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Explicit Model Predictive Control and L1–Navigation Strategies for

Fixed–Wing UAV Path Tracking

Philipp Oettershagen, Amir Melzer, Stefan Leutenegger, Kostas Alexis and Roland Siegwart

Abstract— A control strategy for fixed–wing Unmanned
Aerial Vehicles is proposed and relies on the combination of
linear model predictive control laws for the attitude dynamics of
the system, along with an implementation of the L1–navigation
logic that provides attitude reference commands to achieve
precise path tracking. The employed predictive controllers
ensure the performance characteristics of the critical attitude
loops, while respecting the actuation limitations of the platform
along with safety considerations encoded as state constraints.
Being explicitly computed, these strategies are computationally
lightweight and allow for seamless integration on the onboard
avionics. Once the desired attitude response characteristics are
achieved, tuning the cascaded nonlinear L1–navigation law
becomes straightforward as lateral acceleration references can
be precisely tracked. A wide set of experiments was conducted
in order to evaluate the performance of the proposed strategies.
As shown high quality tracking results are achieved.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have already proven

their potential on a large set of civilian operations such as

search and rescue [1], crop monitoring [2], infrastructure

inspection [3], mapping [4] and more. Among all possible

types of UAVs, fixed–wing systems pose the fundamental

advantage of prolonged endurance and increased payloads

which make them the most appropriate choice for a large

subset of critical real–life applications. However, the need for

simple to deploy, easy to operate and user–friendly systems

leads to miniaturization which consequently has a significant

impact on the inherent robustness of the platforms, the

capabilities of the onboard sensorial and processing modules

and the actuator properties. Therefore, a new family of

control laws with performance and safety guarantees should

be developed in order to ensure efficiency and safe operation.

Towards addressing these challenges, this work presents

a complete strategy for fixed–wing UAV path–tracking that

relies on Model Predictive Control (MPC) [5–7] strategies

combined with the nonlinear L1–navigation guidance law.

The proposed approach respects the strict limitations on on-

board computational resources, limited sensor suite and the

need for accurate and safe navigation. Within this framework,

MPC strategies are employed to achieve precise tracking of

the inner–loops of the system and specifically pitch and bank

angle control while respecting and satisfying the actuation

limitations of the system and safety considerations encoded
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as state constraints. Relying on recent advancements in the

field, the proposed MPC is computed explicitly and therefore

allows for seamless integration on the onboard avionics

with very minimal requirements on processing power and

memory. As the utilization of MPC shows its power only

once a dynamics model of sufficient accuracy is available,

grey–box system identification methods were employed as a

preliminary step.

Fig. 1. Photos of the employed fixed–wing UAV experimental platform
during flight operations.

The designed MPC ensures accurate steering of the UAV

while respecting modeled state and input constraints. On

top of this control augmentation, an L1 nonlinear navigation

strategy [8] is deployed. This nonlinear guidance algorithm

has shown to present superior performance in guiding UAVs

along trajectories with sharply varying curvature [8]. All

proposed control laws are implemented onboard the avionics

of a small electric motorglider UAV, shown in Figure 1, along

with all the state estimation and communication functions.

Overall, a structed methodology to achieve precise reference

tracking relying on tractable control laws and a very limited

on–board sensory suite.

The remainder of this paper is structured as follows. In

Section II the system overview is presented, followed by

the description of the grey–box model and the identification

methods in Section III. The employed fixed–wing UAV

control strategy is detailed in Section IV, while evaluation

flight results are presented in Section V. Finally, conclusions

are drawn in the last Section VI.



II. SYSTEM OVERVIEW

A brief overview of the characteristics of the experimental

UAV along with those of the avionics and the properties of

the onboard estimation algorithms is given below.

A. Test Platform

All experimental tests presented in this paper have been

performed using the commercially available airframe shown

in Figures 1 and 2. The platform features a conventional

aileron, elevator and rudder control surface configuration

and an electrically driven propulsion system using a front–

mounted foldable fixed–pitch propeller. Its wingspan is

1.83m, the empty weight is 0.9kg and the fully–equipped

weight including a battery and all avionics s about 1.28kg.

