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Abstract— This paper presents a traction control (TC) system
for electric vehicles with in-wheel motors, based on explicit
nonlinear model predictive control. The feedback law, available
beforehand, is described in detail, together with its variation for
different plant conditions. The explicit controller is implemented
on a rapid control prototyping unit, which proves the real-
time capability of the strategy, with computing times on the
order of microseconds. These are significantly lower than the
required time step for a TC application. Hence, the explicit
model predictive controller can run at the same frequency as a
simple TC system based on proportional integral (PI) technology.
High-fidelity model simulations provide: 1) a performance com-
parison of the proposed explicit nonlinear model predictive
controller (NMPC) with a benchmark PI-based traction con-
troller with gain scheduling and anti-windup features, and
2) a performance comparison among two explicit and one implicit
NMPCs based on different internal models, with and without
consideration of transient tire behavior and load transfers.
Experimental test results on an electric vehicle demonstrator are
shown for one of the explicit NMPC formulations.

Index Terms— Electric vehicle, in-wheel motors, model
predictive control (MPC), proportional integral (PI) control,
traction control (TC), wheel slip.

I. INTRODUCTION

T
HE adoption of electric drivetrains, and in particular of

in-wheel motor layouts, has the potential of significantly

enhancing the performance of wheel slip control systems, i.e.,

antilock braking systems (ABS) and traction control (TC)

systems [1]. This is caused by the higher control bandwidth

and precision in torque modulation that electric drivetrains

can offer, with respect to the more conventional internal

combustion engines and hydraulic/electro-hydraulic braking

units. Murata [2] and Ivanov et al. [3] include experimentally

measured reductions in stopping distances and acceleration

times, achieved through the continuous modulation of the

electric drivetrain torques. However, further work can be done

in terms of control design to enhance the slip ratio tracking

Manuscript received March 1, 2018; accepted May 2, 2018. Date of
publication June 20, 2018; date of current version June 11, 2019. Manuscript
received in final form May 12, 2018. This work was supported by the
European Union’s Horizon 2020 Program under Grant 653861 (SilverStream
Project, Social Innovation and Light electric VEhicle Revolution on STREets
and AMbient). Recommended by Associate Editor A. G. Stefanopoulou.
(Corresponding author: Aldo Sorniotti.)

The authors are with the Centre for Automotive Engineering, University
of Surrey, Guildford GU2 7XH, U.K. (e-mail: d.tavernini@surrey.ac.uk;
m.metzler@surrey.ac.uk; p.gruber@surrey.ac.uk; a.sorniotti@surrey.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCST.2018.2837097

performance and the seamless blending of the regenerative and

dissipative braking contributions.

In parallel to sliding mode control [4] and maximum trans-

missible torque estimation [5] algorithms, the recent literature

(see [6]–[18]) on the topic of ABS and TC shows growing

interest in model-based control, with focus on model predictive

control (MPC). For example, [6] discusses a gain scheduled

linear quadratic regulator approach for ABS control, with

experimental results on an internal-combustion-engine-driven

vehicle with electro-mechanical brakes. Boisvert et al. [7]

and Anwar and Ashrafi [8] include different approaches to

ABS control, i.e., linear quadratic Gaussian regulation and

generalized predictive control, which is reproposed in [9]

for a TC implementation. A linear MPC strategy is devel-

oped in [10], where the ABS slip regulation is achieved

through torque blending between the friction brakes and

in-wheel motors. Similarly, [11]–[13] combine ABS control

and torque blending, by using linear MPC formulations.

Yoo and Wang [14] present an MPC-based ABS, with test

results on a hardware-in-the-loop rig. The internal model

includes a tire force dynamics formulation; however, its effect

on the controller performance is not discussed in this paper,

nor, to the authors’ knowledge, in any other study in the

literature. Yuan et al. [15] present a nonlinear model predic-

tive controller (NMPC) for ABS and TC. The formulation

considers all four wheels in the same internal model.

Reference tracking is not used, since the slip ratio is solely

controlled through the constraints of the NMPC formulation.

Moreover, the tire-road friction coefficient is considered to

be known a priori, which introduces some challenges for

a real vehicle implementation. For an internal-combustion-

engine-driven vehicle, [16] introduces four linear MPC

TC strategies that are compared with a hybrid explicit MPC.

The hybrid design adopts a piecewise linear approximation of

the nonlinear longitudinal tire force characteristic as a function

of the slip ratio. Simulation and experimental results show the

performance enhancement of the hybrid strategy with respect

to the linear approaches.

In the case of implicit NMPC, a nonlinear program-

ming (NLP) problem is solved on-line at each sampling

time. The resulting computational load makes implicit

NMPC difficult to implement in real automotive applications,

if the required sampling frequency is high. In this respect,

Basrah et al. [17] provide an example of real-time capable

NMPC for an ABS with torque blending, including a compar-

ison with a linear MPC approach. The results show that the
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computational time of the implicit NMPC, i.e., 3–4 ms on a

desktop personal computer, is within the selected time step of

5 ms. In [15], the implicit NMPC strategy is run on a rapid

control prototyping unit, with a computational time of 4–5 ms

and an implementation time step of 10 ms.

The study of this paper presents an explicit NMPC

(eNMPC in the remainder) for TC on electric vehicles with

in-wheel drivetrains. The explicit solution is computed off-line

by using a multiparametric (mp) quadratic programming (QP)

approximation of the mp-NLP problem. The control action

is evaluated on-line at each sampling time starting from

the current values of system states and parameters, and the

off-line explicit solution, stored in the memory of the control

unit. This drastically reduces the required computational load.

The other advantage is that the complete feedback law is

available beforehand in its explicit form, which allows its

analysis for the range of states and reference parameters.

Another important aspect is the performance comparison

and critical analysis of different TC implementations. In this

respect, [16] claims that the performance of the proposed MPC

“is comparable with that of a well-tuned PID” controller.

The same authors state that “the simulation and test results

demonstrated that the l1-optimal hybrid controller used in

this problem can lead to about 20% reduction in peak slip

amplitudes and corresponding spin duration when compared

to best case linear MPC counterparts.” Similarly, [17] shows

the superiority of NMPC over linear MPC in terms of slip

control performance. The necessity of “objective benchmark-

ing technologies” in the field of ABS/TC was pointed out

in the survey study in [19]. In order to understand where

the strategies of different papers stand with respect to each

other, a comparison is well needed. De Pinto et al. [20]

partially cover this knowledge gap, but limit the analysis

to on-board electric drivetrains, characterized by significant

torsional dynamics. Satzger and de Castro [13] include also an

MPC-PI experimental comparison, but for an ABS application

combined with torque blending.

