
Explicit Modeling of Control and Data for Improved NoC Router
Estimation

Andrew B. Kahng†‡, Bill Lin† and Siddhartha Nath‡

UC San Diego ECE† and CSE‡ Departments, La Jolla, CA 92093
abk@ucsd.edu, billlin@ece.ucsd.edu, sinath@cs.ucsd.edu

ABSTRACT
Networks-on-Chip (NoCs) are scalable fabrics for interconnection
networks used in many-core architectures. ORION2.0 is a widely
adopted NoC power and area estimation tool; however, its models
for area, power and gate count can have large errors (up to 110%
on average) versus actual implementation. In this work, we pro-
pose a new methodology that analyzes netlists of NoC routers that
have been placed and routed by commercial tools, and then performs
explicit modeling of control and data paths followed by regression
analysis to create highly accurate gate count, area and power models
for NoCs. When compared with actual implementations, our new
models have average estimation errors of no more than 9.8% across
microarchitecture and implementation parameters. We further de-
scribe modeling extensions that enable more detailed flit-level power
estimation when integrated with simulation tools such as GARNET.

Categories and Subject Descriptors
C.2 [Computer-Communications Networks]: Network Architec-
ture and Design

General Terms
Algorithms, Design, Performance

Keywords
network-on-chip, flit-level power modeling, parametric regression

1. INTRODUCTION
Networks-on-Chip (NoCs) have proven to be a highly scalable

and low-latency interconnection fabric in the era of many-core ar-
chitectures, as evidenced by in commercial chips such as the Intel
80-core [31], IBM Blue Gene [32] and Tilera TILE-Gx [33] proces-
sors. Because of their growing importance, NoC implementations
must be optimized for latency and power [7, 9, 11, 15, 20]. To aid
architects and designers in early design-space exploration, accurate
NoC power and area estimators are required. Previous approaches
to modeling are of two kinds, (1) based on templates at the archi-
tecture level, such as ORION2.0 [3], and (2) based on regression
analysis on post-P&R data, such as [2]. ORION2.0 is widely used
as a stand-alone tool as well as with full-system NoC simulators such
as GARNET [13].

Both template- and regression-based modeling approaches, how-
ever, are in need of improvement. ORION2.0 has large estimation
errors [2] for two fundamental reasons: (1) models are incomplete
because control path resources are not modeled, even though they
contribute significantly to power and area, and (2) models are not
refined using post-P&R power and area data. Kahng et al. [2] and
Jeong et al. [10] proposed non-parametric regression models to over-
come the limitations in ORION2.0; [2] further concluded that para-
metric regression can be very inaccurate. In Figure 1(a), we show
power estimation errors at 65nm in ORION2.0 and the previous re-
gression approach [2], as a function of the number of virtual chan-
nels in the router. The maximum errors are 185% and 75%. Sim-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012, June 3-7, 2012, San Francisco, California, USA.
Copyright 2012 ACM 978-1-4503-1199-1/12/06 ...$10.00.

ilarly, in Figure 1(b), we show power estimation errors at 90nm in
ORION2.0 and the previous regression approach [2] when the flit-
width is changed.

Figure 1: Poor estimations by ORION2.0 [3] and previous regression approach [2].

NetMaker vs. ORION2.0 vs. regression at (a) 65nm. (b) 90nm.

In this work, we propose a new model, ORION_NEW, which im-
proves the ORION2.0 models by explicitly modeling control and
data path resources. We perform parametric regression analysis with
post-P&R area and power data to refine ORION_NEW models such
that the estimates for area and power are highly accurate across mul-
tiple router RTLs, microarchitectures and implementation parame-
ters. We demonstrate that accurate parametric models lead to bet-
ter minimization of error in least-squares regression, and the worst-
case errors are significantly better than the worst-case errors of non-
parametric regression approaches [2]. We further describe model-
ing extensions that enable more detailed flit-level power estimation
when integrated with simulation tools such as GARNET [13].

Our main contributions are as follows.

1. We explicitly model control and data paths to create
ORION_NEW models that are highly accurate and robust
across multiple router RTLs, and across microarchitecture and
implementation parameters.

2. We demonstrate that parametric regression with accurate mod-
els can significantly reduce the worst-case error compared to
non-parametric regression approaches for NoC routers.

3. We are the first to propose a detailed, efficient and fine-grained
flit-level power estimation model that seamlessly integrates
with full-system NoC simulators.

The remainder of this paper is organized as follows. Section 2
presents related work. Section 3 describes the ORION_NEW model.
Section 4 describes our modeling methodology. Section 4.3 presents
our new flit-level power estimation model. Section 5 presents ex-
perimental results to validate and compare ORION_NEW models
with ORION2.0 and the non-parametric regression approach in [2].
Section 6 concludes and outlines future work.

2. RELATED WORK
Previous works have focused primarily on two broad modeling

paradigms: (1) architecture-level models using templates for each
router component block (input and output buffer, crossbar, switch
and VC arbiter) and (2) RTL and gate-level simulation-driven mod-
els. For the first approach, Patel et al. [4] propose a transistor count-
based analytical model for NoC power. However, their models have
large errors because they do not consider any router microarchi-
tecture parameter. ORION [7] and ORION2.0 [3] are architectural
models that use microarchitecture and technology parameters for the
router component blocks. However, from our experimental studies
as well as from [2], ORION2.0 estimates have very large errors.

