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Explicit MPC for LPV Systems:
Stability and Optimality

Thomas Besselmann, Johan Lofberg and Manfred Mditow, IEEE

Abstract—This paper considers high-speed control of con- field of process control. This is mainly due to its flexibility

strained linear parameter-varying systems using model préictive
control. Existing model predictive control schemes for cotrol of

constrained linear parameter-varying systems typically equire
the solution of a semi-definite program at each sampling insince.
Recently, variants of explicit model predictive control wee
proposed for linear parameter-varying systems with polytgic
representation, decreasing the online computational effd by

orders of magnitude. Depending on the mathematical structre of
the underlying system, the constrained finite-time optimakontrol

problem can be solved optimally, or close-to-optimal soluibns
can be computed. Constraint satisfaction, recursive feaility and

asymptotic stability can be guaranteed a-priori by an apprgriate
selection of the terminal state constraints and terminal cst. The
paper at hand gathers previous developments and provides ne
material such as a proof for the optimality of the solution, @, in

the case of close-to-optimal solutions, a procedure to detaine

a bound on the suboptimality of the solution.

Index Terms—Explicit model predictive control, linear
parameter-varying systems, constrained control, optimakontrol,
dynamic programming.

I. INTRODUCTION

INEAR Parameter-Varying (LPV) systems are an im:
portant system class, whose dynamics depend linear
on the state and input of the system, but also on so

scheduling parameter. Hence an LPV system descrifaasity
of linear systems. The LPV paradigm states thatanoriori
information about the scheduling parameter values is @vizi)

but that the parameter can be measured or estimated onl
The interest in LPV systems is motivated by their use i

gain-scheduling control techniques, and by the possibitt

embed nonlinear systems into the LPV framework by cover

nonlinearities within the scheduling parameter, [1]. Hfere

the LPV framework enables, to some extent, the application
linear control methods to nonlinear systems, while praxgdi
rigorous statements on stability and performance of theede

loop system, [2], [3].

Model Predictive Control (MPC) is a popular contro

method both in theory and in practice, [4], [5].

S
a

and to the ability to take constraints on the input and/desta
directly into account.

The main drawback of MPC is, in general, the compu-
tational effort required to solve the constrained finitedi
optimal control (CFTOC) problem at each sampling instance.
This effort can prevent the application of MPC to system#iwit
a high sampling rate, or at least makes such an application
expensive, since the necessary computational equipment ha
to be provided.

A remedy for this problem was proposed in formexdplicit
MPC, an alternative way to solve the underlying CFTOC
problem. Explicit MPC is based on parametric programming,
which allows to solve linear and quadratic programs for an
entire set of parameters, [6]. Instead of solving the CFTOC
problem repeatedly online, the optimal inputs to the system
are precomputed as a piece-wise affine functions of the state
and stored in a look-up table. Online only the look-up table
has to be evaluated, which allows the application of MPC to
systems with sampling rates in the range of microseconds,
[7], [8]. Efficient algorithms for the computation of explic
lutions to the CFTOC problem were developed for linear

S
s%stems, [9], for hybrid systems, [10] and for uncertairdin

rrs1ystems, [11]. Recently, three variants of explicit MPC aver

proposed also for LPV systems with polytopic represemntatio
[12]-[14], all handling different assumptions on the LPV
n‘YeStem at hand. The contribution of this paper is to deliver
consolidated treatment of the topic and to complement the
Broposed methods by a-priori stability guarantees, a piaof

.the optimality of an affine input parametrization for the eas

constant input matrix, and a procedure to determine bsund

%n the suboptimality in the case of a varying input matrix.

This publication is structured as follows. Firstly the con-
sidered problem is stated. In Section lll, the special cdse o
constant input matrices is elaborated. Section IV tackies t

fnore general case of a varying input matrix. Guarantees for
In MPC th((glosed—loop stability under the proposed methods are sisal

dn Section V. Afterwards numerical examples are presented,

control inputs are computed by repeatedly solving optimiz s
P P y rep y g op to demonstrate the application of the proposed methods.

tion problems which incorporate finite-horizgoredictions
based on a discrete-tinraodelof the system. MPC is among
the most widely applied control methods, especially in the
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We consider discrete-time LPV systems of polytopic repre-
sentation, which are defined by the state-update equation

Tht1 = A(@k)xk + B(@k)uk (1a)
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with appropriate dimensions, and whepedenotes a polyhedral
ne ng norm, usually the 1-norm or theo-norm. Polyhedral norms

A(br) = Z Al j, B(6y) = Z B0 ; , (1b) enable a parametric solution to the stated problem using dy-
j=1 j=1 namic programming. Quadratic cost functions are not ptessib

and since our procedure relies on epigraph reformulationschvhi
ng would render the original problem a quadratically consedi
0 € ©: =<0, € R’ Z Or; =1, . (1c) parametric quadratic program, for which no efficient saluti
j=1 techniques are available.

The discrete time is denoted by € Z, while the variables N @ closed-loop MPC approach, one assumes that each
2 € R, uy, € R™ and 6y, € R’ denote the state, controIfUtU_re control actionuy,, i = 1,.. .,N—_l, is not determined
input and time-varying scheduling parameter, respegtidéie until x4 ande_kﬂ- are available, [17]..S|nce the fut.ure values
system matricest: R — R X" and B: R —s R X7 of the scheduling param(_eters are st!ll _unknown, it has to be
are known to lie in polytopes, wherd; € Rm=xn: B, ¢ ensured that the constraints are satisfied for QII posé‘!ple

R %" correspond to thgth vertex of the parametersimplexMoreover’ the worst-case cost should be considered in order

©. This polytopic description is a common assumption in tH@ assure that the actual cost function will be less or equal t
LPV framework, see e.g. [3]. the computed one, no matter how the scheduling parameters

Furthermore, the system is constraineg,c X anduy, ¢ evolve. The optimization problem to solve in a closed-loop