Based on the previous discussion, the points of novelty of

this paper are as follows.

1) The design of TC systems based on explicit NMPC,

implementable at the same time step as a typical

PI controller for TC, but with better tracking

performance.

2) The study of the explicit feedback control law, and

its dependency on the vector of parameters from the

plant.

3) The simulation-based analysis of the performance

advantages of the proposed eNMPC compared to a well-

tuned benchmark PI TC system with gain scheduling and

anti-windup features.

4) The sensitivity analysis of the performance of TC algo-

rithms with respect to their time step.

5) The discussion of the benefit of considering transient

tire response and vertical load transfers in the internal

model for the NMPC formulation.

6) The presentation of experimental test results based on

explicit NMPC applied to a fully electric vehicle proto-

type with in-wheel drivetrains.

II. EXPLICIT NONLINEAR MODEL PREDICTIVE CONTROL

A. Problem Formulation

Similarly to the NMPC, the explicit NMPC requires the

formulation of an optimization problem, potentially including

constraints on the control inputs and system states. A generic

nonlinear optimal control problem for a finite horizon in the

time interval [tk, t f ] can be defined as the minimization of the

following cost function:

V (x[tk, t f ], u[tk, t f ], p(tk), ν[tk, t f ])

�

∫ t f

tk

L(x(t), u(t), p(tk), ν(t))dt + M(x(t f ), p(tk), t f )

(1)

where x , u, p, and ν are the state, input, parameter, and slack

variable vectors, respectively. L is the stage cost, and M is the

terminal cost. The problem is subject to inequality constraints

of the form

xmin ≤ x(t) ≤ xmax (2)

umin ≤ u(t) ≤ umax (3)

g(x(t),u(t),p(tk),ν(t), t) ≤ 0. (4)

The ordinary differential equations (ODEs) describing the

system dynamics represent the equality constraints:

d

dt
x(t) = f (x(t), u(t), ps(tk), t) (5)

where ps is the vector of the system parameters. The initial

conditions x(tk) are assigned to the state vector.

The infinite-dimensional optimal control problem in (1)–(5)

is discretized and parametrized, thus becoming an NLP

problem, which is solved through numerical methods. This

approach is known as direct method [21]. In this operation,

the equality constraints (5) are represented as finite approxi-

mations. The infinite-dimensional unknown solution, u[tk, t f ],

and the slack variables, ν[tk, t f ], are replaced by a finite

number of decision variables. The prediction horizon tp =

t f − tk is defined as tp = Np ts , where Np is the number

of prediction steps and ts is the characteristic discretization

interval of the internal model. The input signal, u[tk, t f ],

is assumed to be piecewise constant along the horizon. It is

calculated through the function χ and is parameterized through

the vector of control parameters U such that u(t) = χ(t, U).

Similarly, the piecewise constant slack variable trajectory is

parameterized through the vector of slack variables, N .

The technique known as direct single shooting

(see [21], [22]) is used for the management of the equality

constraints. It consists of eliminating the ODE equality

constraints by substituting their discretized numerical solution

into the cost function and constraint formulations. Starting

from the continuous constraint equations (5), the numerical

solution is derived by discretization and integration of

the ODEs

x(tk+ j ) = φ(x(tk), U, ps(tk), tk+ j ), j = 1, . . . , Np . (6)

To obtain the function φ, an explicit integration scheme is

selected

x(tk+ j+1) = F(x(tk+ j ), χ(tk+ j , U), ps(tk), tk+ j ) (7)
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with given initial conditions x(tk). If the whole horizon is

considered, the state trajectories are all mapped into a single

function, and the system dynamics do not appear any more as

equality constraints

x(tk+ j ) = F(x(tk+ j−1), χ(tk+ j−1, U), ps(tk), tk+ j−1)

=F(F(. . .

x(tk+2)
︷ ︸︸ ︷

F(F(x(tk), . . . ,tk)
︸ ︷︷ ︸

x(tk+1)

, . . . ,tk+1), . . . ,tk+j−2)

︸ ︷︷ ︸

x(tk+j−1)

, . . .,tk+ j−1).

(8)

The optimal control problem is now in its generic mp-NLP

form

V ∗(x(tk), p(tk)) = min
U,N

V (x(tk), U, p(tk), N) (9)

subject to

G(x(tk), U, p(tk), N) ≤ 0 (10)

where p includes the system and controller parameters, which

are considered constant for the duration of the prediction

horizon. Two additional vectors are defined: 1) the vector

of parameters x p(tk) ∈ R
n p , where n p = n + d , i.e., n p is

the sum of the number of states n and the number of

parameters d

x p(tk) =

[

x(tk)

p(tk)

]

(11)

and 2) the vector of decision variables, z ∈ R
s

z =

[

U

N

]

. (12)

Based on (11) and (12) it is possible to reformulate the

optimization problem as

V ∗(x p(tk)) = min
z

V (z, x p(tk)) (13)

s.t. G(z, x p(tk)) ≤ 0. (14)

The minimization is performed with respect to z and is

parameterized with x p(tk).

B. Off-Line Solution

The mp-NLP problem is not solved directly, but through

its approximation (see [23]). In this paper, an mp-QP for-

mulation is adopted, as suggested in [21] and implemented

in [24]. The mp-NLP in (13) and (14) is linearized around

a predefined point (z0, x p,0) by means of Taylor series

expansion (with z0 being the optimal solution at x p,0), such

that the cost function is approximated with a quadratic

function (15)–(16) and the constraints assume a linear

formulation (17)

V0(z, x p) �
1

2
(z − z0)

T H0(z − z0)

+ (D0 + (x p − x p,0)
T F0)(z − z0) + Y0(x p)

(15)

Y0(x p) �
1

2
(x p − x p,0)

T ∇2
x p x p

V (z0, x p,0)(x p − x p,0)

+ (∇x p V (z0, x p,0))
T (x p − x p,0) + V (z0, x p,0)

(16)

G0(z − z0) ≤ E0(x p − x p,0) + T0. (17)

The different terms are computed as follows and evaluated at

the linearization point (z0, x p,0):

H0 � ∇2
zz V (z0, x p,0)

D0 � (∇z V (z0, x p,0))
T

G0 � (∇z G(z0, x p,0))
T

E0 � −(∇x p G(z0, x p,0))
T

T0 � −G(z0, x p,0)

F0 �
1

2
((∇2

zx p
V (z0, x p,0))

T + ∇2
x pz V (z0, x p,0)). (18)

The mp-QP formulation is employed to compute local

approximations of the original mp-NLP problem in the

exploration space. This is represented as a number of

hyper-rectangles, on which single mp-QP problems are

solved. Each hyper-rectangle is further partitioned into poly-

hedra, i.e., the critical regions for the mp-QP problem.