The onboard avionics include multiple sensors in order

to realize an efficient state estimation framework. Accelera-

tions, angular rates, mangetometer and absolute air pressure

readings are provided by a 10–axis ADIS16448 Inertial

Measurement Unit (IMU). A u–Blox LEA–6H GPS receiver

provides global position and aircraft velocities with respect

to ground. In addition, an airspeed measuring system has

been developed for precise measurement of low airspeeds

common for small–scale UAVs. This system employs the

Sensirion SDP600 sensor and exhibits an error of less than

5% at airspeeds VT = 7m/s, while measuring airspeeds up to

ca. 28m/s (500Pa). Information of these sensors is fused as

described in Section II-B to yield the estimated state of the

aircraft.

θ ψ
φ

v

w
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u
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Fig. 2. The airframe (left) and the PX4 autopilot (right) used for
development and flight testing.

The core of the onboard avionics is the Pixhawk PX4 [9]

autopilot, an open–source and open–hardware project sup-

ported by ETH Zurich. The PX4 consists of the PX4FMU

and the PX4IO boards as depicted in Figure 2. The PX4FMU

is the main autopilot board. It features a 168MHz Cortex–

M4F Microcontroller with 192KB SRAM and 1024KB Flash

memory and runs the NUTTX real–time operating system.

PX4IO serves as the low–level input/output board and pro-

vides failsafe RC–operations. Within the framework of this

work, the baseline fixed–wing functionalities that are already

part of the PX4 open software were replaced with the

proposed model predictive controller along with improved

state–estimation capabilities. The inner MPC–based roll- and

pitch dynamics controllers are executed with a sampling

period of T MPC
s = 0.01s, while the L1–navigation loop is

executed using TL1
s = 0.05s. Logging of all state variables

and inputs is performed every T
log

s = 0.025s.

B. Onboard Estimation

The control scheme outlined within this work, relies on the

output of a custom on–board state–estimator, which utilizes

the previously described set of sensors and its working

principle is briefly summarized below. In essence, an indirect

Extended Kalman Filter (EKF) uses acceleration and rotation

rate measurements for propagation while employing static

and dynamic pressure measurements as well as GPS and

3D magnetometer measurements as updates. The filter is

an extended version of the authors’ previous work [10]

that offers robustness to GPS outages, estimates all three

wind components, and can track motions with constant

accelerations.

III. FLIGHT DYNAMICS & IDENTIFICATION

The equations of motion for fixed–wing UAVs can be de-

rived analytically from the Newton–Euler equations, with the

main task being the determination of the external forces [11].

The UAV is subject to gravitational forces, propulsion forces

and the forces resulting from aerodynamic phenomena. The

resulting expressions are highly nonlinear and coupled. How-

ever, for non–aggressive maneuvering around level flight,

linear models are valid and may be derived by assuming

small perturbations from a given equilibrium. Such linear

models typically decouple the longitudinal and lateral dy-

namics of the system and provide a framework for model–

based linear control synthesis. The linearized state equations

for the longitudinal dynamics of small fixed–wing UAVs with

a typical gliding configuration take the form [12]:

Mlonẋlon = A′lonxlon +B′lonuelev (1)

xlon = [u w q θ ]T

where u,w,q,θ correspond to the body x–axis, z–axis ve-

locities, the pitch rate and the pitch angle respectively, uelev

corresponds to the elevator deflection and

Mlon =







m 0 0 0

0 m 0 0

0 0 Iy 0

0 0 0 1






, (2)

A′lon =







Xu Xw Xq−mWe −mgcosθe

Zu Zw Zq +mUe −mgsinθe

Mu Mw Mq 0

0 0 1 0






B′lon =









Xuelev

Zuelev

Muelev

0









where m is the mass, Iy the inertia around the body y–

axis, We,θe are the trimming points of vertical velocity and

pitch angle, and the elements of Mlon,A
′
lon and B′lon form

the stability and control derivatives of the UAV longitudinal

dynamics.

Similarly, for the lateral dynamics the model takes the

following form:

Mlat ẋlat = A′latxlat +B′latuelev (3)

xlat = [v p r φ ]T

where v, p,r,φ correspond to the body y–axis velocity, the roll

and yaw rates and roll angle respectively, uail is the aileron

deflection, urud is the rudder deflection and



Mlat =







m 0 0 0

0 Ix −Ixz 0

0 −Ixz Iz 0

0 0 0 1






, (4)

A′lat =







Yv Yp +mWe Yr −mUe mgcosθe

Lv Lp Lr 0

Nv Np Nr 0

0 1 tanθe 0







, B′lat =









Yuail
Yurud

Luail
Lurud

Nuail
Nurud

0 0









where Ix the inertia around the body x–axis, Ixz the cross–

inertia term of the body x,z–axes and the elements of

Mlat ,A
′
lat and B′lat form the stability and control derivatives

of the UAV lateral dynamics. Some of these parameters

may be accurately measured or estimated using CAD tools

and simple experiments. However, especially the control and

stability derivatives relevant with aerodynamic effects are

typically hard to be estimated using only first–principles

approaches. Therefore, the aforementioned models are em-

ployed as grey–box system structures within a system iden-

tification framework that uses real flight–data to estimate the

unknown or roughly estimated parameters.