U. The constraint setX andU are assumed to be polytopes'vIPC approach is thus

including the origin in its interior, w(zg, O0k) =
X:={zeR"™ | B,z <1}, U:={u e R™ | B,u <1}, argmin max min --- max min J(wy, Tg; 2k, 0k) (58)
@) o Opy1 H1 Okt N 1HN -1

st Vie{0,...,N—1}

with E,., E, being real matrices of suitable dimensions.
Tptit1 = AOk+i)Thri + BOkri) i (Thtis Oti)

Remark 1:We restrict ourselves to separate constraints on

the state and inputs in (2) solely for ease of notation. It is (5b)
straight-forward to modify the presented algorithms insthi fhi (Thri, Opri) €U VT € OV (5¢)
paper to the case of mixed constraints, fez + E,u < 1. tron € Xp VT, e ON-1 (5d)
It is assumed that the LPV paradigm holds, i.e. that the Thes €X YTz e OV (5€)

current scheduling parameter is known, while future values
Ok+i € O, (5f)

of the scheduling parameter are unknown. For the control
problem to make sense, it is further assumed that the LR\th the polytopic terminal state constrairis € R,
system (1) is controllable (and observable) forfalle ©, see
[15], [16].
For the described class of systems we want to compute an I1l. EXPLICIT MPCFORLPV-A SYSTEMS
explicit parameter-dependent state-feedback contrgl law
In this section we restrict ourselves to LPV-A systems,

up = w(xg, 0r), 3) . ) . ) ;

k= pk, Or) 3) linear discrete-time systems with a parameter-varyingesta
which makes use of knowledge of the current schedulingansition matrix. In the following, we will refer to (1) as
parameterf,. In order to compute this control law (3)LPV-A system, if the input matrix is constant, i.e., i; =

within a Model Predictive Control scheme, a cost funcB Vj € {1,...,ny}. LPV-A systems thus possess the state-
tion based on finite-horizon predictions is to be minimizedipdate equation,

These predictions over a horizon of lengthdepend on the ne

unknown sequence of future scheduling paramefers:= Tyl = ZAJ'G’WI’“ + Buy, . (6)
{Oks1,.. ., 0kin_1} € Ox---xO =: @V~ and the sequence =

of control lawswy := {uo, p1,...,un—1}. Following the

The reason for considering LPV-A systems separately is that
they allow for a simpler computation of the state feedback
ontrol laws (3), and, as will be shown later, the considered

receding horizon controktrategy, only the first control law
o = p(zk, 0;) in this sequence is applied to the real syste
whereas the control lawsp, ..., ux—1} are only used for

predictions. The control objective is to stabilize the LP\?'OS{Ed_IOOp MPC problem can be solved to optimality.

system (1) to the origin. According to standard MPC, our cost Here we propose dynamic progrqmmingﬁDP) procedure
function is defined as to solve (5), [18]. The DP procedure is started at the prixgict

horizon N with
J(7mn, Ty g, O) =

N1 IN(@rin) = |Pekynllp, Xy :=Xr. ()
IPzrsnllp + D 1Qzksillp + [ Rupillp (4)  Then we iterate backwards in time, with the iteration index
=0 i decreasing fromV — 1 to 1. At each iteration of the dynamic

where P,Q and R are real, full-column rank matrices ofprogramming procedure, the parametric optimization mobl
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st Tppit1 = A(Ok+i)Thri + Bpi(Trri, Ok yi),  (10b)

T (@rsi) = |Q@rilly [ Rpti(Trtis Ouvi)llp + i1 (Thtivn)
+ maxmin || Rpss(@eis O llp + s (wrsi1)  (88) S ti(@hti, Os)  VOiis €6, (10c)
Orti i wi(Tktiy Opti) EU VO €O, (10d)

St xptriv1 = A(Okri)Teri + Bui(Teyi, Opti),  (8b) Thriv1 € Xjp1 VOpy; €O, (10e)
pi(Thri, Opri) €U VO €0, (8c) Ty € X, (10f)
Tppit1 € Xjr1 VOpy; € O, (8d) Ops €0O. (109)
Th+i € X, (8e) The constraints (10c) - (10e) describe a polyhedron in the

Okti €O, (8f) space spanned by;,t; and z;,;.;. Hence by inserting the

is solved. The seX;, which denotes the polytopic set of stategtate update equation (6), the optimization problem can be

for which (8) is feasible at iteratiof) describes the constraints”’ written as
(8d) on the successor state at the subsequent itetiationThe JH (wpgi) =1 Qrillp + max min t; (e, 0rpi)  (11Q)

constraint (8e) on the parameter of the parametric optiioiza +i {pisti}
problem ensures the satisfaction of the state constrain(®)i Hi(Zryis Orgi)
. S o s.t. O (11b)

For the parametric optimization problem at hand it is not a ti(Tptiy Orti)
constraint on the optimization variable, but determinesgét o
of states where a solution is wanted. <c—C, ZA OprijTiri | VOpyi €O

Note that we are not interested in staigs;, and associated J=1
control lawsy; (x4, Ox+:), which are feasible for som#, ; Tpyi € X, (11c)
(a nonconvex set), but in stateg,,, WhICh are feasible foall 04si €O, (11d)
Or+i € © (a convex set). The feasible states are thus robustly _ _ _
feasible with respect t6; ;. with C¢, Cy, andc being matrices and a vector of appropriate

dimensions describing the hyperplanes of this polyhedron.
When solving the optimization problem (11) parametrically
we are only interested in regions which are full-dimensiona
with respect to the statey,.;, i.e. where the constraints (11c)
are inactive. Thus the set of active constraints (in the¥alhg

(i) The set of feasible state¥; is a polytope inR", and denoted by the subscrig) in each region will be a subset of

