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Explicit Guidance of Drag-Modulated Aeroassisted
Transfer Between Elliptical Orbits

Nguyen X. Vinh* and Jennie R. Johannesetf
The University of Michigan, Ann Arbor, Michigan

Kenneth D. Mease*
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

and

John M. Hanson§

Analytic Services Inc., Arlington, Virginia

This paper presents the complete analysis of the problem of minimum-fuel aeroassisted transfer between
coplanar elliptical orbits in the case where the orientation of the final orbit is free for selection in the optimization
process. A comparison is made between the optimal pure-propulsive transfer and the idealized aeroassisted
transfer, involving several passages through the atmosphere. In the case where aeroassisted transfer provides fuel
savings, a practical scheme for its realization by one passage is proposed/The orbit transfer consists of three
phases: A deorbit phase resulting in nonzero entry angle, followed by an atmospheric fly-through with variable
drag control, and completed by a post atmospheric phase. An explicit guidance formula for drag control is derived,
and it is shown that the required exit speed for ascent to final orbit can be obtained with a very high degree of
accuracy.

Introduction

T HE problem of minimum-fuel aeroassisted transfer be-
tween orbits has received considerable attention in recent

years. The case of transfer between coplanar circular orbits
has been analyzed in the literature.1"3 In this paper, the case
where the initial and final orbits are elliptical is considered.
More specifically, it is proposed to transfer, with ininimum-fuel
consumption, a vehicle from an initial elliptical orbit Ol to a
coplanar final elliptical orbit O2. The two Keplerian orbits are
about a spherical planet with the center of attraction located
at point F (Fig. 1). The orbits are defined by the apocenter
and pericenter distances At and Pi9 respectively. We shall
assume that the orientation of the line of apsides is free for
selection in the optimization process. This means that the
argument of the pericenter of the final orbit is not important
in the intended mission.

For a high-thrust propulsion system, it is assumed that the
time interval for powered flight is short as compared to the
orbital period. Hence, the velocity changes upon the applica-
tion of the thrust can be considered instantaneous.

Idealized Optimal Transfers
We first consider the various optimal pure-propulsive trans-

fers and select the best for comparison with the most advanta-
geous aeroassisted transfer of an idealized sort. This is in-
tended to display explicitly the circumstances under which
aeroassisted transfer is a fuel-saving mode. In the following
sections, an analysis of its practical realization is presented.

For a pure-propulsive transfer, since the orientation of the
final orbit is free, in the optimal configuration the initial and
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final orbits are coaxial with percenters on the same side of the
attracting center F.4"6 For a finite-time transfer, the optimal
mode is the Hohmann transfer connecting the higher apocenter
to the pericenter of the other orbit. The case where the
apocenter of the initial orbit is higher shall be considered, i.e.,
Al>A29 and the dimehsionless lengths and characteristic
velocities conveniently defined:

Ao, (1)

where /i is the gravitational constant of the planet and R the
radius of its surrounding atmosphere. The characteristic veloc-
ity of the Hohmann transfer, normalized with respect to the
circular speed at distance R, Vc =?'fa/R, is
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If «! -» oo, the initial approaching orbit is parabolic and the
first impulse applied at infinity or in practice at a large
distance is negligible. This leads to conceiving a parabolic
transfer, even in the case where «a is finite. The first accelera-
tive impulse is applied at the pericenter of the first orbit to
propel the vehicle into a parabola. At infinity, upon the
application of an infinitesimal impulse, the vehicle returns by
another parabola with the same pericenter as in the final orbit.
Another decelerative impulse is applied at this center to
complete the transfer. All of the impulses are tangential; the
total cost for this parabolic mode is

(3)
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Upon direct comparison of the characteristic velocities, one
can select the optimal pure-propulsive mode.

