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Solving stochastic differential equations (SDEs) numerically, explicit Euler–Maruyama (EM) schemes
are used most frequently under global Lipschitz conditions for both drift and diffusion coefficients. In
contrast, without imposing the global Lipschitz conditions, implicit schemes are often used for SDEs
but require additional computational effort; along another line, tamed EM schemes and truncated EM
schemes have been developed recently. Taking advantages of being explicit and easily implementable,
truncated EM schemes are proposed in this paper. Convergence of the numerical algorithms is studied, and
pth moment boundedness is obtained. Furthermore, asymptotic properties of the numerical solutions such
as the exponential stability in pth moment and stability in distribution are examined. Several examples
are given to illustrate our findings.

Keywords: local Lipschitz condition; explicit EM scheme; finite horizon; infinite horizon; pth moment
convergence; moment bound; stability; invariant measure.

1. Introduction

In this paper, we study numerical solutions of d-dimensional stochastic differential equations (SDEs) of
the form

dx(t) = f (x(t)) dt + g(x(t)) dB(t), t ≥ 0, x(0) = x0, (1.1)

where B(t) is an m-dimensional Brownian motion and f : Rd �→ R
d, g : Rd �→ R

d×m, which satisfy a
local Lipschitz condition, namely, for any N > 0 there is a constant CN such that

∣

∣ f (x) − f (y)
∣

∣ ∨
∣

∣g(x) − g(y)
∣

∣ ≤ CN

∣

∣x − y
∣

∣ (1.2)

for any x, y ∈ R
d with |x|∨|y|≤ N. Clearly, if f , g ∈ C1, they satisfy the local Lipschitz condition.

Our primary objective is to construct easily implementable numerical solutions and prove that they
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848 X. LI ET AL.

converge to the true solution of the underlying SDEs. In addition to obtaining the asymptotic pth moment
convergence and moment boundedness we consider the approximations to the invariant distributions in
infinite horizon.

Explicit Euler–Maruyama (EM) schemes are most popular for approximating the solutions of SDEs
under global Lipschitz continuously; see, for example, Kloeden & Platen (1992) and Higham et al.

(2002). However, many important SDE models satisfy only local Lipschitz conditions or have growth
rates faster than linear. For such SDEs, the classical strong convergence for classical EM methods does
not hold. Hutzenthaler et al. (2011) showed that the pth moments of the EM approximation for a large
class of SDEs with coefficients satisfying super-linear growth diverge to infinity for all p ∈ [1, ∞).
Implicit methods were developed to approximate the solutions of these SDEs. Higham et al. (2002)
showed that the backward EM schemes converge if the diffusion coefficients are globally Lipschitz
while the drift coefficient satisfies a one-sided Lipschitz condition. More details on the implicit methods
can be found in Kloeden & Platen (1992), Saito & Mitsui (1993), Hu (1996), Milstein et al. (1998),
Burrage & Tian (2002), Appleby et al. (2010) and Szpruch et al. (2011). However, additional
computational effort is required for the implementation of the implicit methods.

Since explicit numerical methods have advantages, a couple of modified EM methods have
recently been developed for nonlinear SDEs. Hutzenthaler et al. (2012) proposed tamed EM schemes
to approximate SDEs with the global Lipschitz diffusion coefficient and one-sided Lipschitz drift
coefficient. Sabanis (2013, 2016) developed tamed EM schemes for SDEs with nonlinear growth
coefficients. Moreover, stopped EM schemes (Liu & Mao, 2013), truncated EM schemes (Mao, 2015),
multilevel EM schemes (Anderson et al., 2016) and their variants have also been developed to deal
with the strong convergence problem for nonlinear SDEs. However, to the best of our knowledge, these
modified EM methods still cannot handle the convergence of a large class of SDEs with nonlinear drift
and diffusion coefficients, for example, the constant elasticity of volatility model (CEV model) arising
in finance for an asset price of the form (Lewis, 2000)

dr(t) =
(

β0 − β1r(t)
)

dt + σ
∣

∣r(t)
∣

∣

3/2
dB(t), (1.3)

where β0, β1, σ are positive constants. Based on the motivation above, we construct easily imple-
mentable explicit EM schemes for SDEs with only local Lipschitz drift and diffusion coefficients and
establish their convergence. In the process of establishing the strong mean square convergence theory
conditionally, Higham et al., (2002, p.1060) posed an open problem and noted that ‘in general, it is not
clear when such moment bounds can be expected to hold for explicit methods with f , g ∈ C1.’ Despite
recent progress in the numerical methods for nonlinear SDEs this problem remains open to date. In this
paper, we answer the question of Higham et al. positively by requiring only that the drift and diffusion
coefficients are locally Lipschitz and satisfy a structure condition (Assumption 2.1) for the pth moment
boundedness of the exact solution for some p ∈ (0, +∞).

Talay & Tubaro (1990) investigated the probability law of approximation using the EM scheme
for SDE with smooth f and g whose derivatives of any order are bounded. Furthermore, Bally &
Talay (1996) expanded the error in power of the step size. Gyöngy (1998) analysed the almost sure
convergence. Here we focus on the moment convergence. Higham et al. (2002) and Hutzenthaler
et al. (2012) provided the (1/2)-order rate of convergence in moment sense for the backward scheme and
the tamed EM scheme under a one-sided Lipschitz condition and polynomial growth for f and global
Lipschitz condition for g, respectively. Recently, Sabanis (2016) developed a tamed EM scheme with
(1/2)-order rate of convergence. In this paper, we propose a truncation algorithm to relax the restrictions
in the studies by Higham et al. (2002) and Hutzenthaler et al. (2012). We demonstrate the convergence
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EXPLICIT NUMERICAL APPROXIMATIONS FOR SDES IN FINITE AND INFINITE HORIZONS 849

of the algorithm under weaker conditions compared with what is known in the literature. Then under
slightly stronger conditions similar to the study by Sabanis (2016) we prove the convergence rate is
optimal for the explicit schemes.

While asymptotic properties of the numerical solutions attract more and more attentions (see the
studies by Roberts & Tweedie, 1996, Mattingly et al., 2002, Higham et al., 2003 and Zong et al., 2016)
the moment boundedness of the numerical solutions is also often desirable because its connection to the
tightness and ergodicity. However, the classical EM method fails to preserve the asymptotic boundedness
for many nonlinear SDEs. For example, Higham et al. (2003) showed that for the nonlinear scalar SDE

dx(t) =
[

−x(t) − x3(t)
]

dt + x(t) dB(t), (1.4)

the second moment of the classical EM numerical solution diverges to infinity in an infinite time
interval for any given step size and an initial value dependent on the step size. In this paper, as their
counterparts of analytic solutions, we show that our explicit schemes will preserve the asymptotic
moment boundedness as well as asymptotic stability for a large class of nonlinear SDEs including
(1.3) and (1.4) under Assumptions 5.1, 6.1, 7.1. Furthermore, we consider asymptotic properties of
our numerical algorithms and demonstrate exponential stability and stability in distribution.

In this paper, adopting the truncation idea from the study by Mao (2015) and using a novel
approximation technique, we construct several explicit schemes under certain assumptions on the
coefficients of the SDEs and derive convergence results in both finite and infinite time intervals. The
numerical solutions at the grid points are modified before each iteration according to the growth rates of
the drift and diffusion coefficients such that the numerical solutions will preserve the properties of the
exact solution nicely. We approximate the exact solution by piecewise constant interpolation directly,
which is different from that of the studies by Higham et al. (2002), Hutzenthaler et al. (2012), Sabanis
(2013), Mao (2015) and Bao et al. (2016). Our main contributions are as follows:

• An easily implementable scheme is proposed such that its numerical solutions converge to the exact
solution in a finite time interval. The rate of convergence is also studied under slightly stronger
conditions.

• The open question posed in the study by Higham et al. (2002, p.1060) is answered positively. The
pth moment of our explicit numerical solution is bounded for the SDEs with only local Lipschitz
drift and diffusion coefficients.

• Appropriate truncation techniques and approximation techniques are utilized such that properties of
the exact solution are preserved.

• The numerical solutions preserve the pth moment boundedness property of the exact solution almost
completely, not only in a finite time interval but also in an infinite time interval for some p > 0.

• Different schemes are constructed to approximate different stochastic dynamical systems that are
exponentially stable and/or stable in distribution.

The rest of the paper is organized as follows. Section 2 gives some preliminary results on certain
properties of the exact solutions. Section 3 begins to construct an explicit scheme and demonstrate
convergence in a finite time interval. Section 4 provides the rate of convergence. Section 5 goes further
to obtain the pth moment boundedness in an infinite time interval for some p > 0. Section 6 reconstructs
an explicit scheme to approximate the exponential stability. Section 7 analyses the stability of the SDE
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850 X. LI ET AL.

(1.1) in distribution yielding an invariant measure μ(·). Then another explicit scheme is constructed
preserving the stability in distribution and a numerical invariant measure, which tends to μ(·) as the step
size tends to 0. Section 8 presents a couple of examples to illustrate our results. Section 9 gives further
remarks to conclude the paper.

2. Preliminaries

Throughout this paper, let
(

Ω ,F ,
{

Ft

}

t≥0,P
)

be a complete filtered probability space with
{

Ft

}

t≥0
satisfying the usual conditions (that is, it is right continuous and F0 contains all P-null sets). Let

B(t) =
(

B1(t), . . . , Bm(t)
)T

be an m-dimensional Brownian motion defined on the probability space. Let

|·| denote both the Euclidean norm in R
d and the Frobenius norm in R

d×m. Also let C denote a generic
positive constant whose value may change in different appearances. Moreover, let C2,1

(

R
d × R+;R+

)

denote the family of all non-negative functions V(x, t) on R
d × R+, which are continuously twice

differentiable in x and once differentiable in t. For each V ∈ C2,1
(

R
d × R+;R+

)

, define an operator

LV from R
d × R+ to R by

LV(x, t) = Vt(x, t) + Vx(x, t)f (x) +
1

2
trace
[

gT(x)Vxx(x, t)g(x)
]

,

where

Vx(x, t) =

(

∂V(x, t)

∂x1
, . . . ,

∂V(x, t)

∂xd

)

, Vxx(x, t) =

(

∂2V(x, t)

∂xj ∂xl

)

d×d

.

For the regularity and pth moment boundedness of the exact solution we make the following
assumption.

Assumption 2.1 There exists a pair of positive constants p and λ such that

lim sup
|x|→∞

(

1 + |x|2
) (

2xTf (x) + |g(x)|2
)

− (2 − p)
∣

∣xTg(x)
∣

∣
2

|x|4
≤ λ. (2.1)

Remark 2.2 We highlight that the family of drift and diffusion functions satisfying Assumption 2.1 is
large. Denote by C a positive constant.

(a) If there are positive constants a, ε and λ such that
∣

∣xTg(x)
∣

∣
2 ≤ a|x|4−ε + C and that

2xTf (x) + |g(x)|2 ≤ λ|x|2 + C then Assumption 2.1 holds for any p > 0.

(b) If there are positive constants a, ε and λ such that
∣

∣xTg(x)
∣

∣
2 ≥ λ|x|4+C and that 2xTf (x)+|g(x)|2 ≤

a|x|2−ε + C then Assumption 2.1 holds for any 0 < p < 2.

(c) If there exists a positive constant λ such that 2xTf (x) + |g(x)|2 ≤ λ|x|2 + C then Assumption 2.1
holds for p = 2.

(d) If there are positive constants a, λ and u > v + 2 such that
∣

∣xTg(x)
∣

∣
2 ≥ λ|x|u + C and that

2xTf (x) + |g(x)|2 ≤ a|x|v + C then Assumption 2.1 holds for 0 < p < 2.

(e) If there are positive constants a, ε and u such that
∣

∣xTg(x)
∣

∣
2 ≥ a|x|u+2 + C and that

2xTf (x) + |g(x)|2 ≤ (2a − ε)|x|u + C then Assumption 2.1 holds for 0 < p ≪ 1.
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EXPLICIT NUMERICAL APPROXIMATIONS FOR SDES IN FINITE AND INFINITE HORIZONS 851

Now we prepare the regularity and moment boundedness of the exact solution.

Theorem 2.3 Under Assumption 2.1 with some p > 0 the SDE (1.1) with any initial value x0 ∈ R
d has

a unique regular solution x(t) satisfying

sup
0≤t≤T

E|x(t)|p ≤ C ∀ T ≥ 0. (2.2)

Proof. It follows from (2.1) that

lim sup
|x|→∞

(

1 + |x|2
) (

2xTf (x) + |g(x)|2
)

− (2 − p)
∣

∣xTg(x)
∣

∣
2

(

1 + |x|2
)2

≤ λ.

Then for any 0 < κ ≪ p|λ|/2, there exists a constant M > 0 such that

(

1 + |x|2
) (

2xTf (x) + |g(x)|2
)

− (2 − p)

∣

∣

∣x
Tg(x)

∣

∣

∣

2 ≤

(

λ +
κ

p

)

(

1 + |x|2
)2

∀ |x| > M.