The other approach is based on pre-layout (RTL or post-synthesis
gate-level) [6, 8, 5, 16] or post-layout [12, 1, 17, 14] simulations.

392

Banerjee et al. [1] report accurate power for a range of routers, but
do not present any analytical models for router power. Chan et al. [8]
develop cycle-accurate power models with reported average errors
up to 20%. Meloni et al. [14] and Lee et al. [16] perform para-
metric regression analysis on post-layout and RTL simulation re-
sults, respectively. Their models, however, are fairly coarse-grained
as they cannot explain how power dissipates in each router block
with change in load, microarchitecture or implementation parame-
ters. Kahng et al. [2] use non-parametric regression to model NoCs.

Our methodology uses accurate parametric models along with
non-negative least-squares regression analysis to provide accurate
area and power estimates, with average error of no more than 9.8%
across microarchitecture and implementation parameters. Our mod-
els calculate area and power on a per-instance basis but avoid the
overhead of slow gate-level simulations.

Furthermore, we significantly extend our models to achieve flit-
level power estimations. Ye et al. [18] and Penolazzi et al. [17]
estimate power dissipation using bit-level model, and Penolazzi et
al. [17] propose a static bit-based model to estimate Nostrum NoC
power. However, each of these models is tied to a specific router im-
plementation and cannot explain how different bit encodings affect
the power consumption in each block within the router. Our flit-level
power estimation methodology estimates the power impact for each
component block and reports accurate power numbers across differ-
ent bit encodings in flits.

3. MODEL DESCRIPTION
We now describe the ORION_NEW modeling of each component

in a modern on-chip network router. We have developed these mod-
els by analyzing post-synthesis and post-P&R netlists of two RTL
generators, NetMaker [28] from Cambridge and the Open Source
NoC router from Stanford [29]. (Our methodology is described in
detail in Section 4.) Figure 2 shows the component blocks in a router,
i.e., input buffer, switch and VC (virtual channel) arbiter, crossbar
and output buffer [11]. We model instances (or gates) in each com-
ponent block because our studies show that accurate estimations of
area and power are possible only if the instance modeling is accu-
rate. The microarchitecture parameters used are #Ports (P), #VCs
(V), #Buffers (B) and Flit-width (F).

Figure 2: Router architecture [7].

3.1 New Model Elements
The new model explicitly accounts for control and data resources

in the router. The new modeling elements are:

1. Control resources such as FIFO select and decode logic sig-
nals in the input and output buffers.

2. Tri-state crossbar model.

3. Additional input buffer resources for delay-optimized ar-
biters [11].

4. Output buffer model to store only head flits.

5. Clock frequency dependent scaling.

3.2 Crossbar (XBAR) Model
This component block is responsible for connecting input ports to

output ports so that all flit bits are transferred to output ports [19].
The ORION2.0 models for router crossbar consider two implemen-
tations, matrix [11] and multiplexer tree [3]. The multiplexer tree
is the smaller of these in terms of instance count and area and is
modeled as P×P×F multiplexers at each level of the tree. .

Modern router RTLs such as NetMaker and Stanford NoC use a
simpler and smaller crossbar implementation where each flit bit is
controlled using a tri-state buffer, which can be modeled as a 2 : 1
MUX. Hence, the total number of such MUXes required are: P×
P×F . This new model reduces the instance count by a factor of

[2log2P −1] when compared to the multiplexer tree implementation.

3.3 Switch and VC Arbiter (SWVC) Model
This block is responsible to generate control signals for the cross-

bar such that a connection is established between input buffers to
output ports [19]. ORION2.0 adds an overhead of 30% to the arbiter
by default. Our analysis indicates that this overhead is not needed
with frequency ranges 400MHz-900MHz for process nodes 45nm to
130nm. Beyond this range of frequency a derating factor must be ap-
plied, which is discussed in Section 3.7. The ORION_NEW model

for switch and virtual channel arbiter is: 9× (P× (P× (V 2 + 1)+
(V 2 − 1)). The constant factor 9 arises because six 2-input NOR
gates, two INVerters and one D-FlipFlop are used to generate one
grant signal on each path.

3.4 Input Buffer (InBUF) Model
This block holds the entire incoming payload of flits at the in-

put stage of the router for decode [19]. ORION2.0 models only the
buffer instances and does not take into account control signals which
are needed at this stage for decode such as FIFO select, buffer en-
able control signals and logic for housekeeping, such as the number
of free buffers available per VC, VC identification tag per buffer,
etc. As a result, ORION2.0 underestimates the instances at the input
stage of the router.

In our new model, we model control signals and housekeeping
logic in addition to the actual FIFO buffers. Modern routers imple-
ment the same stage VC and SW allocation to optimize delay [11],
leading to doubling of input buffer resources. Hence, the number of
FIFO buffers are 2×P×V ×B×F . The control signals for decoding

the housekeeping logic are modeled as: 180×P×V +2×P2 ×V ×
B+3×P×V ×B+5×P2 ×B+P2 +F ×P+15×P (as analyzed
from the post-synthesis and post-P&R netlists). Each constant factor
in the model denotes the number of instances per path. For example,
the 180 factor accounts for instances to generate FIFO select signals
and flags for each buffer in the P×V path. The smaller constant fac-
tors 2,3,5 account for instances for local flags in the decode logic.
The factor 15 denotes the number of buffers in each FIFO select path
of an input port.