X; is partitioned into polytopic critical regions. the constraints (11b) and one can conclude on the structure o
(i) The optimal value function/; (xx;) is continuous, con- the optimization variables

vex and piecewise affine oveX;, and affine in each 9
critical region. |:/%(xk+za k-H)

Theorem 3.1 (Solution properties of the DP iterations):
Consider optimization problem (8). The following statertsen
hold:

(i) The optimal solution pu} (x4, 0k4:) iS @ continuous Ik“’e’““)
piecewise affine function of the staig,; and an affine
function' of the scheduling parametd,;, i.e. of the Cuta) (CA —Cyn ZA Okti,j Thti
form j=1
ne
1 (i Oks) = Y Ok 15 (Th ) ) = Z Oitij ( utA)  (ca— CwaAijkJri))
Jj=1
w?th u;‘yi(xkﬁ) being continuous and polyhedral piece- _. Z9k+u [ .” 1)} . (12)
wise affine overX;. tij(Thti)

Consequently, the optimization variableg(xy4;, 0x+;) and
(g+i,0k+:) depend affinely ondy,;. We continue with

e remaining properties of Theorem 3.1. Inserting the tinpu
parametrization (12) in (11) (and recalling that; andt; ;
are parameter-independent) yields

Proof: For the time being assume that the 3&t , is
a polyhedron and the optimal cost function of the prewo%1
DP iteration J7 , is a continuous, convex and polyhedra
piecewise affine function. Introducing the epigraph vdaab
t;, an epigraph reformulation is applied to obtain

I (@p4i) =[1Qkillp + maX {[I}lln} ti(@htis Op)  (10Q) TS (2hri) = Qurillp + ( mlfl }maxz Orti,jti i (Thti)
isti Mi,jyti, g k+’b =1

(13a)

1Sinced;,; € ©, any affine function can be written in the linear form (9)
by multiplying the constant term WitE}Lil Ot ;-
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2 . .
st S OryiiCu |:/Zz]((§::z)):| in the final DP step becomes
J=1 " ' J*(z) = min t(zx) (17a)
no {o,t}
: ;GHM (7 Colys) e €6, (13D st Curlpo(z), t(zk)]" <= Cozp, (17b)
Tpri € X, (13c) which is a standard parametric linear program with respect

(13d) to the uncontrolled successor state. The explicit soluisoa
piecewise affine control lawy, = u*(zx), which is stored in
The constraints (13b) are satisfied if and only if they ar® look-up table, [9]. Online, all we have to do is to compute
satisfied at the vertices of the parameter simplex. Morgeovete uncontrolled successor stajg which is completely deter-
the maximum is attained at a vertex of the parameter simplexined by the measured statg and scheduling parametéy,
such that the optimization problem (13) can be stated as and evaluate the look-up table to obtain the optimal control
input uy.
Theorem 3.2 (Optimality of the DP solution}he
i (Thsi) . iterative solution of (8) fori decreasing fromN — 1
st Cue [t_’7(xk _)} <c—CpAjrpyi Vi€ {l,...;ne}, to 1, initiated with (7) and followed by solving (15) is
BTk (14b) €quivalent to solving (5) directly.
Proof: The theorem and its proof is an adaptation of the
Trti € X, (14c) well-known principle of optimality see e.g. [18]. We show
JE{L...,ne}. (14d) equivalence here by back-substitution, starting by notivey
(15) is equivalent to

Op+i € O.

JF (Tryi) :||Q$k+i||p+{ min mfxti,j(xkﬂ) (14a)

(RN ALAV]

The parametric optimization problem (14) is a parametrie li
ear program, which implies properties (i) and (i) of Theare /(. 6,) =
3.1. It also implies the remaining property of (iii), naméhat . R 9 J* 18

) . . : , a
the optimal solutiony; ; (xx4,) is continuous and polyhedral argr%n”ka”p 1 Bro (e, Ol + Ji (whe1) - (188)
piecewise affine in:; ;. Moreover, starting with (7), it follows

by induction thatX;,; is polytopic and.J;,, convex and St w1 = A(fk) 2 +BM0($}’;’ 91’“)’ (18b)
polyhedral piecewise affine as assumed initially. [ po(zk,0k) €U VT €O©7 7, (18c)
The final step of the dynamic programming procedure Thp1 €Xy VT e 0Nt (18d)
diff_ers from the previous stepg. As the spheduling paramete 2p€X VT, eV, (18e)

0. is measured and known, this information can, and should,
0r € O, (18f)

be taken into account instead of considering the worst case.

1 (s O) = because (15c) — (15e) are independent pf By substituting
o . Ji (zx+1) using (8) withi = 1 and by shifting the optimization
arg l’Iﬁtn HQ‘T]CHP + HR/'LO (xk? ek)Hp + Jl (xk+1) (15a) Operators we Obta”']

St xpy1 = A(@k)ibk + Buo(x, Hk) , (15b) 1
wo(zk, 0r) € U, (15¢) w(zg, 0x) = argmin max minz 1Qzk+illp
Tr+1 € Xp, (15d) o Frer g
o eX, (15€) + [ Rpi(rtis Ori) | p + J5 (Th+2) (19a)
0 €0, (150 st vie{o,1)
_ Unfortunately, pilinear constraints appear in the _opt'smiz. Thivr = AOrsi)ryi + BOrri) i (T, Opri)
tion problem, which prevents a standard parametric saiutio (19b)
strategy. One way around this is to solve the optimization ‘ 0. VelU VT, e oN-1 19¢
problem not parametrically in the measured staie but in (@i i) € N_kle ’ (19¢)
the uncontrolled successor state Tht2 € Xo VT €O ’ (19d)
. Tpe €X VT, e0N 1, (19e)
2k 1= ZAJ-GIW- Tk, (16) Ok+i € O, (19f)
j=1

