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Explicit Model-Predictive Control of a PWM
Inverter With an LCL Filter
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Abstract—This paper deals with the control of pulsewidth mod-
ulation inverters connected to the grid through resonant LCL
filters. It proposes two alternative (piecewise affine) models that
account for the switched behavior of the converter. Based on these
improved models, an explicit model-predictive control scheme is
derived in order to provide a fast response, making it very suitable
for applications, such as active filtering, where a large bandwidth
is required. A state observer and a grid voltage estimator are
used in order to reduce the number of required sensors and to
eliminate noise. The control scheme relies only on filtered current
measurements and on the dc voltage.

Index Terms—Active damping, explicit model-predictive con-
trol (EMPC), Kalman filter, LCL filter, pulsewidth-modulation
(PWM) inverter.

I. INTRODUCTION

A S THE requirements for improved power quality and
reduced converter size and weight are increasing, high-

order filters are becoming a more attractive solution to connect
a converter to the grid [1]. However, the design and stabilization
of these resonant filters require some care, and the synthesis of
an effective controller is a challenging task, particularly when
a large bandwidth is required. The analysis of some classical
methods have shown that they cannot achieve stability in some
cases [2], [3].

The purely passive stabilization solution consists in intro-
ducing a damping resistor, generally in parallel to the grid
inductor [4]. This diminishes the oscillator quality factor, which
helps in stabilizing the filter; at the same time, however, it
reduces its filtering and energy efficiencies. In order to avoid
this efficiency reduction, many solutions have been proposed
to replace the dissipative damping solution by control schemes
that feature active damping [5]–[10]. Among these, the most
intuitive simply mimics the effect of a damping resistor by
appropriately acting on the inverter voltage.

Some important issues related to the control of these convert-
ers have been partially tackled in different research works.

The robustness of the controller against grid disturbances is
investigated in [11]. A close inspection of the control problem
reveals that the capability of the controller to reject grid dis-
turbance mostly depends on the accuracy of the grid voltage
measurement. On the other hand, considering the large number
of state variables and disturbances in the system, it is desirable
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to reduce the number of required sensors, which makes more
difficult the estimation of the system variables. Different solu-
tions have been proposed, based on various estimation schemes.
A voltage sensorless scheme that requires a minimum number
of transducers is proposed in [10].

Once the stability of the resonant filter is obtained, another
crucial issue for applications, such as active filtering, is the fast
tracking of the compensation current, which directly affects
the grid THD [12]. In this context, optimal control offers an
important potential to guarantee stability and also improve the
dynamic performance, particularly in difficult operating condi-
tions. Linear quadratic regulation (LQR) provides stability and
performance. Its weaknesses stem from the difficulty to account
for system constraints and from the absence of systematic
approach to tune the penalty matrices to obtain the desired
performance. A modification of the LQR scheme is proposed
in [13] to limit the inverter currents.

In model-predictive control (MPC), the constraints are in-
cluded at the controller design stage as linear inequalities in the
optimal control problem, avoiding any afterward modification
of the control scheme, which could jeopardize its performance
or stability. The limitations on the control variables (the inverter
duty cycles) are also included in the same way, which reduces
the tuning effort of the penalty matrices in the optimization
problem. Additional parameters, such as known disturbances,
are also included in the optimization to obtain an accurate
reference tracking.

In the past, MPC has only been applied to slow systems
(e.g., chemical plants) due to the large numbers of complex
computations that were required to solve the optimization prob-
lem at each sampling instant. The growth of the computational
power available and some recent research works have shown
the potential of the technique in power electronics applications.
Two different techniques must be distinguished.

A. Finite-State Predictive Control

All possible switch combinations are considered and eval-
uated at each sampling instant [14]. An attractive aspect of
this approach is that any expression that can be evaluated with
a microprocessor can be used as model and cost function.
The major drawback is the difficulty to limit the switching
frequency. A solution to minimize the switching frequency with
a similar approach has been proposed in [15] and [16].

B. MPC

The control variable is generally a duty cycle or space vector
that varies continuously between its minimum and maximum
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Fig. 1. Active front-end voltage-source inverter and its filter.

value. The drawback is that the model must generally be
linear or piecewise affine (PWA) and the cost function must be
quadratic or use one or infinite norms. Dynamic programming
is generally used to solve the associated constrained finite-time
optimal control problem. This paper deals with this technique.

In both cases, a discrete-time model is necessary. The most
common model used for the control synthesis is the classical
zero-order hold model. The main feature of this model is to
neglect the switching and to only capture the converter average
behavior. This is, most of the time, sufficient and desirable as
this can easily be used with classical controller synthesis tools.
The effect of the switching can, however, be taken into account
using a hybrid model in MPC [17]. This is interesting in some
cases, as a significant discrepancy between the average model
prediction and the actual sampled state evolution can appear
and provoke a significant variation of the closed-loop system
behavior when the filter resonance and switching frequencies
are very close [3].

