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Explicit MPC for LPV Systems:
Stability and Optimality

Thomas Besselmann, Johan Löfberg and Manfred MorariFellow, IEEE

Abstract—This paper considers high-speed control of con-
strained linear parameter-varying systems using model predictive
control. Existing model predictive control schemes for control of
constrained linear parameter-varying systems typically require
the solution of a semi-definite program at each sampling instance.
Recently, variants of explicit model predictive control were
proposed for linear parameter-varying systems with polytopic
representation, decreasing the online computational effort by
orders of magnitude. Depending on the mathematical structure of
the underlying system, the constrained finite-time optimalcontrol
problem can be solved optimally, or close-to-optimal solutions
can be computed. Constraint satisfaction, recursive feasibility and
asymptotic stability can be guaranteed a-priori by an appropriate
selection of the terminal state constraints and terminal cost. The
paper at hand gathers previous developments and provides new
material such as a proof for the optimality of the solution, or, in
the case of close-to-optimal solutions, a procedure to determine
a bound on the suboptimality of the solution.

Index Terms—Explicit model predictive control, linear
parameter-varying systems, constrained control, optimalcontrol,
dynamic programming.

I. I NTRODUCTION

L INEAR Parameter-Varying (LPV) systems are an im-
portant system class, whose dynamics depend linearly

on the state and input of the system, but also on some
scheduling parameter. Hence an LPV system describes afamily
of linear systems. The LPV paradigm states that noa-priori
information about the scheduling parameter values is available,
but that the parameter can be measured or estimated online.
The interest in LPV systems is motivated by their use in
gain-scheduling control techniques, and by the possibility to
embed nonlinear systems into the LPV framework by covering
nonlinearities within the scheduling parameter, [1]. Therefore
the LPV framework enables, to some extent, the application of
linear control methods to nonlinear systems, while providing
rigorous statements on stability and performance of the closed-
loop system, [2], [3].

Model Predictive Control (MPC) is a popular control
method both in theory and in practice, [4], [5]. In MPC the
control inputs are computed by repeatedly solving optimiza-
tion problems which incorporate finite-horizonpredictions
based on a discrete-timemodelof the system. MPC is among
the most widely applied control methods, especially in the
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J. Löfberg is with the Division of Automatic Control, Link¨oping University,
Sweden (email:johanl@isy.liu.se)

M. Morari is with the Automatic Control Laboratory, ETH Zurich, 8092
Zurich, Switzerland (email:morari@control.ee.ethz.ch)

field of process control. This is mainly due to its flexibility,
and to the ability to take constraints on the input and/or states
directly into account.

The main drawback of MPC is, in general, the compu-
tational effort required to solve the constrained finite-time
optimal control (CFTOC) problem at each sampling instance.
This effort can prevent the application of MPC to systems with
a high sampling rate, or at least makes such an application
expensive, since the necessary computational equipment has
to be provided.

A remedy for this problem was proposed in form ofexplicit
MPC, an alternative way to solve the underlying CFTOC
problem. Explicit MPC is based on parametric programming,
which allows to solve linear and quadratic programs for an
entire set of parameters, [6]. Instead of solving the CFTOC
problem repeatedly online, the optimal inputs to the system
are precomputed as a piece-wise affine functions of the state
and stored in a look-up table. Online only the look-up table
has to be evaluated, which allows the application of MPC to
systems with sampling rates in the range of microseconds,
[7], [8]. Efficient algorithms for the computation of explicit
solutions to the CFTOC problem were developed for linear
systems, [9], for hybrid systems, [10] and for uncertain linear
systems, [11]. Recently, three variants of explicit MPC were
proposed also for LPV systems with polytopic representation,
[12]–[14], all handling different assumptions on the LPV
system at hand. The contribution of this paper is to deliver
a consolidated treatment of the topic and to complement the
proposed methods by a-priori stability guarantees, a prooffor
the optimality of an affine input parametrization for the case
of constant input matrix, and a procedure to determine bounds
on the suboptimality in the case of a varying input matrix.

This publication is structured as follows. Firstly the con-
sidered problem is stated. In Section III, the special case of
constant input matrices is elaborated. Section IV tackles the
more general case of a varying input matrix. Guarantees for
closed-loop stability under the proposed methods are discussed
in Section V. Afterwards numerical examples are presented,
to demonstrate the application of the proposed methods.

II. PROBLEM STATEMENT

We consider discrete-time LPV systems of polytopic repre-
sentation, which are defined by the state-update equation

xk+1 = A(θk)xk +B(θk)uk (1a)
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with

A(θk) =

nθ
∑

j=1

Ajθk,j , B(θk) =

nθ
∑

j=1

Bjθk,j , (1b)

and

θk ∈ Θ :=







θk ∈ R
nθ

+

∣

∣

∣

∣

∣

nθ
∑

j=1

θk,j = 1







. (1c)

The discrete time is denoted byk ∈ Z, while the variables
xk ∈ R

nx , uk ∈ R
nu and θk ∈ R

nθ

+ denote the state, control
input and time-varying scheduling parameter, respectively. The
system matricesA : Rnθ → R

nx×nx andB : Rnθ → R
nx×nu

are known to lie in polytopes, whereAj ∈ R
nx×nx , Bj ∈

R
nx×nu correspond to thejth vertex of the parameter simplex

Θ. This polytopic description is a common assumption in the
LPV framework, see e.g. [3].

Furthermore, the system is constrained,xk ∈ X anduk ∈
U. The constraint setsX andU are assumed to be polytopes
including the origin in its interior,

X := {x ∈ R
nx | Exx ≤ 1} , U := {u ∈ R

nu | Euu ≤ 1} ,
(2)

with Ex, Eu being real matrices of suitable dimensions.
Remark 1:We restrict ourselves to separate constraints on

the state and inputs in (2) solely for ease of notation. It is
straight-forward to modify the presented algorithms in this
paper to the case of mixed constraints, i.e.Ẽxx+ Ẽuu ≤ 1.

It is assumed that the LPV paradigm holds, i.e. that the
current scheduling parameter is known, while future values
of the scheduling parameter are unknown. For the control
problem to make sense, it is further assumed that the LPV
system (1) is controllable (and observable) for allθk ∈ Θ, see
[15], [16].