By the continuity of the functions f and g,

(

1 + |x|2
) (

2xTf (x) + |g(x)|2
)

− (2 − p)

∣

∣

∣x
Tg(x)

∣

∣

∣

2 ≤

(

λ +
κ

p

)

(

1 + |x|2
)2

+ C ∀ x ∈ R
d. (2.3)

It follows from the definition of operator L that

L

(

(

1 + |x|2
)

p
2

)

=
p

2

(

1 + |x|2
)

p
2 −2 [(

1 + |x|2
) (

2xTf (x) + |g(x)|2
)

− (2 − p)

∣

∣

∣x
Tg(x)

∣

∣

∣

2
]

≤
p

2

(

1 + |x|2
)

p
2 −2
[(

λ +
κ

p

)

(

1 + |x|2
)2

+ C

]

=

(

pλ

2
+

κ

2

)

(

1 + |x|2
)

p
2

+ C
(

1 + |x|2
)

p
2 −2

. (2.4)

If 0 < p ≤ 4 then
(

1 + |x|2
)

p
2 −2

≤ 1 for any x ∈ R
d, while if 4 < p then it follows from Young’s

inequality that for any given ε > 0, for any x ∈ R
d,

(

1 + |x|2
)

p
2 −2

=

[

1

ε
p−4

4

] 4
p
[

ε
(

1 + |x|2
)

p
2

]
p−4

p

≤
4

pε
p−4

4

+
ε(p − 4)

p

(

1 + |x|2
)

p
2

.
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852 X. LI ET AL.

Taking ε =
κp

2C(p−4)
we have

(

1 + |x|2
)

p
2 −2

≤
4

p

[

2C(p − 4)

κp

]
p−4

4

+
κ

2C

(

1 + |x|2
)

p
2

for any x ∈ R
d.

Thus, for any p > 0,

(

1 + |x|2
)

p
2 −2

≤
4

p

[

2C(p − 4)

κp

]
p−4

4

+ 1 +
κ

2C

(

1 + |x|2
)

p
2

for any x ∈ R
d. (2.5)

Therefore, it follows from (2.4) and (2.5) that

L

(

(

1 + |x|2
)

p
2

)

≤

(

pλ

2
+ κ

)

(

1 + |x|2
)

p
2

+ C. (2.6)

The above inequality and Assumption 2.1 guarantee the existence of the unique regular solution x(t)
(see the so-called Khasminskii test in the study by Mao & Rassias, 2005). Using Itô’s formula, for any
0 ≤ t ≤ T ,

E

(

(

1 + |x(t)|2
)

p
2

)

≤
(

1 + |x0|
2
)

p
2

+ C +

(

pλ

2
+ κ

)∫ t

0
E

(

1 + |x(s)|2
)

p
2

ds.

By Gronwall’s inequality we have

E

(

(

1 + |x(t)|2
)

p
2

)

≤
(

C + 2p/2|x0|
p
)

e

(

pλ
2 +κ
)

T
, (2.7)

which implies the desired inequality (2.2). �

Remark 2.4 Assumption 2.1 guarantees the existence of global solutions, their regularity and their pth
moment boundedness. This is an alternative to Khasminskii’s condition that there exist positive constants

α, β such that LVp ≤ αVp + β with V =
(

1 + |x|2
)1/2

. Different from the stability analysis, working
with numerical schemes, it is more preferable to use verifiable conditions. As a result, it is more feasible
to put conditions on the coefficients of the equations rather than to use an auxiliary function.

Lemma 2.5 Let Assumption 2.1 hold. For each positive integer N > |x0| define

τN =: inf
{

t ∈ [0, +∞) : |x(t)| ≥ N
}

. (2.8)

Then for any T > 0,

P
{

τN ≤ T
}

≤
C

Np
, (2.9)

where C is a generic positive constant dependent on T , p and x0 and independent of N.
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EXPLICIT NUMERICAL APPROXIMATIONS FOR SDES IN FINITE AND INFINITE HORIZONS 853

Proof. By virtue of Dynkin’s formula it follows from (2.6) that

E

(

(

1 + |x(t ∧ τN)|2
)

p
2

)

≤
(

1 + |x0|
2
)

p
2

+

(

κ +
pλ

2

)

E

∫ t∧τN

0

(

1 + |x(s)|2
)

p
2

ds + CT

for any 0 ≤ t ≤ T . Gronwall’s inequality implies

Np
P
{

τN ≤ T
}

≤ E
(

|x(t ∧ τN)|p
)

≤ E

(

(

1 + |x
(

t ∧ τN

)

|2
)

p
2

)

≤ C

as desired. �

3. Explicit scheme and convergence in pth moment

In this section our aim is to construct an easily implementable numerical method and establish its strong
convergence theory under Assumption 2.1. To define the appropriate numerical scheme we first estimate
the growth rate of f and g. Choose a strictly increasing continuous function ϕ : R+ → R+ such that
ϕ(r) → ∞ as r → ∞ and

sup
|x|≤r

∣

∣f (x)
∣

∣

1 + |x|
∨

|g(x)|2

(1 + |x|)2
≤ ϕ(r) ∀ r > 0. (3.1)

Denote by ϕ−1 the inverse function of ϕ; obviously ϕ−1 : [ϕ(0), ∞) → R+ is a strictly increasing
continuous function. We also choose a number △∗ ∈ (0, 1) and a strictly decreasing h : (0, △∗] →

(0, ∞) such that

h
(

△∗
)

≥ ϕ(|x0|), lim
△→0

h(△) = ∞ and △
1
2 h (△) ≤ K, ∀△ ∈

(

0, △∗
]

, (3.2)

where K is a positive constant independent of △. For a given △ ∈
(

0, △∗
]

let us define the truncation

mapping π△ : Rd → R
d by

π△(x) =
(

|x| ∧ ϕ−1(h(△)
)

) x

|x|
, (3.3)

where we use the convention x
|x| = 0 when x = 0. Clearly,

∣

∣f
(

π△(x)
)∣

∣ ≤ h(△)
(

1 + |π△(x)|
)

,
∣

∣g(π△(x))
∣

∣ ≤ h
1
2 (△)
(

1 + |π△(x)|
)

, ∀ x ∈ R
d. (3.4)

Next we propose our numerical method to approximate the exact solution of the SDE (1.1). For any
given step size △ ∈ (0, △∗] define

⎧

⎪

⎨

⎪

⎩

y0 = x0,

ỹk+1 = yk + f
(

yk

)

△ + g(yk)△Bk,

yk+1 = π△

(

ỹk+1

)

,

(3.5)
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854 X. LI ET AL.

where tk = k△, △Bk = B
(

tk+1

)

− B
(

tk
)

. We refer to the numerical method as a truncated EM scheme.
The numerical solutions yk are obtained by truncating the intermediate terms ỹk according to the growth
rate of the drift and diffusion coefficients to avoid their possible large excursions due to the nonlinearities
of the coefficients and the Brownian motion increments. Consequently, we have the following nice linear
property

∣

∣f (yk)
∣

∣ ≤ h(△)
(

1 + |yk|
)

,
∣

∣g(yk)
∣

∣ ≤ h
1
2 (△)
(

1 + |yk|
)

, ∀ k ≥ 0. (3.6)

Moreover, the truncated EM method is an explicit one so it is easy to use. To proceed, we define ỹ(t)

and y(t) by

ỹ(t) := ỹk, y(t) := yk, ∀ t ∈ [tk, tk+1). (3.7)

Lemma 3.1 Under Assumption 2.1, the truncation scheme defined by (3.5) has the property

sup
0<△≤△∗

sup
0≤k△≤T

E
∣

∣yk

∣

∣

p
≤ C ∀ T > 0. (3.8)

Proof. For any integer k ≥ 0 we have

|ỹk+1|
2 =
∣

∣yk + f (yk)△ + g(yk)△Bk

∣

∣

2

=
∣

∣yk

∣

∣

2
+ 2yT

k f
(

yk

)

△ +
∣

∣g
(

yk

)

△Bk

∣

∣

2
+ 2yT

k g
(

yk

)

△Bk

+
∣

∣f
(

yk

) ∣

∣

2
△2 + 2f T (yk

)

g
(

yk

)

△Bk△. (3.9)

Then

(

1 + |ỹk+1|
2
)

p
2

=
(

1 + |yk|
2
)

p
2 (

1 + ξk

)
p
2 , (3.10)

where

ξk =
2yT

k f
(

yk

)

△ +
∣

∣g(yk)△Bk

∣

∣

2
+ 2yT

k g
(

yk

)

△Bk +
∣

∣f
(

yk

)∣

∣

2
△2 + 2f T

(

yk

)

g
(

yk

)

△Bk△

1 + |yk|
2

. (3.11)

Thanks to the Taylor formula, applying the recursion with u > −1, we have

(1 + u)
p
2 ≤

{

1 +
p
2 u +

p(p−2)
8 u2 +

p(p−2)(p−4)
48 u3, 0 < p ≤ 2,

1 +
p
2 u +

p(p−2)
8 u2 + u3Pi(u), 2i < p ≤ 2(i + 1),

(3.12)

where Pi(u) represents an ith-order polynomial of u with coefficients depending only on p, and i is an
integer. We will prove the result when 0 < p ≤ 2 only; the other cases can be done similarly. It follows

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
jn

a
/a

rtic
le

/3
9
/2

/8
4
7
/4

9
6
4
8
3
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2
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from (3.10) that

E

(

(

1 + |ỹk+1|
2
)

p
2
|Ftk

)

≤
(

1 + |yk|
2
)

p
2

[

1 +
p

2
E
(

ξk|Ftk

)

+
p(p − 2)

8
E

(

ξ2
k |Ftk

)

+
p(p − 2)(p − 4)

48
E

(

ξ3
k |Ftk

)

]

. (3.13)

The fact that △Bk is independent of Ftk
implies that

E
(

△Bk|Ftk

)

= E
(

△Bk

)

= 0, E

(

|A△Bk|
2|Ftk

)

= E

(

|A△Bk|
2
)

= |A|2△, ∀ A ∈ R
d×m.

This together with (3.2) and (3.6) implies

E
(

ξk|Ftk

)

=
(

1 + |yk|
2
)−1 [(

2yT
k f (yk) + |g(yk)|

2
)

△ +
∣

∣f (yk)
∣

∣

2
△2
]

≤
(

1 + |yk|
2
)−1 [(

2yT
k f (yk) + |g(yk)|

2
)

△ + (1 + |yk|)
2h2(△)△2

]

≤
(

1 + |yk|
2
)−1 (

2yT
k f (yk) + |g(yk)|

2
)

△ + 2K2△. (3.14)

Using

E

(

(

A△Bk

)2i−1
|Ftk

)

= 0 and E

(

|A△Bk|
2i|Ftk

)

= C△i, ∀ A ∈ R
1×m, i ≥ 1, (3.15)

we have

E

(

ξ2
k |Ftk

)

=
(

1 + |yk|
2
)−2

E

[(

2yT
k f (yk)△ +

∣

∣g(yk)△Bk

∣

∣

2
+ 2yT

k g(yk)△Bk

+
∣

∣f (yk)
∣

∣

2
△2 + 2f T(yk)g(yk)△Bk△

)2
|Ftk

]

≥
(

1 + |yk|
2
)−2

E

[

∣

∣2yT
k g(yk)△Bk

∣

∣

2 + 2
(

2yT
k g(yk)△Bk

)T(
2yT

k f (yk)△

+
∣

∣g(yk)△Bk

∣

∣

2
+
∣

∣f (yk)
∣

∣

2
△2 + 2f T(yk)g(yk)△Bk△

)∣

∣Ftk

]

≥ 4
(

1 + |yk|
2
)−2 ∣
∣

∣y
T
k g(yk)

∣

∣

∣

2△ − 8
(

1 + |yk|
2
)−2 ∣
∣yk||f (yk)||g(yk)

∣

∣

2
△2

≥ 4
(

1 + |yk|
2
)−2 ∣
∣

∣y
T
k g(yk)

∣

∣

∣

2△ − 8
(

1 + |yk|
2
)−2

|yk|
(

1 + |yk|
)3

h2(△)△2

≥ 4
(

1 + |yk|
2
)−2 ∣
∣

∣y
T
k g(yk)

∣

∣

∣

2△ − 24K2△ (3.16)
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856 X. LI ET AL.

and

E

(

ξ3
k |Ftk

)

=
(

1 + |yk|
2
)−3

E

[( (

2yT
k f (yk)△ + |g(yk)△Bk|

2 +
∣

∣f (yk)
∣

∣

2
△2
)

+
(

2yT
k g(yk)△Bk + 2f T(yk)g(yk)△Bk△

) )3∣
∣Ftk

]

=
(

1 + |yk|
2
)−3

E

[( (

2yT
k f (yk)△ +

∣

∣g(yk)△Bk

∣

∣

2
+
∣

∣f (yk)
∣

∣

2
△2
)3

+
(

2yT
k f (yk)△+|g(yk)△Bk|

2+|f (yk)|
2△2
)(

2yT
k g(yk)△Bk+2f T(yk)g(yk)△Bk△

)2 )∣
∣Ftk

]

≤
(

1 + |yk|
2
)−3

E

[(

72|yT
k f (yk)|

3△3 + 9|g(yk)|
6
∣

∣△Bk

∣

∣

6
+ 9
∣

∣f (yk)
∣

∣

6
△6

+ 16|yk|
3
∣

∣f (yk)
∣

∣

∣

∣g(yk)
∣

∣

2∣
∣△Bk

∣

∣

2
△ + 8|yk|

2
∣

∣g(yk)
∣

∣

4∣
∣△Bk

∣

∣

4

+ 8|yk|
2
∣

∣f (yk)
∣

∣

2∣
∣g(yk)
∣

∣

2∣
∣△Bk

∣

∣

2
△2 + 16|yk|

∣

∣f (yk)
∣

∣

3∣
∣g(yk)
∣

∣

2
|△Bk|

2△3

+ 8|f (yk)|
2|g(yk)|

4|△Bk|
4△2 + 8|f (yk)|

4|g(yk)|
2|△Bk|

2△4
)

|Ftk

]

≤ C
(

1 + |yk|
2
)−3(

|yk|
3|f (yk)|

3△3 + |g(yk)|
6△3 + |f (yk)|

6△6

+ |yk|
3|f (yk)||g(yk)|

2△2 + |yk|
2|g(yk)|

4△2 + |yk|
2|f (yk)|

2|g(yk)|
2△3

+ |yk||f (yk)|
3|g(yk)|

2△4 + |f (yk)|
2|g(yk)|

4△4 + |f (yk)|
4|g(yk)|

2△5
)

≤ C
(

h3(△)△3 + h3(△)△3 + h6(△)△6 + h2(△)△2 + h2(△)△2

+ h3(△)△3 + h4(△)△4 + h4(△)△4 + h5(△)△5
)

≤ C△. (3.17)

Also we can prove that, for any i > 3, E
(

ξ i
k|Ftk

)

= O(△). Combining (3.13)–(3.17) and using (2.1) in
Assumption 2.1, for any k ≥ 0,

E

(

(

1 + |ỹk+1|
2
)

p
2
|Ftk

)

≤
(

1 + |yk|
2
)

p
2

[

1 + C△ +p

(

1 + |yk|
2
) (

2yT
k f (yk) + |g(yk)|

2
)

+ (p − 2)
∣

∣yT
k g(yk)
∣

∣
2

2
(

1 + |yk|
2
)2

△

]

(3.18)

≤
(

1 + |yk|
2
)

p
2
(1 + C△).