For aeroassisted transfer, a decelerative impulse is applied
tangentially at the apocenter of initial orbit to lower the
pericenter to the top of the atmosphere. Its magnitude is

(4)

Near the top of the atmosphere, in the vicinity of the peri-
center, atmospheric drag will work to reduce the apocenter to
the distance A2 where an accelerative impulse is applied to
propel the vehicle into final orbit. Its magnitude is

The total cost for this aeroassisted-elliptic mode is

(6)

and it has to be compared with the best pure-propulsive mode
for optimality. Another way to bring the pericenter to the top
of the atmosphere for the atmospheric decay process is to first
send the vehicle into a parabolic orbit by a tangential and
accelerative impulse applied at the pericenter of the initial
orbit. Its magnitude is

(7)

Then, at a large distance the vehicle can return on a grazing
trajectory with a negligible impulse. The subsequent process
of orbit decay and injection into the final orbit is as before,
and for this aeroassisted-parabolic mode

(8)

By comparing Eqs. (4) and (7), it is deduced that for the two
aeroassisted modes, the parabolic mode is more economical if

(9)

The aeroassisted transfer discussed in this section is based
on an idealized scheme. It will require many passages through
the atmosphere for Al to decrease to A2. Furthermore, based
on the theory of orbit contraction, it is assumed that during
the decay process the pericenter is nearly stationary.7 If this
mode is optimal, the characteristic velocity computed is the
idealized absolute minimum.

Practical Aeroassisted Transfer
In practice, the reduction of the apocenter occurs in a single

passage. This requires a nonzero entry angle ye and an exit
angle yf. The resulting total cost will be slightly higher than
the idealized case.

The aeroassisted transfer consists of three phases:
The first phase is the deorbit phase. A propulsive maneuver

is affected such that the vehicle enters the atmosphere at
distance R at a certain prescribed angle ye. This very small
angle is selected such that within the drag capability of the
vehicle, the necessary speed depletion can be accomplished in
one passage.

The second phase is the atmospheric fly-through phase. It
shall be assumed that the ballistic coefficient of the vehicle can
be modulated between its maximum and minimum values. By
proper modulation of this coefficient, it is proposed to bring
the vehicle to the best atmospheric exit condition for the
vehicle to climb to the final apocenter for orbit insertion.

The third and final phase is the postatmospheric maneuver
to put the vehicle into final orbit.

It will be shown in a synthesis study that all three phases
are coupled; i.e. the initial entry angle is selected based on the
final orbit configuration and the drag capability of the vehicle
during atmospheric passage. However, in terms of fuel con-
sumption, since the entry and exit angles are small, it is
possible to analyze the optimal maneuver for each phase
separately. It will be shown that the resulting characteristic
velocity for the combined maneuver is very close to the
idealized minimum.

Entry at Prescribed Angle
In the deorbit phase, it is proposed to find the optimal

descending trajectory which intersects the atmosphere at dis-
tance R at a nonzero prescribed angle ye. This can be achieved
by applying a single, tangential and decelerative impulse at
the apocenter of the initial orbit. From the geometry of the
deorbit as shown in Fig. 2, the characteristic velocity of this
one-impulse mode is

\l v2/*+/M - \l
V « l ( « l + A ) . V

/ 2 2 T
«l(«l-C O S Ye)

The cost for deorbit increases as the entry angle increases.
Another alternative is to use parabolic orbits for deorbiting.

In this ease, an accelerative impulse is applied tangentially at
the pericenter to send the vehicle into a parabola. Then, at
infinity, the vehicle can be returned along another parabola
for entry at any prescribed angle with an infinitesimal im-
pulse. The cost for this transfer is given in Eq. (7). By
comparing Eq. (7) with Eq. (10) we have the explicit condition
for the parabolic mode to be better than the one-impulse
mode.

PARAIBOLA

OHMANN

PARABOLA

Fig. 1 Transfers between coaxial orbits.

= Rx

PARABOLA

Fig. 2 Deorbit for prescribed entry angle.
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4(0^ - l)(a2 - cos2 ye) cos2 ye

- cosye)2 (11)
For a nonzero entry angle, there exists the possibility of the

two-impulse mode as the optimal process. In this case, the first
and accelerative impulse is applied tangentially at the peri-
center of the initial orbit to bring the apocenter to the
distance A = Rd. At the new apocenter, a second tangential
and decelerative impulse is applied to return the vehicle for
intersection at the prescribed angle. By minimizing the total
characteristic velocity with respect to d, we have an equation
for calculating this unknown.

In practical application the one-impulse deorbit is the pre-
ferred mode, especially in the case where the time of transfer
is a critical constraint.