For the described class of systems we want to compute an
explicit parameter-dependent state-feedback control law,

uk = µ(xk, θk), (3)

which makes use of knowledge of the current scheduling
parameterθk. In order to compute this control law (3)
within a Model Predictive Control scheme, a cost func-
tion based on finite-horizon predictions is to be minimized.
These predictions over a horizon of lengthN depend on the
unknown sequence of future scheduling parametersTk :=
{θk+1, . . . , θk+N−1} ∈ Θ×· · ·×Θ =: ΘN−1 and the sequence
of control lawsπN := {µ0, µ1, . . . , µN−1}. Following the
receding horizon controlstrategy, only the first control law
µ0 = µ(xk, θk) in this sequence is applied to the real system,
whereas the control laws{µ1, . . . , µN−1} are only used for
predictions. The control objective is to stabilize the LPV
system (1) to the origin. According to standard MPC, our cost
function is defined as

J(πN ,Tk;xk, θk) =

‖Pxk+N‖p +

N−1
∑

i=0

‖Qxk+i‖p + ‖Ruk+i‖p , (4)

where P,Q and R are real, full-column rank matrices of

appropriate dimensions, and wherep denotes a polyhedral
norm, usually the 1-norm or the∞-norm. Polyhedral norms
enable a parametric solution to the stated problem using dy-
namic programming. Quadratic cost functions are not possible,
since our procedure relies on epigraph reformulations, which
would render the original problem a quadratically constrained
parametric quadratic program, for which no efficient solution
techniques are available.

In a closed-loop MPC approach, one assumes that each
future control actionuk+i, i = 1, . . . , N−1, is not determined
until xk+i andθk+i are available, [17]. Since the future values
of the scheduling parameters are still unknown, it has to be
ensured that the constraints are satisfied for all possibleTk.
Moreover, the worst-case cost should be considered in order
to assure that the actual cost function will be less or equal to
the computed one, no matter how the scheduling parameters
evolve. The optimization problem to solve in a closed-loop
MPC approach is thus

µ∗(xk, θk) =

argmin
µ0

max
θk+1

min
µ1

· · · max
θk+N−1

min
µN−1

J(πN ,Tk;xk, θk) (5a)

s.t. ∀i ∈ {0, . . . , N − 1}

xk+i+1 = A(θk+i)xk+i +B(θk+i)µi(xk+i, θk+i) ,
(5b)

µi(xk+i, θk+i) ∈ U ∀Tk ∈ ΘN−1 , (5c)

xk+N ∈ XT ∀Tk ∈ ΘN−1 , (5d)

xk+i ∈ X ∀Tk ∈ ΘN−1 , (5e)

θk+i ∈ Θ , (5f)

with the polytopic terminal state constraintsXT ∈ R
nx .

III. E XPLICIT MPC FOR LPV-A SYSTEMS

In this section we restrict ourselves to LPV-A systems,
linear discrete-time systems with a parameter-varying state
transition matrix. In the following, we will refer to (1) as
LPV-A system, if the input matrix is constant, i.e., ifBj =
B ∀j ∈ {1, . . . , nθ}. LPV-A systems thus possess the state-
update equation,

xk+1 =

nθ
∑

j=1

Ajθk,jxk +Buk . (6)

The reason for considering LPV-A systems separately is that
they allow for a simpler computation of the state feedback
control laws (3), and, as will be shown later, the considered
closed-loop MPC problem can be solved to optimality.

Here we propose adynamic programming(DP) procedure
to solve (5), [18]. The DP procedure is started at the prediction
horizonN with

J∗
N (xk+N ) := ‖Pxk+N‖p , XN := XT . (7)

Then we iterate backwards in time, with the iteration index
i decreasing fromN−1 to 1. At each iteration of the dynamic
programming procedure, the parametric optimization problem
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J∗
i (xk+i) = ‖Qxk+i‖p

+max
θk+i

min
µi

‖Rµi(xk+i, θk+i)‖p + J∗
i+1(xk+i+1) (8a)

s.t. xk+i+1 = A(θk+i)xk+i +Bµi(xk+i, θk+i) , (8b)

µi(xk+i, θk+i) ∈ U ∀ θk+i ∈ Θ , (8c)

xk+i+1 ∈ Xi+1 ∀ θk+i ∈ Θ , (8d)

xk+i ∈ X , (8e)

θk+i ∈ Θ , (8f)

is solved. The setXi, which denotes the polytopic set of states
for which (8) is feasible at iterationi, describes the constraints
(8d) on the successor state at the subsequent iterationi−1. The
constraint (8e) on the parameter of the parametric optimization
problem ensures the satisfaction of the state constraints in (2).
For the parametric optimization problem at hand it is not a
constraint on the optimization variable, but determines the set
of states where a solution is wanted.

Note that we are not interested in statesxk+i, and associated
control lawsµi(xk+i, θk+i), which are feasible for someθk+i

(a nonconvex set), but in statesxk+i, which are feasible forall
θk+i ∈ Θ (a convex set). The feasible states are thus robustly
feasible with respect toθk+i.

Theorem 3.1 (Solution properties of the DP iterations):
Consider optimization problem (8). The following statements
hold:

(i) The set of feasible statesXi is a polytope inRnx , and
Xi is partitioned into polytopic critical regions.

(ii) The optimal value functionJ∗
i (xk+i) is continuous, con-

vex and piecewise affine overXi, and affine in each
critical region.

(iii) The optimal solution µ∗
i (xk+i, θk+i) is a continuous

piecewise affine function of the statexk+i and an affine
function1 of the scheduling parameterθk+i, i.e. of the
form

µ∗
i (xk+i, θk+i) =

nθ
∑

j=1

θk+i,jµ
∗
i,j(xk+i) (9)

with µ∗
i,j(xk+i) being continuous and polyhedral piece-

wise affine overXi.