This paper describes a discrete model of the inverter that
accounts precisely for the applied voltage pattern for two types
of pulsewidth-modulation (PWM) techniques. An MPC scheme
that allows stable converter operation and effective current
tracking is derived based on that model. Constraints, such as
maximum admissible current and duty-cycle saturation, are
directly taken into account at the controller design stage and
inherently satisfied by the controller algorithm. The control
scheme is extended with a state observer and a grid voltage esti-
mator, which allow for limiting the number of required sensors.
The scheme relies only on the three filtered currents and the
dc voltage measurements. Finally, simulation and experimental
results are presented for the application of the proposed control
scheme to active power filtering.

II. DISCRETE-TIME MODEL DERIVATION

In this section, the system is analyzed, and the discrete-time
control model that is necessary for the synthesis of the model-
predictive controller is derived.

The converter system is shown in Fig. 1. A two-level three-
phase converter connects an ac grid to a dc load. An LCL filter
removes the current ripple. The filter damping and bandwidth
are mainly characterized by the ratio resonance over switching
frequencies. The LC filter (that is added to the L boost inductor
to form the LCL filter) frequency response is shown in Fig. 2.
The bandwidth increases with the resonance frequency while,
at the same time, the damping factor and filter weight diminish;
hence, a tradeoff has to be found.

Fig. 2. LC filter frequency response. The filter is characterized by the ratio
resonance over switching frequency, which determines the bandwidth and
attenuation at the switching frequency.

The grid impedance which is not part of the converter is not
represented here; however, it can be accounted for in Lfg . A
common mode filter is sometimes added but it is not considered
here, as it does not directly affect the control.

A. System Continuous-Time Dynamics

By neglecting the LCL filter losses and the nonlinear behav-
ior of the circuit components (mainly pronounced for the coils),
the dynamic behavior of the overall three-phase converter sys-
tem shown in Fig. 1 is described by the following equations:

dx(t)
dt

= Ac (s(t)) x(t) + Ccug(t) + Dcil(t) (1)

with
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In these equations, ug(t), ifi(t), ifg(t), and uf (t) are space
vectors in a complex number notation, such that ifg(t) =
ifi,α(t) + jifi,β(t); s(t) is the “instantaneous” switch space
vector, and s∗(t) is its complex conjugate; ug(t) is the grid
voltage applied to the filter output; ifi is the current injected
into the filter; ifg(t) is the filtered current injected into the
grid; uf (t) is the filtering capacitor voltage; uDC is the dc-
link voltage; il is the dc-load current; Lfi is the inductance
of the filtering inductor connected to the inverter; Lfg is the
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inductance of the filtering inductor connected to the grid; Cf is
the capacitance of the filtering capacitor; and CDC is the dc-link
capacitor.

Although the LCL filter subsystem is linear, the overall con-
verter system (1) is nonlinear as the switching changes the cir-
cuit topology by connecting the dc capacitor terminals to the ac
phases. Moreover, in the absence of neutral connection, the
phases are coupled.

B. Classical Discrete Control Model

In many applications, the dc-link capacitor is relatively large,
and its dynamics is slow compared with the filter dynamics;
hence, the state variable uDC in (1) can be replaced by a time-
varying parameter, yielding a linear continuous-time system
model of the form

dx(t)
dt

= Afx(t) + Bfui(t) + Cfug(t) (2)

with ui(t) = s(t) · uDC(t) [matrices are defined by (23)]. Due
to the switching, the discrete equivalent of that continuous-time
linear model is, however, still nonlinear. This nonlinearity is
usually neglected as the PWM voltage pattern is approximated
by a zero-order hold equivalent. The PWM voltage pattern
shown in Fig. 3(a) is therefore approximated by its average
equivalent shown in Fig. 3(b). A discrete-time linear model can
thus be obtained using this approximation

xk+1 = A · xk + B0 · dk︸︷︷︸
duty cycle

·uDC,k + C0 · ug,k︸︷︷︸
gridvoltage

(3)

where only a single-phase system is considered for simplicity. k
is the sampling instant index; A = eAf ·Ts is the exact evolution
of the state variables obtained using the matrix exponential;
B0 =

∫ Ts

0 eAf ·τ · dτ · Bf and C0 =
∫ Ts

0 eAf ·τ · dτ · Cf are
obtained using a zero-order hold approximation of the effect
of the duty cycle and grid voltage on the system.