Again we redundantly require constraint satisfaction fibr a
which was introduced in [12]. By substituting the uncondl future scheduling parametef;, although fori = 1 the
successor state;, by omitting the current state copQuz||, constraints (8c) — (8e) do only depend @nand6y;. Note
(which as an additive offset has no influence @z, 6;)) that zy41 € Xy is omitted, because it is now redundant
and by omitting the constraints on the current state andeotirr (X; is implicitly defined by the other constraints coming
scheduling parameter (yielding a parametric solution for feom (8)). By iteratively substituting/;*(z,) using (8) with
larger set of initial states and scheduling parametersnbut i = 1, ..., N—1in an analogue fashion, and by finally inserting
changing the solution withiiX x ©) the optimization problem (7) and (4), the equivalence to (5) is shown.
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B ourselves to affine input parametrizations for complexitg a
The DP procedure finishes with the optimal cost(z;), notational reasons.

defined over a séf s of feasible uncontrolled successor states Analogue to Section Il we solve (5) by dynamic pro-
zr. While a parameter-dependent state-feedback control lgsamming(DP) procedure iterating backwards in time. The DP
(3) is obtained already, one might additionally be intexdst procedure is initialized at the prediction horizdd with (7).
in the setX; of statesz;, which are feasible for all possible Then at each iteration an epigraph reformulation is appted
current scheduling parameter valugse ©, and, for a given the DP optimization problem in order to transfer the paramet
statery, the worst-case costgz;) with respect to the current dependence to the constraints. This leads to semi-infinite
scheduling parameter. From convexity reasons it is passibl optimization problems of the form
compute both by solving the parametric linear program

(k) =) Qukllp + min t(zx) (202) I hs) S| Qilly + i talowe) - (229)
st J(Ajxg) <t(zx), j=1,...,n9, (20b) st Cue(Oti) [Mi(flzﬂ,@/;w)}
Ajzp, €Zy, j=1,...,n4, (20c) (Tl
z € X. (20d) < (¢ — CoA(Okti)Trti) Vi €O,  (22b)
. . L Thyi € X, (22c)
The setX; of stateszy, for which (20) is feasible, is 0. O (224)
k+i .

polyhedral.
The constraints (22b) are quadratic in the scheduling pa-
_ IV: E%(PL'C'T MPC F(?RLPV SYSTEMS. ~rameter and a vertex enumeration nst sufficient to en-
This section is concerned with the computation of explicyre constraint satisfaction over the whole simplex. Haxev
state feedback control laws for the more general class #& constraint satisfaction of the semi-infinite optimiaat
discrete-time LPV systems (1). Contrary to the previous segroblem (22) can be ensured, conservatively, over the whole
tion, the input matrix is now assumed to depend affinely qfarameter simplex due to Polya’s theorem:
the scheduling parameter, i€.,j € {1,...,n¢} : B; # B;. Theorem 4.1 (Blya’s theorem):If a homogeneous polyno-
Following the dynamic programming procedure from Segnjal p(6) is positive on the standard simple, the coef-
tion Ill, one would reach an optimization problem similaficients Cy of the extended polynomigby, () = p(6) -
P p

to (11), but with the scheduling parameter appearing in tr@:;}il 6,)N» are positive for a sufficiently largeolya degree
constraint matrixC,; = C,,;(0x+:). Parametric optimization py

problems with a parameter-dependent constraint matrix aré Proof: See [20], [21]. ]
known to be difficult problems, and are far less well under- \we will make use of the more obvious reverse of Polya’s
stood than parametric linear programs, [6]. Some inteTgstiihegrem, i.e. positive coefficients of the extended polyiabm
aspects were presented in [19] for the case of a singigan positivity over the whole simplex. We will call this
parameter. The optimal solution within one critical regass  reyersePolya’s relaxatios, since it is a relaxation in the max
computed by solving an extended linear program. This smuti gjrection.

however turns out to be a rational function of the parameterypg following design procedure describes the relaxation
with a degree equal to the number of active constraints. Egghipe parameter-dependent constraints (22b) into cdntgra

coefficient of this rational function is an optimization i&le \yhich are piecewise affine in the state and inputs and inde-
in the linear program, which would render the optimal COhtr?Jendent of the scheduling parameter:

laws already for tiny LPV systems very complex. Moreover
the critical regions are generally no polyhedra, and thevat
cost function is not a convex piecewise affine function. Ehes
obstacles cumber the computation, the storage and theeeffici
evaluation of the optimal solution and render the optimal
solution to (5) impractical, if not impossible.

Consequently we are proposingsaboptimalsolution by
restricting the parametrization of the input. In the follog
we will consider the control law to be an affine function of

the scheduling parameter (Z?il 0;)"r.
9p ' 4) Replace (22b) bgy, > 0.

1) If all coefficientsCy, are non-negative, so is the polynomial
p(f). Hence the semi-infinite optimization problem (22) can
be transformed into the following parametric linear progra

" 1) Reformulate (22b) into a positivity constraint of a poly-
nomial p, p(d) > 0 V0 € O.

2) Homogenize the polynomial(d) by multiplying single
monomials with 377%, 6; (which equals one on the
standard simplex) until all monomials have the same
degree.

3) Set the Polya degre®,, and compute the coefficients
Cy, of the extended polynomiapy,(6) = p(0) -

ne
Ui = (@i Opri) = D Ok jbti g (@hs)
j=1
where p; j(zr4:) corresponds to the control law in thgh )
vertex of the parameter simplex (1c). I (@rti) =I1Qtillp + . m_lf;}tz‘(ﬂfkﬂ') (23a)
Remark 2:Note that in principle also input parametriza- R

tions, which are pol_ynom_ial or rational in the scheduling p:’:l 2polya’s relaxation is implemented in YALMIP as one of the-catled
rameterdy,, are possible with our proposed method. We restrititers in the robust optimization framework, [22].
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Polya’s relaxation. Hence it might be interesting to know a
bound on the introduced suboptimality. Such a bound can be
determined with respect to the worst-case chgty ). A lower
bound on the worst case cosk(xy), and thus a bound on
pae suboptimality, can be computed by a DP procedure based
on gridding, similar to [23]. At first the parameter simplex i
gridded to obtain a number of grid poinf&, .. .,éng. Then,

at each DP step, the following procedure is performed:

st (23b)

(23c¢)

Cn, (115 Hing, tis Thpi) > 0,

Tpii € X.

