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Overview

An explicit connection between GP regression with periodic covariance
functions and state-space models

Based on expanding the periodic covariance function into a series of
stochastic resonators

Allows scaling up GP regression with periodic covariance functions to large
data sets

Proposed method also extended to GPs quasi-periodic covariance functions
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Gaussian Process Regression

The kernel view

Given: n training examples
{(tk , yk)}, k = 1, . . . , n

yk = f (tk ) + ǫk

f (.) ∼ GP(0, k(t, t ′))

ǫk ∼ Nor(0, σ2
n)

Prior assumptions about f (e.g.,
smoothness, periodicity, etc.)
encoded in the covariance function
k(t, t ′)

Can be solved in closed form but
näıve solution is expensive: O(n3)
complexity at test time

The state-space view

Consider an m-th order SDE

df(t)

dt
= Ff(t) + Lw(t)

yk = Hf(tk ) + ǫk

where f(t) contains derivatives of
f (t) up to order m − 1 and w(t) is
the white noise process with
spectral density Qc

Model defined by F,L,Qc ,
stationary covariance P∞, and the
observation model H

Solved using Kalman filtering and
has O(nm3) time-complexity
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Covariance and Spectral Density

- Shown here: a stationary covariance function (Matérn) and its spectral density

- This equivalence enables transforming the GP into a state-space model and solve
the problem more efficiently in O(n) time
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GP Regression (the näıve way)
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GP Regression (the näıve way)
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GP Regression (via filtering and smoothing)
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GP Regression (via filtering and smoothing)
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This Paper

How to establish the GP vs state-space model equivalence when the GP
covariance function is periodic?
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Periodic Covariance Functions
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Periodic Covariance Functions

- Not amenable to the state-space transformation which requires the spectral
density to be approximated by rational functions
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State-Space Formulation

Fourier series representation

kp(τ) =

∞
∑

j=1

q2j cos(jω0τ)

Each periodic term j can be constructed as solution of a second-order ODE

(

ẋj (t)
ẏj (t)

)

=

(

0 −ω0j

ω0j 0

)(

xj(t)
yj(t)

)

with (xj (0), yj(0))
⊤ ∼ Nor(0, q2j I)

One way to determine the coefficients q2j is via projection to the cosine basis

q2j =
ω0

π

∫ +π/ω0

−π/ω0

kp(τ) cos(jω0τ)dτ

but there are other way too

Solin and Simo Särkkä (AISTATS 2014) Periodic Covariance Functions & State Space Models December 12, 2014



State-Space Formulation

The state-space model df(t)
dt

= Ff(t) + Lw(t) will have block-diagonal
matrices F, L, and P∞ with blocks being (for j = 1, . . . , J)

Fp
j =

(

0 −ω0j

ω0j 0

)

, Lp
j = I2, Pp

∞,j = q2j I2

and the measurement model matrix H in yk = Hf(tk ) + ǫk is a block-row
vector of Hp

j = (1 0). The diffusion part is zero (deterministic model).

The spectral (variance) coefficients

q2j =
2Ij(l

−2)

exp(l−2)
, for j = 1, 2, . . .

and q20 = I0(l
−2)/ exp(l−2) where Iα(z) is the modified Bessel function

Taking the first J term of the series gives an approximation and this
approximation converges uniformly to the actual covariance as J → ∞
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Approximated Covariance Functions (J=0)
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Approximated Covariance Functions (J=1)
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Approximated Covariance Functions (J=2)
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Approximated Covariance Functions (J=3)
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Quasi-Periodic Covariance Functions

The shape of the periodic effect may change with time

Modeled using a product of a truly periodic covariance function kp(t, t
′) and

another covariance function kq(t, t
′) with long characteristic length-scale

k(t, t ′) = kp(t, t
′)kq(t, t

′)
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Quasi-Periodic Covariance Functions
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Quasi-Periodic Covariances: State-Space Form

Have state-space representations for both quasi and periodic parts

Set up the state-space such as the feedback matrices of both parts commute
(i.e., FpFq = FqFp)

Properties of Kronecker product help accomplish this

The joint model for the quasi-periodic product of two covariance functions
can be written in a block-form

Fj = Fq ⊗ I2 + Iq ⊗ Fp
j ,

Lj = Lq ⊗ Lp
j ,

Qc,j = Qq
c ⊗ q2j I2,

P∞,j = Pq
∞

⊗ Pp
∞,j ,

Hj = Hq ⊗Hp
j
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Experiments: Computational Complexity
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Experiments: CO2 Concentration

Observations are CO2 concentrations across time (n = 2227)

GP covariance function

k(t, t ′) = kSE (t, t
′) + kp(t, t

′)kν=3/2(t, t
′) + kν=3/2(t, t

′)

Converted to state-space, hyperparams optimized w.r.t. marginal likelihood
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Experiments: Daily Births between 1969-1988

Observations are number of daily
births between 1969-1988
(n = 7305)

The model: Matern (ν = 7/2) for
the slow trend, Matern (ν = 3/2)
for faster variation, Quasi-periodic
(yearly) with Matern (ν = 3/2)
damping, Quasi-periodic (weekly)
with Matern (ν = 3/2) damping

Converted to state-space,
hyperparams optimized w.r.t.
marginal likelihood

Solin and Simo Särkkä (AISTATS 2014) Periodic Covariance Functions & State Space Models December 12, 2014



Conclusions

Established connections between periodic covariance functions and
state-space models

The connection allows using efficient sequential inference methods (from
state-space modeling) to solve periodic GP regression problem

Approximation error due to truncation available in closed-form
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