This representation is very often sufficient to synthesize a
controller. It is, however, well known that some stability issues
occur in converter systems with resonant filters, partly due to
the switching. Indeed, as the PWM modulation is nonlinear,
the zero-order hold model gives an exact representation of the
modulation only when the duty-cycle value is zero or one.

C. Discrete-Time Model With Symmetrical
PWM Approximation

An “exact” representation of the evolution of the discrete
system state over one sampling period can be derived for each
duty cycle

xk+1 = A · xk + B(dk) · dk + C0 · ug,k. (4)

B(dk) depends on the chosen duty cycle (the factor uDC,k is
omitted for simplicity). This expression can be used to obtain a
better evaluation of xk+1 when the duty cycle is in the vicinity
of the selected duty cycle D0

xk+1 = A · xk + X0 + Bp · (dk − D0) + C0 · ug,k (5)

Fig. 3. Symmetrical triangular carrier modulation. PWM voltage pattern and
its investigated control models. (a) Symmetrical PWM. (b) Zero-order hold
linear approximation. (c) PWA approximation.

where the vector X0 = B(D0) · D0 characterizes the evolu-
tion of the state due to the duty cycle D0 and where the matrix
Bp characterizes the variation of this evolution for a small
variation of the duty cycle. A linear characterization Bp can
be obtained by applying two pulses of constant width DpTs

with a height vp,k proportional to the variation of the duty cycle
around the edges of the base pulse corresponding to D0, as
shown in Fig. 3(c). The pulse height is found by imposing that
the voltage pattern surfaces are the same in Fig. 3(a) and (c);
hence,

vp,k =
dk − D0

Dp
· (uDC+ − uDC−) . (6)

The analytical derivation of matrices A, Bp, and X0, which
characterizes the improved model, is shown in Appendix B.

A duty-cycle variation will affect the voltage pattern at the
same place for the real voltage pattern and its approximation.
The smaller the Dp, the more accurate the approximation; how-
ever, the smaller the domain of validity, dk ∈ [D0,D0 + 2Dp]
of the approximation. It is necessary to use several of these
approximations to cover the full possible range of duty cycles

xk+1 = A · xk + Bp,j · dk + X0,j + C0 · ug,k

dk ∈ [Dj ,Dj + 2Dp]

j ∈
{

1, 2, . . . ,
1

2Dp

}
. (7)
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Fig. 4. Asymmetrical triangular carrier modulation. PWM voltage pattern and
proposed control model; the binary variable m allows one to select alternately
the left and right patterns. (a) Low to high transition. (b) High to low transition.
(c) Approximation k even, m = 0. (d) Approximation k odd, m = 1.

Each subsystem is affine; the overall system is hybrid PWA. By
construction, continuity is imposed between the affine models
at the boundaries

Bj · Dj + Xj = Bj+1 · Dj + Xj+1

∀j ∈
{

1, 2, . . . ,
1

2Dp
− 1

}
. (8)

In (7), the same pulsewidth Dp has been taken for all intervals.
In some cases, it is however advised to take intervals of varying
widths to reduce complexity and obtain enough accuracy where
required.

D. Discrete-Time Model With Asymmetrical
PWM Approximation

When the computation time available allows for a sampling
frequency higher than the switching frequency, the bandwidth
can be increased (roughly doubled) by using asymmetrical
(triangular carrier) PWM. As two transitions can be adjusted
on this voltage pattern, the duty cycle is changed twice per
modulation period. The sampling period is then halved, which
allows for a faster response time and the tracking of faster
references.

The main characteristics of this modulation is that a voltage
pattern with a transition from low to high-level alternates with
a voltage pattern with a transition from high to low level, as
shown in Fig. 4(c) and (d). A binary state variable is required to
characterize the voltage pattern alternance

mk = 1 − mk−1. (9)

Based on m, the voltage pattern of either Fig. 4(c) or (d) is
selected. The model derivation is similar to the model derivation
with symmetrical PWM.

E. System Model for Three-Phase Systems and
Space Vector PWM

The voltage pattern for three-phase systems is the same, even
if space vector modulation is used. For three-phase systems
without neutral wire connection, the common mode voltage has
no effect on the system; the corresponding duty cycles, how-
ever, affect the ripple waveform, and this reduces the single-
phase model accuracy when used in this situation.

III. CONTROL STRATEGY

A. MPC

In MPC, the control objectives are formulated as a cost
function to minimize over a prediction horizon while respecting
the system constraints. The evolution of the state over the pre-
diction horizon is evaluated by using the discrete-time control
model obtained in Section II, which enters the optimization
problem as a set of equality constraints.