Explicit Guidance for Drag Modulation
The atmospheric phase in the aeroassisted maneuver is

considered in this section. To begin this phase, the vehicle
enters the atmosphere at distance R with a speed Ve and entry
angle ye. The atmospheric maneuver uses lift or drag modula-
tion to bring the vehicle to exit at ty « 0, with a resulting exit
speed Vj such that the apocenter of the ascending trajectory
coincides with the apocenter of the final orbit (Fig. 3). In this
way, the final impulse is minimized.

The case where it is possible to modulate the ballistic drag
coefficient between a lower and an upper limit is now consid-
ered. Using standard notation, the equations for ballistic flight
inside a nonrotating planetary atmosphere are as follows:

dr

pSCDV2

2m
dV
~dT

'-J7- —-SIC"? (12)

Since the flight-path angle stays small (a few degrees), the
small gravity component gsiny as compared to the accelera-
tion due to the drag can be be neglected. Furthermore, the
following approximations are used

siny«y, cosy«l, g(r)
V2 V2

, ^~^ (13)

These approximations induce an error of the same order as
the error committed by neglecting the Coriolis force. It should
be mentioned that the assumptions used are not necessary for

the present analysis, but they have the advantage of displaying
explicitly the various effects of the drag coefficient, entry
speed, and entry angle on the ballistic fly-through trajectory.8

The density p is used as the altitude variable and it is
assumed that this density is locally exponential, i.e.,

dp
P

dr
H (14)

where the scale height H can be adjusted for concordance
with the standard atmosphere at the altitude range of the
flight. Then, with the simplification of Eq. (13) and by using
the dimensionless variables

p
ySS~P~e9

and the parameters

PeSCD]/HR
m

we have the equations of motion in dimensionless form:

dy _
~

and
€ ' d* ~~ ty

d0
dx

(16)

(17)

(18)

Note that the last equation, denoting the variation of time, is
decoupled from the others. The constant 8 represents the
effect of the entry speed with 8 = 1 for circular entry and
5 = 0.5 for parabolic entry. The parameter € is the drag
control parameter, subject to the constraint

^min — ̂  — ̂ max \ ^)

In this way, the design of drag control is more general since it
is not restricted to the variation of the drag coefficient CD
alone. It is simply assumed that the dimensionless drag
parameter c, as defined in Eq. (16), can be configured to vary
between two limits. The speed variable x is such that, at the
initial time, x = 0 and is increasing monotonically. The altitude
y is such that initially y = 1 and then increases as the altitude
decreases. At exit, yf= 1. In the definition of the flight-path-
angle variable <D, the ratio R/H can be taken as 900 for the
Earth's atmosphere.

From the definition [Eq. (15)] of the dimensionless varia-
bles, we have at the initial time

0 = 0, = 0, ye-l, -]/R/Hye>0 (20)

Fig. 3 Aeroassisted transfer.

It is proposed to use the drag control e, subject to con-
straint (19), to bring the vehicle to exit at

such that
1) The apocenter distance of the ascending orbit is A2.
2) The speed at apocenter is maximized.
The first condition is expressed as the constraint

y/
2(«l-cos2

Y/)=2«2(«2-l) (22)

where, in terms of the speed variable x, we have

j-(l/8)e-*f (23)
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The second condition leads to maximization of the perfor-
mance index

2(«2 ~
ct2(a2

2-cos2yf)
(24)

Since prescribed, this amounts to maximizing
the final exit speed satisfying condition (22). From this condi-
tion, it can be seen that the best exit speed is obtained when
yf = 0, if this can be achieved. The resulting maximized exit
speed is

Vf (25)

For the case of drag modulation, a grazing exit for a climb to
apocenter is not possible,8 and the optimal strategy consists of
bang-bang control to achieve condition (22) with the smallest
exit angle.1 This control strategy is difficult to realize in
practice since the switching time has to be very accurate — to
within a fraction of 1 s — to avoid crashing.

As an alternative, the following drag control is proposed.
First, a nominal trajectory is selected, with entry values ye and
ve for such that during the atmospheric phase with a high drag
coefficient c = Cj for descent until y = 0, and a low drag
coefficient c = c2 for ascent until exit, we have a shallow exit
angle and the trajectory overshoots the target apocenter. On
the other hand, ye and ve are selected such that a trajectory
with a constant high drag coefficient € = cl undershoots the
target apocenter. The nominal drag coefficients Cj and e2 ^e

selected to be consistent with the physical constraint €max > cx
> €2 > cmin. These conditions ensure that in the actual trajec-
tory, by using a modulated drag coefficient, € = variable,
during the ascending phase we can achieve the required
apocenter distance while obtaining a small exit angle.