Thanks to the truncated EM scheme (3.5), for any integer k satisfying 0 ≤ k△≤ T , we obtain

E

(

(

1 + |yk|
2
)

p
2

)

≤ E

(

(

1 + |ỹk|
2
)

p
2

)

= E

[

E

(

(

1 + |ỹk|
2
)

p
2
|Ftk−1

)]

≤ (1 + C△)E

(

(

1 + |yk−1|
2
)

p
2

)

. (3.19)
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EXPLICIT NUMERICAL APPROXIMATIONS FOR SDES IN FINITE AND INFINITE HORIZONS 857

Solving the above linear first-order difference inequality, we obtain

E

(

(

1 + |yk|
2
)

p
2

)

≤ (1 + C△)k
E

(

1 + |y0|
2
)

p
2

≤ eCk△
(

1 + |y0|
2
)

p
2

≤ eCT
(

1 + |y0|
2
)

p
2

.

Therefore, we get the desired result that

sup
0<△≤△∗

sup
0≤k△≤T

E|yk|
p ≤ sup

0<△≤△∗
sup

0≤k△≤T

E

(

(

1 + |yk|
2
)

p
2

)

≤ C.

The proof is complete. �

Lemma 3.2 Let Assumption 2.1 hold. For any △ ∈ (0, △∗] define

ρ△ =: inf
{

t ≥ 0 :
∣

∣ỹ(t)
∣

∣ ≥ ϕ−1 (h(△))
}

. (3.20)

Then for any T > 0,

P{ρ△ ≤ T} ≤
C

(

ϕ−1
(

h(△)
))p , (3.21)

where C is a positive constant independent of △.

Proof. We write ρ△ = ρ for simplicity. Then ρ = △β△, where β△ =: inf
{

k ≥ 0 : |ỹk| ≥ ϕ−1(h(△))
}

.

Clearly, ρ and β△ are Ft and Ftk
stopping times, respectively. For ω ∈

{

β△ ≥ k + 1
}

we have
∣

∣ỹk

∣

∣ < ϕ−1 (h(△)) and yk = ỹk, whence it follows from (3.5) that

ỹ(k+1)∧β△
= ỹk+1 = ỹk +

[

f
(

ỹk

)

△ + g
(

ỹk

)

△Bk

]

= ỹk∧β△
+
[

f (ỹk)△ + g(ỹk)△Bk

]

I[[0,β△]]

(

k + 1
)

.

On the other hand, for ω ∈
{

β△ < k + 1
}

, we have β△ ≤ k and hence

ỹ(k+1)∧β△
= ỹβ△

= ỹk∧β△
+
[

f (ỹk)△ + g(ỹk)△Bk

]

I[[0,β△]](k + 1).

In other words, we always have

ỹ(k+1)∧β△
= ỹk∧β△

+
[

f (ỹk)△ + g(ỹk)△Bk

]

I[[0,β△]](k + 1). (3.22)

Then

(

1 + |ỹ(k+1)∧β△
|2
)

p
2

=
(

1 + |ỹk∧β△
|2
)

p
2
(

1 + ξkI[[0,β△]](k + 1)
)

p
2

, (3.23)
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858 X. LI ET AL.

where

ξk =
2ỹT

k f
(

ỹk

)

△ + |g
(

ỹk

)

△Bk|
2 + 2ỹT

k g
(

ỹk

)

△Bk +
∣

∣f
(

ỹk

)∣

∣

2
△2 + 2f T

(

ỹk

)

g
(

ỹk

)

△Bk△

1 +
∣

∣ỹk

∣

∣

2
.

As in the proof of Lemma 3.1 we prove the assertion only for the case when 0 < p ≤ 2; when p > 2 it
can be done in the same way. Using the technique in the proof of Lemma 3.1 we can show that

E

(

(

1 + |ỹ(k+1)∧β△
|2
)

p
2
|Ftk∧β△

)

≤
(

1 + |ỹk∧β△
|2
)

p
2
[

1 +
p

2
E

(

ξkI[[0,β△]]

(

k + 1
)∣

∣Ftk∧β△

)

+
p(p−2)

8
E

(

ξ2
k I[[0,β△]](k+1)|Ftk∧β△

)

+
p(p−2)(p−4)

48
E

(

ξ3
k I[[0,β△]](k+1)|Ftk∧β△

)

]

. (3.24)

Note that △BkI[[0,β△]](k+1) = B(t(k+1)∧β△
)−B(tk∧β△

). Since B(t) is a continuous martingale, by virtue

of the Doob martingale stopping time theorem, we see that E
(

△BkI[[0,β△]](k + 1)|Ftk∧β△

)

= 0, and for

any A ∈ R
d×m,

E

(

|A△Bk|
2I[[0,β△]](k+1)|Ftk∧β△

)

=|A|2E
(

t(k+1)∧β△
−tk∧β△

|Ftk∧β△

)

=|A|2△E

(

I[[0,β△]](k+1)|Ftk∧β△

)

.

This together with (3.2) and (3.6) implies

E

(

ξkI[[0,β△]](k + 1)|Ftk∧β△

)

=
(

1 + |ỹk|
2
)−1 [(

2ỹT
k f (ỹk) + |g(ỹk)|

2
)

△ +
∣

∣f (ỹk)
∣

∣

2
△2
]

E

(

I[[0,β△]](k + 1)
∣

∣Ftk∧β△

)

≤
(

1 + |ỹk|
2
)−1 [(

2ỹT
k f (ỹk) + |g(ỹk)|

2
)

△ +
(

1 +
∣

∣ỹk

∣

∣

)2
h2(△)△2

]

E

(

I[[0,β△]](k + 1)
∣

∣Ftk∧β△

)

≤

[

(

1 + |ỹk|
2
)−1 (

2ỹT
k f (ỹk) + |g(ỹk)|

2
)

△ + 2K2△
3
2

]

E

(

I[[0,β△]](k + 1)
∣

∣Ftk∧β△

)

. (3.25)

Using

E

(

|A△Bk|
2iI[[0,β△]](k + 1)|Ftk∧β△

)

= C△i
E

(

I[[0,β△]](k + 1)
∣

∣Ftk∧β△

)

,

E

(

(

A△Bk

)2i+1
I[[0,β△]]

(

k + 1
)∣

∣Ftk∧β△

)

= 0 ∀ A ∈ R
1×m, i ≥ 1,
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we have

E

(

ξ2
k I[[0,β△]](k + 1)

∣

∣Ftk∧β△

)

=
(

1 + |ỹk|
2
)−2

E

[(

2ỹT
k f
(

ỹk

)

△ + |g
(

ỹk

)

△Bk|
2 + 2ỹT

k g
(

ỹk

)

△Bk

+
∣

∣f
(

ỹk

)∣

∣

2△2 + 2f T
(

ỹk

)

g
(

ỹk

)

△Bk△
)2

I[[0,β△]]

(

k + 1
)∣

∣Ftk∧β△

]

≥
(

1 + |ỹk|
2)−2
[

4
∣

∣

∣ỹ
T
k g
(

ỹk

)

∣

∣

∣

2△ − 8
∣

∣ỹk

∣

∣

∣

∣f
(

ỹk

)∣

∣

∣

∣g(ỹk)
∣

∣

2
△2
]

E

(

I[[0,β△]]

(

k + 1
)∣

∣Ftk∧β△

)

≥

[

4
(

1 + |ỹk|
2
)−2 ∣
∣

∣ỹ
T
k g
(

ỹk

)

∣

∣

∣

2△ − 24K2△

]

E

(

I[[0,β△]]

(

k + 1
)∣

∣Ftk∧β△

)

(3.26)

and

E

(

ξ3
k I[[0,β△]](k + 1)|Ftk∧β△

)

=
(

1 + |ỹk|
2
)−3

E

[(

2ỹT
k f (ỹk)△ + |g(ỹk)△Bk|

2 + 2ỹT
k g(ỹk)△Bk

+ |f (ỹk)|
2△2 + 2f T(ỹk)g(ỹk)△Bk△

)3
I[[0,β△]](k + 1)

∣

∣Ftk∧β△

]

≤
(

1 + |yk|
2
)−3

E

[[

72|yT
k f (yk)|

3△3 + 9|g(yk)|
6|△Bk|

6 + 9|f (yk)|
6△6

+ 16|yk|
3|f (yk)||g(yk)|

2|△Bk|
2△ + 8|yk|

2|g(yk)|
4|△Bk|

4

+ 8|yk|
2|f (yk)|

2|g(yk)|
2|△Bk|

2△2 + 16|yk||f (yk)|
3|g(yk)|

2|△Bk|
2△3

+ 8|f (yk)|
2|g(yk)|

4|△Bk|
4△2 + 8|f (yk)|

4|g(yk)|
2|△Bk|

2△4
]

I[[0,β△]](k + 1)
∣

∣Ftk∧β△

]

≤ C
(

1 + |yk|
2
)−3[

|yk|
3|f (yk)|

3△3 + |g(yk)|
6△3 + |f (yk)|

6△6

+ |yk|
3|f (yk)||g(yk)|

2△2 + |yk|
2|g(yk)|

4△2 + |yk|
2|f (yk)|

2|g(yk)|
2△3

+ |yk||f (yk)|
3|g(yk)|

2△4 + |f (yk)|
2|g(yk)|

4△4 + |f (yk)|
4|g(yk)|

2△5
]

E

[

I[[0,β△]](k + 1)
∣

∣Ftk∧β△

]

≤ C
[

h3(△)△3 + h3(△)△3 + h6(△)△6 + h2(△)△2 + h2(△)△2

+ h3(△)△3 + h4(△)△4 + h4(△)△4 + h5(△)△5
]

E

[

I[[0,β△]](k + 1)
∣

∣Ftk∧β△

]

≤ C△E

(

I[[0,β△]](k + 1)
∣

∣Ftk∧β△

)

. (3.27)
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860 X. LI ET AL.

We can also prove that for any i > 3, E
(

ξ i
k|Ftk

)

= O(△)E
(

I[[0,β△]](k + 1)|Ftk∧β△

)

. Combining

(3.25)–(3.27), using (2.1) in Assumption 2.1, for any k ≥ 0,

E

(

(

1 + |ỹ(k+1)∧β△
|2
)

p
2 ∣
∣Ftk∧β△

)

≤
(

1 + |ỹk∧β△
|2
)

p
2

[

1 +

(

C△+

+
p

2

(

1 + |ỹk|
2
) (

2ỹT
k f
(

ỹk

)

+ |g
(

ỹk

)

|2
)

+
(

p − 2
) ∣

∣ỹT
k g
(

ỹk

)∣

∣
2

(

1 + |ỹk|
2
)2

△

)

E

(

I[[0,β△]]

(

k + 1
)∣

∣Ftk∧β△

)

]

≤
(

1 +
∣

∣

∣ỹk∧β△

∣

∣

∣

2
)

p
2
(

1 + C△E

(

I[[0,β△]](k + 1)|Ftk∧β△

))

. (3.28)

For any integer 1 ≤ k ≤ T/△ we obtain

E

(

(

1 + |ỹk∧β△
|2
)

p
2

)

= E

(

E

(

(

1 +
∣

∣ỹk∧β△

∣

∣

2
)

p
2 ∣
∣Ft(k−1)∧β△

))

≤ E

[

(

1 +
∣

∣ỹ(k−1)∧β△

∣

∣

2
)

p
2
(

1 + C△E

(

I[[0,β△]](k)
∣

∣Ft(k−1)∧β△

))

]

≤ (1 + C△)E

(

(

1 +
∣

∣ỹ(k−1)∧β△

∣

∣

2
)

p
2

)

. (3.29)

Solving the above first-order linear inequality leads to

E

(

(

1+
∣

∣ỹk∧β△

∣

∣

2
)

p
2

)

≤ (1 + C△)k
E

(

(

1+|y0|
2
)

p
2

)

≤ eCk△

(

(

1+|y0|
2
)

p
2

)

≤ eCT

(

(

1+|y0|
2
)

p
2

)

.

Therefore, the desired assertion follows from

(

ϕ−1(h(△))
)p

P
{

ρ ≤ T
}

≤ E
(∣

∣ỹ(T ∧ ρ)
∣

∣

p)
= E

(

∣

∣ỹ[T/△]∧β△

∣

∣

p
)

≤ E

(

(

1 +
∣

∣ỹ[T/△]∧β△

∣

∣

2
)

p
2

)

≤ C.

The proof is complete. �

The following theorem presents the pth moment convergence of the truncated numerical solutions.