3.5 Output Buffer (OutBUF) Model
This block holds the head flits between the switch and the channel

for a switch with output speedup [19]. ORION2.0 models the output
buffers in exactly the same way as input buffers; this is inaccurate for
modern routers that use hybrid output buffers, and leads to an over-
estimate of the instance count. The output buffers need to only store
enough flits to match the speed between the switch and the chan-
nel. At the output, these buffers are used to stage the flits between
the switch and channel when channel and switch speeds mismatch.
Instead of P×V ×B×F used in ORION2.0, output buffers are pro-
portional to P×V . There are several control signals per port and VC
associated with each buffer, which makes the overall instance count
grow as P× (80×V + 25). The constant factor 80 accounts for the
instances used to generate flow control credit signals for each VC,
while the constant factor 25 accounts for buffers and flags.

3.6 Clock and Control Logic (CLKCTRL) Model
ORION2.0 does not accurately model clock buffers and control

logic routing resources as clock frequency scales. ORION_NEW
models these resources as 2% of the sum of instances in the SWVC,
InBUF and OutBUF component blocks.

3.7 Frequency Derating Model
As frequency changes, timing constraints change. To meet setup

time at higher frequencies, buffers are inserted leading to an overall
increase in instance count in the design. ORION2.0 scaling is ag-
nostic to implementation parameters such as clock frequency. This
causes large errors in area and instance counts at higher frequencies
for component blocks such as SWVC, InBUF and OutBUF where
there are several logic signals which consume routing resources. The

393

number of instances in the crossbar does not vary much with fre-
quency because there are no critical paths. So, we can ignore the
effects of frequency on the crossbar.

To derate for frequency, we find the frequency below which the
instance counts change by less than 1%. In 65nm technology, this
is 400MHz for both NetMaker and Stanford NoC routers. We
derate instance counts based on this frequency as: ∆Instance =
∆Frequency×ConstantFactor. The constant factor is dependent on
the amount of control logic versus FIFO for each component block.
In SWVC and InBUF, the control/FIFO ≈ 1, so the constant factor
value is 1. In OutBUF, control/FIFO ≈ 0.16, and a fitted constant
factor of 0.03 is used to account for setup buffers.

4. ORION_NEW METHODOLOGY
In this section, we describe how we estimate power and area using

the two approaches described in Sections 4.1 and 4.2. We extend our
methodology to flit-level power estimation in Section 4.3. We use:

• Multiple parametrized NoC RTL generators, NetMaker [28]
from Cambridge University and the Open Source NoC from
Stanford [29] to make the ORION_NEW models robust.

• Range of values of microarchitecture parameters, #Ports (P),
#VCs (V), #Buffers (B) and Flit-width (F) and implementation
parameters such as clock frequency and technology node.

• Operational parameters for power calculation: switching ac-
tivity (TR) and static probability of 1’s in the input (SP).

• Multiple commercial tools, Synopsys DesignCompiler
(DC) [22] and Cadence RTL Compiler (RC) [21], with op-
tions to preserve module hierarchy after synthesis because we
analyze each router component block. We compare instance
counts, area and power reported by each tool to ensure that
for a given RTL these results do not vary by more than 10%.

• Cadence SOC Encounter (SOCE) [21] with die utilization of
0.75 and die aspect ratio of 1.0 to place and route the synthe-
sized router netlist.

• Synopsys PrimeTime-PX (PT-PX) [23] to run power analysis
of the post-P&R netlist, SPEF [26] and SDC [27].

• MATLAB [30] function lsqnonneg for regression analysis.

Table 1 summarizes these details.

Table 1: ORION_NEW Methodology: Tools and Parameters

Stage Tool Options

RTL
NetMaker ISLAY config

Stanford NoC default

µarch
Ports; VCs; P = {5, 6, 8, 10}; V = {2, 3, 6, 9}

BUFs; Flit-Width B = {8, 10, 15, 22}; F = {16, 24, 32, 64}

Impl
Clock Freq Freq = {400, 700, 1200, 2000} MHz

Switching Activity (TR) = {0.2, 0.4, 0.6, 0.8}
Static Prob of 1’s (SP) = {0, 0.25, 0.5, 0.75, 1.0}

Tech Nodes 45nm = OpenPDK45 from NCSU/OSU
65nm, 90nm, 130nm = TSMC GP, G, GHP resp.

Syn
Synopsys DC compile_ultra -exact_map

(v2009.06-SP2) -no_autoungroup -no_boundary_optimization

report_area -hierarchy; report_power -hierarchy

Cadence RC default synthesis flow
(vEDI09.12)

Power
Synopsys PT-PX set power_enable_analysis true

(v2009.06-SP2) set power_analysis_mode averaged

set_switching_activity -toggle_count TR

-static_probability SP -type inputs

read_sdc router.sdc; read_parasitics router.spef

Regression MATLAB lsqnonneg

Figure 3 shows the flow we use to develop ORION_NEW models
for each component block of the router. In Table 2, we summarize
the ORION_NEW instance count model of each component block.