Note that the coefficientCy, lie in a cone which is
spanned by the coefficients of (22b), such that the polyhed
dependence Op; 1, ..., tingy, ti; Trti IS preserved.

Remark 3:The choice of the Polya degre®, for the
Polya relaxation is a tradeoff between solution compieaitd
introduced conservatism. The larger the Pélya degredetise
conservative the relaxation, but also the greater the nuwibe
constraints in (23b). 2) Determine the optimal cost-to-go a$,(viy;) =

Remark 4:Instead of using an affine input parametrization, maxg{J; o(Trti) [ g=1,...,n4}.
it is also possible to select parameter-independent controlSjnce the proposed procedure does not consider the entire
law in all but the final dynamic programming iterationsparameter simplexd, but only the grid points@l,...,éng,
following a robust approach. This approach typically resirl  the resulting cost function/(z;,) is a lower bound on the
less complex control laws, since instead of Polya’s relara orst-case cosf/(z;). A bound on the suboptimality of the
a vertex enumeration as in the case of LPV-A systems \i&rst-case costs can then be determinedhas,, {J(x;) —
sufficient, and since (21) simplifies to a single control |&m J(xzx) |z € X5}
the other hand, this approach will result in a more consa®at  Remark 5:In the case when the rate of parameter variation
control law, since the predicted future inputs are assunuéd R an PV system is known to be limited, the procedure
to be able to react on the scheduling parameter at the safiecribed above is conservative. A possibility to mitigtaie
prediction time. conservatism is to subdivide the parameter simplex intersgv

Thefinal step of the dynamic programming proceddie  syb-simplices, and to solve a parametric optimization ferob

fers from the preceding steps, since knowledge of the currgdr each sub-simplex separately. Further material on such a
scheduling parameter values can be exploited to improygproach can be found in [14], [24].

control performance. The problem we want to solve is

1) For each grid pojnég, solve the optimization problem
(22) with 0y.1.; = 0, to obtainJ,; ,(vx+:).

w (g, 0r) :argnztn | Rpo(xk, Ok)llp + J5 (xx+1)  (24a) V. STABILITY

st wpr1 = A(Ok)zr + B(Ok)po(zr, Ok) , (24b)  This section is concerned with stability of the resulting
wo(zk,0k) €U VO, €O, (24c) closed-loop system, when explicit control laws are applied
zr €X, V0. €0, (24d) tq LPV sys_tems. Qne can guara_r_l_tee (M a§ympt0t|_c _stablhty,

(i) constraint satisfaction, and (iii) recursive featiyi a-

Ty € X, (24e) priori for all feasible states, by consideringdaal modeap-

0 €O, (24f)  proach and by choosing the terminal state constraiptsand

which is again a parametric optimization problem with gqe polyhedral terminal COSLN.(“’LN) gppropriately, [25]'.
parametric constraint matrix. Apart from solving (24) onFrom [25] we have the following conditions for asymptotic

line, when the current;, d, are known, there exist severaIStab'“ty:

possibilities for suboptimal explicit solutions: (i) Grawhd- Al:
interpolate regarding the parameter simplex, (i) minienize A2:
average cost w.r.t. some grid points of the parameter sinplé3:

and (iii) minimize the worst-case cost w.r.t. the schedulin

parameter. The latter two possibilities require the salact A4:

of an appropriate input parametrization such as (21), aad th
application of Polya’s relaxation. They can be supplemént

X7 C X, Xr closed and contains the origin.
/LT(CCk,Hk) € UVz, € Xp VO, € O.

Tht1 = A(Gk)dfk + B(@k),LLT(xk,ek) € Xp VYV €
Xr VO, € ©

Ln(zk) —  Ln(zk4r) <
||R/LT(.T;C7 Ok)||p VCCk (S XT V@k € 0.

||Q$ka +

Furthermore, it is a well-known fact, that stability is pre-

by solving (24) parametrically in the uncontrolled sUCCESSggreq in the case of a suboptimal solution, as long as the

state (16) as described in Section Ill.

suboptimality of the cost function does not exceed one stage

In our test simulations there was no distinctively superiQ;rost, [26]. Consider the following procedure, which is lshse
approach. A worst-case minimization approach using the sy [14] and [9]:

controlled successor state turned out to be a good tradeoff ) o , ,
1) Compute an asymptotically stabilizing terminal region

between solution complexity and control performance.dbal
allows one to determine the feasible ¥gt and the worst-case
cost for a given state/(x;), easily, by the solution of (20).
Note however that it is merely an heuristic, and for specific
systems other approaches might be more successful.

The procedure proposed above involves two approximation
steps, namely the fixing of the input parametrization and

parameter-varying state-feedback controller

ng
ug = pr(zx, 0k) = K(Op)oe = Y K0k jor (25)

j=1
for the unconstrained system (1), e.g. by the procedure
in [14].
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2) Determine a polytopia-contractive terminal regioX,
by pre-image computations, such that

Vo € XT,VGk €0 HMT(Ik,ok) ceU:

A(@k):ck + B(ek)NT(xlm ok) e XXp (26)
holds for some\ € [0, 1) (see e.g. [14]).
3) Scale the Minkowski function
sy (Tg) == Irgn{a eRL |z, € Xy}, (27)

induced by the terminal regioXir, by a factorg* € R,
which can be determined by the linear program

g = mﬁin B (28a)

stA(L=A) = [[Quilly + | RE;villp
Vo, € vert(Xp) Vj € {1,...,ne}. (28b)

4) DefineLN(xk+N) = ﬁ*wa(.”L‘k+N).

feasible space and an increase in complexity of the regultin
control law. While the former two effects can be mitigated
by extending the prediction horizon, this typically leads t
a further increase in the complexity of the control law. In
order to avoid these downsides in practical implementation
a possibility is to omit the terminal state constraints aod t
verify stability a-posteriori, following the theory de#oed in
[27].