Theorem 3.3 Under Assumption 2.1, for any q ∈ (0, p),

lim
△→0

E
∣

∣y(T) − x(T)
∣

∣

q
= 0 ∀ T ≥ 0. (3.30)
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EXPLICIT NUMERICAL APPROXIMATIONS FOR SDES IN FINITE AND INFINITE HORIZONS 861

Proof. Let τN and ζ△ be the same as before. Define θN,△ = τN ∧ ρ△, e△(T) = x(T) − ȳ(T). Using
Young’s inequality, for any δ > 0, we have

E|e△(T)|q = E

(

|e△(T)|qI{θN,△>T}

)

+ E

(

|e△(T)|qI{θN,△≤T}

)

≤ E

(

|e△(T)|qI{θN,△>T}

)

+
qδ

p
E

(

|e△(T)|p
)

+
p − q

pδq/(p−q)
P
{

θN,△ ≤ T
}

. (3.31)

It follows from the results of Theorem 2.3 and Lemma 3.1 that

E|e△(T)|p ≤ 2p
E|x(T)|p + 2p

E|y(T)|p ≤ C.

Now let ε > 0 be arbitrary. Choose δ > 0 sufficiently small for Cqδ/p ≤ ε/3; then we have

qδ

p
E

(

|e△(T)|p
)

≤
ε

3
. (3.32)

Choose N > 1 sufficiently large such that C(p−q)

Nppδq/(p−q) ≤ ε
6 . Choose △∗ > 0 sufficiently small such that

ϕ−1 (h
(

△∗
))

≥ N. (3.33)

It follows from the results of Lemmas 2.5 and 3.2 that for any △ ∈ (0, △∗],

p − q

pδq/(p−q)
P
{

θN,△ ≤ T
}

≤
p − q

pδq/(p−q)

(

P
{

τN ≤ T
}

+ P
{

ρ△ ≤ T
}

)

≤
p − q

pδq/(p−q)

(

C

Np
+

C
(

ϕ−1 (h (△))
)p

)

≤
2C(p − q)

Nppδq/(p−q)
≤

ε

3
. (3.34)

Combining (3.31), (3.32) and (3.34), we know that for the chosen N and all △ ∈ (0, △∗],

E|e△ (T) |q ≤ E

(

∣

∣e△(T)
∣

∣

q
I{

θN,△>T
}

)

+
2ε

3
.

If we can show that

lim
△→0

E

(

∣

∣e△(T)
∣

∣

q
I{

θN,△>T
}

)

= 0, (3.35)

the desired assertion follows. For this purpose, we define the truncation functions

fN(x) = f

(

(

|x| ∧ N
) x

|x|

)

and gN(x) = g

(

(

|x| ∧ N
) x

|x|

)

, ∀ x ∈ R
d.
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862 X. LI ET AL.

Consider the truncated SDE

dy(t) = fN
(

y(t)
)

dt + gN

(

y(t)
)

dB(t) (3.36)

with the initial value z(0) = x0. By (1.2) in Assumption 2.1, fN(·) and gN(·) are globally Lipschitz
continuous with the Lipschitz constant CN . Therefore, SDE (3.36) has a unique regular solution y(t) on
t ≥ 0 satisfying

x(t ∧ τN) = y(t ∧ τN) a.s., ∀ t ≥ 0. (3.37)

On the other hand, for each △ ∈ (0, △∗], we apply the EM method to SDE (3.36) and we denote by
u(t) the piecewise constant EM solution (see Kloeden & Platen, 1992; Higham et al., 2002) that has the
property

E

(

sup
0≤t≤T

∣

∣y(t) − u(t)
∣

∣

q

)

≤ C△q/2 ∀ T ≥ 0. (3.38)

It follows from (3.5) that for all △ ∈ (0, △∗],

y
(

t ∧ θN,△

)

= ỹ
(

t ∧ θN,△

)

= u
(

t ∧ θN,△

)

a.s., ∀ t ≥ 0. (3.39)

Using (3.37)–(3.39),

E

(∣

∣

∣e△(T)

∣

∣

∣

qI{θN,△>T}

)

= E

(∣

∣

∣e△

(

T ∧ θN,△

)∣

∣

∣

qI{θN,△>T}

)

≤ E

(∣

∣

∣x
(

T ∧ θN,△

)

− y
(

T ∧ θN,△

)∣

∣

∣

q
)

≤ E

(∣

∣

∣y
(

t ∧ θN,△

)

− u
(

T ∧ θN,△

)∣

∣

∣

q
)

≤ E

(

sup
0≤t≤T

∣

∣

∣y
(

t ∧ θN,△

)

− u
(

t ∧ θN,△

)∣

∣

∣

q

)

= E

(

sup
0≤t≤T∧θN,△

∣

∣y(t) − u(t)
∣

∣

q

)

≤ E

(

sup
0≤t≤T

∣

∣y(t) − u(t)
∣

∣

q

)

≤ C△q/2.

Therefore, (3.35) holds and the desired assertion follows. �

4. Convergence rate

In this section, our aim is to establish a rate of convergence result under Assumption 2.1 and additional
conditions on f and g. The rate is optimal, similar to the standard results for the explicit EM scheme
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EXPLICIT NUMERICAL APPROXIMATIONS FOR SDES IN FINITE AND INFINITE HORIZONS 863

with globally Lipschtiz f and g. The work of Higham et al. (2002) gives the optimal rate in qth moment
for the implicit EM scheme for q ≥ 2 with global Lipschitz g and a one-sided Lipschitz f together with
polynomial growth. Using a similar condition to the study by Higham et al. (2002), the rate for the
tamed Euler was obtained (Hutzenthaler et al., 2012). The work of Sabanis (2016) developed the tamed
EM scheme, then obtained the convergence rate under a condition similar to ours. To obtain the rates of
convergence we need somewhat stronger conditions compared with the convergence alone, which are
stated as follows.

Assumption 4.1 There exist positive constants p0 > 2, L and l such that

2(x − y)T (f (x) − f (y)
)

+ (p0 − 1)
∣

∣g(x) − g(y)
∣

∣

2
≤ L|x − y|2, (4.1)

∣

∣f (x) − f (y)
∣

∣ ≤ L
(

1 + |x|l + |y|l
)

|x − y|, ∀ x, y ∈ R
d. (4.2)

Remark 4.2 One observes that if Assumption 4.1 holds then

∣

∣g(x) − g(y)
∣

∣

2
≤ C
(

1 + |x|l + |y|l
)

|x − y|2. (4.3)

In addition,

|f (x)| ≤
∣

∣f (x) − f (0)| +
∣

∣f (0)
∣

∣ ≤ L
(

1 + |x|l
)

|x| +
∣

∣f (0)
∣

∣ ≤ C
(

1 + |x|l+1
)

, (4.4)

and by Young’s inequality,

∣

∣g(x)
∣

∣ ≤ C
[

|x|2 + |x|
(

1 + |x|l+1
)]1/2

+
∣

∣g(0)
∣

∣ ≤ C
(

1 + |x|l/2+1
)

. (4.5)

Remark 4.3 Under Assumption 4.1, we may define ϕ in (3.1) by ϕ(r) = C
(

1 + rl
)

for any

r > 0. Then ϕ−1(r) = (r/C − 1)1/l for all r > C. In order to obtain the rate, we specify h(△) = K△−̺

for all △ ∈ (0, △∗], where ̺ ∈ (0, 1/2] will be specified in the proof of Lemma 4.7. Thus,
π△(x) =

(

|x| ∧ (K△−̺/C − 1)1/l
)

x/|x| for any x ∈ R
d.

Making use of scheme (3.5) we define an auxiliary approximation process by

ȳ(t) = yk + f
(

yk

)(

t − tk
)

+ g
(

yk

)(

B(t) − B
(

tk
))

∀ t ∈
[

tk, tk+1

)

. (4.6)

Note that ȳ
(

tk
)

= y
(

tk
)

= yk, that is, ȳ(t) and y(t) coincide at the grid points.

Lemma 4.4 If Assumptions 2.1 and 4.1 hold with 2(l + 1) ≤ p, for any q0 ∈ [2, p/(l + 1)], for the
process given by (4.6),

sup
0≤t≤T

E
(

|ȳ(t) − y(t)|q0
)

≤ C△
q0
2 ∀ T > 0, ∀ △ ∈

(

0, △∗
]

, (4.7)

where C is a positive constant independent of △.
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864 X. LI ET AL.

Proof. For any t ∈ [0, T] there is a non-negative integer k such that t ∈
[

tk, tk+1

)

. Then

E
(

|ȳ(t) − y(t)|q0
)

= E
(

|ȳ(t) − y(tk)|
q0
)

≤ 2q
E
(∣

∣f (yk)
∣

∣

q0
)

△q0 + 2q0E
(∣

∣g(yk)
∣

∣

q0
∣

∣B(t) − B(tk)
∣

∣

q0
)

≤ C
(

E
∣

∣f (yk)
∣

∣

q0△q0 + E
∣

∣g(yk)
∣

∣

q0△
q0
2

)

.

Due to (4.4), (4.5) and Lemma 3.1,

E
(∣

∣ȳ(t) − y(t)
∣

∣

q0
)

≤ CE

(

1 + |yk|
l+1
)q0

△q0 + CE

(

1 + |yk|
l
2 +1
)q0

△
q0
2

≤ C + C
(

E|yk|
p
)

(l+1)q0
p △q0 + C

(

E|yk|
p
)

(l+2)q0
2p △

q0
2

≤ C△
q0
2 .

The required assertion follows. �

Using techniques in the proofs of Lemmas 3.1 and 3.2, we obtain the following lemmas.

Lemma 4.5 Under Assumption 2.1, for the numerical solution of scheme (4.6),

sup
0<△≤△∗

sup
0≤t≤T

E|ȳ(t)|p ≤ C ∀ T > 0. (4.8)

Lemma 4.6 Let Assumption 2.1 hold. For any △ ∈
(

0, △∗
]

define

ζ△ := inf
{

t ≥ 0 : |ȳ(t)| ≥ ϕ−1 (h(△))
}

. (4.9)

Then for any T > 0,

P

{

ζ△ ≤ T
}

≤
C

(

ϕ−1 (h(△))
)p , (4.10)

where C is a positive constant independent of △.

Lemma 4.7 If Assumptions 2.1 and 4.1 hold with 4(l + 1) ≤ p then for any q ∈ [2, p0)∩ [2, p/2(l + 1)],
for the numerical solution defined by (3.5) and (4.6) with ̺ = lq/2(p − q),

E
∣

∣ȳ(T) − x(T)
∣

∣

q
≤ C△

q
2 ∀ T > 0. (4.11)

Proof. Define θ̄△ = τϕ−1(h(△)) ∧ ρ△ ∧ ζ△, Ω1 :=
{

ω : θ̄△ > T
}

, ē(t) = x(t) − ȳ(t), for any t ∈ [0, T],

where τN , ρ△ and ζ△ are defined by (2.8), (3.20) and (4.9), respectively. Using Young’s inequality, for
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EXPLICIT NUMERICAL APPROXIMATIONS FOR SDES IN FINITE AND INFINITE HORIZONS 865

any κ > 0, we have

E
∣

∣ē(T)
∣

∣

q
= E
(

|ē(T)|qIΩ1

)

+ E

(

|ē(T)|qIΩc
1

)

≤ E
(

|ē(T)|qIΩ1

)

+
q△κ

p
E
(

|ē(T)|p
)

+
p − q

p△κq/(p−q)
P
(

Ωc
1

)

. (4.12)

Theorem 2.3 and Lemma 4.5 yield

q△κ

p
E
(

|ē(T)|p
)

≤ C△κ . (4.13)

It follows from the results of Lemmas 2.5, 3.2 and 4.5 that

p − q

p△κq/(p−q)
P
(

Ωc
1

)

≤
p − q

p△κq/(p−q)

(

P

{

τϕ−1(h(△)) ≤ T
}

+ P

{

ρ△ ≤ T
}

+ P

{

ζ△ ≤ T
})

≤
p − q

p△κq/(p−q)

3C
(

ϕ−1(h(△))
)p

≤ C△
̺p
l

−
κq

p−q . (4.14)

On the other hand, for any t ∈ [0, T],

ē(t) =

∫ t

0

(

f (x(s)) − f (y(s))
)

ds +

∫ t

0

(

g(x(s)) − g(y(s))
)

dB(s).

The Itô formula leads to

|ē(t)|q =

∫ t

0

q

2
|ē(s)|q−4

[

|ē(s)|2
(

2ēT(s)
(

f (x(s)) − f (y(s))
)

+
∣

∣g(x(s)) − g(y(s))
∣

∣

2
)

+ (q − 2)
∣

∣ēT(s)
(

g(x(s)) − g(y(s))
)∣

∣

2
]

ds + M(t)

≤

∫ t

0

q

2
|ē(s)|q−2

(

2ēT(s)
(

f (x(s)) − f (y(s))
)

+ (q − 1)
∣

∣g(x(s)) − g(y(s))|2
)

ds + M(t),

where M(t) =
∫ t

0
q
2 |ē(s)|q−2ēT(s)

(

g(x(s))−g(y(s))
)

dB(s) is a local martingale with initial value 0. This
implies

E

(

|ē(t ∧ θ̄△)|q
)

≤
q

2
E

∫ t∧θ̄△

0
|ē(s)|q−2

[

2ēT(s)
(

f (x(s)) − f (y(s))
)

+
(

q − 1
)∣

∣g
(

x(s)) − g(y(s)
)∣

∣

2
]

ds.

(4.15)
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866 X. LI ET AL.