Table 2: ORION_NEW model for Instances

Component Equation

XBAR P2F

SWVC 9(P2V 2 +P2 +PV −P)

InBUF 180PV +2PV BF +2P2V B+3PV B+5P2B+P2 +PF +15P

OutBUF 25P+80PV

CLKCTRL 0.02× (SWVC+ InBUF +OutBUF)

There are two ways to estimate NoC area and power using the
ORION_NEW models as shown in Figure 4. The manual approach
is described in Section 4.1, and the regression analysis approach is
described in Section 4.2. The benefits of each are described below.

Figure 3: High-level flow used to arrive at ORION_NEW models.

• Both the approaches have minimum estimation error when the
router RTLs are modular so that instance count and area num-
bers per component block can be calculated.

• The manual approach requires knowledge of process node
and finer implementation details such as (HP, LSTP, LOP) ×
(HVT, NVT, LVT) × (bc, wc) to correctly select a technology
library file. The regression analysis approach, on the other
hand, is agnostic of implementation details. It only depends
on a training set of data. More data points help the tool to
minimize the sum of square error.

• The manual approach leads to faster estimation since it only
involves technology library look-ups and plugging-in of li-
brary values into the ORION_NEW model. In contrast, the
regression analysis approach requires synthesis and P&R to be
performed on the router RTL for at least six data points. On
an Intel Core i3 2.4GHz processor, the runtime of the manual
approach when used with ORION2.0 code is less than 10ms,
whereas the regression analysis approach takes about 140ms,
when 64 test data points are used.

• It is extremely difficult to capture fine-grained implementation
details in ORION_NEW models, e.g., area and power contri-
bution of wires after routing, and change in coupling capaci-
tance and power after metal fill. These missing details cause
estimation errors versus actual implementation when the man-
ual approach is used. In order to reduce errors with respect to
implementation, the regression analysis approach with post-
P&R area and power is preferred.

Figure 4: High-level view of power and area estimation methodology using Manual

and Regression Analysis (LSQR) approaches.

4.1 Manual Approach to Estimate NoC Power and
Area

This approach uses ORION_NEW models along with the technol-
ogy library file of the process node in which the router is going to be
fabricated. The key ingredients of this approach are:

• Microarchitecture parameters {P, V, B and F} and implemen-
tation parameter (clock frequency).

• Cell areas, leakage, internal energy and load capacitance.

• Switching activity.

ORION_NEW simplifies design of a NoC, using only a few standard
cells. Instance count for each component block for a given set of
router microarchitecture parameters is calculated from Table 2. Cell
area is obtained from technology files. The area calculation, along
with TSMC standard-cell names in parentheses, is shown in Table 3.

394

Table 3: Area Models using Instance count

Component Logic (TSMC Cell Name) Area

XBAR MUX2 (MUX2D0) AreaMUX ×XBARinsts

SWVC
6 NOR2, 2 INV, 1 DFF

(

6AreaNOR+2AreaINV +AreaDFF
9

)

(NR2D1, INVD1, DFQD1) ×SWVCinsts

InBUF
1 AOI, 1 DFF

(

AreaAOI+AreaDFF
2

)

+ OutBUF (AOI22D1, DFQD1) ×(In+Out)BUFinsts

CLKCTRL
1 INV, 1 AOI

(

AreaAOI+AreaINV
2

)

(INVD1, AOI22D1) ×(CLKCT RL)insts

Power has three components, that is, leakage, internal and switch-
ing. Leakage power is static power when the cell is not transitioning
between logic states. It is dependent on current state of the input
pins of the cell as well as process corner, voltage and temperature.
Switching and internal power together constitute dynamic power,
which varies with operating voltage, capacitive load and frequency
of operation. Switching power is the power consumed when a load
capacitance on a net is charged and discharged; internal power is the
power dissipated inside a cell and consists of short-circuit power and
switching power of internal nodes.

In ORION_NEW, toggle rate (TR) is equal to the input switching
activity for all nets in the crossbar, arbiters and buffer control logic.
We assume that buffer cells toggle at 25% of the input switching
activity, since multiple VCs do not require buffer contents to change
in every cycle.

Leakage power calculation: For leakage power, the model uses the
weighted average of the state-dependent leakage of the cells. Equa-
tions (1)-(4) are used to calculate the leakage power of each compo-
nent block.

Pleak_XBAR = MUXleak ×XBARinsts (1)

Pleak_SWVC =

(

6NORleak +2INVleak +DFFleak

9

)

×SWVCinsts

(2)

Pleak_BUF =

(

AOIleak +DFFleak

2

)

× (In+Out)BUFinsts (3)

Pleak_CLKCT RL =

(

AOIleak + INVleak

2

)

× (CLKCT RL)insts (4)

Internal power calculation: For internal power, table look-ups in
technology library files return the internal energy of given standard
cells with load capacitance of fanout pins and slew value of ≈ 5×
FO4 delay.1 Internal energy for a pin is the minimum of the rise and
fall energies. Equations (5)-(8) are used to calculate internal power
of each component block.

Pint_XBAR = MUXint ×T R×XBARinsts (5)

Pint_SWVC = (6NORint +2INVint +DFFint) ×T R×SWVCinsts (6)

Pint_BUF = (AOIint +0.25DFFint)×T R × (In+Out)BUFinsts (7)

Pint_CLKCT RL = (AOIint + INVint)×T R× (CLKCT RL)insts (8)

Switching power calculation: For switching power, the load capac-
itance is calculated as the sum of the input capacitances of pins that
are driven by a net and the wire capacitance on the net. The wire
capacitance is approximately calculated as a constant factor times
the total pin capacitances. This constant factor is 1.4 at 65nm and is
assumed to decrease by 14% with for each successive process node
shrink. Equations (9)-(12) are used to calculate switching power of
each component block.