Proof: For the time being assume that the setXi+1 is
a polyhedron and the optimal cost function of the previous
DP iteration J∗

i+1 is a continuous, convex and polyhedral
piecewise affine function. Introducing the epigraph variable
ti, an epigraph reformulation is applied to obtain

J∗
i (xk+i) =‖Qxk+i‖p +max

θk+i

min
{µi,ti}

ti(xk+i, θk+i) (10a)

1Sinceθk+i ∈ Θ, any affine function can be written in the linear form (9)
by multiplying the constant term with

∑nθ
j=1

θk+i,j .

s.t. xk+i+1 = A(θk+i)xk+i +Bµi(xk+i, θk+i) , (10b)

‖Rµi(xk+i, θk+i)‖p + J∗
i+1(xk+i+1)

≤ ti(xk+i, θk+i) ∀ θk+i ∈ Θ , (10c)

µi(xk+i, θk+i) ∈ U ∀ θk+i ∈ Θ , (10d)

xk+i+1 ∈ Xi+1 ∀ θk+i ∈ Θ , (10e)

xk+i ∈ X , (10f)

θk+i ∈ Θ . (10g)

The constraints (10c) - (10e) describe a polyhedron in the
space spanned byµi, ti and xk+i+1. Hence by inserting the
state-update equation (6), the optimization problem can be
written as

J∗
i (xk+i) =‖Qxk+i‖p +max

θk+i

min
{µi,ti}

ti(xk+i, θk+i) (11a)

s.t. Cµt

[

µi(xk+i, θk+i)
ti(xk+i, θk+i)

]

(11b)

≤ c− Cx





nθ
∑

j=1

Ajθk+i,jxk+i



 ∀ θk+i ∈ Θ ,

xk+i ∈ X , (11c)

θk+i ∈ Θ , (11d)

with Cµt, Cx andc being matrices and a vector of appropriate
dimensions describing the hyperplanes of this polyhedron.
When solving the optimization problem (11) parametrically,
we are only interested in regions which are full-dimensional
with respect to the statexk+i, i.e. where the constraints (11c)
are inactive. Thus the set of active constraints (in the following
denoted by the subscriptA) in each region will be a subset of
the constraints (11b) and one can conclude on the structure of
the optimization variables

[

µi(xk+i, θk+i)
ti(xk+i, θk+i)

]

= (Cµt,A)
−1



cA − Cx,A





nθ
∑

j=1

Ajθk+i,jxk+i









=

nθ
∑

j=1

θk+i,j

(

(Cµt,A)
−1 (cA − Cx,AAjxk+i)

)

=:

nθ
∑

j=1

θk+i,j

[

µi,j(xk+i)
ti,j(xk+i)

]

. (12)

Consequently, the optimization variablesµi(xk+i, θk+i) and
ti(xk+i, θk+i) depend affinely onθk+i. We continue with
the remaining properties of Theorem 3.1. Inserting the input
parametrization (12) in (11) (and recalling thatµi,j and ti,j
are parameter-independent) yields

J∗
i (xk+i) =‖Qxk+i‖p + min

{µi,j ,ti,j}
max
θk+i

nθ
∑

j=1

θk+i,jti,j(xk+i)

(13a)
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s.t.

nθ
∑

j=1

θk+i,jCµt

[

µi,j(xk+i)
ti,j(xk+i)

]

≤

nθ
∑

j=1

θk+i,j (c− CxAjxk+i) ∀ θk+i ∈ Θ , (13b)

xk+i ∈ X , (13c)

θk+i ∈ Θ . (13d)

The constraints (13b) are satisfied if and only if they are
satisfied at the vertices of the parameter simplex. Moreover,
the maximum is attained at a vertex of the parameter simplex,
such that the optimization problem (13) can be stated as

J∗
i (xk+i) =‖Qxk+i‖p + min

{µi,j ,ti,j}
max

j
ti,j(xk+i) (14a)

s.t. Cµt

[

µi,j(xk+i)
ti,j(xk+i)

]

≤ c− CxAjxk+i ∀ j ∈ {1, . . . , nθ} ,

(14b)

xk+i ∈ X , (14c)

j ∈ {1, . . . , nθ} . (14d)

The parametric optimization problem (14) is a parametric lin-
ear program, which implies properties (i) and (ii) of Theorem
3.1. It also implies the remaining property of (iii), namelythat
the optimal solutionµ∗

i,j(xk+i) is continuous and polyhedral
piecewise affine inxk+i. Moreover, starting with (7), it follows
by induction thatXi+1 is polytopic andJ∗

i+1 convex and
polyhedral piecewise affine as assumed initially.

The final step of the dynamic programming procedure
differs from the previous steps. As the scheduling parameter
θk is measured and known, this information can, and should,
be taken into account instead of considering the worst case.

µ∗(xk, θk) =

argmin
µ0

‖Qxk‖p + ‖Rµ0(xk, θk)‖p + J∗
1 (xk+1) (15a)

s.t. xk+1 = A(θk)xk +Bµ0(xk, θk) , (15b)

µ0(xk, θk) ∈ U , (15c)

xk+1 ∈ X1 , (15d)

xk ∈ X , (15e)

θk ∈ Θ , (15f)

Unfortunately, bilinear constraints appear in the optimiza-
tion problem, which prevents a standard parametric solution
strategy. One way around this is to solve the optimization
problem not parametrically in the measured statexk, but in
the uncontrolled successor state,

zk :=





nθ
∑

j=1

Ajθk,j



xk , (16)

which was introduced in [12]. By substituting the uncontrolled
successor statezk, by omitting the current state cost‖Qxk‖p
(which as an additive offset has no influence onµ∗(xk, θk))
and by omitting the constraints on the current state and current
scheduling parameter (yielding a parametric solution for a
larger set of initial states and scheduling parameters, butnot
changing the solution withinX×Θ) the optimization problem

in the final DP step becomes

J∗(zk) = min
{µ0,t}

t(zk) (17a)

s.t. Cµt[µ0(zk), t(zk)]
T ≤ c− Cxzk , (17b)

which is a standard parametric linear program with respect
to the uncontrolled successor state. The explicit solutionis a
piecewise affine control law,uk = µ∗(zk), which is stored in
a look-up table, [9]. Online, all we have to do is to compute
the uncontrolled successor statezk, which is completely deter-
mined by the measured statexk and scheduling parameterθk,
and evaluate the look-up table to obtain the optimal control
input uk.

Theorem 3.2 (Optimality of the DP solution):The
iterative solution of (8) for i decreasing fromN − 1
to 1, initiated with (7) and followed by solving (15) is
equivalent to solving (5) directly.