Due to q ∈
[

2, p0

)

we choose a small constant ι > 0 such that (1 + ι)
(

q − 1
)

≤ p0 − 1. It follows from

Assumption 4.1 that for any 0 ≤ s ≤ t ∧ θ̄△,

2ēT(s)
(

f (x(s)) − f (y(s))
)

+
(

q − 1
) ∣

∣g
(

x(s)
)

− g
(

y(s)
)∣

∣

2

≤ 2ēT(s)
(

f (x(s)) − f (ȳ(s))
)

+ 2ēT(s)
(

f
(

ȳ(s)
)

− f (y(s))
)

+(1 + ι)
(

q − 1
)

|g(x(s)) − g(ȳ(s))|2 +

(

1 +
1

ι

)

(

q − 1
)

|g(ȳ(s)) − g(y(s))| 2

≤ L|ē(s)|2 + 2|ē(s)||f (ȳ(s)) − f (y(s))| +

(

1 +
1

ι

)

(q − 1)|g(ȳ(s)) − g(y(s))|2.

Inserting the above inequality into (4.15) we have

E

(

|ē
(

t ∧ θ̄△

)

|q
)

≤
q

2

∫ t∧θ̄△

0
E

(

L|ē(s)|q + 2|ē(s)|q−1
∣

∣f (ȳ(s)) − f (y(s))
∣

∣

+

(

1 +
1

ι

)

(

q − 1
)

|ē(s)|q−2
∣

∣g(ȳ(s)) − g(y(s))
∣

∣

2
)

ds.

Then an application of Young’s inequality together with Assumption 4.1 leads to

E

(∣

∣

∣ē(t ∧ θ̄△)

∣

∣

∣

q
)

≤ CE

∫ t∧θ̄△

0

(

|ē(s)|q +
∣

∣f (ȳ(s)) − f (y(s))
∣

∣

q
+
∣

∣g(ȳ(s)) − g(y(s))
∣

∣

q
)

ds

≤ CE

∫ t∧θ̄△

0

(

|ē(s)|q +
(

1 + |ȳ(s)|l + |y(s)|l
)q ∣
∣ȳ(s) − y(s)

∣

∣

q

+
(

1 + |ȳ(s)|l + |y(s)|l
)

q
2 ∣
∣ȳ(s) − y(s)

∣

∣

q
)

ds

≤ C

∫ t

0
E

(∣

∣

∣ē
(

s ∧ θ̄△

)∣

∣

∣

q
)

ds + C

∫ T

0
E

[(

1 + |ȳ(s)|lq + |y(s)|lq
)

|ȳ(s) − y(s)| q
]

ds.

(4.16)

Using Hölder’s equality and Jensen’s equality, and then Lemmas 4.4 and 4.5, we have

∫ T

0
E

[(

1 + |ȳ(s)|lq + |y(s)|lq
)

|ȳ(s) − y(s)|q
]

ds

≤ C

∫ T

0

[

E

(

1 + |ȳ(s)|lq + |y(s)|lq
)2
] 1

2 [

E|ȳ(s) − y(s)|2q
] 1

2
ds

≤ C

∫ T

0

[

1 +
(

E|ȳ(s)|p
)

2lq
p +
(

E|y(s)|p
)

2lq
p

] 1
2 [

E|ȳ(s) − y(s)|
p

l+1

]
(l+1)q

p
ds

≤ C△
q
2 . (4.17)
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EXPLICIT NUMERICAL APPROXIMATIONS FOR SDES IN FINITE AND INFINITE HORIZONS 867

Inserting (4.17) into (4.16) and applying Gronwall’s inequality we obtain

E
(

|ē(T)|qIΩ1

)

≤ E

(

|ē
(

T ∧ θ̄△

)

|q
)

≤ C△
q
2 . (4.18)

Inserting (4.13), (4.14) and (4.18) into (4.12) yields

E|ē(T)|q ≤ C△
q
2 + C△κ + C△

̺p
l

−
κq

p−q . (4.19)

Let

q

2
= κ =

̺p

l
−

κq

p − q
,

which implies ̺ =
lq

2(p−q)
, κ =

q
2 . Therefore, the desired assertion follows. �

Therefore, by virtue of Lemmas 4.4 and 4.7, we get our desired rate of convergence.

Theorem 4.8 If Assumptions 2.1 and 4.1 hold with 4(l+1) ≤ p then, for any q ∈ [2, p0)∩[2, p/2(l+1)],
for the numerical solution defined by (3.5) with ̺ = lq/2(p − q),

E
∣

∣y(T) − x(T)
∣

∣

q
≤ C△

q
2 ∀ T > 0. (4.20)

Remark 4.9 Higham et al. (2002) and Hutzenthaler et al. (2012) obtained the optimal rate 1/2 for the
backward EM scheme and the tamed EM scheme of strong convergence under the following condition:
the functions f and g are C1, and there exists a constant c such that

(x − y)T
(

f (x) − f (y)
)

≤ c|x − y|2, |g(x) − g(y)|2 ≤ c|x − y|2,

∣

∣f (x) − f (y)
∣

∣ ≤ c
(

1 + |x|l + |y|l
)

|x − y|, ∀ x, y ∈ R
d.

Note that the above condition implies that Assumptions 2.1 and 4.1 hold for any p > 2 and any p0 > 2.
Thus, under such a condition, in view of Theorem 4.8, the convergence rate of our truncated scheme is
optimal. Note that a similar convergence rate result was also obtained by Sabanis (2016) for a modified
tamed EM scheme under conditions similar to ours.

5. The pth moment boundedness in infinite time intervals

Since the moment boundedness in an infinite time interval is related closely to the tightness of the
numerical solution, as well as the ergodicity, we go further to realize this property by our explicit
numerical solution. Mattingly et al. (2002) showed that for a class of nonlinear SDEs the mean square
of the EM numerical solutions in the infinite interval tends to infinity but the mean square of the
exact solutions is bounded. Thus, they had to approximate the SDEs by the implicit scheme. Now
approximating the exact solutions in an infinite time interval by our numerical method will demonstrate
its advantages. First, we give the moment boundedness result on the exact solutions. For convenience,
we impose the following hypothesis.
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868 X. LI ET AL.

Assumption 5.1 There exists a pair of positive constants p and λ such that

lim sup
|x|→∞

(

1 + |x|2
) (

2xT f (x) + |g(x)|2
)

− (2 − p)
∣

∣xTg(x)
∣

∣
2

|x|4
≤ −λ. (5.1)

Theorem 5.2 Under Assumption 5.1, the solution x(t) of the SDE (1.1) satisfies

sup
0≤t<∞

E|x(t)|p ≤ C. (5.2)

Proof. For the given p > 0 and λ > 0 choose 0 < κ ≪ pλ/2. Using Itô’s formula and (2.6) we obtain

E

(

e

(

pλ
2 −κ
)

t
(

1 + |x(t)|2
)

p
2

)

= E

(

1 + |x0|
2
)

p
2

+ E

∫ t

0
L

(

e

(

pλ
2 −κ
)

s
(

1 + |x(s)|2
)

p
2

)

ds

≤
(

1 + |x0|
2
)

p
2

+ E

∫ t

0
e

(

pλ
2 −κ
)

s
[(

pλ

2
− κ

)

(

1 + |x(s)|2
)

p
2

+ L

(

(

1 + |x(s)|2
)

p
2

)]

ds

≤
(

1 + |x0|
2
)

p
2

+ E

∫ t

0
Ce

(

pλ
2 −κ
)

s
ds

≤
(

1 + |x0|
2
)

p
2

+ C

[

e

(

pλ
2 −κ
)

t
− 1

]

.

Thus,

E

(

(

1 + |x(t)|2
)

p
2

)

≤
(

1 + |x0|
2
)

p
2

e
−
(

pλ
2 −κ
)

t
+ C ≤ C. (5.3)

This implies the desired inequality. �

Remark 5.3 Although Assumption 2.1 holds directly from Assumption 5.1 we highlight that the family
of the drift and diffusion functions satisfying Assumption 5.1 is large. We give the following examples
as special cases in which Assumption 5.1 holds.

(a) If there are positive constants a, ε and λ such that
∣

∣xTg(x)
∣

∣
2 ≤ a|x|4−ε + C and that

2xT f (x) + |g(x)|2 ≤ −λ|x|2 + C then Assumption 5.1 holds with any p > 0.

(b) If there are positive constants a, ε and λ such that
∣

∣xTg(x)
∣

∣
2 ≥ λ|x|4+C and that 2xT f (x)+|g(x)|2 ≤

a|x|2−ε + C then Assumption 5.1 holds with any 0 < p < 2.

(c) If there are positive constants a and ε < 2a such that
∣

∣xTg(x)
∣

∣
2 ≥ a|x|4+C and 2xT f (x)+|g(x)|2 ≤

(2a − ε)|x|2 + C then Assumption 5.1 holds with some 0 < p ≪ 1 and −1 ≪ λ < 0.

(d) If there is a positive constant λ such that 2xT f (x) + |g(x)|2 ≤ −λ|x|2 + C then Assumption 5.1
holds with p = 2.
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EXPLICIT NUMERICAL APPROXIMATIONS FOR SDES IN FINITE AND INFINITE HORIZONS 869

Remark 5.4 Assumption 5.1 guarantees the asymptotically pth moment boundedness of exact solu-
tions, which is also an alternative to Khasminskii’s condition, which states that there exist positive

constants α and β such that LVp ≤ −αVp + β with V =
(

1 + |x|2
)1/2

. Again, for numerical schemes,
it is preferable to put conditions on the coefficients as mentioned before.

In order to obtain the asymptotic moment boundedness of the truncated EM scheme (3.5) we require
the chosen function h :

(

0, △∗
]

→ (0, ∞) to satisfy

△1/2−θ h(△) ≤ K ∀△ ∈
(

0, △∗
]

, (5.4)

for some θ ∈ (0, 1/2).

Theorem 5.5 Under Assumption 5.1 there is a △1 ∈ (0, 1) sufficiently small such that the numerical
solutions of the truncated EM scheme (3.5) have the property that for any compact set K ⊆ R

d

sup
0<△≤△1

sup
x0∈K

sup
0≤k<∞

E|yk|
p ≤ C. (5.5)

Proof. Using the method of proof in Lemma 3.1 we know that (3.18) holds, that is,

E

(

(

1 + |ỹk+1|
2
)

p
2 ∣
∣Ftk

)

≤
(

1 + |yk|
2
)

p
2
[

1 + o
(

△1+θ
)

+
p

2

(

1+|yk|
2
)

(

2yT
k f (yk)+

∣

∣g(yk)
∣

∣

2
)

+
(

p−2
) ∣

∣yT
k g(yk)
∣

∣
2

(

1+|yk|
2
)2

△

⎤

⎦ . (5.6)

For any given ε ∈ (0, pλ/2) it follows from Assumption 5.1 that

(

1 + |x|2
) (

2xT f (x) + |g(x)|2
)

− (2 − p)

∣

∣

∣x
Tg(x)

∣

∣

∣

2 ≤

(

−λ +
2ε

3p

)

(

1 + |x|2
)2

+ C ∀ x ∈ R
d.

From Young’s inequality we know that pC
2

(

1 + |x|2
)

p
2 −2

≤ C1 + ε
3

(

1 + |x|2
)

p
2 for any x ∈ R

d, where

C1 is a positive constant. Choose △1 ∈ (0, 1) sufficiently small such that o
(

△1
θ
)

≤ ε/3, 1 −
(

pλ
2 − ε
)

△1 > 0. Inserting the above inequalities into (5.6) yields, for any △ ∈
(

0, △1

]

,

E

(

(1 + |ỹk+1|
2)

p
2 |Ftk

)

≤ (1 + |yk|
2)

p
2

[

1 −

(

pλ

2
− ε

)

△

]

+ C1△. (5.7)

Equation (5.7) implies that for any △ ∈ (0, △1] and k ≥ 0,

E

(

(

1 + |yk+1|
2
)

p
2

)

≤ E

(

(

1 + |ỹk+1|
2
)

p
2

)

= E

[

E

(

(

1 + |ỹk+1|
2
)

p
2 ∣
∣Ftk

)]

≤

[

1 −

(

pλ

2
− ε

)

△

]

E

(

1 + |yk|
2
)

p
2

+ C1△.
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870 X. LI ET AL.

Solving the first-order nonhomogeneous inequality yields

E

(

(

1 + |yk+1|
2
)

p
2

)

≤

[

1 −

(

pλ

2
− ε

)

△

]k+1 (

1 + |y0|
2
)

p
2

+ C1△

k
∑

i=0

[

1 −

(

pλ

2
− ε

)

△

]i

≤
(

1 + |y0|
2
)

p
2

+ C,

where C is independent of k and △. Thus, the desired inequality follows. �

6. Exponential stability in pth moment

In this section, we focus on the exponential stability in pth moment. First, we give a sufficient condition
for exponential stability in pth moment of the exact solution. Since stability describes the dynamical
behavior more precisely than the boundedness, we will construct a truncation mapping and an explicit
scheme according to the super-linear growth of the diffusion and drift coefficients. This scheme is
suitable for the realization of stability for the nonlinear SDEs. For convenience we impose the following
hypothesis.

Assumption 6.1 There exists a pair of positive constants p and λ such that

|x|2
(

2xT f (x) +
∣

∣g(x)
∣

∣

2
)

−
(

2 − p
)

∣

∣

∣x
Tg(x)

∣

∣

∣

2 ≤ −λ|x|4 ∀ x ∈ R
d. (6.1)

Theorem 6.2 Under Assumption 6.1, the solution x(t) of the SDE (1.1) satisfies

E|x(t)|p ≤ |x0|
pe−pλt/2 ∀ t ≥ 0, (6.2)

where p and λ are given in Assumption 6.1. That is, the trivial solution of the SDE (1.1) is exponentially
stable in pth moment.