The closed-loop system in the space of the uncontrolled
successor state is given by:

Zk4+1 =
A(Ok1)zr+1 = A(Ok1){zk + B(Ok)u(2k, 0k)} =
A(Ok1)(I + B(0k) Fr(0k)) 2k + A(Ok41) B(0k)gr (0k) ,

if 2,eD,, 7 (29)

1,...,n,.

In the following, we will describe an approach to verify
stability of the closed-loop system (29). The a-posteriori

Theorem 5.1:Assume that there exists a terminal regiostability verification can also be applied, in simplified rfor
control pr (g, 8y) of the form (25), which renders the poly-to controllers for LPV-A systems, and to the case of bounded

tope X1 A-contractive as in (26) with\ € [0,1). Then, for
the terminal regionXy and the terminal cost.y(zx) =

rate of scheduling parameter variation.
A polytope T containing the origin in its interior can be

B*xr (wx), as defined in (27)-(28), the conditions Al to Adritten in standard fornT = {z € R" | E;z < 1}, and
are satisfied, such that we have asymptotic stability, camst induces thegauge function(also known as the Minkowski

satisfaction and recursive feasibility for all feasiblergs.

Proof: Conditions Al to A3 follow immediately from the

properties of the\-contractive terminal séX;. Condition A4
follows from

Bxs (xn) — BYxr (Te41) 2> [|[Qullp + [[RE (O) ikl
V:Ck S XT V@k €0
< B = Nvxy (zr) 2 [|Quellp + [|RK (O k]l
Va, € X VO, € ©

ne

= B(L = N (2r) = |Qkllp + > Ok | RE el

J=1

V:Ck S XT V@k €0

&Y 0B = Nxe (1) 2 > 0k 1Qully

=1 j=1

ng
+ > 0| REjaxll, Vo € Xr V6 € ©
=1
& AL = Nxr (2r) 2 [|Qurlly + [|RE k]
Vo, € XpVj € {1,...,”9}
& B(L=A) > [Quillp + [ RE villp
Yu; € vert(XT) Vj e {1, ceey ng}
|

Note that a symmetric terminal sEt- implies a Minkowski
function which can be expressedig (xi+n) = || Pzi+n | 0o

functional of T)

Up(2) := max E; 2. (30)

Definition 1: A set T is said to be\-contractivew.r.t. the
closed-loop system (29), 41 € AT Vzi € T, VO, 01 €

Definition 2: Let | be the index set of all controller regions
containing the origin,

l:={re{l,....n,} |0€D,}.

The index set is single-valued if the origin is contained in the
interior of a controller region, and multi-valued if the gin
lies on the facet of several controller regions.

The stability analysis can be performed in three steps; the
first verifies the origin to be an equilibrium point, the sedon
considers the stability of the target regi@in and in the third
a reachability analysis is performed.

1) Invariance of the origin
At first we require the origin to be invariant, i.e. to be an
equilibrium of the closed-loop system. This is the case,
if the condition

9:(0)) =0 Y0, €0, rel (31)

holds. SinceX and U include the origin, there always
exists a controller which fulfils this condition. If Con-
dition (31) is violated, the origin imot an equilibrium

with some matrixP. However, the described procedures work
also for convex polyhedral piecewise affine terminal cost

Ly (zxyn). For more results on stability of LPV-A systems, 2)

see e.g. [27].
The drawback of adding terminal state constraints is that
in general they lead to a loss of performance, a smaller

point, and at most ultimate boundedness to a target set
can be present.

Contractiveness of the target region

We infer asymptotic stability of the origin from the exis-
tence of a\-contractive target regiofi. Thecontractive
presetof a setZ; C R™= w.r.t. to the closed-loop system
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(29) is given by

2Z;,D,) := {zk c D, &
Aj(I + B(0k)Fr(0r)) 2k + A; B(Ok)gr(Ok) € M, S
j=1,...,ng, V0,€0 : 0 2 4 6 8 10 12 14 16 18
(32) time k&

where \ € [0,1) denotes thecontraction ratio For an  Fig. 1.  Evolution of the scheduling parameté, ; (—), 6.2 (---), in
efficient treatment of the sefs; we require them to be Example 1.

polytopes. Since the contractive pres&&Z;,D,.) are

convex but not polytopes, we determine the polytopic

presetQy, (Z;, ;) of Z; by applying Polya’s relaxation ences mentioned above.

to (32). If the index sel of regions containing the
origin is single-valued, a robust invariant target set can
be determined by repeatedly computing polytopic pre-
sets, O, (- -+ (2n,(Zo, D), D) - -, D), starting with A, Example 1: Explicit MPC of an LPV-A system
Zo = D,. If the index setl is multi-valued, the

computation runs in parallel for each regarded regioncljn the f'rﬁt exallmple the potgntlall OLEXPI'C; LPV-A MZ;'”
r € 1, starting with a polytop&, C |, ., I, containing reducing the online computational effort is demonstrafe

the origin in the interior and determining the largesgX@mPle system is taken from [28]. It represents an unstable
polytope contained in the union of the polytopic presets” V-A system of the form (6) with the system matrices

VI. NUMERICAL EXAMPLES

after each iteratiot?; 1 C (J, ¢, UZ;, D;.). [1.3333  —0.6667 1.3333 —0.6667]