Proof: The theorem and its proof is an adaptation of the
well-known principle of optimality, see e.g. [18]. We show
equivalence here by back-substitution, starting by notingthat
(15) is equivalent to

µ∗(xk, θk) =

argmin
µ0

‖Qxk‖p + ‖Rµ0(xk, θk)‖p + J∗
1 (xk+1) (18a)

s.t. xk+1 = A(θk)xk +Bµ0(xk, θk) , (18b)

µ0(xk, θk) ∈ U ∀Tk ∈ ΘN−1 , (18c)

xk+1 ∈ X1 ∀Tk ∈ ΘN−1 , (18d)

xk ∈ X ∀Tk ∈ ΘN−1 , (18e)

θk ∈ Θ , (18f)

because (15c) – (15e) are independent ofTk. By substituting
J∗
1 (xk+1) using (8) withi = 1 and by shifting the optimization

operators we obtain

µ∗(xk, θk) = argmin
µ0

max
θk+1

min
µ1

1
∑

i=0

‖Qxk+i‖p

+ ‖Rµi(xk+i, θk+i)‖p + J∗
2 (xk+2) (19a)

s.t. ∀i ∈ {0, 1}

xk+i+1 = A(θk+i)xk+i +B(θk+i)µi(xk+i, θk+i) ,
(19b)

µi(xk+i, θk+i) ∈ U ∀Tk ∈ ΘN−1 , (19c)

xk+2 ∈ X2 ∀Tk ∈ ΘN−1 , (19d)

xk+i ∈ X ∀Tk ∈ ΘN−1 , (19e)

θk+i ∈ Θ , (19f)

Again we redundantly require constraint satisfaction for all
future scheduling parametersTk, although for i = 1 the
constraints (8c) – (8e) do only depend onθk andθk+1. Note
that xk+1 ∈ X1 is omitted, because it is now redundant
(X1 is implicitly defined by the other constraints coming
from (8)). By iteratively substitutingJ∗

i (xk+i) using (8) with
i = 1, ..., N−1 in an analogue fashion, and by finally inserting
(7) and (4), the equivalence to (5) is shown.
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The DP procedure finishes with the optimal costJ∗(zk),
defined over a setZf of feasible uncontrolled successor states
zk. While a parameter-dependent state-feedback control law
(3) is obtained already, one might additionally be interested
in the setXf of statesxk, which are feasible for all possible
current scheduling parameter valuesθk ∈ Θ, and, for a given
statexk, the worst-case costs̄J(xk) with respect to the current
scheduling parameter. From convexity reasons it is possible to
compute both by solving the parametric linear program

J̄(xk) =‖Qxk‖p +min
t

t(xk) (20a)

s.t. J∗(Ajxk) ≤ t(xk) , j = 1, . . . , nθ , (20b)

Ajxk ∈ Zf , j = 1, . . . , nθ , (20c)

xk ∈ X . (20d)

The setXf of statesxk, for which (20) is feasible, is
polyhedral.

IV. EXPLICIT MPC FOR LPV SYSTEMS

This section is concerned with the computation of explicit
state feedback control laws for the more general class of
discrete-time LPV systems (1). Contrary to the previous sec-
tion, the input matrix is now assumed to depend affinely on
the scheduling parameter, i.e.∃i, j ∈ {1, . . . , nθ} : Bi 6= Bj .

Following the dynamic programming procedure from Sec-
tion III, one would reach an optimization problem similar
to (11), but with the scheduling parameter appearing in the
constraint matrix,Cµt = Cµt(θk+i). Parametric optimization
problems with a parameter-dependent constraint matrix are
known to be difficult problems, and are far less well under-
stood than parametric linear programs, [6]. Some interesting
aspects were presented in [19] for the case of a single
parameter. The optimal solution within one critical regionwas
computed by solving an extended linear program. This solution
however turns out to be a rational function of the parameter
with a degree equal to the number of active constraints. Each
coefficient of this rational function is an optimization variable
in the linear program, which would render the optimal control
laws already for tiny LPV systems very complex. Moreover,
the critical regions are generally no polyhedra, and the optimal
cost function is not a convex piecewise affine function. These
obstacles cumber the computation, the storage and the efficient
evaluation of the optimal solution and render the optimal
solution to (5) impractical, if not impossible.

Consequently we are proposing asuboptimalsolution by
restricting the parametrization of the input. In the following
we will consider the control law to be an affine function of
the scheduling parameter,

uk+i = µi(xk+i, θk+i) =

nθ
∑

j=1

θk+i,jµi,j(xk+i) , (21)

whereµi,j(xk+i) corresponds to the control law in thejth
vertex of the parameter simplex (1c).

Remark 2:Note that in principle also input parametriza-
tions, which are polynomial or rational in the scheduling pa-
rameterθk, are possible with our proposed method. We restrict

ourselves to affine input parametrizations for complexity and
notational reasons.

Analogue to Section III we solve (5) by adynamic pro-
gramming(DP) procedure iterating backwards in time. The DP
procedure is initialized at the prediction horizonN with (7).
Then at each iteration an epigraph reformulation is appliedto
the DP optimization problem in order to transfer the parameter
dependence to the constraints. This leads to semi-infinite
optimization problems of the form

J∗
i (xk+i) =‖Qxk+i‖p + min

{µi,j ,ti}
ti(xk+i) (22a)

s.t. Cµt(θk+i)

[

µi(xk+i, θk+i)
ti(xk+i)

]

≤ (c− CxA(θk+i)xk+i) ∀ θk+i ∈ Θ , (22b)

xk+i ∈ X , (22c)

θk+i ∈ Θ . (22d)

The constraints (22b) are quadratic in the scheduling pa-
rameter and a vertex enumeration isnot sufficient to en-
sure constraint satisfaction over the whole simplex. However,
the constraint satisfaction of the semi-infinite optimization
problem (22) can be ensured, conservatively, over the whole
parameter simplex due to Pólya’s theorem:

Theorem 4.1 (Ṕolya’s theorem):If a homogeneous polyno-
mial p(θ) is positive on the standard simplexΘ, the coef-
ficients CNp

of the extended polynomialpNp
(θ) = p(θ) ·

(
∑nθ

j=1
θj)

Np are positive for a sufficiently largePólya degree
Np.

Proof: See [20], [21].
We will make use of the more obvious reverse of Pólya’s

theorem, i.e. positive coefficients of the extended polynomial
mean positivity over the whole simplex. We will call this
reversePólya’s relaxation2, since it is a relaxation in the max
direction.

The following design procedure describes the relaxation
of the parameter-dependent constraints (22b) into constraints
which are piecewise affine in the state and inputs and inde-
pendent of the scheduling parameter:

1) Reformulate (22b) into a positivity constraint of a poly-
nomial p, p(θ) ≥ 0 ∀θ ∈ Θ.

