, JIE SHU and YE TIAN

http://dx.doi.org/10.2140/ant.2014.8.2297
http://dx.doi.org/10.2140/ant.2014.8.2413
http://dx.doi.org/10.2140/ant.2014.8.2413
http://dx.doi.org/10.2140/ant.2014.8.2433
http://dx.doi.org/10.2140/ant.2014.8.2471

	1. Main results
	1A. Introduction
	1B. The explicit Gross–Zagier formula
	1C. The explicit Waldspurger formula

	2. Reduction to local theory
	2A. Petersson pairing formula
	2B. U-level pairing
	2C. c1-level periods
	2D. Proofs of main results

	3. Local theory
	3A. Local toric integrals
	3B. Local orders of quaternions
	3C. Test vector spaces
	3D. Local computations

	Acknowledgements
	References