Proof. It follows from the definition of operator L and Assumption 6.1 that

L

(

e
pλ
2 t|x|p
)

= e
pλ
2 t|x|p

[

pλ

2
+

p

2

|x|2
(

2xT f (x) + |g(x)|2
)

−
(

2 − p
) ∣

∣xTg(x)
∣

∣
2

|x|4

]

≤ 0.

Thus, the desired assertion follows from Itô’s formula. �

Remark 6.3 Assumption 6.1 guarantees the exponential stability of the exact solutions in pth moment,
which is also an alternative to Khasminskii’s condition, which states that there exists a positive constant
α such that LVp ≤ −αVp with V = |x|. We use Assumption 6.1 because it is on the coefficients of the
SDEs. Note that Assumption 5.1 is sufficient for the boundedness of the pth moment of the analytic
solutions but not enough to force the solutions to tend to 0. Thus, for the desired stability, Assumption
6.1 is needed.

It was pointed out in the study by Higham et al. (2003, p.299) that the result (6.2) forces f (0) = 0
and g(0) = 0, in the SDE (1.1). To define the truncation mapping for super-linear diffusion and drift
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EXPLICIT NUMERICAL APPROXIMATIONS FOR SDES IN FINITE AND INFINITE HORIZONS 871

terms we first choose a strictly increasing continuous function ϕ1 : R+ → R+ such that ϕ1(r) → ∞ as
r → ∞ and

sup
0<|x|≤r

|f (x)|

|x|
∨

|g(x)|2

|x|2
≤ ϕ1(r) ∀ r > 0. (6.3)

Denote by ϕ−1
1 the inverse function of ϕ1, obviously ϕ−1

1 : [ϕ(0), ∞) → R+ is a strictly increasing
continuous function. We also choose a number △∗ ∈ (0, 1) and a strictly decreasing h1 :

(

0, △∗
]

→

(0, ∞) such that

h1

(

△∗
)

≥ ϕ1(|x0|), lim
△→0

h1 (△) = ∞ and △1/2−θ1 h1 (△) ≤ K, ∀ △ ∈
(

0, △∗
]

(6.4)

hold for some θ1 ∈ (0, 1/2), where K is a positive constant independent of △. For a given △ ∈
(

0, △∗
]

,

let us define a truncation mapping π1
△ : Rd → R

d by

π1
△(x) =

(

|x| ∧ ϕ−1
1

(

h1(△)
)

) x

|x|
, (6.5)

where we let x
|x| = 0 when x = 0. Obviously,

∣

∣

∣f
(

π1
△(x)
)∣

∣

∣ ≤ h1(△)|x|,
∣

∣

∣g
(

π1
△(x)
)∣

∣

∣ ≤ h
1
2
1 (△)|x|, ∀ x �= 0, x ∈ R

d. (6.6)

Remark 6.4 If |f (x)| ∨ |g(x)| ≤ C|x|, for all x ∈ R
d, let ϕ1(r) ≡ C for any r ∈ [0, ∞], and let

ϕ−1
1 (u) ≡ ∞ for any u ∈ [C, ∞); choose △∗ > 0 such that h1

(

△∗
)

≥ C ∨ C2. Thus, π1
△(x) = x,

∣

∣f
(

π1
△(x)
)∣

∣ ≤ h1 (△) |x| and
∣

∣g
(

π1
△(x)
)∣

∣ ≤ h
1
2
1 (△)|x| hold always.

Given a step size △ ∈
(

0, △∗
]

, applying the truncation mapping to the truncated EM method yields
the scheme

⎧

⎪

⎨

⎪

⎩

u0 = x0,

ũk+1 = uk + f (uk)△ + g(uk)△Bk,

uk+1 = π1
△

(

ũk+1

)

.

(6.7)

To obtain the continuous-time approximation we define u(t) by u(t) := uk for all t ∈
[

tk, tk+1

)

.

The truncation mapping π1
△(x) satisfies (3.4). Thus, Lemma 3.1 and Theorems 3.3 and 5.5 hold for

the numerical solution u(t) of the scheme (6.7) under Assumption 6.1. Moreover, π1
△(x) has the more

precise property (6.6), which may result in the corresponding scheme realizing the exponential stability
of the SDE (1.1).

Theorem 6.5 Under Assumption 6.1, for any ε ∈ (0, pλ), there is a △2 ∈ (0, △∗], such that for any
△ ∈ (0, △2], the numerical solution u(t) of the truncated EM scheme (6.7) satisfies

E|u(t)|p ≤ |x0|
pe−(pλ−ε)t ∀ t ≥ 0. (6.8)
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872 X. LI ET AL.

That is, the truncated EM scheme (6.7) is exponentially stable in the pth moment.

Proof. For any δ > 0, we have
(

δ + |ũk+1|
2
)p/2

=
(

δ + |uk|
2
)p/2 (

1 + ηk

)p/2
, where

ηk =
2uT

k f (uk)△ + |g(uk)△Bk|
2 + 2uT

k g(uk)△Bk + |f (uk)|
2△2 + 2f T(uk)g(uk)△Bk△

δ + |uk|
2

.

Now we prove only the case when 0 < p < 2 and the proofs for other cases are similar. Thanks to
inequality (3.12), for 0 < p < 2, we have

E

(

(

δ + |ũk+1|
2
)

p
2 ∣
∣Ftk

)

≤
(

δ + |uk|
2
)

p
2

[

1 +
p

2
E
(

ηk|Ftk

)

+
p(p − 2)

8
E

(

η2
k |Ftk

)

+
p(p − 2)(p − 4)

48
E

(

η3
k |Ftk

)

]

. (6.9)

Both (6.6) and (6.7) imply

E
(

ηk|Ftk

)

=
(

δ + |uk|
2
)−1 [(

2uT
k f (uk) + |g(yk)|

2
)

△ +
∣

∣f (uk)
∣

∣

2△2
]

≤
(

δ + |uk|
2
)−1 [(

2uT
k f (uk) + |g(uk)|

2
)

△ + |uk|
2h2

1(△)△2
]

≤
(

δ + |uk|
2
)−1 (

2uT
k f (uk) + |g(uk)|

2
)

△ + K2△1+2θ1 . (6.10)

Using (3.15), we have

E

(

η2
k |Ftk

)

=
(

δ + |uk|
2
)−2

E

[

(

2uT
k f (uk)△ + |g(uk)△Bk|

2 + 2uT
k g(uk)△Bk

+|f (uk)|
2△2 + 2f T(uk)g(uk)△Bk△

)2∣
∣Ftk

]

≥
(

δ + |uk|
2
)−2

E

[

∣

∣

∣2uT
k g(uk)△Bk

∣

∣

∣

2 + 2
(

2uT
k g(uk)△Bk

)T (

2uT
k f (uk)△

+
∣

∣g(uk)△Bk

∣

∣

2 + |f (uk)|
2△2 + 2f T(uk)g(uk)△Bk△

)

∣

∣Ftk

]

≥ 4
(

δ + |uk|
2
)−2 ∣
∣

∣u
T
k g(uk)

∣

∣

∣

2△ − 8
(

δ + |uk|
2
)−2

|uk||f (uk)||g(uk)|
2△2

≥ 4
(

δ + |uk|
2
)−2 ∣
∣

∣u
T
k g(uk)

∣

∣

∣

2△ − 8
(

δ + |uk|
2
)−2

|uk|
4h2

1

(

△
)

△2

≥ 4
(

δ + |uk|
2
)−2 ∣
∣

∣u
T
k g(uk)

∣

∣

∣

2△ − 24K2△1+2θ1 (6.11)
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and

E

(

η3
k |Ftk

)

=
(

δ + |uk|
2
)−3

E

[

(

2uT
k f (uk)△ + |g(uk)△Bk|

2 + 2uT
k g(uk)△Bk

+|f (uk)|
2△2 + 2f T(uk)g(uk)△Bk△

)3 ∣
∣Ftk

]

≤
(

δ + |uk|
2
)−3

E

[(

72
∣

∣

∣u
T
k f (uk)

∣

∣

∣

3△3 + 9|g(uk)|
6|△Bk|

6 + 9|f (uk)|
6△6

+ 16|uk|
3|f (uk)||g(uk)|

2|△Bk|
2△ + 8|uk|

2|g(uk)|
4|△Bk|

4

+ 8|uk|
2|f (uk)|

2|g(uk)|
2|△Bk|

2△2 + 16|uk||f (uk)|
3|g(uk)|

2|△Bk|
2△3

+ 8|f (uk)|
2|g(uk)|

4|△Bk|
4△2 + 8|f (uk)|

4|g(uk)|
2|△Bk|

2△4
)

∣

∣Ftk

]

≤ C
(

δ + |uk|
2
)−3(

|uk|
3|f (uk)|

3△3 + |g(uk)|
6△3 + |f (uk)|

6△6

+ |uk|
3|f (uk)||g(uk)|

2△2 + |uk|
2|g(uk)|

4△2 + |uk|
2|f (uk)|

2|g(uk)|
2△3

+ |uk||f (uk)|
3|g(uk)|

2△4 + |f (uk)|
2|g(uk)|

4△4 + |f (uk)|
4|g(uk)|

2△5
)

≤ C
(

h3
1 (△) △3 + h3

1 (△)△3 + h6
1 (△)△6 + h2

1 (△) △2 + h2
1 (△)△2

+ h3
1(△)△3 + h4

1(△)△4 + h4
1(△)△4 + h5

1(△)△5
)

≤ C△1+2θ1 . (6.12)

We can also prove that, for any i > 3, E
(

ηi
k|Ftk

)

= o
(

△1+θ1
)

. Combining (6.9)–(6.12) implies

E

(

(

δ + |ũk+1|
2
)

p
2 ∣
∣Ftk

)

≤
(

δ + |uk|
2
)

p
2
[

1 + o
(

△1+θ1

)

+
p

2

(

δ + |uk|
2
) (

2uT
k f (uk) + |g(uk)|

2
)

+
(

p − 2
) ∣

∣uT
k g(uk)
∣

∣
2

(

δ + |uk|
2
)2

△

]

.

For any given ε ∈ (0, pλ), choose △̄ ∈
(

0, △∗
]

small sufficiently such that o
(

△̄θ1
)

≤ ε/2. Taking the

expectation on both sides, by Assumption 6.1, we have for any △ ∈ (0, △̄],

E

(

(

δ + |ũk+1|
2
)

p
2

)

≤
(

1 +
ε

2
△
)

E

[

(

δ + |uk|
2
)

p
2

]

− △
pλ

2
E

[

(

δ + |uk|
2
)

p
2 −2

|uk|
4
]

+ △
p

2
E

[

δ
(

δ + |uk|
2
)

p
2 −2 (

2uT
k f (uk) + |g(uk)|

2
)

]

=
(

1 +
ε

2
△
)

E

[

(

δ + |uk|
2
)

p
2

]

− △
pλ

2
E

[

(

δ + |uk|
2
)

p
2 −2

|uk|
4
]

+ △pE

[

δ
(

δ+ |uk|
2
)

p
2 −2 [

uT
k f (uk)
]+
]

−△pE

[

δ
(

δ +|uk|
2
)

p
2 −2 [

uT
k f (uk)
]−
]

+ △
p

2
E

[

δ
(

δ + |uk|
2
)

p
2 −2

|g(uk)|
2)
]

.
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Letting δ ↓ 0 and using the theorem on monotone convergence we have

E
(

|ũk+1|
p
)

≤

[

1 −
pλ − ε

2
△

]

E|uk|
p. (6.13)

Choose △2 < △̄ ∧ 2/ (pλ − ε); then, for any △ ∈
(

0, △2

]

, we have 0 < 1 − (pλ − ε) △/2 < 1.
It follows from (6.13) that, for any integer k ≥ 0,

E|uk+1|
p ≤ E|ũk+1|

p ≤

(

1 −
pλ − ε

2
△

)

E|uk|
p.

Thus, E|uk+1|
p ≤
(

1 −
pλ−ε

2 △
)k+1

|x0|
p. By the elementary inequality 1 −

pλ−ε
2 △ ≤ e−

pλ−ε
2 △ we obtain

E|uk+1|
p ≤ |x0|

pe−(pλ−ε)(k+1)△/2 = |x0|
pe−(pλ−ε)tk+1/2 ∀ k ≥ 0.

Thus, the desired inequality (6.8) for the case 0 < p < 2 follows from the definition of u(t). The required
inequality for p ≥ 2 can be proved similarly. Therefore, the proof is complete. �

7. Stability in distribution

This section focuses on asymptotic stability in distribution of SDE (1.1) and the numerical approxima-
tion to the invariant measures. In past decades much effort has been devoted to approximating invariant
measures for ergodic stochastic processes. Talay (2002) obtained convergence rates for approximation
to the invariant measures using an EM implicit scheme for a stochastic Hamiltonian dissipative system
with nonglobal Lipschitz coefficients and additive noise. Lamberton & Pagès (2002, 2003) studied
recursive stochastic algorithms with decreasing step sizes to approximate the invariant distribution
for an Euler scheme under Lyapunov-type assumptions under the provision of the existence of such
a Lyapunov function. Liu & Mao (2015) took advantage of the implicit backward EM scheme to
approximate the invariant measure for nonlinear SDEs with nonglobal Lipschitz coefficients. Mei &
Yin (2015) ascertained convergence rates for approximation to invariant measures using EM schemes
with decreasing step sizes for switching diffusions. Approximation using EM schemes to the invariant
measures for switching diffusions was also dealt with in the study by Bao et al. (2016).

In this paper, we first give sufficient conditions that guarantee SDE (1.1) is asymptotically stable
in distribution. Then we construct a truncation mapping and explicit schemes that can approximate the
invariant measure of SDE (1.1) effectively. For convenience we impose the following hypothesis.