Finally, the mp-QP solution is represented as a piecewise

affine function that is continuous across the boundaries

among different polyhedra, but discontinuous across the

hyper-rectangles.

In this paper, the mp-QP problems are computed by means

of Multi-Parametric Toolbox 3.0 [25]. The solution is eval-

uated in points of interest within each hyper-rectangle and

compared with the solution of the NLP problem at the same

points, where the initial state conditions are the coordinates

of the points themselves. The NLPs are computed by means

of IPOPT, a software package for nonlinear optimization [26].

Based on the maximum error between the evaluated mp-QP

and computed NLP solutions for all the points, a decision

is made whether to subpartition the hyper-rectangle into

smaller ones, or to stop the process and accept the mp-QP

approximating solution. The algorithm in [21] that implements

this concept is summarized. For all the unexplored hyper-

rectangles the following steps are implemented.

1) Compute the hyper-rectangle volume. (A minimum

volume is defined to decide whether the hyper-rectangle

can be further split.)

2) Compute the NLP solution (or recover it from previous

steps) at the points of interest.

3) Compute the mp-QP solution on the whole hyper-

rectangle, using the NLP solution at the Chebyshev

center plus its coordinates, as the linearization point for

the terms in (15)–(18).
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4) Evaluate the mp-QP solution for all the aforementioned

points.

5) Calculate the maximum error between the

NLP-computed solutions and the mp-QP-evaluated

solutions.

Based on this information each hyper-rectangle is either

stored or marked “to be split” with a heuristic splitting

rule similar to the one in [21]. When all the tolerances are

fulfilled or the minimum allowed volume has been reached,

the algorithm terminates and the solution is available for any

point inside each hyper-rectangle.

With respect to the stability of the resulting controller,

common schemes in the literature for implicit MPC include

stabilizing terminal constraints or terminal costs, which need

to satisfy Lyapunov function-type conditions (see [27], [28]).

Alternatively, Grüne [29], and Reble and Allgöwer [30]

present a stability and performance analysis technique for

unconstrained (with respect to stability preserving constraints)

implicit NMPC schemes. However, all these approaches are

for implicit cases. To the best of the authors’ knowledge,

there is no comparable practical NMPC theory in the literature

addressing the stability for explicit NMPC. Therefore, in this

paper the eNMPC stability will be verified empirically through

the simulated scenarios and experimental test results of

Sections V and VI.

C. Implementation of the Explicit Solution for

Real-Time Applications

Once the solution is computed off-line, the next step is

to define the most efficient way to access it on-line. This

is performed through point location and piecewise control

function evaluation. In particular, the former problem becomes

challenging if the total number of regions composing the final

solution is large (>1000–2000). Two families of methods are

available.

1) Sequential search methods, which, in the worst case,

may check every region to identify the one containing

the considered point and

2) Binary-search-tree methods [31], providing a fast solu-

tion for the location of the point with a limited number

of mathematical operations, which is logarithmic in the

number of regions, for a balanced tree. As a drawback,

binary-search-tree methods require significant off-line

processing, which makes them unsuitable for a large

number of regions [31].

The specific application (i.e., the 4-D case of Section III-B)

has a total number of 85 hyper-rectangles, obtained with the

selected approximation tolerances for the values of the cost

function, the normalized solution and the maximum normal-

ized constraint violation. A two-layer solution is proposed.

The top layer includes a binary-search-tree to determine the

index of the hyper-rectangle the measured/estimated point

lies in. This information is then passed to the bottom layer,

consisting of functions, one for each hyper-rectangle, which

identify the correct critical region within the hyper-rectangle,

and evaluate the piecewise control function. In the bottom

layer either binary-search-tree or sequential search methods

can be used, as the number of polyhedral critical regions is

TABLE I

INTERNAL MODEL PARAMETERS

Fig. 1. Simplified architecture of the implemented TC strategy.

usually limited (i.e., <100 for this TC application), which

makes both methods viable in terms of processing burden and

searching time.

III. TRACTION CONTROL DESIGN

This section discusses the structure and formulation of the

proposed model predictive TC strategies, first by deriving the

internal model, and then by formulating the optimal control

problem. In particular, three internal models with increasing

complexity are proposed and used with the same cost function

and constraints.

The values of the main vehicle data used for internal model

parameterization are reported in Table I. They refer to the

electric vehicle simulated in Section V.

A. Traction Control Structure

Fig. 1 shows the TC structure. The torque-vectoring con-

troller of the electric vehicle calculates the total reference

wheel torque and the reference yaw moment. The control

allocation (CA) algorithm outputs the individual wheel torques

for the in-wheel motors, indicated as TCA, to achieve the

references. A state predictor (SP) compensates for the system

delays on the states, e.g., caused by the CAN bus. The pre-

dicted parameter vector with the updated states, x̂ p, is provided

to the core block of the TC, i.e., the on-line implementation

of the eNMPC, which outputs the torque correction �T , to be

subtracted from TCA.

B. 4-D Problem: Internal Model

The controlled variable is the wheel slip velocity s

s = ωr − V (19)

where ω is the angular wheel speed, r is the rolling radius of

the wheel, and V is the linear speed of the vehicle, so that the
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slip ratio is

σx =
ωr − V

ωr
=

s

ωr
. (20)

The time derivative of (19) is given by

d

dt
s(t) = r

d

dt
ω(t) −

d

dt
V (t). (21)

The first term on the right-hand side results from the wheel

moment balance

d

dt
ω(t) =

1

Jw
(TCA−�T (t) − Fxr) (22)

where Jw is the wheel mass moment of inertia. TCA is kept

constant over the prediction horizon, and thus is a system

parameter. Fx is the longitudinal tire force, estimated through

a simplified version of the Pacejka magic formula (MF) [33]

Fx = µx Fz (23)

µx = D sin(C arctan(Bσx)) (24)

where Fz is the vertical tire load, considered as a constant,

and µx is the longitudinal tire force coefficient, with B , C,

and D being the MF parameters [33]. The longitudinal vehicle

dynamics are modeled by considering a mass m equal to a

quarter of the total vehicle mass

d

dt
V (t) =

1

m
Fx . (25)

By substituting (22) and (25) into (21) the wheel slip

dynamic equation, i.e., the first equation of the internal model,

is obtained

d

dt
s(t) =

(

−
r2

Jw
−

1

m

)

Dsin

(

Carctan

(
Bs(t)

ω(t)r

))

Fz

+
(TCA − �T (t))r

Jw
. (26)

An integral action is incorporated to tackle the steady-state

error and model uncertainties. This considers the integral of the

error eint between the actual slip velocity s and the reference

slip velocity computed from the target value σ ref
x of the slip

ratio. The respective differential equation, i.e., the second

equation of the internal model, is

d

dt
eint(t) = s(t) − σ ref

x ω(t)r. (27)

By substituting (23) and (24) into (22), the third equation of

the internal model is obtained

d

dt
ω (t)=

1

Jw

(

TCA−�T (t)−Dsin

(

Carctan

(
Bs(t)

ω(t)r

))

Fzr

)

.