1) Cost Function: The cost function reflects the objective,
which is to minimize the tracking error

min
dk...dk+N−1

J(xc,k) =
N∑

n=1

Qn · ‖iref,k − ifg,k+n‖1

+ Rn · ‖ug,k − dk+n−1‖1. (10)

The controller state xc,k is a parameter for the optimization,
which comprises the initial plant state xk, the reference iref,k,
and the estimated grid voltage ug,k, while the optimal sequence
of duty cycles dk, dk+1, . . . , dk+N−1 and corresponding se-
quence of predicted states xk+n are the sought results of the
optimization.

The variables have been scaled by the dc voltage udc,k in
order to obtain a system model that depends only on the duty
cycle and not on the dc voltage. This allows one to obtain fixed
boundaries in the control problem as the affine dynamics is
selected based on the duty-cycle value. A second term is added
to the cost function to limit the difference between the inverter
ac voltage and the utility grid voltage. The utility of this term
will be discussed in Section III-A3.

2) Prediction Model, Equality Constraint: The evolution of
the state is predicted over a finite horizon using the control
model (7)

xk+n =A · xk+n−1 + Bp,j · dk+n−1 + X0,j + C0 · ug,k

dk ∈ [Dj ,Dj + 2Dp]

j ∈
{

1, 2, . . . ,
1

2Dp

}
D1 =Dmin

D 1
2Dp

+1 =Dmax. (11)

As the reference is quickly changing, the prediction horizon
can be selected to be relatively short; it, however, has to be long
enough to capture the resonant filter behavior (at least two or
three sampling times in our case).
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3) Inequality Constraints: The duty cycle has to be bounded
to account for the converter limitation and prevent impossible
control sequences to be selected

Dmin ≤ dk+n ≤ Dmax. (12)

This inequality constraint limits the duty cycle and makes the
second term of the cost function (proportional to Rn) optional.
This is one of the main differences between linear quadratic
optimal control and MPC. In the first, both the tracking error
and the duty cycle must be weighted. The weight must some-
what be tuned to reflect the duty-cycle limitations and to reach
the desired performance. In MPC, the weight on the actuator
control input is replaced by boundary constraints that reflect the
real actuator capability, which considerably reduces the tuning
effort. The weight on the actuator control input is, however,
kept, as it allows for the reduction of the converter sensitivity to
the measurement noise when necessary.

4) Cost Function Based on the Envelope: The main conse-
quence of the ripple is the deterioration of the quality of the
tracking or even destabilization of the system when fed back
to classical controllers. The PWA control model predicts this
ripple, which is therefore no longer seen as a disturbance to
compensate, thus avoiding instability. The cost function (10)
features the error between the predicted discrete-time signal
which contains a small ripple and its reference which does not
contain any ripple. However, the goal here is to minimize the
error on the signal envelope while this cost function minimizes
the error on the signal envelope lifted by the actual ripple, which
slightly increases the tracking error.

The performance can be slightly improved by predicting the
intermediate values of the state between two sampling instants
and by subtracting these values to the reference. The error
signal obtained, which gives a better approximation of the error
on the current envelope, is penalized in the cost function. It has
to be noted that this approach does not change the controller
structure and that no additional measurement or control action
is taken in that case (differently from what is done with multiple
sampling [18]).

B. EMPC

The optimal control problem is completely characterized
by the cost function (10), the equality constraints (11), and
the inequality constraints (12). In explicit MPC (EMPC), this
discrete-time optimal control problem is reformulated as a
multiparametric program, as described in [19] and [20]. This
program is solved offline for all possible states, resulting in a
lookup table giving the optimal solution as a function of the
control state xc,k, which allows for a very fast execution of the
control algorithm.

As the model is PWA and as the constraints are linear
inequalities, the solution is PWA, and the state space is con-
sequently partitioned into several polyhedral regions. In each
region, the optimal solution is an affine function of the con-
troller state xc,k. For the considered application, assuming that
the state lies in region r, the optimal duty cycle dk at instant k
is obtained through a function of the form

dk = kr · xc,k + cr (13)

Fig. 5. State space is divided into eight regions delimited by seven hyper-
planes (lines in 2-D) hi, i ∈ {1 . . . 7}. Each region is associated to a control
law lp, p ∈ {1 . . . 8}. Example shown here is in 2-D; the proposed controller
is 5-D.

Fig. 6. Binary search tree example, with seven nodes corresponding to the
decision hyperplanes hi, i ∈ {1 . . . 7} leading to eight control laws lp :=
{kp, cp}, p ∈ {1 . . . 8}. The depth of shown tree is three; the proposed
controller tree depth is eight.

where kr is the feedback gain in region r and cr is a constant
term. The region to which the controller state xc,k belongs can
be determined in two ways.