Assumption 7.1 There exists a pair of positive constants ρ and ν such that

|x − y|2
[

2(x − y)T
(

f (x) − f (y)
)

+ |g(x) − g(y)|2
]

−
(

2 − ρ
)∣

∣

(

x − y
)T(

g(x) − g(y)
)∣

∣

2

≤ −ν|x − y|4 ∀ x, y ∈ R
d. (7.1)

Lemma 7.2 Under Assumption 7.1, SDE (1.1) has the property

lim
t→∞

E|x(t; u) − x(t; v)|ρ = 0 uniformly in u, v ∈ K, (7.2)
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EXPLICIT NUMERICAL APPROXIMATIONS FOR SDES IN FINITE AND INFINITE HORIZONS 875

for any compact subset K ⊂ R
d, where ρ is given in Assumption 7.1 and x(t; x0) denotes the unique

global solution of SDE (1.1) with the initial value x0 ∈ R
d.

Proof. It follows from SDE (1.1) that

d
(

x(t; u) − x(t; v)
)

=
(

f (x(t; u)) − f (x(t; v))
)

dt +
(

g(x(t; u)) − g(x(t; v))
)

dB(t). (7.3)

By virtue of the definition of the operator L,

L
(

|x − y|ρ
)

=
ρ

2
|x − y|ρ−4

[

|x − y|2
[

2(x − y)T
(

f (x) − f (y)
)

+ |g(x) − g(y)|2
]

−(2 − ρ)

∣

∣

∣(x − y)T
(

g(x) − g(y)
)

∣

∣

∣

2
]

≤ −
ρν

2
|x − y|ρ . (7.4)

Using Itô’s formula we obtain

E

(

e
ρν
2 t|x(t; u) − x(t; v)|ρ

)

≤ |u − v|ρ + E

∫ t

0
e

ρμ
2 s
[ρν

2
|x(s; u) − x(s; v)|ρ + L

(

|x(s; u) − x(s; v)|ρ
)

]

ds

≤ |u − v|ρ .

Then we have

E
(

|x(t; u) − x(t; v)|ρ
)

≤ |u − v|ρe− ρν
2 t ∀ t ≥ 0. (7.5)

Thus, the desired result follows. �

Remark 7.3 Assumption 7.1 guarantees the attractivity of the analytic solutions, which is also an
alternative to Khasminskii’s condition, which states that there exists a positive constant α such that
L(|x − y|p) ≤ −α|x − y|p holds for any x, y ∈ R

d. As in the other conditions, we prefer to put the
conditions on the coefficients of the SDEs for verification purposes.

Theorem 7.4 Under Assumptions 5.1 and 7.1, SDE (1.1) is asymptotically stable in distribution.

Proof. We adopt the idea of Mao & Yuan (2006, Theorem 5.43). The main difference is that we remove
the linear growth requirement of the drift and diffusion terms. Since the proof is technical we divide it
into three steps.

Step 1: Under Assumptions 5.1 and 7.1, SDE (1.1) has a unique regular solution with an initial
value x0 denoted by x(t; x0), which is a time-homogeneous Markov process. Let P(t; x0, ·) denote
the transition probability of the process x(t; x0). Let P

(

R
d
)

denote all probability measures on R
d.

Then for P1, P2 ∈ P
(

R
d
)

define a metric d
L

as

d
L

(

P1, P2

)

= sup
l∈L

∣

∣

∣

∣

∫

Rd

l(x)P1 (dx) −

∫

Rd

l(x)P2 (dx)

∣

∣

∣

∣

,
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876 X. LI ET AL.

where

L =
{

l : R
d → R :

∣

∣l(x) − l(y)
∣

∣ ≤ |x − y| and
∣

∣l(·)
∣

∣ ≤ 1
}

.

Given any compact set K ⊂ R
d, for any u, v ∈ K and l ∈ L, compute

∣

∣El
(

x(t; u)
)

− El
(

x(t; v)
)∣

∣ ≤ E
(

2 ∧
∣

∣x(t; u) − x(t; v)
∣

∣

)

. (7.6)

If Assumption 7.1 holds for ρ ≥ 1 then for any ε > 0 there is a T1 > 0 such that

E
(

2 ∧ |x(t; u) − x(t; v)|
)

≤ E
(

|x(t; u) − x(t; v)|
)

≤
[

E
(

|x(t; u) − x(t; v)|ρ
)] 1

ρ <
ε

2
∀ t ≥ T1,

uniformly in u, v ∈ K. For this ε, if ρ < 1, by Assumption 7.1, there is a T1 > 0 such that

E
(

|x(t; u) − x(t; v)|ρ
)

<
ε

8
∀ t ≥ T1,

uniformly in u, v ∈ K. Hence,

E (2 ∧ |x(t; u) − x(t; v)|)

≤ 2P {|x(t; u) − x(t; v)| ≥ 2} + E

(

I{|x(t;u)−x(t;v)|<2}|x(t; u) − x(t; v)|
)

≤ 21−ρ
E
(

|x(t; u) − x(t; v)|ρ
)

+ E

(

21−ρ |x(t; u) − x(t; v)|ρ
)

≤ 22−ρ
E
(

|x(t; u) − x(t; v)|ρ
)

<
ε

2
.

In other words, for any ρ > 0, there is a T1 > 0 such that E (2 ∧ |x(t; u) − x(t; v)|) < ε
2 for all t ≥ T1,

uniformly in u, v ∈ K. It follows from (7.6) that
∣

∣El(x(t; u)) − El(x(t; v))
∣

∣ < ε
2 for all t ≥ T1. Since l is

arbitrary we have

sup
l∈L

∣

∣El(x(t; u)) − El(x(t; v))
∣

∣ ≤
ε

2
∀ t ≥ T1. (7.7)

Then d
L (P(t; u, ·),P(t; v, ·)) ≤ ε

2 < ε for all t ≥ T1, namely, limt→∞ d
L (P(t; u, ·),P(t; v, ·)) = 0

uniformly in u, v ∈ K.
Step 2: For any x0 ∈ R

d,
{

P(t; x0, ·) : t ≥ 0
}

is Cauchy in the space P
(

R
d
)

with metric d
L

, namely,
there is a T > 0 such that

d
L

(

P(t + s; x0, ·),P(t; x0, ·)
)

≤ ε ∀ t ≥ T , s > 0.

This is equivalent to

sup
l∈L

∣

∣El
(

x(t + s; x0)
)

− El
(

x(t; x0)
)∣

∣ ≤ ε ∀ t ≥ T , s > 0. (7.8)
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Now for any l ∈ L and t, s > 0, compute

∣

∣El
(

x(t + s; x0)
)

− El
(

x(t; x0)
)∣

∣

=
∣

∣E
(

E
(

l(x(t + s; x0))
∣

∣Fs

))

− El(x(t; x0))|

=

∣

∣

∣

∣

E

∫

Rd

l(x(t; y))P(s; x0, dy) − El(x(t; x0))

∣

∣

∣

∣

≤

∫

Rd

∣

∣El(x(t; y)) − El(x(t; x0))
∣

∣P(s; x0, dy)

≤ 2P
(

s; x0, S̄c
N

)

+

∫

S̄N

∣

∣El(x(t; y)) − El(x(t; x0))
∣

∣P
(

s; x0, dy
)

, (7.9)

where S̄N =
{

x ∈ R
d : |x| ≤ N

}

and S̄
c
N = R

d − S̄N . By (5.2) of Theorem 5.2 there is a positive constant
N > |x0| sufficiently large such that

P
(

s; x0, S̄c
N

)

<
ε

4
∀ s ≥ 0. (7.10)

On the other hand, by (7.7) there is a T > 0 such that

sup
l∈L

∣

∣El(x(t; y)) − El(x(t; x0))
∣

∣ ≤
ε

2
∀ t ≥ T , ∀ y ∈ S̄N . (7.11)

Substituting (7.10) and (7.11) into (7.9) yields
∣

∣El(x(t + s; x0)) − El(x(t; x0))
∣

∣ < ε for all t ≥ T , s > 0.
Since l is arbitrary the desired inequality (7.8) must hold.

Step 3: For a given x0 ∈ R
d, it follows from (7.10) that

{

P(t; x0, ·)
}

is tight. Since R
d is complete

and separable it is relatively compact (see Billingsley, 1968, Theorems 6.1, 6.2). Then any sequence
{

P(tn; x0, ·)
}

(tn → ∞ as n → ∞) has a weak convergent subsequence denoted by
{

P(tn; x0, ·)
}

with
some notation abuse. Assume its weak limit is an invariant measure μ(·); then there is a positive integer
N such that tN > T and d

L

(

P(tn; x0, ·
)

, μ(·)) < ε for all n ≥ N. Then it follows from (7.8) that

d
L

(

P(t; x0, ·), μ(·)
)

≤ d
L

(

P(tn; x0, ·), μ(·)
)

+ d
L
(P
(

tn; x0, ·), P(t; x0, ·)
)

< 2ε ∀ t ≥ T .

Thus, limt→∞ d
L

(

P(t; x0, ·), μ(·)
)

= 0 and the invariant measure μ(·) is unique. For any y0 ∈ R
d,

lim
t→∞

d
L

(

P(t; y0, ·), μ(·)
)

≤ lim
t→∞

d
L

(

P(t; y0, ·),P(t; x0, ·)
)

+ lim
t→∞

d
L

(

P(t; x0, ·), μ(·)
)

= 0.

Therefore, the desired result follows. �

In order to approximate the invariant measure μ of SDE (1.1) we need to construct a scheme such
that for any △ ∈

(

0, △∗
]

the numerical solutions are attractive in ρth moment and have a unique

numerical invariant measure. However, the truncation mappings π△(x) and π1
△(x) are not suitable for

the attractive numerical solutions. Thus, we construct the truncation mapping π2
△(x) according to the

local Lipschitz growth of drift and diffusion coefficients. Then making use of the appropriate truncation
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878 X. LI ET AL.

mapping we give an explicit scheme. Finally, we show that it produces a unique numerical invariant
measure μ△ that tends to the invariant measure μ of SDE (1.1) as △ → 0.

Under the local Lipschitz condition, to define the truncation mapping, we first choose a strictly
increasing continuous function ϕ2 : R+ → R+ such that ϕ2(r) → ∞ as r → ∞ and

sup
|x|∨|y|≤r,x �=y

|f (x) − f (y)|

|x − y|
∨

|g(x) − g(y)|2

|x − y|2
≤ ϕ2(r) ∀ r > 0. (7.12)

Denote by ϕ−1
2 the inverse function of ϕ2; obviously ϕ−1

2 : [ϕ2(0), ∞) → R+ is a strictly increasing
continuous function. We also choose a number △∗ ∈ (0, 1) and a strictly decreasing h2 :

(

0, △∗
]

→

(0, ∞) such that

h2

(

△∗
)

≥ ϕ2(|x0|) ∨ |f (0)| ∨ |g(0)|2, lim
△→0

h2(△) = ∞ and △1/2−θ2 h2(△) ≤ K, ∀△ ∈
(

0, △∗
]

(7.13)

holds for some θ2 ∈ (0, 1/2), where K is a positive constant independent of △. For a given △ ∈
(

0, △∗
]

let us define another truncation mapping π2
△ : Rd → R

d by

π2
△(x) =

(

|x| ∧ ϕ−1
2

(

h2(△)
)

) x

|x|
, (7.14)

where we let x
|x| = 0 when x = 0. Note that

∣

∣

∣f
(

π2
△(x)
)

− f
(

π2
△(y)
)∣

∣

∣ ≤ h2(△)

∣

∣

∣π
2
△(x) − π2

△(y)

∣

∣

∣ , (7.15)

∣

∣

∣g
(

π2
△(x)
)

− g
(

π2
△(y)
)

∣

∣

∣ ≤ h
1
2
2 (△)

∣

∣

∣π
2
△(x) − π2

△(y)

∣

∣

∣ , ∀ x, y ∈ R
d. (7.16)

We also have

∣

∣

∣f
(

π2
△(x)
)∣

∣

∣ ≤ h2(△)
(

1 +
∣

∣

∣π
2
△(x)

∣

∣

∣

)

,
∣

∣

∣g
(

π2
△(x)
)∣

∣

∣ ≤ h
1
2
2 (△)
(

1 +
∣

∣

∣π
2
△(x)

∣

∣

∣

)

, ∀ x ∈ R
d. (7.17)

Remark 7.5 If |f (x)− f (y)|∨|g(x)−g(y)| ≤ C|x−y| for all x, y ∈ R
d, let ϕ2(r) ≡ C for any r ∈ [0, ∞],

and let ϕ−1
2 (u) ≡ ∞ for any u ∈ [C, ∞); choose △∗ > 0 such that h2 (△∗) ≥ C ∨ C2. Thus, π2

△(x) = x,
(7.15)–(7.17) hold always.

Given a step size △ ∈
(

0, △∗
]

, define the truncated EM method scheme by

⎧

⎨

⎩

w0 = x0,
w̃k+1 = wk + f (wk)△ + g(wk)△Bk,
wk+1 = π2

△

(

w̃k+1

)

.
(7.18)
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EXPLICIT NUMERICAL APPROXIMATIONS FOR SDES IN FINITE AND INFINITE HORIZONS 879

To obtain the continuous-time approximation we define w(t) by

w(t) := wk ∀ t ∈
[

tk, tk+1

)

.

Theorem 7.6 Under Assumption 7.1, for any ε ∈ (0, ρν), there is a constant △3 ∈
(

0, △∗
]

such that
the solutions of the truncated EM scheme (7.18) satisfy

sup
△∈(0,△3]

E|wu(t) − wv(t)|ρ ≤ |u − v|ρe−(ρν−ε)t/2 ∀ t ≥ 0, (7.19)

where wu(·) and wv(·) denote the numerical solutions defined by (7.18) with different initial values u

and v, respectively, and ρ and ν are given in Assumption 7.1.