(28)

The model state vector, input vector and parameter vector

are, respectively, x = [s, eint, ω], u = [�T ] and p = [TCA].

Unless otherwise specified, in the following analyses the

explicit solution is reported for Np = 4 and ts = 2 ms. The

parametric problem includes four parameters (4-D problem),

i.e., x p = [s(tk), eint(tk), ω(tk), TCA(tk)], and five deci-

sion variables, i.e., z = [�T (tk), �T (tk+1), �T (tk+2),

�T (tk+3), ν(tk)]. The receding horizon control input that

is applied to the system is u(tk) = �T (tk), which will be

indicated as u in the remainder. The 4-D eNMPC will be

referred to as eNMPC4. During the control system design, the

individual components of x p and z are normalized through

division by their maximum expected value.

C. 5-D Problem (a): Internal Model

The model of Section III-B considers instantaneous genera-

tion of the longitudinal tire force. In this section, the model is

enhanced to account for the tire force dynamics, by includ-

ing the concept of tire relaxation length, σ . A first-order

differential equation calculates the slip ratio for the MF

in (26) and (28), starting from the wheel speed and vehicle

speed. By assuming a linear dependency between the longi-

tudinal tire force and vertical load the first-order longitudinal

tire force dynamics are implemented. The resulting internal

model is described by the differential equations (29)–(32):

d

dt
s(t) =

(

−
r2

Jw
−

1

m

)

Dsin
(

Carctan
(

Bσ rel
x (t)

))

Fz

+
(TCA−�T (t))r

Jw
(29)

d

dt
eint(t) = s(t) − σ ref

x ω(t)r (30)

d

dt
ω(t) =

1

Jw

(

TCA−�T (t)−Dsin
(

Carctan
(

Bσ rel
x (t)

))

Fzr
)

(31)

d

dt
σ rel

x (t) =
(ω(t)r − s(t))

σ

(
s(t)

ω(t)r
− σ rel

x (t)

)

. (32)

In this case, the state vector, input vector, and parameter

vector are, respectively, x = [s, eint, ω, σ rel
x ], u = [�T ],

and p = [TCA]. The problem includes five parameters

(5-D problem), i.e., x p = [s(tk), eint(tk), ω(tk), σ
rel
x (tk),

TCA(tk)], and five decision variables, i.e., z = [�T (tk),

�T (tk+1),�T (tk+2),�T (tk+3), ν(tk)]. The respective expli-

cit controller will be called eNMPC5a in the remainder.

D. 5-D Problem (b): Internal Model

The model of Section III-B considers a constant value of

the vertical tire load. In this section, a more accurate case

is considered, where the vertical tire load is computed as

a function of the vehicle longitudinal and lateral accelera-

tions. The estimated vertical load value becomes a slowly

varying parameter for the control problem, thus increasing its

dimension.

In this case, the equations of the system are exactly

the same as in Section III-B, but the state vector, input

vector, and parameter vector are, respectively, x = [s, eint, ω],

u = [�T ] and p = [TCA, Fz ]. The problem now includes

five parameters (5-D problem), i.e., x p = [s(tk), eint(tk), ω(tk),

TCA(tk), Fz(tk)], and five decision variables, i.e., z = [�T (tk),

�T (tk+1),�T (tk+2),�T (tk+3), ν(tk)]. The respective impli-

cit controller will be called NMPC5b in the remainder.

E. Control Problem Formulation

The three internal models of Sections III-B–III-D share the

same optimal control problem formulation. The continuous
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form of the cost function is

V =

∫ t f

tk

qx1

w2
x1

(s(t) − σ ref
x ω(t)r)2 +

qx2

w2
x2

eint(t)
2

+
ru

w2
u

�T (t)2 +
rν

w2
ν

ν(tk)
2dt +

px1

w2
x1

(s(t f )

−σ ref
x ω(t f )r)2 +

px2

w2
x2

eint(t f )
2 (33)

where qx1, qx2, ru , rν , px1, and px2 are the weights for the

different terms, and the notations wi indicate scaling factors.

As a consequence, a tracking problem is set for the first state

s and a regulating problem is set for the second state, eint.

The choice of adopting the slip velocity s as state and

tracking variable, rather than the more commonly used slip

ratio σx , finds its motivation in the algorithm for the com-

putation of the explicit solution. In fact, the adoption of σx

would lead to a feedback law that is scaled with the angular

wheel speed. The higher variability of the feedback control law

would imply a finer partition of the space, to reach a good

approximation of the nonlinear problem. Hence, the choice

of different internal models, although equivalent from the

viewpoint of the represented physics, influences the efficiency

of the generation of the explicit solution. Careful consideration

of this aspect in the design phase leads to a reduction of

the off-line computational burden and the on-line memory

requirement.

The minimization of (33) is subject to state and input bound

constraints

smin − ν ≤ s ≤ smax + ν (34)

0 ≤ �T ≤ TCA. (35)

IV. ENMPC-BASED TC IMPLEMENTATION

An advantage of eNMPC with respect to implicit NMPC is

the availability of the feedback control law beforehand. This

allows the analysis of the control action for any value of the

vector of parameters.

The solution of the eNMPC4, i.e., the 4-D eNMPC

(see Section III-B), is presented in Fig. 2. To plot the 3-D

surface in Fig. 2, two parameters have been fixed, i.e., the

normalized integral of the wheel slip error, x p(2), which is

set to zero, and the normalized wheel angular velocity, x p(3),

which is set to 0.85. The red line “reference” indicates the

wheel slip velocity corresponding to the reference slip ratio

for the specific x p(3). x p(4) is the normalized torque demand

from the CA.