Towards high fidelity system identification, a structured

way of defining excitation signals, evaluating the quality of

recorded data, conducting frequency–domain identification

steps and evaluating the estimated models is employed. All

three uelev,uail ,urud inputs that excite the vehicle longitudinal

dynamics are manipulated using chirp signals that cover a

wide spectrum area expected to contain the UAV dominant

dynamics. Subsequently, the quality of the recorded flight

data is evaluated in the frequency–domain by checking the

coherence between the vehicle states and the corresponding

dominant inputs: data of high quality that are useful for linear

system identification are available as long as the input ui to

output y j coherence γui,y j
is sufficiently high and typically

above γui,y j
≥ 0.6.

Once the stage of flight data recording and data preparation

is completed, the frequency response of the data is computed

using the Fast Fourier Transform (FFT). The solution of

the MIMO identification problem involves determining the

model matrices A′lon,A
′
lat , Mlon,Mlat , B′lon,B

′
lat that produce

a frequency–response matrix T̂c that most closely matches

the frequency responses T obtained from the experimental

results. The optimization algorithm provides the capability to

weight the frequency response in a way that the subset that is

mostly excited from the inputs plays a more important role.

This prevents errors caused by overfocusing in nonlinearities

outside the main flight envelope. The weighted cost function

to be minimized takes the form [13]:

J =
nTF

∑
l=1

ωnω

∑
ω1

Wγ (ωi)[Wg(|T̂c(ωi)|− |T(ωi)|)
2 +Wp(∠T̂(ωi)c−∠T(ωi))

2],

Wγ (ω) = [1.58(1− exp
−γ2

ui ,y j )]2, Wg = 1.0, Wp = 0.01745, (5)

where Wγ(ωi) is the weighting function that depends on the

input–output coherence at frequency ωi, nω is the number

of frequency points, ω1 and ωnω are the lowest and highest

frequencies of the fit, nT F is the number of considered in-

put/output relations of the MIMO system and γui,y j
indicates

the coherence between input ui and output y j. Employing

TABLE I

ESTIMATED MODES OF THE LONGITUDINAL DYNAMICS

Mode Natural Frequency (rad/s) Damping Ratio

Phugoid 0.799 0.653
Short-Period Pole 1 10.3 -
Short-Period Pole 2 10.8 -

these identification methods, sufficiently precise lateral and

longitudinal models are derived as shown in Figures 3 and 4.

The trim point was around level flight and specifically Ue =
8.6m/s, We = 0.6m/s, θe = 0.045rad, ve = 0.0 (lateral velocity

trim point) pe = qe = re = 0 (attitude rates trim point). Note

that the models are validated against data not used during

the system identification process.
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Fig. 3. Longitudinal dynamics identification fidelity validation. As shown
the pitch rate q and pitch angle θ are precisely identified while for the
velocity components u,w sufficient fidelity is achieved.

Apart from the fit of the estimated responses against the

experimentally recorded data, a model used for control also

owes to be physically consistent. This may be qualitatively

evaluated based on the model eigenvalues. Tables I and II

present the dominant pole time constants and damping ratios

for the longitudinal and lateral dynamics respectively. n sum-

mary, sufficiently accurate and physically consistent models

were derived for the longitudinal and lateral dynamics of the

employed UAV. These models set the basis for model–based

control synthesis.