1) Direct Region Membership Determination: Each region
p is defined by a set of hyperplanes {hj , j ∈ Hp}, where Hp

denotes the index set of hyperplanes delimiting the considered
polyhedron. One has to evaluate on which side of the boundary
the state is to determine if the state belongs to a given polyhe-
dral region p. Thus, membership to a region is established by
checking the condition

xc,k ∈ region p if fjxc,k ≥ 0 ∀j ∈ Hp (14a)

fjxc,k =aj · xc,k + bj . (14b)

The implementation requires the evaluation of (14b) for all
hyperplanes delimiting a region, and this procedure has to be
repeated for each region. Once the region r containing the state
is found, the search process can be interrupted, and the optimal
duty cycle is obtained using (13).

2) EMPC Implementation With Binary Search Tree: As the
hyperplanes divide the state space into regions, a more efficient
implementation of the membership test (14a) and (14b) can be
obtained using a binary search tree, thus avoiding the evaluation
for several times of the same hyperplane. At each node, the sign
of an affine function of the form (14b) is evaluated to select the
next branch. At the last leaf, the optimal solution is obtained by
computing (13). The biggest difficulty, then, actually consists in
building the binary search tree offline. Fig. 6 shows the binary
search tree associated to Fig. 5. In the shown example, the
optimal control input is obtained after computing four affine
functions and three sign evaluations.



394 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 56, NO. 2, FEBRUARY 2009

C. State Observer

In [10], the measured current is represented by the inverter
currents (ifi); then, considering only low-frequency compo-
nents and based on instantaneous power theory, the capacitor
and grid voltages are estimated. Here, separate observer and
estimator are used for the full state and grid voltage estima-
tions. It can be cheaper to measure the inverter current when
the sensor is integrated in the converter module or when the
currents are measured with shunts placed in series with the leg
bottom switches. On the other hand, the objective is to control
the filtered currents; therefore, better results can be obtained
with respect to model mismatches by directly measuring these
currents. Moreover, the requirements on the transducer are
reduced, and the noise immunity is increased if the filtered
currents are measured. Hence, in this paper, the measured
variables are the filtered currents and the dc-link voltage. As
the inverter currents and the capacitor voltages are required
for the control scheme, a model-based state observer is used
to construct an estimation of the state. The same model is used
for the explicit model-predictive controller synthesis and for the
observer which has the structure of a Kalman filter

x̂k+1 =Ax̂k + Bp,j(dk − Dj)uDC,k

+ X0,j + C0ûg,k + Lj(ifg,k − îfg,k)
dk ∈ [Dj ,Dj + 2Dp]. (15)

The computation delay is also compensated through this ob-
server. The feedback matrix Lj is obtained numerically using a
Matlab Kalman filter function.

D. Grid Voltage Estimator

The performance of the inverter is conditioned by the quality
of the grid voltage estimation, which is required to reconstruct
the state with the observer (15). The grid voltage estimation
is also required to synchronize the converter with the grid in
order to generate active or reactive power or to synchronize the
active filtering algorithm. The proposed grid-voltage-estimation
scheme is based on the comparison of the actual inverter current
and its estimated evolution using the grid voltage estimation.
The measured error between these two values is used to correct
the grid voltage estimation.

The measured error between the prediction îfg,k and the
measured value of the current ifg,k is due to the modeling
errors, the noise, and the error between the actual grid voltage
and its estimated value

εg,k = ug,k − ûg,k. (16)

If we assume the modeling errors and noise to be negligible
(it can be filtered later), then we have

îfg,k = A1x̂k−1 + Bp,j,1(dk−1 − Dj)uDC,k

+ X0,j,1 + C0,1ûg,k−1, dk ∈ [Dj ,Dj + 2Dp]
(17a)

ifg,k = A1x̂k−1 + Bp,j,1(dk−1 − Dj)uDC,k

+ X0,j,1 + C0,1ug,k−1, dk ∈ [Dj ,Dj + 2Dp]
(17b)

Fig. 7. Control algorithm block diagram.

where index 1 on the matrices indicate that only the first line is
taken. By subtracting (17a) from (17b), we obtain

ifg,k − îfg,k = C0,1(ug,k−1 − ûg,k−1). (18)

εg,k is then obtained as

εg,k =
ifg,k − îfg,k

C0,1
. (19)

The new grid voltage estimation can then be built by summing
the correction to the previous estimation

ûg,k = ûg,k−1 + εg,k. (20)

As εg,k also carries the current measurement noise, it is neces-
sary to filter the grid voltage thus obtained and to compensate
the phase shift introduced by the filtering.