The solution essentially consists of three planes:

1) a plateau of zero control action for low values of slip

velocity, indicated as “input lower constraint” in Fig. 2.

According to (35), the TC torque correction must be

positive;

2) an inclined plane, parallel to the x p(1)-axis, indicated

as “input upper constraint” in Fig. 2, which expresses

that, according to (35), the regulating torque cannot be

larger than the torque demand;

3) another inclined plane, i.e., the “non-saturated feedback

law,” which is saturated by the previous two.

Fig. 2. Normalized control action u for the 4-D problem as a function
of xp(1) (normalized wheel slip velocity) and xp(4) (normalized torque
demand from the driver).

Fig. 3. Effect of xp(2) and xp(3) on u for the 4-D problem. (a) Negative
value of xp(2). (b) Positive value of xp(2). (c) Low value of xp(3). (d) High
value of xp(3).

The analysis of the control action shows that no regulation is

applied until the reference slip is reached, if the normalized

torque demand is small. On the other hand, for high values

of x p(4), a regulation is prescribed even before reaching

the reference, based on the prediction available to the con-

troller. Beyond the reference a regulation that is below the

maximum possible value is applied for the whole range of

torque demands, as long as the slip velocity is lower than

a specific nonconstant value (see the surface “non-saturated

feedback law”). Above this value the regulating control action

is equal to the torque demand, i.e., u = x p(4).

The effect of the normalized integral of the slip velocity

error, x p(2), is presented in Fig. 3(a) and (b), corresponding

to a negative value and a positive value of x p(2), respectively.

The whole surface of the feedback law shifts along the
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Fig. 4. Normalized control action with the corresponding region indication.
xp(2) and xp(3) have been fixed.

x p(1)-axis, while the reference does not move. This acts

as a compensation for the initial positive or negative value

of x p(2). Fig. 3(c) and (d) shows the variation of the feedback

law with the normalized wheel speed, x p(3). Although the

shape of the surface does not change, it translates with the

reference slip velocity along the x p(1)-axis. Fig. 4 shows

that the piecewise affine feedback law is actually evaluated

from a number of different regions of the parametric problem,

i.e., hyper-rectangles and polyhedral critical regions, despite

the control action mainly consists of only three planes. The

analysis of Figs. 2–4 suggests that the whole feedback law

could be realized as a ruled-based strategy that defines dif-

ferent planes intersections and translations, given the input

measurements from the plant. Alternatively, a rigorous method

for the reduction of the memory requirements of explicit model

predictive controllers is presented in [34].

During the implementation phase of the eNMPC, as shown

in Fig. 1, a specific strategy was applied for the compensation

of δm and δCAN, i.e., the pure time delays associated with

the electric motor drive and the CAN bus, respectively. The

adopted technique is based on the concept used in [16] for

a hybrid explicit MPC implementation of a TC. A state

predictor, employing the same model formulation described

in Section III-B, and a buffer, containing part of the past

control history, are used to predict the trajectory of the input

parameters to the eNMPC, for a horizon length of δm + δCAN.

Thus, the inputs to the controller are projected into the future,

and the control action is computed based on this prediction.

The solution of the eNMPC4 was tested on a dSPACE

MicroAutobox II (900 MHz, 16 MB) rapid control prototyping

unit. An exploration of the parameter space was performed

to assess the computational time for a fine and comprehen-

sive grid of possible inputs. The computational time for the

combination of the two function evaluation layers was in

the range of ∼5–25 µs. These values are very low com-

pared to the implementation time step of 2 ms, which is

not achievable with more conventional implicit NMPC tech-

nology on the same hardware. Hence, the eNMPC can run

in real-time at any frequency within the range typical of

TC applications.

TABLE II

MAIN PARAMETERS OF THE SIMULATION MODEL

V. SIMULATION RESULTS

A. Test Scenario and Evaluation Metrics

The simulation analysis was carried out with a high fidelity

vehicle simulation model implemented with the software

IPG CarMaker. The vehicle data (see Table II) are those

of an electric quadricycle prototype with a front-wheel-drive

topology, based on two in-wheel motors (direct drive) with

a peak torque of 500 Nm each. Given the low mass of the

vehicle, the available torque is sufficient to provoke front

wheel spinning even in high tire-road friction conditions.

The tire model is the MF (ver. 5.2), and includes the

variation of the longitudinal and lateral relaxation lengths as

functions of the vertical load. The electric motor dynamics

are modeled through a first order transfer function and a

pure time delay. A pure time delay is also considered on the

controller output to model the CAN bus [32]. Unless otherwise

specified, in the remainder the implementation time step of the

controllers, tS,I , is of 2 ms.

The considered acceleration test scenario is based on a

straight road with varying tire-road friction coefficient, µ. The

values of µ are modified in steps, according to the sequence

0.9–0.15–0.9–0.45–0.9. This provides a real challenge to the

TC, which has to regulate the slip ratio to a constant reference

value of 0.10, while the vehicle is accelerating from an initial

speed of 5 km/h, at which a fast torque demand ramp up to

the drivetrain peak torque is imposed.

To objectively assess the TC performance, a set of perfor-

mance indicators is identified based on [20].

1) The root-mean square value of the slip ratio error, i.e., a

tracking performance indicator

RMSE =

√

1

te − ti

∫ te

ti

(σx (t) − σ ref
x )2dt (36)

where σx (t) is the actual value of the slip ratio during

the relevant part of the test, defined by the initial and

final times ti and te.

2) The final value of vehicle velocity, V f , i.e., an acceler-

ation performance indicator.

3) The normalized integral of the absolute value of the

control action, which gives an indication of the required

control effort

IACA =
1

te − ti

∫ te

ti

|�T (t)| dt . (37)
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Fig. 5. NMPC4 and eNMPC4 comparison: actual and reference slip ratios
of the front left wheel.

Fig. 6. eNMPC4: hyper-rectangle index (top) and polyhedral critical region
index (bottom) with the vertical lines indicating the hyper-rectangle switching
times. Each hyper-rectangle has an independent numbering of its polyhedra.

B. eNMPC4 Benchmarking

To prove the effectiveness of the local quadratic approxima-

tions of the multi-parametric nonlinear problem, the simulation

results for the described scenario are reported in Fig. 5, with an

overlap between the eNMPC4 solution and the corresponding

implicit one. The implicit strategy for the 4-D case (NMPC4)

is implemented by solving on-line the same nonlinear optimal

control problem with the same solver, IPOPT, employed for

the generation of the explicit solution. The implicit strategy,

which is not real-time capable, represents the optimal solution,

because of the absence of the local quadratic approximations.