IV. CONTROL STRATEGY

The aforementioned identified system dynamics enable

the utilization of model–based control synthesis towards a

structured and formal way of achieving optimal responses



165 170 175 180 185 190 195
−3

−2

−1

0

1

2

Time (s)

v
,v̂

(m
/s
)

 

 

165 170 175 180 185 190 195
−4

−2

0

2

4

Time (s)

p
,p̂

(r
a
d
/s
)

 

 

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

γ v
,v̂

 

 

Nominal 0.137

Spec Freqs 0.39151

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

γ p
,p̂

 

 

Nominal 0.15055

Spec Freqs 0.66424

165 170 175 180 185 190 195
−2

−1

0

1

2

Time (s)

r,
r̂
(r
a
d
/s
)

 

 

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

γ r
,r̂

 

 

Nominal 0.14574

Spec Freqs 0.61514

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

γ φ
,φ̂

 

 

Nominal 0.15055

Spec Freqs 0.66424

165 170 175 180 185 190 195
−1

0

1

2

Time (s)

φ
,φ̂

(r
a
d
)

 

 

Fig. 4. Lateral dynamics identification fidelity validation. As shown the
attitude rates p,r and the roll angle are accurately captured while the lateral
velocity v component also presents a sufficient fit.

TABLE II

ESTIMATED MODES OF THE LATERAL DYNAMICS

Mode Natural Frequency (rad/s) Damping Ratio

Spiral 0.76 -
Dutch Roll 6.68 0.259
Roll 11.7 -

that respect the actuation limitations of the UAV and ensure

imposed state constraints encoding a safe flight envelope.

Within this work, receding horizon control strategies for

the roll and pitch dynamics are combined with a nonlinear

guidance law to form a complete efficient path–tracking

scheme.

A. Roll/Pitch MPC Loops

The UAV inner loops controllers, namely those responsible

for roll and pitch tracking and thereby also handling the angle

of attack safety constraints are particularly important. There-

fore, this work goes beyond the typical methods that mostly

rely on cascaded PID loops [11] and employs an advanced

model predictive control framework. Correspondingly, two

MPCs are computed namely for the longitudinal and lateral

UAV dynamics.

1) State and Input Constraints: One of the particularly

special properties of MPC that make it attractive for flying

vehicles is its inherent capability to account for state and

input constraints. Using input and state constraints, a safe

subset of the flight envelope may be defined. The following

constraints were specifically encoded within the framework

of this work:

[

I4×4 04×4

04×4 −I4×4

]





















q

θ
α

uelev

q

θ
α

uelev





















≤





















5rad/s
π/2rad
π/8rad
π/16
5rad/s
π/2rad

∞
π/16





















(6)

[

I3×3 03×3

03×3 −I3×3

]















p
φ

uail

p

φ
uail















≤















5rad/s
π/2rad

π
5rad/s
π/2rad
π/16















(7)

The constraint on the angle of attack is not directly in-

troduced, as the employed longitudinal dynamics model

does not contain α directly as a state. However, as α =
arctan(w/u) this constraint is introduced as a polyhedric

constraint expressed in terms of the two velocities u,w.

Figure 5 illustrates the values that the angle of attack takes

for perturbations of the vehicle body velocities around the

trim point Ue,We. Applying the constraint on α ≥ pi/8

defines a subset of this set of values that has to be avoided.

The line that separates the “safe” and unsafe “area” is

defined by w/u = tan(π/8). This polyhedric constraint is

then introduced into the convex optimization problem based

on the recent advancements in the field [14].

Fig. 5. Implementation of the angle of attack constraint as a polyhedric
constraint on the body velocities of the UAV. The upper left plot illustrates
the values of the angle of attack for different perturbations of the u,w
velocities, while the top right plot presents with red color the cases that
α ≥ pi/8. The plot on the bottom presents this constraint in 2D regarding
the velocities of the vehicle.

2) MPC Computation: Provided the discretized represen-

tations of the vehicle dynamics given in (1),(3) as well as the

constraints (6),(7) two predictive controllers are computed in

a multiparametric fashion [15–19]. Using a quadratic norm

as a metric of optimality, the predictive controller, for a

prediction horizon N, consists of computing the optimal

control sequence UN
ξ

= [uξ (0), ...,uξ (N−1)] that minimizes

the following objective:

J(yξ ,0,U
N
ξ ) = min

UN
ξ

{
N−1

∑
k=0

yT
ξ ,kQM×Myξ ,k +uT

ξ ,kRL×Luξ ,k} (8)

s.t. equation (1),(3), [(6)/(7)]



where ξ → lon, lat, QM×M � 0, RL×L � 0 are the weighting

matrices of the outputs and the manipulated variables respec-

tively. Note that for the case of lateral dynamics, the output

vector is considered to be the roll angle φ and roll rate p,

while for the case of longitudinal dynamics the output vector

is considered to be the pitch angle θ and the pitch rate q:

ylon = Clonxlon, ylon = [q θ ]T (9)

ylat = Clatxlat , ylat = [p φ ]T (10)

Clon =

[

0 0 1 0
0 0 0 1

]

, Clat =

[

0 1 0 0
0 0 0 1

]

The remaining of the system states are used to predict the

system dynamics but not used for reference tracking.