If Z; C Z;y1, the algorithm is terminated with := Z;, A — 0.1 0 0 0

and the resulting target regidhl is A-contractive with 17 11.3333 —0.6667 1.3333 —0.6667| ’
regard to the closed-loop system (29). It follows from 0.1 0 0 0

the succeeding proposition that the existence of-a (13333 —0.6667 1.3333 —0.6667]
contractive polytopel' induces asymptotic stability of 1 0 1 0

the origin. A2= 113333 06667 1.3333 —0.6667| °

Proposition 1: Let T C J,, D, C R"= be a polytope 1 0 1 0
containing the origin in its interior and let Condition y -
(31) hold. If Vr € 1, all verticesv! of T\D, are B=[1 0 0 0].
mapped intoAT, 0 < A < 1, thenyT is A-contractive The states are constrained to bg; < 1.14, i € [1,4], and
Vi € [0,1]. the input is constrained to he, < 4.15. In this example, the
Proof: Consider anyz, € u(T(\1D.) = Zx = states of the LPV-A system shall be regulated from the initia
G/n € (TAD,) « Jai € Ry, Y0l = 1: 5 =  state
E@EO.WT @ = oy = B € pd T . o= [~0.3964 04377 —1.0905 1.1137]
Proposition 1, together with the properties of the gaugg the origin by means of two control methods: The explicit
functions)r () induced byT suffices to establish asymp-ppc scheme presented in Section I11, and the Quasi-Min-Max
totic stability insideT by using+r(z) as a Lyapunov mpc scheme proposed together with the original example in
function. [28]. The evolution of the scheduling parameter is depidated
Reachability analysis Fig. 1.
A reachability analysis can be performed to check the Mylti-Parametric Toolbox (MPT) and AYMIP were
which states are mapped into the target etunder ,5e4 (o compute the explicit control law, [22], [29]. The g
the computed control law. This reachability analysis IShatricesQ = diag[1 1 1 1]), R=01, P=@Q,and a
also based on repeated preset computations, using faggiction horizon ofN' = 4 were chosen. Theo-norm was
polytopic preset arising from applying Polya’s relaxatio seq in the cost function (4). The control law was computed fo
to (32). We start withZ, = T. In each iterationi we 4 states in the hyperbox 10 < @4, < 1.14, i = 1,...,4.
computeQy, (Z;, D), r = L...,nr and merge the afterwards, the resulting controller regions were mergsidg
resulting presets t@; 1 = U,~; Qn, (Zi, D;). a greedy merge, resulting in a total number of 740 regions.
The iterations terminate wheff, 1 C Z; or when the pqr this control law a binary search tree was generated,iwhic
entire feasible space is covered. The resulting region @i, pe evaluated under C with small computational effort,
attraction is denoted b¥... All uncontrolled successor [30]. MPT supports the exportation of binary search trees
stateszy, € Zoo are controlled to the target s& and jnig ¢ code, which can then be compiled msx functions
eventually to the origin by construction. The requiredyiaple from within MATLAB. In this example themEex
computations boil down to polytopic manipulations ang,ction requires 37 kB of memory. A pure C implementation
can be adapted from the algorithms given in the refefjo g even further decrease the required computation times
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Fig. 2. Closed-loop trajectories of the states and the jrgmd the required
online CPU time in Example 1. Comparison of Explicit LPV-A K@R—)
and Quasi-Min-Max MPC - —).

The solution of the semi-definite programs within the Quasi-

Min-Max MPC scheme was performed byeBuMi, [31],
interfaced via XLmip, [32].

TABLE |
NUMBER OF CONTROLLER REGIONS WITH THE APPROACHES- PRI ORI
AND A- POST FOR DIFFERENT PREDICTION HORIZONS INEXAMPLE 2.

Prediction horizonV 2 3 4 5
No. of regionsa-priori 106 182 268 388
No. of regionsa- post 69 115 149 204

under the constraints

zp € X = {zp € R? | ||lzloo < 10},

ukEU:{uk€R||uk|§1}.

The weight matrices) = diag[1 1]), R = 0.01, and

the co-norm were employed in the cost function (4). The ex-
plicit control laws were computed for the prediction hongo

N =2,...,5, and the worst-case costs were minimized in the
final DP step. In the first approach, denoteddypri ori ,
terminal cost and terminal constraints were determined by
means of the procedure described in Section V in order
to guarantee stability a-priori for all feasible states.the
second approach, denoted by post, the terminal weight

P = (@ and no terminal constraints were used, such that no
a-priori stability guarantee can be given. Instead theoregi
of attraction was determined afterwards by a reachability
analysis.

The resulting complexities of the computed control laws are
reported in Table I. The number of regions frpri ori is
higher than the number of regions far post , which comes

The simulation results for both control methods are degictey surprise, since terminal region constraints typjcatld
in Fig. 2. It can be seen that the closed-loop trajectories @f the solution complexity.

the states and the inputs are nearly the same, although Wehe size of the region of attraction for the different closed

different objective functions were minimized (quadratpper

bound on the infinite horizon costs vs. piecewise lineardinit

horizon costs). Under both control methods, the requirpdtin
and state constraints are satisfied. The actual differeesen
the required online computational effort. While explicitP@
requires a computation time of less th&f2 ms in each step,
Quasi-Min-Max MPC requires betwe®® s and0.3 s, which

is more than 4 orders of magnitude differehice

B. Example 2: A-priori stability guarantees

loop systems is illustrated in Fig. 3. In the approach with
a-priori stability guarantees, the region of attractioincaes
with the set of feasible states. This set is indicated inlblac
in Fig. 3. The region of attraction increases with incregsin
prediction horizon, but only slowlyA- post on the other
hand results in larger regions of attraction. By omitting a-
priori stability guarantees, the region of attraction idyoa
subset of the set of feasible states, but larger than themegi
of attraction ofa- pri ori . Moreover one would require a
much longer prediction horizon with- pri ori to obtain
similar regions of attraction, which typically results inesm
more controller regions.