2) Homogenize the polynomialp(θ) by multiplying single
monomials with

∑nθ

j=1
θj (which equals one on the

standard simplex) until all monomials have the same
degree.

3) Set the Pólya degreeNp, and compute the coefficients
CNp

of the extended polynomialpNp
(θ) = p(θ) ·

(
∑nθ

j=1
θj)

Np .
4) Replace (22b) byCNp

≥ 0.

If all coefficientsCNp
are non-negative, so is the polynomial

p(θ). Hence the semi-infinite optimization problem (22) can
be transformed into the following parametric linear program:

J∗
i (xk+i) =‖Qxk+i‖p + min

{µi,j ,ti}
ti(xk+i) (23a)

2Pólya’s relaxation is implemented in YALMIP as one of the so-called
filters in the robust optimization framework, [22].
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s.t. CNp
(µi,1, . . . , µi,nθ

, ti;xk+i) ≥ 0 , (23b)

xk+i ∈ X . (23c)

Note that the coefficientsCNp
lie in a cone which is

spanned by the coefficients of (22b), such that the polyhedral
dependence onµi,1, . . . , µi,nθ

, ti, xk+i is preserved.
Remark 3:The choice of the Pólya degreeNp for the

Pólya relaxation is a tradeoff between solution complexity and
introduced conservatism. The larger the Pólya degree, theless
conservative the relaxation, but also the greater the number of
constraints in (23b).

Remark 4: Instead of using an affine input parametrization,
it is also possible to select aparameter-independent control
law in all but the final dynamic programming iterations,
following a robust approach. This approach typically results in
less complex control laws, since instead of Pólya’s relaxation
a vertex enumeration as in the case of LPV-A systems is
sufficient, and since (21) simplifies to a single control law.On
the other hand, this approach will result in a more conservative
control law, since the predicted future inputs are assumed not
to be able to react on the scheduling parameter at the same
prediction time.

The final step of the dynamic programming proceduredif-
fers from the preceding steps, since knowledge of the current
scheduling parameter values can be exploited to improve
control performance. The problem we want to solve is

µ∗(xk, θk) = argmin
µ0

‖Rµ0(xk, θk)‖p + J∗
1 (xk+1) (24a)

s.t. xk+1 = A(θk)xk +B(θk)µ0(xk, θk) , (24b)

µ0(xk, θk) ∈ U ∀ θk ∈ Θ , (24c)

xk+1 ∈ X1 ∀ θk ∈ Θ , (24d)

xk ∈ X , (24e)

θk ∈ Θ , (24f)

which is again a parametric optimization problem with a
parametric constraint matrix. Apart from solving (24) on-
line, when the currentxk, θk are known, there exist several
possibilities for suboptimal explicit solutions: (i) Grid-and-
interpolate regarding the parameter simplex, (ii) minimize the
average cost w.r.t. some grid points of the parameter simplex,
and (iii) minimize the worst-case cost w.r.t. the scheduling
parameter. The latter two possibilities require the selection
of an appropriate input parametrization such as (21), and the
application of Pólya’s relaxation. They can be supplemented
by solving (24) parametrically in the uncontrolled successor
state (16) as described in Section III.

In our test simulations there was no distinctively superior
approach. A worst-case minimization approach using the un-
controlled successor state turned out to be a good tradeoff
between solution complexity and control performance. It also
allows one to determine the feasible setXf and the worst-case
cost for a given state,̄J(xk), easily, by the solution of (20).
Note however that it is merely an heuristic, and for specific
systems other approaches might be more successful.

The procedure proposed above involves two approximation
steps, namely the fixing of the input parametrization and

Pólya’s relaxation. Hence it might be interesting to know a
bound on the introduced suboptimality. Such a bound can be
determined with respect to the worst-case costJ̄(xk). A lower
bound on the worst case cost,J(xk), and thus a bound on
the suboptimality, can be computed by a DP procedure based
on gridding, similar to [23]. At first the parameter simplex is
gridded to obtain a number of grid pointŝθ1, . . . , θ̂ng

. Then,
at each DP step, the following procedure is performed:

1) For each grid point̂θg, solve the optimization problem
(22) with θk+i = θ̂g, to obtainJ i,g(xk+i).

2) Determine the optimal cost-to-go asJ i(xk+i) =
maxg{Ji,g(xk+i) | g = 1, . . . , ng}.

Since the proposed procedure does not consider the entire
parameter simplexΘ, but only the grid pointŝθ1, . . . , θ̂ng

,
the resulting cost functionJ(xk) is a lower bound on the
worst-case cost̄J(xk). A bound on the suboptimality of the
worst-case costs can then be determined asmaxxk

{J̄(xk) −
J(xk) | xk ∈ Xf}.

Remark 5: In the case when the rate of parameter variation
of an LPV system is known to be limited, the procedure
described above is conservative. A possibility to mitigatethis
conservatism is to subdivide the parameter simplex into several
sub-simplices, and to solve a parametric optimization problem
for each sub-simplex separately. Further material on such an
approach can be found in [14], [24].

V. STABILITY

This section is concerned with stability of the resulting
closed-loop system, when explicit control laws are applied
to LPV systems. One can guarantee (i) asymptotic stability,
(ii) constraint satisfaction, and (iii) recursive feasibility a-
priori for all feasible states, by considering adual modeap-
proach and by choosing the terminal state constraintsXT and
the polyhedral terminal costLN (xk+N ) appropriately, [25].
From [25] we have the following conditions for asymptotic
stability:

A1: XT ⊆ X,XT closed and contains the origin.
A2: µT (xk, θk) ∈ U ∀xk ∈ XT ∀θk ∈ Θ.
A3: xk+1 = A(θk)xk + B(θk)µT (xk, θk) ∈ XT ∀xk ∈

XT ∀θk ∈ Θ
A4: LN(xk) − LN(xk+1) ≤ ‖Qxk‖p +

‖RµT (xk, θk)‖p ∀xk ∈ XT ∀θk ∈ Θ.