3) Explicit MPC Implementation: Although a straight-

forward implementation of such a model predictive control

strategy relies on solving a convex optimization problem

online, the fact that the available onboard processing power is

limited motivated following a different approach. As proven

in the recent years, a special property of such a receding

horizon strategy is the fact that it can be translated to an

equivalent explicit representation [20]. The control action

then takes then a piecewise affine form:

uξ (k) = Fr
ξ yξ (k)+Gr

ξ , if yξ (k) ∈Πr
ξ (11)

where Πi
ξ , ξ → lon, lat, r = 1, ...,Nr

ξ are the regions of the

receding horizon control strategy. The r–th control law is

valid if the output vector yξ (k) is contained in a convex poly-

hedral region Πr
ξ = {yξ (k) |H

r
ξ yξ (k) ≤ Kr

ξ} computed and

described in h–representation during the explicit controller

derivation [21]. The controller is equivalently translated to a

mapping between feedback gains and affine terms Fr
ξ ,G

r
ξ and

corresponding polyhedric regions Πr
ξ . This explicit controller

is equivalent to its online counterpart in the sense that for

identical state trajectories, both produce the same control ac-

tions, and therefore share the same stabilizing and optimality

properties [22]. This fact enables the seamless real–time ex-

ecution of this controller. In the framework of this work, the

real time code is described in Algorithm 1 and corresponds

to an extension of the table traversal algorithm [18, 21] that

also supports multiple inputs.

B. Cascaded L1–Navigation and Altitude Control

The L1–navigation logic [8] introduces an adaptive way

of selecting a reference point on the global desired trajectory,

and consequently generates a lateral acceleration command

using that reference point. With the corresponding symbols

noted in Figure 6, the reference point is select on the desired

path at a tunable distance L1 ahead of the vehicle and then

the lateral acceleration command is given by the following

expression:

αsre f
= 2

V 2
T

L1

sinη (12)

where η denotes the angle between the velocity vector of the

vehicle and the vector created from the UAV center of gravity

Algorithm 1: Extended Sequential Table Traversal

Data: Regions: Hr , Kr Regions feedback laws: F r, Gr , Regions
Cost Matrices: Qr , fr,gr , Number of regions: Nr , Input
Penalization Matrix: Rp, Output : y(k),Previous Optimal
Control input: uprev

Result: Explicit MPC control input u∗0(y(k))

Jmin← +∞
uopt ← uprev

for r = 1, ...,Nr do
if Hryk ≤ Kr then

Jr ← y(k)T Qry(k)+ f T
r y(k)+gr ; /* region cost */

ur← Fry(k)+Gr ; /* region control input */

if Jr < Jmin then
Jmin← Jr ;
uopt ← ur ;

else if Jr = Jmin then

if uT
r Rpur ≤ uT

optRpuopt then

Jmin ← Jr ;
uopt ← ur ;

end
end

end
end
u∗0(y(k)) = uopt ;

and the selected reference point according to the L1 distance.

As intuitively understood, the direction of the acceleration

command depends on the sign of η which essentially means

that the UAV will tend to align its velocity direction with that

of the L1 line segment. Furthermore, as shown in Figure 6,

a circular path can always be defined by the position of

the vehicle and the vector tangential to the vehicle velocity.

The reference acceleration is then equal to the centripetal

acceleration needed to track this instantaneous circular path

generated at every point in time. This fact may be verified

by setting L1 = 2Rsinη which consequently yiels to αsre f
=

2
V 2

T
L1

sinη⇒ αsre f
=

V 2
T
R
= centripetal acceleration. Therefore,

the L1 nonlinear guidance law will always produce a lateral

acceleration that will enable tracking of a circle of any

radius R. This is naturally subject to the assumption that

the lower–level loops of the system are able to follow such

a command. Therefore, efficient tuning of the L1–navigation

strategy becomes possible only once the attitude loops are

properly tuned. Once this is achieved, the acceleration com-

mand is translated to a banking angle reference according

to a linear mapping for different airspeeds of the system

φ r = f (αsre f
) which can be kinematically derived. Thorough

analysis of the performance and robustness properties of the

L1 guidance may be found in [8]. It is noted that the utilized

implementation of the L1 guidance is based on the PX4

open–source project [9].