Psw_XBAR = XBARload ×T R×XBARinsts (9)

Psw_SWVC = SWVCload ×T R×SWVCinsts (10)

Psw_BUF = (In+Out)BUFload ×T R × (In+Out)BUFinsts (11)

Psw_CLKCT RL = (CLKCT RL)load ×T R× (CLKCT RL)insts (12)

1The FO4 delay is the delay of a minimum-sized INV and is a standard proxy for
switching speed in a given process technology. The resulting slew time values are 80−
100ps for 45nm and 65nm technologies.

Flow details: The steps below describe how total area and power
are estimated using the ORION_NEW models and equations above.

1. Choose microarchitecture parameters (P,V,B,F), clock fre-
quency and average switching activity at inputs.

2. Use models in Table 2 to calculate the instance count of each
component block of the router.

3. Use models in Table 3 to calculate the area of each router com-
ponent block. Total area is calculated as the sum of areas of
all blocks.

4. Obtain state-dependent leakage of cells from technology li-
brary files. Use Equations (1)-(4) to calculate leakage power
of each component block. Total router leakage power is cal-
culated as the sum of leakage power of all component blocks.

5. Obtain internal energy of cells from technology library files.
Use Equations (5)-(8) to calculate internal power of each com-
ponent block. Total internal power is calculated as the sum of
internal power of all component blocks.

6. Obtain input pin capacitances of cells from technology library
files. Use Equations (9)-(12) to calculate switching power of
each component block. Total switching power is calculated as
the sum of switching power of all component blocks.

7. The total power dissipated by the router is calculated as the
sum of total leakage, total internal and total switching power.

4.2 Regression Analysis Approach to Estimate
NoC Power and Area

As another approach to estimation of router area and power, we
use parametric regression to fit parameters for cell area, leakage, in-
ternal energy and load capacitance into ORION_NEW models. This
approach requires instance counts, area, and total leakage, internal
and switching power of each component block of the router from
post-P&R tools. Options are set in synthesis to preserve module hi-
erarchy and names. Constrained least-squares regression (LSQR) is
used to enforce non-negativity of coefficients (cell area, leakage, in-
ternal energy, load capacitance). We use the MATLAB [30] function
lsqnonneg for this purpose, and tool options as given in Table 1.

Flow Details: LSQR is applied to fit a model of post-P&R instance
count for each router component block. At least six data points are
needed in the training set because there are four microarchitecture
parameters and two implementation parameters (clock frequency
and toggle rate). Our parametric LSQR setup is as follows.

a1 · Instsmodel <component>+a0 = Inststool <component> (13)

InstsR
model <component> is the refined instance count of each compo-

nent block after LSQR. The refined instance count is used to fit mod-
els of post-P&R area and power as follows:

b1 · InstsR
model <component>+b0 = Areatool <component> (14)

In Equation (14), b1 is the fitting coefficient for cell area and the
coefficient b0 accounts for the routing overhead.

We model leakage, internal and switching power as:

{c5, d5, e5} · InstsR
model XBAR + {c4, d4, e4} · InstsR

model SWVC +

{c3, d3, e3} · InstsR
model InBUF + {c2, d2, e2} · InstsR

model OutBUF +

{c1, d1, e1} · Instsmodel CLKCT RL = {Pleak tool , Pint tool , Psw tool}
(15)

where coefficients {c5, · · ·,c0} are used to fit cell leakage power, and
similarly {d5, · · ·,d0} and {e5, · · ·,e0} are respectively used to fit
internal energy and load capacitance.

It is possible to skip the instance count refinement step (Equa-
tion (14)) and directly perform LSQR for area and leakage, inter-
nal and switching power using the above equations. We observe
that average error can change by 3% in either direction by omit-
ting the instance count refinement step. Note that it is necessary to
perform per-component LSQR; if LSQR is performed for the entire
router’s area or power, large errors result because multiple compo-
nents have the same parametric combination of (P,V,B,F). Failing to
separate these contributors to area or power results in large errors: at
65nm, we have experimentally observed worst-case errors of 296%

395

for power and 557% for area. Thus, it is important to preserve mod-

ule hierarchy during synthesis in the flow.2

4.3 Extension to Flit-Level Power Modeling
The dynamic power models used in ORION2.0 and

ORION_NEW do not consider bit encodings in a flit, which
can lead to significant errors in dynamic power estimation. As an
example, consider an 8-bit flit with four bits as 1. This flit can either
be 8b′11110000 or 8b′10101010. In the first encoding, there is only
one toggle per flit, whereas in the second encoding there are seven
toggles per flit. Clearly, the second flit will lead to higher dynamic
power than the first one. To model this effect, we devise a flow as
shown in Figure 5. Before using a testbench, the netlists must pass
an equivalence check using tools such as Synopsys Formality [24].
We inject different bit encodings in the input during simulation
over 10000 cycles and the resultant VCD (Value Change Dump) is
validated using a waveform analyzer such as Synopsys DVE [25]. A
satisfactory VCD is used as input to Synopsys PrimeTime-PX [23]
to obtain power values. Regression analysis is performed using
the tool-reported power values with the ORION_NEW estimates
to obtain an enhanced ORION_NEW model for flit-level power
estimation. These models may be invoked by NoC full-system
simulators such as GARNET [13] to obtain very accurate estimates.