Since it is difficult to control both yf and zy to satisfy Eq.
(22) identically, the proposed explicit guidance scheme aims at
controlling ly. The reason for this is that, based on Eq. (22)
for a sensitivity analysis, we have for a small exit angle

The variation in the apocenter is more sensitive to the exit
speed perturbation than to the exit angle perturbation.

To develop a variable drag control law, a nominal skip
trajectory is considered as shown in Fig. 4. This trajectory,
flown with c = Cj until the bottom of the flight path, yh = 0,
and e = c2 until exit, provides an exit speed vf and a flight-
path angle yf. As mentioned previously, this trajectory is
designed to overshoot the terminal apocenter A2. To have a
correct distance <x2 , a higher variable drag cpefficieiit e can be
used during the ascent for an exit at vf and yj satisfying
constraint (22).

A value yf < yf is then selected to compute the desired
speed Vf from Eq. (22). The objective is to obtain a_fbrmula
for a variable e such that at exit a resulting speed iy=iy is
obtained, with an exit angle yf relatively close to the correct
value yf. In terms of the variables x and O, definition (15) is

ENTR

used. Based on the first of Eqs. (17), the exit speed can be
predicted in the case where during the ascent, from any
current position e is held constant for the remainder of the
trajectory, by integrating the equation until yf = 1. An ana-
lytic solution is possible if an average value Oa is used for the
flight-path-angle variable. We have

I-C27)

For the average value '$fl, the mean value between the current
'value $ and the estimated exit value

leads to use of the control law

c= —
2(7-1)

$yr can be used. This

(28)

where xf is the desired final speed and ^y the estimated exit
flight-path-angle variable. This control law is explicit since c
is continuously recomputed based on the current state, rather
than on the deviation of the current state from a nominal
current state. It remains to evaluate the estimated exit angle
3y. By combining the two equations (17), we have

(29)dy _
T~ (»**-!)

By treating (8ex - 1) as a constant, the affect of the variation
of the speed is neglected. This is a good assumption since
most of the speed depletion occurs during the descending
phase at high drag coefficients. By integrating Eq. (29) from
the lowest point, y = yb, 0 = 0, to exit y = 1, x = Xf, we have
the estimated value for Ox

••2(l-8exf)logyh (30)

Fig. 4 Nominal and controlled trajectories.

In this equation, an additive correctional term k has been
introduced to compensate for the error incurred in neglecting
the effect of the speed variation. This value, k, is computed
based on the nominal trajectory by using <fy = <I>? and xf = xj
in Eq. (30). The key to the efficacy of this approach is that, for
the family of skip trajectories under consideration, the flight-
path-angle behavior is relatively uniform: the flight-path angle
is always small (a few degrees at most), and is monotonically
increasing during the guided portion of the flight which starts
at y = yh = 0. Consequently, the flight-path angle is of minor
importance in comparison with the speed. The connection of
the guidance law with the nominal trajectory, embodied in the
constant k which only affects the flight-path angle, is minimal
and does little to disrupt the explicit nature of the guidance
law, . . . _ : ' • ' " • • • • • • • • • • • • • . . ' /->• , . - . . - . ' ; • ' . • • • (": i v ; - : . ' -

This explicit drag-modulated control law h%s 1>ê n tested/
numerically for several values of t^
parabolic entry^ 8 = 0.5, to near-cjrcular ehtry^ 8 ==r &?, with
excellent results. The ehara^teristicj values for the ballistic drag
coefficients selected are •;

cmax = 0.0030, Cl = 0.0024, c2 -

We can, of course, use the values ^ and e2 at e^^ and emin,
respectively, in constructing the nominal trajectory. The main
effect of the ratio e^/e^ is in the widening of the family of
trajectories which can be accurately controlled.