Along with this implementation of the L1–navigation, a

slew–rate controlled proportional altitude controller which

provides references to the pitch MPC is implemented. The

pitch reference control action takes the following form:

θ r = Kz
Pσ(zr− z) (13)

where zr corresponds to the altitude reference, z is the current

estimated altitude of the UAV, σ(·) corresponds to the slew–
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Fig. 6. L1–navigation based selection of adapting reference point and
corresponding acceleration/banking angle reference command.

TABLE III

COMPUTATIONAL DEMANDS OF THE IMPLEMENTED EXPLICIT MPC.

Application(s) CPU Load RAM Flash memory

R/P (roll/pitch) MPC 3.6% 3.78KB 42.45KB
R/P MPC + L1 Navigation 4.4% 4.04KB 47.05KB
R/P PID Control 0.7% 3.78KB 26.85KB
State Estimation 18.3% 6.1KB 159.6KB
All other 39.2% 118.2KB 844.5KB

rate function and Kz
P is the tunable proportional gain.

V. FLIGHT RESULTS

The proposed control framework was implemented on the

onboard avionics taking into account its strict limitations on

memory as well as processing power. Appropriate selection

of the prediction horizon is fundamental since it has a signif-

icant influence on the controller performance, it depends on

the fidelity of the available model while at each increment

leads to considerably larger explicit MPC representations

and therefore becomes more memory demanding. Focusing

on the fast modes of the longitudinal and lateral dynamics

as shown in Tables I and II, the prediction horizons were

set to N = 6 and N = 5 respectively, a value that leads

to explicit representations realizable on–board. To provide

further insight on how lightweight the computational re-

quirements of the proposed control framework are, Table III

summarizes the computational demands of the dominant

functions running on board as well as the corresponding

numbers in case of a PID controller for the attitude dynamics.

Herein, the numbers given include CPU- and memory con-

sumption due to housekeeping tasks such as data logging. As

expected, the implemented MPC–scheme is computationally

more demanding than a standard PID scheme. However, due

to its explicit character, the overall computation demands,

even for the MPC+L1–navigation scheme, are still very low:

Less than 5% of CPU load and about 4KB of RAM is

taken by the tuned versions of the roll and pitch MPCs.

The low computational demands are especially obvious when

comparing the MPC algorithm to other onboard tasks such

as the state estimator or other housekeeping applications.

The penalization matrices of the predictive controllers

were tuned with soft penalization on the attitude rates, signif-

icant penalization of the angle and a penalization of the input

signal that leads to smooth control actions. Figures 7 and 8

illustrate the results of roll and pitch tracking respectively.

Two sets of closed–loop responses are depicted, namely for

larger and smaller penalization of the roll and pitch angles,

while the remaining parameters were identical. Note that

within these and all the other presented responses, the throttle

is set to a fixed value that in trim conditions leads to a

longitudinal velocity of approximately 9m/s.
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Fig. 7. Results of roll reference tracking for two different MPC tuning
cases, namely a more aggressive (upper responses) and one with less
penalization on the Q matrix (bottom responses). Blue color is used for
the references and red for the recorded responses.
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Fig. 8. Results of pitch reference tracking for two different MPC tuning
cases, namely a more aggressive (upper responses) and one with less
penalization on the Q matrix (bottom responses). Blue color is used for
the references and red for the recorded responses.

Favoring smoother responses, the MPCs leading to the

responses of the bottom part of the previously presented

figures were selected. Once satisfactory closed–loop roll and

pitch responses are ensured while also accounting for safety

considerations related with stall effects, the L1–navigation

strategy parameters may be tuned. The direction of tuning

was based on the desire to have a sharp response which

however does not command the vehicle to bank more than

30 degrees mostly for safety reasons and the desire to execute

such path–tracking tasks at very low speeds. An indicative

result is shown in Figure 9 where the achieved path is

compared against the reference.