In the second example we want to illustrate possible con-
sequences of ensuring a-priori stability guarantees on the
complexn_y of the_epr|C|t solution and on the size of the_loeg C. Example 3: Explicit MPC of an LPV system
of attraction. This example shall demonstrate that in some
cases it is beneficial to verify stability a-posteriori gestl. We  The third example system is a marginally stable LPV system

consider an unstable LPV system with the system matricef the form (1), and was taken from [33]. Contrary to [33], we
will assume that the LPV paradigm holds, i.e. that the curren

A = [1'1 0 ] , By = { ! } , (33a) scheduling parameter value is known to the controller. The
02 1.1 0.8 .
system matrices of the LPV system are stated as
1.1 0 1
Ay = , By, = , 33b
2 {0.4 1'1] 2 H (33Db) T L A [ (342)
0 1 1
. _ _ 1 0.2 0
3All computations were performed on a 3 GHz Pentium 4 progessing Ay = ERE By = 15] (34b)
MATLAB 7. :
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10 10 step (24) is solved online instead.

All four control methods were tested in simulations by
controlling the system from 400 initial points, uniformly
distributed over the hyperbokz| . < 10, to the origin. To
account for the varying scheduling parameter, these test we
repeated ten times, each time with different random sclireglul
parameter values. During the simulations the actuallyasusd

@ N = 2. (b) N = 3. guadratic costs,
10 o0
Jact = Z ngxk + UgRuk ) (36)
k=1
0 were collected over 50 time steps. Note that only the Quasi-
Min-Max MPC approach minimizes a quadratic cost function,
-10 - while all other tested approaches minimize tkenorm, i.e.
-10 0 10 -10 0 10 the performance criterion (36) is in favor of the Quasi-Min-
o o Max MPC approach. Additionally, the average computation
© N =4 @ N =5. times per step were taken.
Fig. 3. Region of attraction of the closed-loop systems wiith approaches ~ Table Il presents this data for initial points which were
; g;:p?é I2 (black) anda- post (blue) for different prediction horizons in feasible under all control methods. The average actuakcost

during the simulations show the drawback of introducing
an input delay to the LPV system: The controller cannot
react as quickly to the variations in the scheduling paramet

and the system is subject to state and input constraints, |eading to a performance degradation. This degradatioh wil

ap € X = {21 € R? | |lzx o < 10}, in prgctice even be more severe, since_ disturbances were not
U= - <1 considered during the simulations, which would have to be
ur € U={up €R [ |ux| <1} . compensated for with delay. Although the actual costs were

The weight matrice®) = diag[1 1]), R = 0.1, P = @ measured in quadratic norm, the Quasi-Min-Max MPC is
and a prediction horizon oV = 4 were chosen. Theo-norm less performant than the Explicit LPV-MPC approaches. This
was used in the cost function (4). Four methods are compak&fomes more comprehensible, when one considers that the

by m
effort

1)

2)

3)

4)

eans of control performance and online computation@uasi-Min-Max MPC scheme introduces some conservatism

, when regulating the LPV system (34) to the origin. by considering a quadratic upper bound on the predicted cost

. . - nd moreover uses parameter-independent state feedbaxk la
The first method is the Quasi-Min-Max MPC metho% the predictions. In this example this conservatism is on

from [34]. _Slnce the s_ystem has a parameter-varyl%erage more severe than the conservatism introduced by the
input matrix, the predicted future control laws were licit LPV-MPC schemes

: . X
chosen to be independent of the scheduling parame?e he computation times confirm the observations already

in order to keep the semi-definite program linear in thl%ade in Example 1 for the case of LPV-A systems: The

§r<l:1hedul|ngdpararr.1§ter.d thod i K d| (fvaluation of the control laws is orders of magnitude faster
€ second considered method IS a workaround. In OrqgL , yhe solution of the semi-definite programs in the Quasi-
to avoid a parameter-varying input matrix, an input del

o . in-Max MPC scheme. Computing the final step of the Ex-
is introduced and the system is augmented to the LPV';S%cit LPV-MPC scheme online reduces also the computation
system times compared to Quasi-Min-Max MPC, but with a factor
[:ckﬂ] B {A(@) B(@)} [xk} N [O} - (35) of six not as significant as the completely explicit solution
ugr1| | O 0 o I\ The solution of the semi-definite programs within the Quasi-

Afterwards the arising parametric optimization problerMn'Max MI.DC scheme was performed byeBuM, [31],
for the augmented system (35) is solved optimall)'},]terfaced via ALmip, [32].

resulting in a control law with 189 regions.

The computation of an explicit control law for the

unaugmented LPV system (34) following the proceduréll W. Rugh and J. Shamma, “Research on Gain Scheduligtbmatica
in Section IV lead to an inappropriate high number of vol. 36, no. 10, pp. 1401 ~ 1425, September 2000.
In Secton pprop g 2] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnarnear Matrix

regions during the final DP step. Therefore the final  Inequalities in System and Control Thepsgr. SIAM Studies in Applied
DP step was adapted and instead of the Worst_caiﬁ Mathematics. Philadelphia, Pennsylvania: SIAM, 1994.

h f th h . P. Apkarian, P. Gahinet, and G. Becker, “Self-Schedutéd, Control
costs, the average of the vertex costs at the vertices of Linear Parameter-Varying Systems: A Designh Exampleitomatica

the parameter simplex are minimized. Thus an explicit vol. 31, no. 9, pp. 1251 — 1261, 1995.

control law comprising 230 regions was computed. [4] J. R_awlings an_d D. I\_/IayneModel Predictive Control: Theory and
. Design Nob Hill Publishing, 2009.

As the last considered control method, the DP procedura J. M. Maciejowski, Predictive Control with Constraints Prentice Hall,

is terminated before the last DP step, and the final DP  June 2001.
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