Fig. 5 shows that the solutions of the NMPC4 and eNMPC4

are indistinguishable. As this is confirmed by all the sim-

ulations that were performed during the study, the level of

sub-optimality of the eNMPC4 implementation is considered

satisfactory.

Fig. 6 reports the index of the hyper-rectangles that are

used by the eNMPC4 in the considered scenario, and the

index of the polyhedral critical regions that are employed

within each hyper-rectangle. The figure reveals that only a few

Fig. 7. PI and eNMPC4 comparison: actual and reference slip ratios of the
front left wheel.

regions are used in the simulated complex scenario. More-

over, the crossings of different hyper-rectangle boundaries,

which imply discontinuities in the solution, do not bring

any significant degradation of the explicit feedback control

action.

C. eNMPC4 and Proportional Integral (PI) Controller

The results of the eNMPC4 are compared with those

obtained through a simple yet effective PI-based TC system,

with gain scheduling on vehicle speed and including anti-

windup features on its integral contribution.

A frequency response-based initial design of the PI gains

was performed with a linearized plant model for different

vehicle speeds. This was followed by an empirical fine tuning

through simulations in the time domain with the CarMaker

model. The gains obtained with this process were finally

reassessed by employing the linearized plant to verify gain and

phase margins, as well as the sensitivity and complementary

sensitivity functions.

The comparison of the controller results in terms of slip

ratios is reported in Fig. 7. For both the PI and the eNMPC4 the

TC is activated in proximity of the reference slip value, σ ref
x .

The response of the two controllers to the initial wheel

torque demand application presents visible differences. The

PI overshoots σ ref
x , and then reaches the desired value with

a damped oscillatory response. The eNMPC4 presents an

initial undershoot caused by the controller activation and the

discrepancy between the tire-road friction coefficients of the

plant and the internal model. This is promptly recovered

by the integral action. Afterwards, the eNMPC4 approaches

the reference more gently, with a lower overshoot and less

oscillations. The reason for this behavior is that the design of

the eNMPC4 TC is based on tire characteristics for µ = 0.45.

Hence, when the controller operates in higher tire-road friction

conditions (e.g., at µ = 0.9), it tends to be conservative.

Nevertheless, σ ref
x is reached at approximately the same

time as in the PI case. The transition between µ = 0.9

and µ = 0.15 is very demanding for the controllers. The

PI responds with an overshoot that is maintained until the slip
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Fig. 8. PI and eNMPC4 comparison: torques before and after the front left
TC block.

Fig. 9. PI and eNMPC4 comparison: front left wheel speed multiplied by
the wheel radius, VFL, and vehicle velocity, Vvhl.

ratio reaches σ ref
x . For the eNMPC4 the overshoot presents

a smaller peak and a faster response leading to the reference.

This is followed by a promptly recovered undershoot. The next

difficult transition is the one that leads back to µ = 0.9. In this

case, both controllers present undershoots followed by a few

oscillations with similar duration. The oscillations have higher

amplitudes for the PI. In the final µ-transitions the overshoots

and undershoots are relatively small and of similar magnitude

for the two controllers, although slightly higher for the PI,

which also exhibits a slower response.

Fig. 8 shows the wheel torques before and after the

TC block. Similarly to the slip ratios, the time histories high-

light the marginally faster response of the eNMPC4, together

with the more quickly damped oscillations of its control

action. Fig. 9 shows the angular speed of the front left wheel,

multiplied by the wheel rolling radius, and the vehicle speed.

The time histories of the longitudinal vehicle acceleration are

reported in Fig. 10. The wide range of values, i.e., from

∼0 to ∼4.5 m/s2 during the relevant part of the test, together

with their abrupt variations, confirms the high level of

Fig. 10. PI and eNMPC4 comparison: longitudinal acceleration of the vehicle.

TABLE III

SUMMARY OF PERFORMANCE INDICATORS AND RESPECTIVE VARIATIONS

severity of the selected scenario. The longitudinal acceleration

does not significantly differ among the two controllers.

Table III reports the objective performance indicators

defined in Section V-A for Cases i–vi.

Case i: The PI TC running at tS,I = 2 ms. During the

implementation phase of the controller it was veri-

fied that a further reduction of tS,I within reasonable

limits would not have brought substantial benefits.

Case ii: The PI TC running at 4 and 8 ms, with the same

gains as for Case i, apart from the anti-windup

gain. The variation of the anti-windup gain was

necessary to provide control system stability in the

selected test, especially immediately after the first

µ-transition.

Case iii: The PI TC running at 4 and 8 ms with optimized

gains for those time steps. The PI gain optimization

was based on CarMaker simulations of the selected
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maneuver, and was aimed at the minimization of the

slip ratio RMSE.

Case iv: The eNMPC4 TC running at 2 ms.

Case v: The eNMPC4 TC running at 4 and 8 ms, with

the same weights of the cost function, the same

discretization interval ts of the internal model and

the same prediction horizon tp as for Case iv. In the

4-ms subcase, in the eNMPC4 off-line process it

is imposed �T (tk) = �T (tk+1) and �T (tk+2) =

�T (tk+3), while in the 8-ms subcase it is imposed

�T (tk) = �T (tk+1) = �T (tk+2) = �T (tk+3).

Case vi: The eNMPC4 TC running at 4 and 8 ms, with a fine-

tuning of the weights of its cost function. Similarly

to Case iii, the eNMPC4 tuning process consisted

of CarMaker model simulations and iterative com-

putations of the slip ratio RMSE.

The comparison between Case i and Case iv shows a 9.2%

reduction of the RMSE for the eNMPC4 TC compared to

the PI TC, together with a negligible increment on the final

velocity and IACA. Both the PI TC and eNMPC4 TC are

subject to a significant decay of the respective tracking per-

formance, when they are implemented at 4 and 8 ms without

modifying their design with respect to the cases running

at 2 ms. In particular, the RMSE increase is of 15.4% and

185.1% for the PI controller, while it is of 10.1% and 132.4%

for the eNMPC4. If the PI TC and eNMPC4 TC are retuned

for the time steps of 4 and 8 ms, the performance decay is still

significant, i.e., it amounts to 8% and 61.7% for the PI, and

8.6% and 78.6% for the eNMPC4. It is possible to observe

the following.