Netlist

Equivalence Check
(Formality)

Testbench
(w/ bit transition

vectors)

Gate-Level

Simulation
(VCS/NCVERILOG)

SP&R
(DC/RC, SOCE)

Waveform Analysis
(DVE)

Power Analysis
(PT-PX)

Power Report
Regression Analysis

(LSQR)

ORION_NEW

model

ORION_NEW +

Flit-level power model GARNET gem5

Power Estimates

Router RTL

VCD
Flit-level

power

estimates

Figure 5: Methodology to enhance ORION_NEW dynamic power models with flit-

level power estimation.

5. VALIDATION AND RESULTS
We set up experiments as described in Table 1 of Section 4.

We use parameters and tools for our experiments as listed in Ta-
ble 1. We discuss the results in two parts - (1) ORION2.0 versus
ORION_NEW comparisons for area and power, and (2) impact of
results with our regression analysis approach versus the approach
used in prior work of [2]. We compare the results of our method-
ology with post-P&R instance count, power and area outcomes for
two router RTL generators, Netmaker [28] and Stanford NoC [29].

5.1 ORION2.0 versus ORION_NEW Comparisons
Since the instance count per component is at the core of the

ORION_NEW model, we compare ORION2.0 estimates of instance
(or gate) counts, as well as the ORION_NEW model estimates with
implementation (post-P&R) for each component block. Figures 6(a),
6(c) and 6(e) show the large errors in ORION2.0 in the crossbar, out-
put buffer and input buffer respectively, and Figures 6(b), 6(d) and
6(f) show the significant reduction in estimation error for these com-
ponents with ORION_NEW models. ORION2.0 and ORION_NEW
are plotted in different graphs because of the large errors in instance
counts in ORION2.0.

ORION2.0 modeling of instance count for a component does not
consider implementation parameters such as clock frequency. As a
result, the instance count does not scale when frequency is changed,
even though at higher frequencies several buffers are inserted to
meet tight setup time constraints. ORION_NEW models apply a
frequency derating factor on the instance models for component
blocks as described in Section 3.7. Figures 7(a) and 7(b) show the
incorrect estimates by ORION2.0; by contrast, the estimates from

2Use of hierarchical synthesis in general leads to lower instance count, standard-cell
area, and total power as compared with flat synthesis results. This comes at the cost of
frequency (timing slack), since flat optimization across module boundaries can some-
times achieve better timing results. For our selection of microarchitecture and im-
plementation parameters, hierarchical synthesis on average has 35% fewer instances,
48.8% less standard-cell area and 49.4% less total power – along with 8% less timing
slack – compared with flat synthesis. The runtimes for hierarchical and flat synthesis
are within 5% of each other.

(a) (b)

(c) (d)

(e) (f)

0

10000

20000

30000

40000

50000

60000

5 6 8 10

In
st

an
ce

 C
ou

nt

Ports

ORION2.0

NetMaker

Stanford

0

500

1000

1500

2000

2500

3000

3500

4000

5 6 8 10

In
st

an
ce

 C
ou

nt

Ports

NEW

NetMaker

Stanford

0

2000

4000

6000

8000

10000

12000

14000

2 3 6 9

In
st

an
ce

 c
ou

nt

VCs

ORION2.0

NetMaker

Stanford

0

1000

2000

3000

4000

5000

2 3 6 9

In
st

an
ce

 c
ou

nt

VCs

NEW

NetMaker

Stanford

0

5000

10000

15000

20000

25000

16 24 32 64

In
st

an
ce

 c
o

u
n

t

Flit-Width (bits)

ORION2.0

NetMaker

Stanford

0

5000

10000

15000

20000

25000

16 24 32 64

In
st

an
ce

 c
o

u
n

t

Flit-Width (bits)

NEW

NetMaker

Stanford

Figure 6: (a) XBAR with #Ports: ORION2.0 vs. Implementation. (b) XBAR

with #Ports: ORION_NEW vs. Implementation. (c) Output Buffer with #VCs:

ORION2.0 vs. Implementation. (d) Output Buffer with #VCs: ORION_NEW vs.

Implementation. (e) Input Buffer with Flit-Width: ORION2.0 vs. Implementation.

(f) Input Buffer with Flit-Width: ORION_NEW vs. Implementation.

ORION_NEW are very close to actual implementation for output
and input buffer component blocks respectively.

0

500

1000

1500

2000

2500

3000

400 700 1200 2000

In
st

a
n

ce
 c

o
u

n
t

Clk Freq (MHz)

ORION2.0

NEW

NetMaker

Stanford

0

5000

10000

15000

20000

400 700 1200 2000

In
st

a
n

ce
 c

o
u

n
t

Clk Freq (MHz)

ORION2.0

NEW

NetMaker

Stanford

(a) (b)

Figure 7: (a) Output buffer with Clock Frequency: ORION2.0 vs. ORION_NEW.

(b) Input buffer with Clock Frequency: ORION2.0 vs. ORION_NEW.