Typical results are shown in Tables 1 and 2. In these tables,
the case of entry for a direct return from a geosynchronous
orbit has been considered with 5 = 0.577 (ve = 1.316473), ye *..
— 3.37 deg. The relevant data from the nominal trajectory,
cj -+ e2, are xj = 0.33791280 and "yf = 2.36902405 deg with
the density at the bottom of the trajectory yb — 46.31295?.
Using these data in Eq. (30), we deduce the value for the
correctional constant, k = 0.073233764.
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Table 1 Accuracy analysis for drag modulation using the simplified equations (17)

Dimensionless speed Flight-path angle Apogee distance

Target
xf

0.250a
0.300a
0.300b
0.350a
0.350b
0.400a
0.400b
0.450a
0.450b
0.500a
0.500b
0.550a
0.550b

a€̂max

Actual
xf

0.265977
0.300000
0.337972
0.350000
0.359632
0.400000
0.400498
0.450000
0.450000
0.499988
0.499863
0.500867
0.478900

= 0.0030, e

Error
vf/vf

1.008020
1.000000
1.019167
1.000000
1.004827
1.000000
1.000249
1.000000
1.000000
0.999994
0.999932
0.975733
0.965074

min = 0.0002.

Target
?/°

2.741678
2.540464
2.540464
2.310013
2.310113
2.040099
2.040099
1.710894
1.710894
1.276324
1.276324
0.514092
0.514092

Actual
V

2.641190
2.507468
2.369805
2.298404
2.267438
2.063615
2.062626
1.801546
1.801546
1.529987
1.530021
1.609839
1.714557

b£max = 0.0024, €min =

Error
AY/

-0.100488
-0.032996
-0.170659
-0.011609
-0.042675
0.023516
0.022527
0.090652
0.090652
0.253663
0.253697
1.095747
1.200465

0.0008.

Target
«2

2.080096
1.797377
1.797377
1.572820
1.572820
1.390374
1.390374
1.239421
1.239421
1.112755
1.112755
1.008885
1.008885

Actual
«2

1
1
1
1
1
1
1

1
1
1
1
1
1

.982009

.797264

.622502

.572776

.534810

.390477

.388842

.239911

.239911

.114789

.115067

.113545

.165165

Error
A«2

-0.098087
-0.000113
-0.174875
-0.000044
-0.038010
0.000103

-0.001532
0.000490
0.000490
0.002034
0.002312
0.104660
0.156280

Table 2 Accuracy analysis for drag modulation using the exact equations (32)

Dimensionless speed Flight-path angle Apogee distance

Target
*/

0.250a
0.300a
0.300b
0.350a
0.350b
0.400a
0.400b
0.450a
0.450b
0.500a
0.500b
0.550a
0.550b

Actual
xf

0.262122
0.304179
0.333497
0.352960
0.362483
0.402204
0.405271
0.451464
0.452615
0.500538
0.500834
0.507455
0.482899

Error
vf/vf

1.006079
1.002092
1.016890
1.001481
1.006261
1.001103
1.002639
1.000732
1.001308
1.000269
1.004171
0.978952
0.967006

Target
Y/°

2.748827
2.548676
2.548676
2.31770
2.319770
2.051840
2.051840
1.725983
1.725983
1.298152
1.298152
0.570447
0.570447

Actual
y/°

2.663040
2.498949
2.399986
2.292495
2.265990
2.059557
2.053787
1.799468
1.798185
1.529392
1.539273
1.586824
1.708201

Error
Ay/

-0.085787
-0.049727
-0.148690
-0.027275
-0.053780
0.007717
0.001947
0.073485
0.072202
0.231240
0.213112
1.016377
1.137754

Target
«2

2.080119
1.793167
1.793167
1.572857
1.572857
1.390426
1.390426
1.239501
1.239501
1.112916
1.112916
1.009869
1.009869

Actual
«2

2.004951
1.776570
1.641670
1.560961
1.523888
1.383264
1.373326
1.235938
1.232832
1.113567
1.12912
1.099133
1.155509

Error
A«2

-0.075167
-0.016597
-0.151497
-0.011896
-0.048969
-0.007162
-0.017100
-0.003563
-0.006669
0.000651

-0.000004
0.089264
0.145640

= 0-0030, emin = 0.0002. bemax = 0.0024, emin = 0.0008.

{/////////////

.0028

.0024

.0020

.0016

.0012

.0008

.0004-
winnnnn

3 4 5 6 7 8 9 10 I I

Fig. 5 Variations of the drag coefficient € for various exit speeds in
the case of return from geosynchronous orbit.