1) For the specific application significant retuning of the

controller is needed when changing the time step, which

is an important outcome, not reported in the existing

TC literature to the knowledge of the authors; and

2) The performance decay induced by the increase of tS,I

is relatively similar for the two control structures.

These results can be justified through the analysis of the

linearized model of the plant without TC, including consid-

eration of tire relaxation. The linearization was carried out

in proximity of the reference slip ratio. At a vehicle speed

of 2.5 m/s the slip ratio response to a motor torque step

input has a rise time, Tr , of only ∼5 ms, which becomes

∼11 and ∼26 ms, respectively, at 5 and 10 m/s. The very

fast response is related to the in-wheel layout of the spe-

cific electric drivetrains. Based on the indications in [35],

the implementation time step should range from 6% to 40%

of Tr . For the average speed of the simulated scenario,

i.e., ∼5 m/s, this implies a recommended range of tS,I

from 0.7 to 4.4 ms. At the initial speed of the simulated

tests the recommended time step would be even significantly

lower. Therefore, the system rise time values are consistent

with the TC performance degradation for tS,I = 4 ms

and tS,I = 8 ms, where the latter is nearly twice the maximum

recommended time step at 5 m/s.

In summary, a low value of the implementation time step at

which the TC is run guarantees a significant enhancement of

the results, independently of the selected controller. It should

be noted that in many practical TC applications the time step

Fig. 11. eNMPC4 and eNMPC5a comparison: reference and actual slip
ratios.

is of ∼10 ms. In particular, the eNMPC4 TCs at 4 and 8 ms,

respectively, provide similar and worse results than the PI TC

at 2 ms, which means that the appropriate selection of

tS,I should have higher priority in the TC design process

with respect to the control structure selection, at least for

electric vehicles with very responsive in-wheel motors such

as that of this paper. Nonlinear MPC technology can be used

to enhance the TC performance, but, this is actually beneficial

only if the NMPC is run at 2 ms. In such a condition the

NMPC provides better results than the PI controller, that can

be easily implemented with a very low time step. However,

with the available computing hardware for automotive appli-

cations, an implicit NMPC does not currently run at 2 ms, and

possibly not even safely at 4 ms, according to the literature

mentioned in Section I. This makes the implementation of the

eNMPC4, rather than an implicit NMPC4, necessary and ben-

eficial to achieve the potential vehicle performance benefits.

D. Effect of Tire Force Dynamics Modeling

This section evaluates the effect of considering the lon-

gitudinal tire force dynamics in the internal model for

NMPC design. The simulation results for the eNMPC5a TC,

derived from the internal model of Section III-C, are reported

in Fig. 11 for the considered µ-varying scenario. The addition

of the relaxation length does not bring any benefit in terms of

tracking performance. The reason is related to the relative fast

dynamics of the longitudinal tire force generation, especially,

for higher vehicle velocities and a flat road surface. The

eNMPC5a implementation shows that a 5-D problem can also

be managed with this control methodology.

E. Effect of Time-Varying Vertical Load Modeling

This section studies the effect of including the variable

vertical tire load in the internal model of the NMPC

(see Section III-D). Since it has been proven that the generated

explicit solution for the eNMPC4 shows no visible difference

from its corresponding implicit solution, i.e., the NMPC4,

the comparison for this particular internal modeling feature

will be carried out only through the implicit strategy.
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Fig. 12. NMPC4 and NMPC5b comparison: actual and reference slip ratios
of the front left wheel.

Fig. 12 shows the results of this comparison along the

simulated scenario. The performance of the two controllers

is very similar. In the first part of the scenario, when µ = 0.9,

the NMPC4 shows a slightly better response. In the rest

of the test the NMPC5b provides better tracking. Overall,

the difference is very limited, and it amounts to less than 0.5%

in terms of RMSE. It can be concluded that, in this application,

to increase the dimension of the problem by introducing a

time-varying vertical load does not provide any major benefit

with respect to the 4-D problem with constant load.

Future research will focus on the evaluation of alternative

selections of the fifth parameter of the controller. For example,

additional parameters could include a time-varying σ ref
x , to

improve the lateral tire force capability, as shown in [36], or to

provide better performance when starting from standstill.

F. Robustness Assessment

The robustness against the variation of the tire-road friction

coefficient µ has already been assessed. In this section, further

simulations are performed with the eNMPC4 and the PI, with

tS,I = 2 ms.

Three vehicle parameters have been identified to have a

potentially relevant effect on control system performance,

namely: 1) the total vehicle mass, M; 2) the wheel mass

moment of inertia, J ; and 3) the longitudinal slip stiffness of

the tires, Kx . The results in terms of RMSE and corresponding

percentage variation with respect to the baseline condition of

the controllers are reported in Table IV.

For a +/−15% variation of M , the results show that the

RMSE increase/decrease for the eNMPC4 (Cases vii and viii)

is confined to +5.1% and −5.4%. The same applies to

cases ix and x, i.e., to the PI TC, with +6.1% and −5.6%.

Hence, the addition of a passenger or payload does not

significantly affect the TC tracking performance. When

a +/−30% variation of J is imposed, the eNMPC4

(Cases xi and xii) and the PI (Cases xiii and xiv) present

the same very marginal performance degradation (i.e., by 0.4%

and 2.5%). This means that the controllers will be effec-

TABLE IV

ROBUSTNESS ASSESSMENT: VEHICLE PARAMETERS

VARIATION EFFECT ON TRACKING PERFORMANCE

TABLE V

ROBUSTNESS ASSESSMENT: NOISE INJECTION

EFFECT ON TRACKING PERFORMANCE

tive for a wide range of wheel characteristics. Finally, also

when Kx is varied by +/−20% to consider different tire

properties, the RMSE variation is limited, and it amounts

to +4.7% and −6.2% for Cases xv and xvi (eNMPC4), and

to +5.2% and −5.6% for Cases xvii and xviii (PI). In conclu-

sion, both controllers are robust for the considered reasonable

range of plant parameter variations, with a limited advantage

of the eNMPC4 over the PI.

Another aspect of control system robustness is the noise

rejection performance. The sensor noise resulting from a real

vehicle prototype test, presented later on in this paper, was

analyzed. Gaussian white noise with different initial seeds is

added to the simulated wheel speeds of each corner. These are

the main input signals of the controller, which are used to com-

pute the slip ratio. The results are reported in Table V, in terms

of RMSE variation and maximum slip ratio throughout

the scenario. The comparison is made with respect to the same

controllers without the noise injection.
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Fig. 13. Electric vehicle prototype during the TC and passive vehicle
experimental test session on the low-µ metal plates. The vehicle skids laterally
when the TC is deactivated (bottom).