E. Overall Current Controller Implementation

The complete control algorithm is shown in Fig. 7. The
analog-to-digital converters are triggered by the PWM gener-
ator. The measured variables are fed into the state observer and
grid voltage estimator. The estimated state, estimated grid volt-
age, and current reference are fed as optimization parameters
to the EMPC. The EMPC block features the binary search tree
algorithm of Section III-B2 shown in Fig. 6. The thus-obtained
duty cycles are applied to the PWM generator for the next
period.

IV. SIMULATION RESULTS

A. System Description

The proposed current-control scheme has been validated by
simulation on an active power filter system. The open-loop
frequency algorithm presented in [21] is used to predict the
harmonic load that serves as reference to the current controller.
There is a delay of one sampling period between the sampling
and the application of the new duty cycle.

The explicit model-predictive controller is synthesized using
the proposed PWA model with four duty-cycle intervals to pre-
dict the discrete-time state evolution. The prediction horizon N
is three; the weights for the cost function (10) are Qn = 100 and
Rn = 1. The number of duty-cycle intervals and the horizon
length are kept short as the complexity of the optimization and
the size of the resulting search tree directly grow with them.
Moreover, a bigger number of duty-cycle intervals or longer
horizons do not practically bring any significant advantage
for this application. The weights do not affect the controller
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Fig. 8. Simulation plot: operation as pure active filter. (a) Inverter currents.
(b) Active filter currents. (c) Grid currents. (d) Duty cycles.

performance much, as the duty cycle is already constrained by
the optimization; however, a nonzero Rn = 1 allows one to
reduce sensitivity to the noise and model mismatches.

B. Current Tracking

Some selected results are shown in Fig. 8. The nonlinear
load to be compensated is a current-mode diode rectifier which
draws 120◦ square current pulses from the grid, as shown
between t = 0 s and t = 0.025 s in Fig. 8(c). The diode rectifier
and the inverter are switched on at time zero, and the harmonic
compensation is activated at t = 0.025 s. Fig. 8(d) features the
duty cycles. It can be verified that no oscillation follows the
abrupt transitions of the current reference. The grid current is

Fig. 9. Simulation plot. Zoom on the reference and current for one phase;
the injected current follows the reference with a delay of approximately two
sampling periods.

Fig. 10. Simulation plot. Estimated grid voltage.

properly filtered except those close to the diode rectifier tran-
sitions, where a distortion remains due to the current controller
and PWM delays. A zoomed view of the tracking error is shown
in Fig. 9. The filtered current follows the reference with a delay
of approximately two sampling periods, which correspond to
the computation time and to the PWM response; the tracking of
the controller is nearly ideal. This delay cannot be eliminated;
its effect on the compensation can, however, be eliminated
at steady state by adjusting the reference appropriately, for
instance, using the closed-loop frequency algorithm described
in [21].

C. Grid Voltage Estimation

The grid voltage estimation is shown in Fig. 10. It can be seen
that it is a little bit distorted when the filtered current presents
an abrupt transient; this is due to modeling errors. The voltage
signal is filtered to eliminate the noise inherently captured by
the estimator. The filter has a zero phase lag at grid frequency.
The dynamics of the filter must be selected carefully to avoid
deteriorating the overall system stability and performance.

The high current rise at startup [nearly equal to the nominal
converter current, shown in Fig. 8(a) and (b)] is due to the
convergence time of the voltage estimation. This could be
removed by starting the estimation during the dc-link precharge
(which is not simulated here).

V. EXPERIMENTAL RESULTS

A prototype rated at 6 kV · A, 10 kHz, and 230 V has
been built and used to validate the proposed control strategy.
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Fig. 11. Experimental plots. MPC with classical linear model; the inverter
operates as a three-phase active front-end injecting three balanced sine cur-
rents onto the utility grid. Ten-kilohertz switching. Twenty-kilohertz sampling.
Asymmetrical triangular PWM modulation. Fifty-hertz grid. (a) Inverter cur-
rent. (b) Filtered currents t (in seconds).

The control algorithms are implemented in C using integer
arithmetic on a 16-b fixed-point Analog Device Blackfin DSP.

The optimal control problem is formulated and solved using
Yalmip [22] and MPT [23] toolboxes in Matlab. The binary
search tree is also built using MPT and subsequently trans-
formed into a set of C code arrays that are used by the EPMC
algorithm.

With four intervals of the duty cycle (four affine approxima-
tions over four even intervals of the duty cycle), the considered
controller (for which the results are presented in the next
sections) has 124 regions with 23 different control laws, and
the depth of the binary search tree is eight. A maximum of eight
iterations is thus required to obtain the optimal duty cycle. The
time to run the overall algorithm shown in Fig. 7 is 20 μs.