Table 1 presents the results from the numerical integration
of the simplified equations (17) with the drag control law [Eq.
(28)]. For each selected target speed x f , the target exit angle
•w is computed from Eq. (30). This results in a target apogee
distance a2 as computed from Eq. (22). The simplified system
(17) is then integrated with e: until the Jpwest point and
variable e until exit. The actual results are ~xf, ty, and ~oT2. The
upper lines in the table present the results for the case where
€max and cmin are allowed to have their extended limits as

given in Eq. (31). The lower lines in the table concern the
cases where we restrict emax = Cj and €min = c2, respectively.
It is clear that by narrowing the drag ratio we restrict the
trajectories that can be accurately controlled to be closer to
the nominal trajectory.

The variations of the drag coefficient c during the con-
trolled ascent are shown in Fig. 5. Typically, the modulated
flight for ascent starts at yh with an initial drag coefficient
€ > € 2 . For high-speed exit, c decreases continuously until
exit, jy= 1. For low-speed exit, c increases to provide more
speed depletion. By using a variable drag coefficient during
ascent, the sensitivity problem encountered in bang-bang con-
trol is removed. Here the switching time is no longer a critical
element. By using variable control, even in the case where it is
not started exactly at the lowest point, it is self-corrective by
using the current state to adjust the drag and, as a conse-
quence, leads to the desired exit speed.

Table 2 presents the results from the integration of the
exact equations (12). In terms of the dimensionless variables,
Eqs. (12) become

siny

(32)
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Since small angle simplification is no longer enforced, the drag
control law has the form

]/R/H ( siny + smyf )(xf-x)
(33)

In this equation, the target exit angle is computed from

( R/H)sin2vf - 2(1 - ae*f)1agyb + k (34)

where, again, the correctional term k is evaluated using data
from the nominal trajectory. For the Earth's atmosphere, the
value R/H' — 900 is used. Since the exact equations are used,
the nominal trajectory with cx. -> c2 leads to the final values
xf = 0.33095987 and y/ = 2.41086279 deg with the density at
the bottom of the trajectory yb = 45.64071035. From Eq. (34),
it is deduced that k = 0.08987461. This value is used to
compute the target exit angle yy for any target speed x'f from
Eq. (34). Again, it can be seen in Table 2 that the control of
the exit speed is accurate.

The variable drag control law has also been tested with a
nominal trajectory obtained by using a constant average drag
coefficient ta = (^ + c2)/2 for the entire duration of the skip.
The same degree of accuracy was obtained.

Optimal Post Atmospheric Maneuver
We have seen in the previous section that at exit iy and ty

lead to an apocenter distance a2. If «2 = «2, a final impulse,
applied tangentially at this apocenter distance, is necessary for
optimal orbit insertion. The general case where « 2 ¥=a 2 is
considered, and this postatmospheric phase is optimized.

The case is simple where the target apocenter a2 > ct2 is
overshot. The final orbit is achieved by a Hohmann transfer
with ail accelerative impulse at a2 to raise the pericenter to
the level ft2 and a decelerative impulse at this center to adjust
a 2 to the correct distance a2.

In the case where the target apocenter is undershot, a2 < a2,
the first impulse Ayr is applied at the lowest point—the exit
point—to bring «2 to ct2. At this correct apocenter, a tangen-
tial and accelerative impulse Ay2 is applied for orbit insertion.
The velocity diagram at exit is shown in Fig. 6 with the 7 axis
along the position vector. In this system we have the compo-
nents

X — Vf cos ty, 7 = Vf sinyy (35)

of the exit velocity v resulting from drag-modulated fly-
through and the components

Vf cosy^ , Y — Vj siny^ (36)

of the correct velocity vf required for attaining the final
apocenter distance «2. Expressed in terms of X and Y, the

constraining relations [Eq. (22)] is written as

(37)

Let v2 be the speed at the apocenter in the final orbit. The
sum of the two impulses Ai^ and Av2 required in the post-
atmospheric maneuver is

(38)

Taking account of constraint (37), the Lagrange multiplier X
is introduced and the augmented function is minimized,

(39)

The necessary conditions for a stationary value of 7 are

91 „ dl A . (40)

Upon eliminating X between these equations and simplifying
the result, we obtain

where

!-VI «2(«2 +1)1/2

(41)

(42)

Define the components of the first impulse, which is non-
tangential

A7=7-7 (43)

From the linear equation (41), we deduce the optimal thrust
angle

A7
(44)

which can be immediately evaluated for given «2, il, and
Let

and write Eq. (41) as

(46)

Upon substituting into Eq. (37) and solving for the positive
root, the following solution is obtained:

X-

Fig. 6 Velocity diagram at exit.