Furthermore, it is a well-known fact, that stability is pre-
served in the case of a suboptimal solution, as long as the
suboptimality of the cost function does not exceed one stage
cost, [26]. Consider the following procedure, which is based
on [14] and [9]:

1) Compute an asymptotically stabilizing terminal region
parameter-varying state-feedback controller

uk = µT (xk, θk) = K(θk)xk =

nθ
∑

j=1

Kjθk,jxk (25)

for the unconstrained system (1), e.g. by the procedure
in [14].
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2) Determine a polytopicλ-contractive terminal regionXT

by pre-image computations, such that

∀xk ∈ XT , ∀θk ∈ Θ ∃µT (xk, θk) ∈ U :

A(θk)xk +B(θk)µT (xk, θk) ∈ λXT (26)

holds for someλ ∈ [0, 1) (see e.g. [14]).
3) Scale the Minkowski function

ψXT
(xk) := min

α
{α ∈ R+ | xk ∈ αXT } , (27)

induced by the terminal regionXT , by a factorβ∗ ∈ R+,
which can be determined by the linear program

β∗ = min
β

β (28a)

s.t.β(1 − λ) ≥ ‖Qvi‖p + ‖RKjvi‖p

∀vi ∈ vert(XT ) ∀j ∈ {1, . . . , nθ} . (28b)

4) DefineLN (xk+N ) := β∗ψXT
(xk+N ).

Theorem 5.1:Assume that there exists a terminal region
controlµT (xk, θk) of the form (25), which renders the poly-
topeXT λ-contractive as in (26) withλ ∈ [0, 1). Then, for
the terminal regionXT and the terminal costLN(xk) =
β∗ψXT

(xk), as defined in (27)-(28), the conditions A1 to A4
are satisfied, such that we have asymptotic stability, constraint
satisfaction and recursive feasibility for all feasible points.

Proof: Conditions A1 to A3 follow immediately from the
properties of theλ-contractive terminal setXT . Condition A4
follows from

βψXT
(xk)− βψXT

(xk+1) ≥ ‖Qxk‖p + ‖RK(θk)xk‖p

∀xk ∈ XT ∀θk ∈ Θ

⇐ β(1 − λ)ψXT
(xk) ≥ ‖Qxk‖p + ‖RK(θk)xk‖p

∀xk ∈ XT ∀θk ∈ Θ

⇐ β(1 − λ)ψXT
(xk) ≥ ‖Qxk‖p +

nθ
∑

j=1

θk,j‖RKjxk‖p

∀xk ∈ XT ∀θk ∈ Θ

⇔

nθ
∑

j=1

θk,jβ(1 − λ)ψXT
(xk) ≥

nθ
∑

j=1

θk,j‖Qx‖p

+

nθ
∑

j=1

θk,j‖RKjxk‖p ∀xk ∈ XT ∀θk ∈ Θ

⇔ β(1 − λ)ψXT
(xk) ≥ ‖Qxk‖p + ‖RKjxk‖p

∀xk ∈ XT ∀j ∈ {1, . . . , nθ}

⇔ β(1 − λ) ≥ ‖Qvi‖p + ‖RKjvi‖p

∀vi ∈ vert(XT ) ∀j ∈ {1, . . . , nθ}

Note that a symmetric terminal setXT implies a Minkowski
function which can be expressed asLN (xk+N ) = ‖Pxk+N‖∞
with some matrixP . However, the described procedures work
also for convex polyhedral piecewise affine terminal cost
LN(xk+N ). For more results on stability of LPV-A systems,
see e.g. [27].

The drawback of adding terminal state constraints is that
in general they lead to a loss of performance, a smaller

feasible space and an increase in complexity of the resulting
control law. While the former two effects can be mitigated
by extending the prediction horizon, this typically leads to
a further increase in the complexity of the control law. In
order to avoid these downsides in practical implementations,
a possibility is to omit the terminal state constraints and to
verify stability a-posteriori, following the theory described in
[27].

The closed-loop system in the space of the uncontrolled
successor state is given by:

zk+1 =

A(θk+1)xk+1 = A(θk+1){zk +B(θk)µ(zk, θk)} =

A(θk+1)(I +B(θk)Fr(θk))zk +A(θk+1)B(θk)gr(θk) ,

if zk ∈ Dr , r = 1, . . . , nr . (29)

In the following, we will describe an approach to verify
stability of the closed-loop system (29). The a-posteriori
stability verification can also be applied, in simplified form,
to controllers for LPV-A systems, and to the case of bounded
rate of scheduling parameter variation.

A polytope T containing the origin in its interior can be
written in standard formT = {z ∈ R

n | Etz ≤ 1}, and
induces thegauge function(also known as the Minkowski
functional ofT)

ΨT(z) := maxEtz. (30)

Definition 1: A set T is said to beλ-contractivew.r.t. the
closed-loop system (29), ifzk+1 ∈ λT ∀zk ∈ T, ∀θk, θk+1 ∈
Θ.

Definition 2: Let I be the index set of all controller regions
containing the origin,

I := {r ∈ {1, . . . , nr} | 0 ∈ Dr} .

The index setI is single-valued if the origin is contained in the
interior of a controller region, and multi-valued if the origin
lies on the facet of several controller regions.

The stability analysis can be performed in three steps; the
first verifies the origin to be an equilibrium point, the second
considers the stability of the target regionT, and in the third
a reachability analysis is performed.

1) Invariance of the origin
At first we require the origin to be invariant, i.e. to be an
equilibrium of the closed-loop system. This is the case,
if the condition

gr(θk) = 0 ∀θk ∈ Θ , r ∈ I (31)

holds. SinceX andU include the origin, there always
exists a controller which fulfils this condition. If Con-
dition (31) is violated, the origin isnot an equilibrium
point, and at most ultimate boundedness to a target set
can be present.