Component

Avg Error:

#Instances

Max Error:

#Instances

Avg Error: Total

Area

Max Error: Total

Area

 2.0 NEW 2.0 NEW 2.0 NEW 2.0 NEW

XBAR 86.10% 2.10% 93.10% 3.00% 86.20% 0.90% 93.20% 1.80%

SWVC 12.30% 12.30% 35.40% 35.40% 15.90% 20.80% 39.10% 66.80%

InBUF 270.70% 8.00% 417.30% 19.30% 134.40% 6.50% 199.40% 20.20%

OutBUF 69.00% 13.60% 80.60% 27.80% 74.70% 24.80% 86.40% 60.10%

Overall 109.50% 8.80% 156.60% 21.40% 77.80% 13.30% 104.50% 37.20%

Figure 8: Instance and Area error comparison of ORION2.0 vs. ORION_NEW.

Error% = ABS((TOOL - MODEL) / MODEL * 100).

Table 8 summarizes the error in estimates of ORION2.0 and
ORION_NEW when compared with NetMaker and Stanford NoC
router post-P&R area. Higher values of error among the two mod-
els are highlighted in red. Figures 9(a) and 9(b) plot the estimation
errors in power and area respectively at 45nm and 65nm technol-
ogy nodes after applying the regression fitting approach described
in Section 4.2. We see that ORION_NEW estimates are very close
to implementation (average error of 9.8% in estimating NetMaker
power at 45nm) and are robust across multiple microarchitecture and
implementation parameters as well as router RTLs.

Next, we analyze the impact of flit-level power modeling as de-
scribed in Section 4.3. To capture the effect of running simula-
tions with input vectors having different bit encodings (shown in
Figure 5), we use options in Synopsys PrimeTime-PX [23] to vary
toggle rate and bit encodings in the input. We run simulations using
four different toggle rates (0.2,0.4,0.6,0.8) and four different en-
codings of 1’s in 32-bit input flits, and observe that leakage power is
not dependent on bit encodings (changes by less than 2%). However,
dynamic power varies by up to 30% (on average) depending on bit
encodings in each flit. ORION2.0 models are incomplete because
they consider only the flit arrival rates in the dynamic power estima-
tion models. In Figure 10 we compare error in dynamic power esti-
mations in ORION2.0, only ORION_NEW, and ORION_NEW with
flit-level power models. We observe that by using flit-level power
models, dynamic power estimations can be within 12% on average.

396

(a)

(b)

0%

20%

40%

60%

80%

100%

NEW 2.0 NEW 2.0 NEW 2.0 NEW 2.0

45nm 65nm 45nm 65nm

Stanford NoC NetMaker

Avg

Max

Min

0%

20%

40%

60%

80%

100%

NEW 2.0 NEW 2.0 NEW 2.0 NEW 2.0

45nm 65nm 45nm 65nm

Stanford NoC NetMaker

Avg

Max

Min

Figure 9: ORION_NEW with regression fit vs. ORION2.0: (a) Power estimation

error. (b) Area estimation error.

0%

20%

40%

60%

80%

Flit-Level NEW 2.0 Flit-Level NEW 2.0

Stanford NoC NetMaker

Avg

Max

Min

Figure 10: Comparison of dynamic power estimation error using (1) flit-level

power model and ORION_NEW, (2) only ORION_NEW, and (3) ORION2.0.

We use these enhanced models (i.e., ORION_NEW with flit-level
power models) in the full-system NoC simulator, GARNET [13].
We run simulations with synthetic uniform-random traffic for 10000
cycles and observe the difference in power estimates with the en-
hanced models and the default ORION2.0 models.

5.2 Impact of our regression analysis approach
In Section 4.2, we describe our parametric regression analysis

approach using the ORION_NEW models. As seen from the re-
sults in Section 5.1, the ORION_NEW models are accurate across
microarchitecture and implementation parameters because they ex-
plicitly model control and data path elements. With these accurate
models, regression analysis can minimize errors and generate ac-
curate fitting coefficients. The previous parametric regression ap-
proach [2] reports large errors because underlying ORION2.0 mod-
els do not model control path elements. The non-parametric regres-
sion approach of [2] using MARS (Multi-variate Adaptive Regres-
sion Splines) achieves reduced average power modeling errors of
5.82% at 65nm and 5.65% at 90nm, and reduced average area errors
of 5.41% at 65nm and 5.01% at 90nm. In our work, we use para-
metric regression analysis but with accurate ORION_NEW models.
Our average errors are similar to [2]; however, our maximum error
for power (resp. area) is reduced by 58.89% (resp. 51%) at 65nm. At
90nm the reduction of maximum power (resp. area) error is 67.77%
(resp. 53.38%). The reduction of maximum estimation error is sig-
nificant because designers and architects of NoC care about worst-
case accuracy.

6. CONCLUSIONS AND FUTURE WORK
Accurate modeling for NoC area and power estimation is critical

to successful early design-space exploration in the era of many-core
computing. ORION2.0, while very popular, has large errors ver-
sus actual implementation because it does not model control path
resources. In this work, we propose ORION_NEW models that ex-
plicitly account for control and data path resources; we further re-
fine the resulting area and power models by performing parametric
regression analysis on post-P&R data. We are also the first to pro-
pose a detailed flit-level power estimation model that can seamlessly

integrate with full-system NoC simulators such as GARNET. We
validate robustness of our models across multiple router RTLs, and
across microarchitecture and implementation parameters, and show
that the ORION_NEW models are highly accurate with average error
≤ 9.8%. We also demonstrate that accurate models and parametric
regression can reduce the worst-case estimation errors by more than
50% as compared to previous non-parametric regression models for
NoC routers. We plan to extend our work to more accurately model
link power by incorporating link signaling elements such as differ-
ential signaling, scrambling, serdes, equalization and 3D routing.