Consequently, the path tracking capabilities were tested in



Fig. 9. Path–tracking response of the proposed combined MPC/L1–
navigation strategy. As shown ,accurate responses are achieved for a sharp
rectangle path. The wind conditions were 8km/h average wind with up to
18km/h wind gusts.

the case of a circular loitering reference which is a common

reference path during surveillance or communication–relay

operations. Figure 10 present the achieved results which are

sufficiently accurate despite the relatively windy conditions,

the small size of the aircraft and the short radius of the circle.
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Fig. 10. Circular–path tracking of the combined MPC and L1 control law.

Overall, the experimental studies indicate the efficiency of

the proposed combination of the nonlinear L1–guidance with

the newly introduced explicit model predictive control law

for the inner–loops of such a small fixed–wing UAV.

VI. CONCLUSIONS

A new control approach for the guidance of a small

UAV that relies on the combination of MPC approaches

responsible for the inner–loop stabilization and feedback

control, along with the nonlinear L1–navigation strategy that

is responsible for providing steering commands that can lead

to precise path tracking is presented. The MPC strategies

provide optimal responses while respecting the system input

and state constraints. Being explicitly computed, it allows

for computationally lightweight and seamless integration on

the onboard avionics. As MPC provides accurate steering,

tuning and safe manipulation of the vehicle actuators, tuning

of the L1–guidance towards precise waypoint navigation

is achieved. A set of experiments indicate the achieved

performance on all the levels of the vehicle output tracking.

REFERENCES

[1] P. Rudol and P. Doherty, “Human body detection and geolocalization
for uav search and rescue missions using color and thermal imagery,”
in Aerospace Conference, 2008 IEEE, 2008, pp. 1–8.

[2] E. R. Hunt, W. D. Hively, S. J. Fujikawa, D. S. Linden, C. S. T.
Daughtry, and G. W. McCarty, “Acquisition of nir-green-blue digital
photographs from unmanned aircraft for crop monitoring,” Remote

Sensing, vol. 2, no. 1, pp. 290–305, 2010.
[3] M. Burri, J. Nikolic, C. Hurzeler, G. Caprari, and R. Siegwart, “Aerial

service robots for visual inspection of thermal power plant boiler
systems,” in Applied Robotics for the Power Industry (CARPI), 2012

2nd International Conference on, 2012, pp. 70–75.
[4] F. Nex and F. Remondino, “Uav for 3d mapping applications: A

review,” Applied Geomatics, pp. 1–15, 2013.
[5] E. F. Camacho and C. Bordons, Model Predictive Control. Springer,

2003.
[6] K. Alexis, G. Nikolakopoulos, and A. Tzes, “Model predictive quadro-

tor control: attitude, altitude and position experimental studies,” Con-

trol Theory & Applications, IET, vol. 6, no. 12, pp. 1812–1827, 2012.
[7] C. Papachristos, K. Alexis, and A. Tzes, “Model predictive hovering–

translation control of an unmanned tri–tiltrotor,” in 2013 International

Conference on Robotics and Automation, Karlsruhe, Germany, 2013,
pp. 5405–5412.

[8] S. Park, J. Deyst, and J. P. How, “A new nonlinear guidance logic
for trajectory tracking,” in AIAA Guidance, Navigation, and Control

Conference and Exhibit, 2004, pp. 16–19.
[9] PIXHAWK Autopilot Research Project, “https://pixhawk.ethz.ch/.”

[10] S. Leutenegger and R. Siegwart, “A low-cost and fail-safe inertial
navigation system for airplanes,” in Robotics and Automation (ICRA),

2012 IEEE International Conference on, May 2012, pp. 612–618.
[11] Brian L. Stevens and Frank L. Lewis, Aircraft Control and Simulation.

Wiley Interscience, 1992.
[12] A. Dorobantu, A. Murch, B. Mettler, and G. Balas, “Frequency

domain system identification for a small, low-cost, fixed-wing uav,”
in Proceedings of the 2011 AIAA Guidance, Navigation, and Control
Conference, 2011.

[13] Mark B. Tischler, Robert K. Remple, Aircraft and Rotorcraft System

Identification: Engineering methods with Flight-Test examples. Amer-
ican Institute of Aeronautics and Astronautics (AIAA).

[14] J. Loefberg, “Yalmip : A toolbox for modeling and optimization
in MATLAB,” in Proceedings of the CACSD Conference, Taipei,
Taiwan, 2004. [Online]. Available: http://users.isy.liu.se/johanl/yalmip

[15] M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-Parametric
Toolbox 3.0,” in Proc. of the European Control Conference, Zürich,
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