2) Contractiveness of the target region
We infer asymptotic stability of the origin from the exis-
tence of aλ-contractive target regionT. Thecontractive
presetof a setZi ⊂ R

nx w.r.t. to the closed-loop system
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(29) is given by

Ω(Zi,Dr) :=

{

zk ∈ Dr

∣

∣

∣

∣

∣

∣

∣

∣

∣

Aj(I +B(θk)Fr(θk))zk +AjB(θk)gr(θk) ∈ λZi,
j = 1, . . . , nθ , ∀θk ∈ Θ

}

,

(32)

whereλ ∈ [0, 1) denotes thecontraction ratio. For an
efficient treatment of the setsZi we require them to be
polytopes. Since the contractive presetsΩ(Zi,Dr) are
convex but not polytopes, we determine the polytopic
presetΩNp

(Zi,Dr) of Zi by applying Pólya’s relaxation
to (32). If the index setI of regions containing the
origin is single-valued, a robust invariant target set can
be determined by repeatedly computing polytopic pre-
sets,ΩNp

(· · · (ΩNp
(Z0,Dr),Dr) · · · ,Dr), starting with

Z0 = Dr. If the index set I is multi-valued, the
computation runs in parallel for each regarded region
r ∈ I, starting with a polytopeZ0 ⊆

⋃

r∈I Dr containing
the origin in the interior and determining the largest
polytope contained in the union of the polytopic presets
after each iterationZi+1 ⊆

⋃

r∈I Ω(Zi,Dr).
If Zi ⊆ Zi+1, the algorithm is terminated withT := Zi,
and the resulting target regionT is λ-contractive with
regard to the closed-loop system (29). It follows from
the succeeding proposition that the existence of aλ-
contractive polytopeT induces asymptotic stability of
the origin.
Proposition 1: Let T ⊆

⋃

r∈I Dr ⊂ R
nx be a polytope

containing the origin in its interior and let Condition
(31) hold. If ∀r ∈ I, all vertices vir of T

⋂

Dr are
mapped intoλT, 0 ≤ λ < 1, thenµT is λ-contractive
∀µ ∈ [0, 1].

Proof: Consider anyẑk ∈ µ(T
⋂

Dr) ⇒ z̃k =
ẑk/µ ∈ (T

⋂

Dr) ⇔ ∃αi
r ∈ R+,

∑

i α
i
r = 1 : z̃k =

∑

i αiv
i
r ⇒ ẑk = µ

∑

i αiv
i
r ⇒ ẑk+1 ∈ µ

∑

i αiλT =
µλT.
Proposition 1, together with the properties of the gauge
functionψT(z) induced byT suffices to establish asymp-
totic stability insideT by usingψT(z) as a Lyapunov
function.

3) Reachability analysis
A reachability analysis can be performed to check
which states are mapped into the target setT under
the computed control law. This reachability analysis is
also based on repeated preset computations, using the
polytopic preset arising from applying Pólya’s relaxation
to (32). We start withZ0 = T. In each iterationi we
computeΩNp

(Zi,Dr), r = 1, . . . , nr and merge the
resulting presets toZi+1 =

⋃nr

r=1
ΩNp

(Zi,Dr).
The iterations terminate whenZi+1 ⊆ Zi or when the
entire feasible space is covered. The resulting region of
attraction is denoted byZ∞. All uncontrolled successor
stateszk ∈ Z∞ are controlled to the target setT and
eventually to the origin by construction. The required
computations boil down to polytopic manipulations and
can be adapted from the algorithms given in the refer-

θ k

time k
0 2 4 6 8 10 12 14 16 18

0
0.2
0.4
0.6
0.8

1

Fig. 1. Evolution of the scheduling parameter,θk,1 (—), θk,2 (· · ·), in
Example 1.

ences mentioned above.

VI. N UMERICAL EXAMPLES

A. Example 1: Explicit MPC of an LPV-A system

In the first example the potential of Explicit LPV-A MPC in
reducing the online computational effort is demonstrated.The
example system is taken from [28]. It represents an unstable
LPV-A system of the form (6) with the system matrices

A1 =









1.3333 −0.6667 1.3333 −0.6667
0.1 0 0 0

1.3333 −0.6667 1.3333 −0.6667
0.1 0 0 0









,

A2 =









1.3333 −0.6667 1.3333 −0.6667
1 0 1 0

1.3333 −0.6667 1.3333 −0.6667
1 0 1 0









,

B =
[

1 0 0 0
]

.

The states are constrained to bexk,i ≤ 1.14, i ∈ [1, 4], and
the input is constrained to beuk ≤ 4.15. In this example, the
states of the LPV-A system shall be regulated from the initial
state

x0 =
[

−0.3964 0.4377 −1.0905 1.1137
]

to the origin by means of two control methods: The explicit
MPC scheme presented in Section III, and the Quasi-Min-Max
MPC scheme proposed together with the original example in
[28]. The evolution of the scheduling parameter is depictedin
Fig. 1.

The Multi-Parametric Toolbox (MPT) and YALMIP were
used to compute the explicit control law, [22], [29]. The weight
matricesQ = diag([ 1 1 1 1 ]) , R = 0.1 , P = Q , and a
prediction horizon ofN = 4 were chosen. The∞-norm was
used in the cost function (4). The control law was computed for
all states in the hyperbox−10 ≤ xk,i ≤ 1.14, i = 1, . . . , 4.
Afterwards, the resulting controller regions were merged using
a greedy merge, resulting in a total number of 740 regions.
For this control law a binary search tree was generated, which
can be evaluated under C with small computational effort,
[30]. MPT supports the exportation of binary search trees
into C code, which can then be compiled asMEX functions
callable from within MATLAB . In this example theMEX

function requires 37 kB of memory. A pure C implementation
would even further decrease the required computation times.
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Fig. 2. Closed-loop trajectories of the states and the input, and the required
online CPU time in Example 1. Comparison of Explicit LPV-A MPC (—)
and Quasi-Min-Max MPC (− · −).

The solution of the semi-definite programs within the Quasi-
Min-Max MPC scheme was performed by SEDUM I, [31],
interfaced via YALMIP , [32].

The simulation results for both control methods are depicted
in Fig. 2. It can be seen that the closed-loop trajectories of
the states and the inputs are nearly the same, although two
different objective functions were minimized (quadratic upper
bound on the infinite horizon costs vs. piecewise linear finite-
horizon costs). Under both control methods, the required input
and state constraints are satisfied. The actual difference lies in
the required online computational effort. While explicit MPC
requires a computation time of less than0.02ms in each step,
Quasi-Min-Max MPC requires between0.2 s and0.3 s, which
is more than 4 orders of magnitude difference3.

B. Example 2: A-priori stability guarantees

In the second example we want to illustrate possible con-
sequences of ensuring a-priori stability guarantees on the
complexity of the explicit solution and on the size of the region
of attraction. This example shall demonstrate that in some
cases it is beneficial to verify stability a-posteriori instead. We
consider an unstable LPV system with the system matrices

A1 =

[

1.1 0
0.2 1.1

]

, B1 =

[

1
0.8

]

, (33a)

A2 =

[

1.1 0
0.4 1.1

]

, B2 =

[

1
1

]

, (33b)

3All computations were performed on a 3 GHz Pentium 4 processor using
MATLAB 7.