Some selected results are presented in the following sections
(circuit parameters can be found in Appendix C).

A. Operation as Sine Active Front End

1) MPC Based on Classical Average Model: As shown in
Fig. 11, a model-predictive controller is tested using asymmetri-
cal triangular PWM to generate the voltage pattern and using an
average model (that does not capture the effect of switching) to
synthesize the controller. The current controller reference is set
to zero until t = 5 ms. At t = 5 ms, a three-phase sine reference
of 10-A magnitude is applied. The controller response to this
abrupt transient is very fast and stable. The slowly damped
oscillation that follows is mostly due to modeling errors and,
particularly, a bad operation of the grid voltage estimator due to
a large parameter mismatch.

2) MPC Based on PWA Model: As shown in Fig. 12, the
proposed control scheme is tested using symmetrical triangular

Fig. 12. Experimental plots. MPC with proposed PWA model; the three-phase
IGBT inverter operates as a three-phase active front-end injecting three bal-
anced sine currents onto the utility grid. Ten-kilohertz switching and sampling.
Symmetrical triangular PWM modulation. Fifty-hertz grid. (a) Inverter current.
(b) Filtered currents t (in seconds).

PWM to generate the voltage pattern using the same parameters
as for the simulation (four different dynamics, horizon N = 3,
weights are Q = 100 and R = 1). This time, the small ringing
that follows the abrupt transient is damped more quickly. A
small distortion can be observed close to the zero crossing;
this is due to the low supply voltage (80 V) and to the
1200-V insulated-gate bipolar transistor (IGBT) high conduc-
tion losses compared with that of the low voltage. This is partly
compensated, together with the interlock time, by the control
algorithm.

The controller presents a small static error, which is again
amplified due to the reduced voltage level and which will
be compensated anyway by the voltage control. It has to be
noted that although the controller performance is very good in
transient, a control scheme in d−q coordinates will probably
perform better in steady state to remove the phase and asym-
metry errors. In this case, correction terms should be added to
the current-control scheme.

B. Operation as Active Power Filter

1) MPC Based on PWA Model: As shown in Fig. 13, the
same control scheme as in Section V-A2 is tested. These results
are in accordance with the simulation results presented in
Section IV.

2) MPC Based on PWA Model, Observer With Filtered
Current, and Capacitor Voltage Measurement: As shown in
Fig. 14, the inverter tracks the typical waveform of an active
power filter. The filtered current, filtering capacitor voltage, and
dc voltages are measured for the control; the inverter current
and the grid voltage are estimated using an observer. The steep
tracking of the current shows the performance of the hybrid
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Fig. 13. Experimental plots. MPC with proposed PWA model. (1) Inverter
current. (2)–(4) Filtered currents; the three-phase IGBT inverter operates as an
active power filter and is filtering the currents of a three-phase diode current
rectifier. Ten-kilohertz switching and sampling. Symmetrical triangular PWM
modulation. Fifty-hertz grid.

MPC controller. For these experiments, only a single leg is
tested, and there is no nonlinear load connected to the utility
grid that is emulated using the two other converter legs that
operate at a 100-kHz switching frequency to generate a sine
voltage waveform. Compared with the other experiments, there
is no ringing in that case, although the transients are more
abrupt and the ripple is larger. This is mainly due to the filtering
capacitor voltage measurement that considerably reduces the
error on the grid voltage estimation and on the observed state.
The sensitivity of the control to the system parameters and
model increases when the information available diminishes and
when the reduction of the estimation errors allows for a better
robustness of the controller. The fact that the MOSFET devices
present less distortion at low voltage and low current (closer
to ideal switches) than the IGBTs might also slightly influence
these results.

Fig. 14. Experimental plots. MPC with proposed PWA model; the capacitor
voltage is also measured for these plots, with the single-phase MOSFET in-
verter tracking the typical waveform of an active power filter. The steep tracking
of the current shows the hybrid MPC controller performance. Ten-kilohertz
switching and sampling. Symmetrical triangular PWM modulation. Fifty-hertz
grid. (a) Inverter current. (b) Filtering capacitor voltage (V, in seconds).
(c) Filtered current.

VI. CONCLUSION

The classical zero-order old model of the inverter does not
capture the switching behavior of the inverter. This might
deteriorate the tracking quality or cause stability problems to
classical controllers when the filter resonance and switching
frequencies are close. This paper has presented two alternative
models, both for symmetrical and asymmetrical PWMs, which
account accurately for the inverter voltage pattern. An explicit
model-predictive controller, which can be based on these PWA
models, is derived. The optimal control problem is explicitly
solved offline, and the controller is implemented online using a
lookup table that has the form of a binary search tree, which
allows for a very short execution time. The limitations on
the duty cycles are featured as constraints during the design
phase, which avoid tuning the weight matrices, thus reducing
the design effort.