In the Case xix, the eNMPC4 is still able to follow the

reference throughout different µ variations. The RMSE

increase is of 142.5%, and is mainly caused by oscillations

around the reference. The peak values of slip ratio remain

similar to the case without noise injection, with a maximum

increase of 28.3%. The PI presents a very different situation.

The controller is no longer able to follow the reference closely

in all friction conditions. This is evident from the 290.5%

RMSE increase, and the 92.3% increase of the maximum value

of σx . Although the PI controller is still able to eventually

recover the tracking of the reference slip ratio, the eNMPC4

presents much better noise rejection characteristics. It must

be noted that these results were obtained without retuning of

the controllers. This operation is recommended for obtaining

desirable performance in case of noisy signals.

VI. EXPERIMENTAL RESULTS

An experimental testing session was conducted with the

eNMPC4 TC on the electric quadricycle prototype of the

European H2020 SilverStream project. The vehicle has a

mass of 640 kg (driver excluded), and is equipped with four

in-wheel motors with a peak power of 4.2 kW and a peak

torque of 115 Nm each. The prototype is shown in Fig. 13.

The tests were conducted in front-wheel-drive mode, on a

series of smooth steel plates, which were lubricated to fur-

ther decrease the friction coefficient. This is estimated to

be ∼0.09–0.10. Similarly to the simulation scenarios, the

vehicle was driven on the metal plates at speeds of 5–7 km/h

and, then, the driver suddenly pressed the accelerator pedal to

demand the maximum available torque from the front in-wheel

motors. The pedal position was maintained until the end of the

metal surface was reached. The eNMPC4 with tS,I = 4 ms

was updated in terms of internal model parameters and input

Fig. 14. Experimental tests: comparison of actual and reference slip ratios
for the vehicle with the eNMPC4 and the passive vehicle (TC off).

Fig. 15. Experimental tests: comparison of vehicle speed (Vvhl) and front
left angular wheel speed multiplied by the wheel radius (VFL) for the vehicle
with the eNMPC4 and the passive vehicle (TC off).

constraints, to take into account the greater vehicle mass and

lower motor torque capability, with respect to the simulated

scenarios.

The slip ratio time histories for the vehicle with the

eNMPC4 and the passive vehicle, i.e., the vehicle with deac-

tivated TC, are presented in Fig. 14. In the passive vehicle σx

reaches values of almost 0.9. This affects the duration of the

maneuver, since the lateral force capability of the front tires

is drastically reduced, because of the coupling effect between

longitudinal and lateral tire forces. Hence, the driver was not

able to drive the vehicle in a straight line. For the eNMPC4,

after a first peak of 0.25, σx goes back to the reference value

of 0.10 in the following 0.2 s. The good tracking performance

continues for the duration of the test with limited oscillations

around the reference. Faster response and closer tracking were

obtained with a different eNMPC4 tuning, at the expense of

increased motor torque oscillations.

Fig. 15 confirms the criticality of the friction conditions,

with the front left tire of the passive vehicle that spins up
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Fig. 16. Experimental tests: comparison of motor torque demand before
(TCA) and after the front left TC block for the vehicle with the eNMPC4.

compared to the rear wheels, which provide the estimated

vehicle speed. The vehicle velocity profiles with and without

TC present similar trends. In fact, regardless of the considered

road surface, when the slip ratio moves beyond the peak

of longitudinal tire force, the Fx reduction is limited and

the vehicle acceleration is not substantially affected. In these

conditions, the most important effect is the loss of lateral tire

force capability, caused by the tire force coupling effect [37],

which makes the passive vehicle skid laterally, and go outside

the metal stripes [see Fig. 13 (bottom)].

Fig. 16 shows the electric motor torque regulation, with

respect to the torque demand from the driver. The reduced

torque settles at a value of ∼50 Nm, compared to the driver

demand of 115 Nm, resulting in a ∼56% torque reduction.

The torque oscillations, also caused by the nonconstant tire

friction properties along the metal stripes, are reasonable for

the specific implementation and the extreme testing conditions.

Lower peak-to-peak oscillatory responses were obtained for

higher tire-road friction levels during the experimental testing

session.

VII. CONCLUSION

This paper presented traction controllers for electric vehicles

with in-wheel motors, based on explicit nonlinear model pre-

dictive control of the wheel slip velocity. These were compared

with more conventional TC strategies based on PI control. The

novel conclusions are as follows.

1) The implementation time step of the TC has a more

significant impact on the control system performance

than the selection of the control system technology.

Employing nonlinear MPC is not enough to provide

better performance than that of a PI running at an appro-

priate time step. To achieve a performance enhancement,

for the case study TC application, time steps of ∼2 ms

are recommended, rather than of 4 or 8 ms. Both for

the PI TC and nonlinear MPC TC, the control system

parameters have to be fine-tuned through tests in the

time domain for the selected time step.

2) The presented explicit nonlinear MPC implementa-

tions are characterized by on-line computational times

in the range of 5–25 µs on the adopted dSPACE

MicroAutoBox rapid control prototyping unit. This

means that the strategies could be potentially imple-

mented at any reasonable frequency for automotive

TC applications. On the contrary, based on the literature

it would not be possible to run an equivalent implicit

NMPC at the required time step of 2 ms.

3) The nonlinear model predictive controller allows a 9.2%

tracking performance improvement with respect to a PI

controller during the variable tire-road friction scenario,

simulated with a high fidelity vehicle model.

4) The local multi-parametric quadratic approximation of

the nonlinear problem, for the selected explicit nonlinear

model predictive control method, does not bring perceiv-

able performance differences with respect to the corre-

sponding implicit nonlinear model predictive controller.

5) The consideration of tire force dynamics and vertical

load transfers in the internal model for MPC system

design has negligible effects on the TC performance

during the simulated scenario.

6) The interpretation of the explicit nonlinear model predic-

tive control law provides useful information on the effect

of different input parameters on the control action. The

piecewise affine control law can be approximated with

only three planes.

7) An explicit nonlinear model predictive control strategy

for TC has been successfully implemented on a fully

electric prototype vehicle and presented in the literature

for the first time, to the best of the authors’ knowledge.

Future developments of the research will evaluate as

follows.

1) The increase of the number of parameters of the explicit

nonlinear model predictive control problem, and the

implications in terms of memory requirements and per-

formance benefits.

2) The possibility of simpler strategies able to replicate a

similar control pattern with reduced memory require-

ments for the on-line implementation of the controller.
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