Y= (47)

With this solution, the minimum characteristic velocity in
post atmospheric flight is

-f

Hence, similar to the thrust angle, the minimum cost can be
evaluated immediately in terms of «2, Ey, and yf without
having to go through intermediary steps. An elegant geometric
solution based on hodograph theory has been given by
Marchal.9
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Problem Synthesis
In this section, the authors shall prove the assertion that, as

compared to the idealized case, which is not realistic in
practice, the penalty in the fuel consumption using the present
operating mode is small since the optimal condition has been
realized in each phase.

The additional fuel consumption it computed first in terms
of the characteristic velocity 8(Ay) for a nonzero entry angle
ye, as compared to the idealized grazing entry case. The
deorbit case is considered by one impulse. By comparing Eqs.
(4) and (10) and linearizing for small ye, we have the ad-
ditional characteristic velocity

(49)

The factor K^OL^) is a function of the appcenter distance of the
initial orbit. It is large only for ̂  « 1. But, this is not the case
since aeroassisted transfer is only relevant for high initial
orbit. Hence, this additional characteristic velocity is small
since it is of the order ye

2.
The additional fuel consumption for postatmospheric

maneuver is due to the nonzero exit angle. This cannot be
avoided due to the fact that for one-passage drag control,
supercircular speed exit at zero exit angle is not possible.
8 (Ay) is evaluated for the undershoot case. For the Idealized
case, a single impulse is applied at the correct apocenter with
magnitude

(50)

On the other hand, the minimum total characteristic velocity
in postatmospheric flight for the undershoot case has been
given in Eq. (48). Taking the difference, we have

+-2M/C08Y/+1 (51)

where kv is defined in Eq. (42) and Vj and y/ are the actual
exit speed and flight-path angle resulting from the controlled
atmospheric flight.

We recall that, in atmospheric flight, a small value yf was
selected and controlled the drag to have an exit speed satisfy-
ing Eq. (22). To the order of y^2, we have

2a2
M- ~ (52)

It has been shown that this speed can be controlled accurately.
Hence, in Eq. (51), we take vf = vf and compute

(53)

Since in the undershoot case y^< y^, in the last equation, by
taking y / = Y / > we have a conservative estimate of 8 (Ay).
Then, upon substituting into Eq. (51), we have

(54)

This has the same functional form as Eq. (49), although here
have the case of a small value of «2. When a2 « 1, however, y,
is generally very small. For example, for an Earth orbit with
the entry altitude at 120 km and very low final apocenter at
380 km, we have a2 = 6758 km/6498 km = 1.04. The function
K has the value K(a2) = 6.4347 and is still acceptable for a
low exit angle.

For the overshoot case, similar analysis leads to the same
order of magnitude for 8(Ay).

Conclusions
This paper presents a complete analysis of the problem of

minimum-fuel aeroassisted transfer between coplanar ellipti-
cal orbits in the case where the orientation of the orbit is free.
The optimal pure-propulsive transfer is compared with an
idealized aeroassisted transfer. In the case where aeroassisted
transfer is fuel-saving, its practical realization is achieved in
three phases: A deorbit phase resulting in nonzero entry
angle, followed by an atmospheric passage with variable drag
control, and completed by a postatmospheric phase. The
optimal process is discussed separately for each phase, and it
is shown that the penalty in characteristic velocity, as com-
pared to the idealized aeroassisted transfer, is of second order
in the entry and exit angles. For the atmospheric phase, a drag
modulation is proposed to continuously guide the vehicle to
the required exit speed. An explicit control law for the drag
parameter is obtained in terms of the current state of the
vehicle. This control law has been tested numerically for
several values of the entry speed ranging from parabolic entry
to near-circular entry with excellent results.
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