A state observer and a grid voltage estimator are used to pro-
vide the filtered variables to the control and to limit the number
of required sensors. The measured variables are the filtered cur-
rents and the dc voltage. The grid voltage is estimated quickly
and accurately with the proposed scheme. When a very fast
dynamic behavior is required, it is, however, crucial to obtain



398 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 56, NO. 2, FEBRUARY 2009

a good estimation of the grid voltage, insensitive to the system
abrupt transients and system parameter mismatches. In this
case, the robustness of the system and grid-voltage-estimation
accuracy is greatly improved if the filtering capacitor voltages
are also measured, resulting in a better dynamic performance
and system damping, as shown experimentally.

The proposed control strategy offers very good performance
in terms of tracking. It displays a very fast response, and it is
very well suited for applications where the current reference is
not sinusoidal—e.g., for active filters—or for applications with
a weak and distorted grid. The only delay in the response is due
to the computation time and PWM response. Future research
work will focus on further reducing this delay and improving
the grid voltage estimator.

APPENDIX

A. Analytical Derivation of the Model

The autonomous evolution of the system between two sam-
pling instants separated by a time interval T (when both applied
grid and inverter voltages are zero) described by the discrete-
time equation

x(t + T ) = Φ(T )x(t) (21)

is obtained by using the following relation:

Φ(T ) = eAf ·T (22)

with

Af =

⎡
⎢⎣

0 0 − 1
Lfi

0 0 − 1
Lfg

1
Cf

− 1
Cf

0

⎤
⎥⎦

Bf =

⎡
⎣Lfi

0
0

⎤
⎦

Cf =

⎡
⎣ 0
−Lfg

0

⎤
⎦ (23)

which yields (24), which is shown at the bottom of the page.
With the value of the inductors in parallel Lr, the resonance
pulsation ωr and the system characteristic impedance Zr

Lr =
LfiLfg

Lfi + Lfg
ωr =

1√
LrCf

Zr =

√
Lr

Cf
.

The effect of a pulse of width T and of unity height on the
discrete state is described by the following:

x(t + T ) = Φ(T )x(t) + Γ(T ). (25)

Γ(T ) is obtained by integrating

Γ(T ) =

T∫
0

eAf ·τ · dτ · Bf (26)

which yields

Γ(T ) =

⎡
⎢⎣− T

Lfg+Lfi
+ Lfg

ωrLfi(Lfg+Lfi)
· sin ωrT

− T
Lfg+Lfi

− 1
ωr(Lfg+Lfi)

· sinωrT
1

ωrZrLfg
· cos ωrT

⎤
⎥⎦ . (27)

B. Symmetrical Modulation Matrices

Using the expressions derived in Appendix A, which gives
an autonomous system evolution for an arbitrary time and for
an arbitrary pulse, and applying linearity, the evolution of the
discrete state with a duty cycle D0 and a switching time of Ts

is obtained

X0 =Φ
(

2 − D0

2
Ts

)
Γ(D0Ts)D0uDC+

+
[
Φ

(
1 − D0

2
Ts

)
+ Φ

(
1 + D0

2
Ts

)]

× Γ
(

1 − D0

2

)
D0uDC−. (28)

The approximation of the variation of this evolution for a
variation of duty cycles around D0 is given by the matrix

Bp =
[
Φ

(
2 − D0

2
Ts

)
+Φ

(
1 − D0 − 2Dp

2
Ts

)]
Γ(DpTs).

(29)

C. Circuit Parameters

IGBT inverter: Lfi = 600 μH; Lfg = 550 μH; Cf =
6.8 μF; Ts = 50; 100 μs; fres = 3.6 kHz; unom = 750 V; and
utest = 80 V.

MOSFET inverter: Lfi = 330 μH; Lfg = 300 μH; Cf =
3 · 4.7 μF; Ts = 100 μs; fres = 3.38 kHz; unom = 50 V; and
utest = 50 V.

Φ(T ) =

⎡
⎣ Lr

Lfg
+ Lr

Lfi
· cos ωrT − Lr

Lfi
· (1 − cos ωrT ) − 1

ωrLfi
· sinωrT

Lr

Lfg
· (1 − cos ωrT ) Lr

Lfi
+ Lr

Lfg
· cos ωrT

1
ωrLfg

· sin ωrT

Zr · sin ωrT −Zr · sin ωrT cos ωrT

⎤
⎦ (24)
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