TABLE I
NUMBER OF CONTROLLER REGIONS WITH THE APPROACHESA-PRIORI

AND A-POST FOR DIFFERENT PREDICTION HORIZONS INEXAMPLE 2.

Prediction horizonN 2 3 4 5

No. of regions,a-priori 106 182 268 388
No. of regions,a-post 69 115 149 204

under the constraints

xk ∈ X = {xk ∈ R
2 | ‖xk‖∞ ≤ 10} ,

uk ∈ U = {uk ∈ R | |uk| ≤ 1} .

The weight matricesQ = diag([ 1 1 ]) , R = 0.01 , and
the∞-norm were employed in the cost function (4). The ex-
plicit control laws were computed for the prediction horizons
N = 2, . . . , 5, and the worst-case costs were minimized in the
final DP step. In the first approach, denoted bya-priori,
terminal cost and terminal constraints were determined by
means of the procedure described in Section V in order
to guarantee stability a-priori for all feasible states. Inthe
second approach, denoted bya-post, the terminal weight
P = Q and no terminal constraints were used, such that no
a-priori stability guarantee can be given. Instead the region
of attraction was determined afterwards by a reachability
analysis.

The resulting complexities of the computed control laws are
reported in Table I. The number of regions fora-priori is
higher than the number of regions fora-post, which comes
to no surprise, since terminal region constraints typically add
to the solution complexity.

The size of the region of attraction for the different closed-
loop systems is illustrated in Fig. 3. In the approach with
a-priori stability guarantees, the region of attraction coincides
with the set of feasible states. This set is indicated in black
in Fig. 3. The region of attraction increases with increasing
prediction horizon, but only slowly.A-post on the other
hand results in larger regions of attraction. By omitting a-
priori stability guarantees, the region of attraction is only a
subset of the set of feasible states, but larger than the region
of attraction ofa-priori. Moreover one would require a
much longer prediction horizon witha-priori to obtain
similar regions of attraction, which typically results in even
more controller regions.

C. Example 3: Explicit MPC of an LPV system

The third example system is a marginally stable LPV system
of the form (1), and was taken from [33]. Contrary to [33], we
will assume that the LPV paradigm holds, i.e. that the current
scheduling parameter value is known to the controller. The
system matrices of the LPV system are stated as

A1 =

[

1 0.1
0 1

]

, B1 =

[

0
1

]

, (34a)

A2 =

[

1 0.2
0 1

]

, B2 =

[

0
1.5

]

, (34b)
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Fig. 3. Region of attraction of the closed-loop systems withthe approaches
a-priori (black) anda-post (blue) for different prediction horizons in
Example 2.

and the system is subject to state and input constraints,

xk ∈ X = {xk ∈ R
2 | ‖xk‖∞ ≤ 10} ,

uk ∈ U = {uk ∈ R | |uk| ≤ 1} .

The weight matricesQ = diag([ 1 1 ]) , R = 0.1 , P = Q
and a prediction horizon ofN = 4 were chosen. The∞-norm
was used in the cost function (4). Four methods are compared
by means of control performance and online computational
effort, when regulating the LPV system (34) to the origin.

1) The first method is the Quasi-Min-Max MPC method
from [34]. Since the system has a parameter-varying
input matrix, the predicted future control laws were
chosen to be independent of the scheduling parameter
in order to keep the semi-definite program linear in the
scheduling parameter.

2) The second considered method is a workaround. In order
to avoid a parameter-varying input matrix, an input delay
is introduced and the system is augmented to the LPV-A
system

[

xk+1

uk+1

]

=

[

A(θ) B(θ)
0 0

] [

xk
uk

]

+

[

0
I

]

ũk . (35)

Afterwards the arising parametric optimization problem
for the augmented system (35) is solved optimally,
resulting in a control law with 189 regions.

3) The computation of an explicit control law for the
unaugmented LPV system (34) following the procedure
in Section IV lead to an inappropriate high number of
regions during the final DP step. Therefore the final
DP step was adapted and instead of the worst-case
costs, the average of the vertex costs at the vertices of
the parameter simplex are minimized. Thus an explicit
control law comprising 230 regions was computed.

4) As the last considered control method, the DP procedure
is terminated before the last DP step, and the final DP

step (24) is solved online instead.
All four control methods were tested in simulations by

controlling the system from 400 initial points, uniformly
distributed over the hyperbox‖x‖∞ ≤ 10, to the origin. To
account for the varying scheduling parameter, these test were
repeated ten times, each time with different random scheduling
parameter values. During the simulations the actually sustained
quadratic costs,

Jact =

50
∑

k=1

xTkQxk + uTkRuk , (36)

were collected over 50 time steps. Note that only the Quasi-
Min-Max MPC approach minimizes a quadratic cost function,
while all other tested approaches minimize the∞-norm, i.e.
the performance criterion (36) is in favor of the Quasi-Min-
Max MPC approach. Additionally, the average computation
times per step were taken.

Table II presents this data for initial points which were
feasible under all control methods. The average actual costs
during the simulations show the drawback of introducing
an input delay to the LPV system: The controller cannot
react as quickly to the variations in the scheduling parameter,
leading to a performance degradation. This degradation will
in practice even be more severe, since disturbances were not
considered during the simulations, which would have to be
compensated for with delay. Although the actual costs were
measured in quadratic norm, the Quasi-Min-Max MPC is
less performant than the Explicit LPV-MPC approaches. This
becomes more comprehensible, when one considers that the
Quasi-Min-Max MPC scheme introduces some conservatism
by considering a quadratic upper bound on the predicted costs,
and moreover uses parameter-independent state feedback laws
in the predictions. In this example this conservatism is on
average more severe than the conservatism introduced by the
explicit LPV-MPC schemes.

The computation times confirm the observations already
made in Example 1 for the case of LPV-A systems: The
evaluation of the control laws is orders of magnitude faster
than the solution of the semi-definite programs in the Quasi-
Min-Max MPC scheme. Computing the final step of the Ex-
plicit LPV-MPC scheme online reduces also the computation
times compared to Quasi-Min-Max MPC, but with a factor
of six not as significant as the completely explicit solution.
The solution of the semi-definite programs within the Quasi-
Min-Max MPC scheme was performed by SEDUM I, [31],
interfaced via YALMIP , [32].
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