7. REFERENCES
[1] A. Banerjee, R. Mullins and S. Moore, “A power and energy exploration of

network-on-chip architecture”, Proc. NOCS, 2007, pp. 163-172.

[2] A. B. Kahng, B. Lin and K. Samadi, “Improved on-chip router analytical power
and area modeling” Proc. ASPDAC, 2010, pp. 241-246.

[3] A. B. Kahng, B. Li, L.-S. Peh and K. Samadi, “ORION 2.0: A fast and accurate
NoC power and area model for early-stage design space exploration”, Proc.

DATE, 2009, pp. 423-428.

[4] C. S. Patel, S. M. Chai, S. Yalamanchili and D. E. Schimmel, “Power
constrained design of multiprocessor interconnection networks”, Proc. IEEE

ICCD, 1997, pp. 408-416.

[5] G. Guindani, C. Reinbrecht, T. Raupp, N. Calazans and F. G. Moraes, “NoC
power estimation at the RTL abstraction level”, Proc. IEEE ASVLSI, 2008, pp.
475-478.

[6] G. Palermo and C. Silvano, “PIRATE: A framework for power/performance
exploration of network-on-chip architectures”, Proc. PATMOS, 2004, pp.
521-531.

[7] H.-S. Wang, L.-S. Peh and S. Malik, “Orion: A power-performance simulator
for interconnection networks”, Proc. MICRO, 2002, pp. 294-305.

[8] J. Chan and S. Parameswaran, “NoCEE: Energy macro-model extraction
methodology for network-on-chip routers”, Proc. IEEE ICCAD, 2005, pp.
254-259.

[9] K. Chang, J. Shen and T. Chen, “A low-power crossroad switch architecture and
its core placement for network-on-chip”, Proc. DATE, 2005, pp. 375-380.

[10] K. Jeong, A. B. Kahng, B. Lin and K. Samadi, “Accurate machine
learning-based on-chip router modeling”, IEEE ESL 2(3), 2010, pp. 62-66.

[11] L.-S. Peh, “Flow control and micro-architectural mechanisms for extending the
performance of interconnection networks” PhD Thesis, Stanford University,
2001.

[12] N. Banerjee, P. Vellanki and K. S. Chatha, “A power and performance model for
network-on-chip architectures”, Proc. DATE, 2004, pp. 1250-1255.

[13] N. Agarwal, T. Krishna, L.-S. Peh and N. K. Jha, “GARNET: A detailed on-chip
network model inside a full-system simulator”, Proc. IEEE ISPASS, 2009, pp.
33-42.

[14] P. Meloni, I. Loi, F. Angiolini, S. Carta, M. Barbaro, L. Raffo and L. Benini,
“Area and power modeling for network-on-chip with layout awareness”, Proc.

IEEE VLSI Design, 2007, pp. 1-12.

[15] R. Mullins, A. West and S. Moore, “The design and implementation of a
low-latency on-chip network”, Proc. ASPDAC, 2006, pp. 164-169.

[16] S. E. Lee and N. Bagherzadeh, “A high level power model for network-on-chip
(NoC) router”, Integration, the VLSI journal 35(6), 2009, pp. 1-7.

[17] S. Penolazzi and A. Jantsch, “A high level power model for the Nostrum NoC”,
Proc. Digital System Design, 2006, pp. 673-676.

[18] T. T. Ye, G. de Micheli and L. Benini, “Analysis of power consumption on
switch fabrics in network routers”, Proc. DAC, 2002, pp. 524-529.

[19] W. J. Dally and B. Towles, Principles and practices of interconnection

networks, Morgan Kaufmann, 2004.

[20] X. Chen and L.-S. Peh, “Leakage power modeling and optimization in
interconnection networks”, Proc. IEEE ISLPED, 2003, pp. 90-95.

[21] Cadence Encounter RTL Compiler User Guide.
http://www.cadence.com/products/ld/rtl_compiler/pages/default.aspx

[22] Synopsys Design Compiler User Guide.
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DCUltra/

pages/default.aspx

[23] Synopsys PrimeTime User Guide.
http://www.synopsys.com/Tools/Implementation/SignOff/PrimeTime/

pages/default.aspx

[24] Synopsys Formality User Guide.
http://www.synopsys.com/tools/verification/formalequivalence/

pages/formality.aspx

[25] Synopsys VCS and DVE User Guide.
http://www.synopsys.com/tools/verification/functionalverification/

pages/vcs.aspx

[26] Standard Parasitic Exchange Format.
http://www.edaboard.com/thread37705.html

[27] SDC User’s Guide. http://www.actel.com/documents/SDC_AN.pdf

[28] Netmaker. http://www-dyn.cl.cam.ac.uk/∼rdm34/wiki

[29] Stanford NoC. https://nocs.stanford.edu/cgi-bin/trac.cgi

[30] MATLAB. http://www.mathworks.com/

[31] Intel 80-core Report. http://techresearch.intel.com/ProjectDetails.aspx?Id=151

[32] IBM Blue Gene processor. http://www.research.ibm.com/journal/rd49-23.html

[33] Tilera TILE-Gx processor. http://www.tilera.com/products

397