Proof. Because the proof is rather technical we divide it into three steps.
Step 1: For any integer k ≥ 0 we have

∣

∣w̃u
k+1 − w̃v

k+1

∣

∣

2

=
∣

∣

(

wu
k − wv

k

)

+
(

f
(

wu
k

)

− f
(

wv
k

))

△ +
(

g
(

wu
k

)

− g
(

wv
k

))

△Bk

∣

∣

2

=
∣

∣wu
k − wv

k

∣

∣

2 + 2
(

wu
k − wv

k

)T (
f
(

wu
k

)

− f
(

wv
k

))

△ +
∣

∣

(

g
(

wu
k

)

− g
(

wv
k

))

△Bk

∣

∣

2

+ 2
(

wu
k − wv

k

)T (
g
(

wu
k

)

− g
(

wv
k

))

△Bk +
∣

∣f
(

wu
k

)

− f
(

wv
k

)∣

∣

2△2

+ 2
(

f
(

wu
k

)

− f
(

wv
k

))T (
g
(

wu
k

)

− g
(

wv
k

))

△Bk△.

For any δ > 0,

(

δ +
∣

∣w̃u
k+1 − w̃v

k+1

∣

∣

2
)ρ/2

=
(

δ +
∣

∣wu
k − wv

k

∣

∣

2
)ρ/2 (

1 + ζk

)ρ/2
,

where

ζk =
2
(

wu
k − wv

k

)T (
f
(

wu
k

)

− f
(

wv
k

))

△ +
∣

∣

(

g
(

wu
k

)

− g
(

wv
k

))

△Bk

∣

∣
2

δ +
∣

∣wu
k − wv

k

∣

∣ 2

+
2
(

wu
k − wv

k

)T (
g
(

wu
k

)

− g
(

wv
k

))

δ +
∣

∣wu
k − wv

k

∣

∣ 2
△Bk +

∣

∣f
(

wu
k

)

− f
(

wv
k

)∣

∣
2

δ +
∣

∣wu
k − wv

k

∣

∣ 2
△2

+
2
(

f
(

wu
k

)

− f
(

wv
k

))T (
g
(

wu
k

)

− g
(

wv
k

))

δ +
∣

∣wu
k − wv

k

∣

∣ 2
△Bk△.
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880 X. LI ET AL.

We give the proof outline for the case 0 < p < 2 and other cases can be prove similarly. Using the
properties of the Brownian motion (7.13), (7.15), (7.16) and the elementary inequality we can obtain

E

(

(

δ +
∣

∣w̃u
k+1 − w̃v

k+1

∣

∣

2
)ρ/2 ∣
∣Ftk

)

≤
(

δ +
∣

∣wu
k − wv

k

∣

∣

2
)ρ/2

⎡

⎣1 + o
(

△1+θ2

)

+
ρ

2

2
(

wu
k − wv

k

)T (
f
(

wu
k

)

− f
(

wv
k

))

+
∣

∣g
(

wu
k

)

− g
(

wv
k

)∣

∣
2

δ +
∣

∣wu
k − wv

k

∣

∣ 2
△

+
ρ(ρ − 2)

2

∣

∣

∣2
(

wu
k − wv

k

)T (
g
(

wu
k

)

− g
(

wv
k

))

∣

∣

∣

2

(

δ +
∣

∣wu
k − wv

k

∣

∣ 2
)2

△

⎤

⎦ .

For any given ε ∈ (0, ρν) choose △̄ ∈
(

0, △∗
]

sufficiently small such that o
(

△̄θ2
)

≤ ε/2. It follows

from Assumption 7.1 that, for any △ ∈
(

0, △̄
]

,

E

(

(

δ +
∣

∣w̃u
k+1 − w̃v

k+1

∣

∣

2
)ρ/2 ∣
∣Ftk

)

≤
(

δ +
∣

∣wu
k − wv

k

∣

∣

2
)ρ/2
[

1 +
ε

2
△ −

ρν

2

∣

∣wu
k − wv

k

∣

∣
2

(

δ +
∣

∣wu
k − wv

k

∣

∣ 2
)2

△

+
ρδ

2

2
(

wu
k − wv

k

)T (
f
(

wu
k

)

− f
(

wv
k

))

+
∣

∣g
(

wu
k

)

− g
(

wv
k

)∣

∣
2

(

δ +
∣

∣wu
k − wv

k

∣

∣ 2
)2

△

]

.

Taking the expectation on both sides, letting δ ↓ 0, by the theorem on monotone convergence, we have

E
∣

∣w̃u
k+1 − w̃v

k+1

∣

∣

ρ ≤

(

1 −
ρν − ε

2
△

)

E
∣

∣wu
k − wv

k

∣

∣

ρ . (7.20)

Step 2: The inequality

∣

∣

∣π
2
△(x) − π2

△(y)

∣

∣

∣ ≤ |x − y| ∀ x, y ∈ R
d (7.21)
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EXPLICIT NUMERICAL APPROXIMATIONS FOR SDES IN FINITE AND INFINITE HORIZONS 881

holds always. In fact, if |x| ∨ |y| ≤ ϕ−1
2

(

h2(△)
)

, (7.21) holds obviously. If |x| ≤ ϕ−1
2

(

h2(△)
)

, |y| ≥

ϕ−1
2

(

h2(△)
)

,

|x − y|2 −
∣

∣

∣π
2
△(x) − π2

△(y)

∣

∣

∣

2 = |x − y|2 −
∣

∣

∣x − π2
△(y)

∣

∣

∣

2

= −2xTy + |y|2 + 2xTπ2
△(y) −

∣

∣

∣π
2
△(y)

∣

∣

∣

2

= |y|2 −
∣

∣

∣π
2
△(y)

∣

∣

∣

2 − 2xT
(

y − π2
△(y)
)

≥ |y|2 −
∣

∣

∣π
2
△(y)

∣

∣

∣

2 − 2|x|
∣

∣

∣y − π2
△(y)

∣

∣

∣

= |y|2 −
∣

∣

∣π
2
△(y)

∣

∣

∣

2 − 2|x|

∣

∣

∣

∣

∣

y −
ϕ−1

2

(

h2(△)
)

|y|
y

∣

∣

∣

∣

∣

= |y|2 −
∣

∣

∣π
2
△(y)

∣

∣

∣

2 − 2|x|
∣

∣

∣|y| − ϕ−1
2

(

h2(△)
)

∣

∣

∣

= |y|2 −
∣

∣

∣π
2
△(y)

∣

∣

∣

2 − 2|x|
(

|y| − ϕ−1
2

(

h2(△)
)

)

= |y|2 −
∣

∣

∣π
2
△(y)

∣

∣

∣

2 − 2|x|
(

|y| −
∣

∣

∣π
2
△(y)

∣

∣

∣

)

=
(

|y| −
∣

∣

∣π
2
△(y)

∣

∣

∣

) (

|y| +
∣

∣

∣π
2
△(y)

∣

∣

∣− 2|x|
)

≥ 0.

Then (7.21) follows immediately. If |x| ≥ ϕ−1
2 (h2(△)), |y| ≤ ϕ−1

2 (h2(△)), (7.21) holds also by

symmetry on x and y. Finally, if |x| ∧ |y| ≥ ϕ−1
2 (h2(△)),

|x − y|2 −
∣

∣

∣π
2
△(x) − π2

△(y)

∣

∣

∣

2 = |x|2 −
∣

∣

∣π
2
△(x)

∣

∣

∣

2 + |y|2 −
∣

∣

∣π
2
△(y)

∣

∣

∣

2 − 2

(

xTy −
(

π2
△(x)
)T

π2
△(y)

)

= |x|2 −
∣

∣

∣π
2
△(x)

∣

∣

∣

2 + |y|2 −
∣

∣

∣π
2
△(y)

∣

∣

∣

2 − 2

⎛

⎜

⎝
xTy −

(

ϕ−1
2 (h2(△))

)2

|x||y|
xTy

⎞

⎟

⎠

≥ |x|2 −
∣

∣

∣π
2
△(x)

∣

∣

∣

2 + |y|2 −
∣

∣

∣π
2
△(y)

∣

∣

∣

2 − 2

(

|x||y| −
(

ϕ−1
2 (h2(△))

)2
)

= |x|2 − 2|x||y| + |y|2 ≥ 0.

Then (7.21) follows immediately. Thus, the desired inequality (7.21) holds for all cases.
Step 3: Choose △3 < △̄∧2/(ρν −ε), then for any △ ∈ (0, △3], we have 0 < 1− (ρν −ε)△/2 < 1.

It follows from (7.20) and (7.21) that for any integer k ≥ 0,

E
∣

∣wu
k+1 − wv

k+1

∣

∣

p ≤ E
∣

∣w̃u
k+1 − w̃v

k+1

∣

∣

p ≤

(

1 −
ρν − ε

2
△

)

E
∣

∣wu
k − wv

k

∣

∣

p.
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882 X. LI ET AL.

Thus, E
∣

∣wu
k+1 − wv

k+1

∣

∣
p ≤

(

1 − ρν−ε
2 △
)k+1

|u − v|ρ ≤ |u − v|ρe−(ρν−ε)(k+1)△/2 = |u −

v|pe−(ρν−ε)tk+1/2. The desired inequality (7.19) follows from the definition of the numerical solution
w(·). �

In order to obtain the Markov property of the scheme we state a lemma.

Lemma 7.7 (Mao & Yuan, 2006, p.104). Let h(x, ω) be a scalar bounded measurable random function of
x, independent of Fs. Let ζ be an Fs measurable random variable. Then E

(

h(ζ , ω)|Fs

)

= E (h(ζ , ω)) .

For any A ∈ B
(

R
d
)

(where B(Rd) denotes the family of all Borel sets in R
d), define

P
△
(

x0, A
)

:= P
(

w1 ∈ A|w0 = x0

)

, P
△
k

(

x0, A
)

:= P
(

wk ∈ A|w0 = x0

)

, ∀ k ≥ 0.

Lemma 7.8
{

wk

}

is a homogenous Markov process with the k-step transition probabilities P△
k

(

x0, ·
)

.

Proof. For △ ∈
(

0, △∗
]

, k ≥ 0 and x ∈ R
d define ξ x

k+1 = π2
△

(

x + f (x)△ + g(x)△Bk

)

, which is

a bounded random function of x that is independent of Ftk
. Clearly, wk+1 = ξ

wk

k+1. Hence, for any

A ∈ B
(

R
d
)

,

P
(

wk+1 ∈ A
∣

∣Ftk

)

= E
(

IA

(

ξ
wk

k+1

) ∣

∣Ftk

)

= E
(

IA

(

ξ x
k+1

)) ∣

∣

x=wk

= P
(

ξ x
k+1 ∈ A

) ∣

∣

x=wk
= P
(

wk+1 ∈ A|wk

)

,

which is the desired Markov property. The homogenous property follows from the truncation scheme
(7.18) directly. �

Next we give a theorem on the asymptotic stability of the scheme.

Theorem 7.9 If Assumptions 5.1 and 7.1 hold, there is a △4 ∈
(

0, △∗
]

such that for any △ ∈
(

0, △4

]

,
the solutions of the truncated EM method (7.18) are asymptotically stable in distribution and admit a
unique invariant measure μ△ ∈ P

(

R
d
)

.

Proof. Since the proof is rather technical we divide it into three steps.
Step 1: For any A ∈ B

(

R
d
)

, define

P
△(t; x0, A) := P(w(t) ∈ A|w0 = x0) = P

△
k (x0, A) ∀ t ∈

[

tk, tk+1

)

.

Given any compact set K ⊂ R
d, for any u, v ∈ K, let wu(·) and wv(·) denote the numerical solutions

defined by (7.18) with initial values u and v, respectively. It follows from Theorem 7.6 that for ε = ρν/2
there is a △3 ∈

(

0, △∗
]

such that

lim
t→∞

sup
△∈(0,△3]

E|wu(t) − wv(t)|ρ = 0 uniformly in u, v ∈ K.

For any l ∈ L (L is defined well in the proof of Theorem 7.4) compute

sup
△∈(0,△3]

∣

∣El
(

wu(t)
)

− El
(

wv(t)
)∣

∣ ≤ sup
△∈(0,△3]

E
(

2 ∧
∣

∣wu(t) − wv(t)
∣

∣

)

. (7.22)
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EXPLICIT NUMERICAL APPROXIMATIONS FOR SDES IN FINITE AND INFINITE HORIZONS 883

If Assumption 7.1 holds for ρ ≥ 1, for any ε > 0, there is a T1 > 0 such that

E
(

2 ∧
∣

∣wu(t) − wv(t)
∣

∣

)

≤ E
(∣

∣wu(t) − wv(t)
∣

∣

)

≤
[

E
(∣

∣wu(t) − wv(t)
∣

∣

ρ
)] 1

ρ <
ε

2
∀ t ≥ T1,

uniformly in △ ∈
(

0, △3

]

and u, v ∈ K. For this ε, if ρ < 1, by Assumption 7.1, there is a T1 > 0 such
that

E
(

|wu(t) − wv(t)|ρ
)

<
ε

8
∀ t ≥ T1,

uniformly in △ ∈ (0, △3] and u, v ∈ K. Hence,

E
(

2 ∧
∣

∣wu(t) − wv(t)
∣

∣

)

≤ 2P
{∣

∣wu(t) − wv(t)
∣

∣ ≥ 2
}

+ E
(

I{|wu(t)−wv(t)|<2}

∣

∣wu(t) − wv(t)
∣

∣

)

≤ 21−ρ
E
(∣

∣wu(t) − wv(t)
∣

∣

ρ
)

+ E

(

21−ρ
∣

∣wu(t) − wv(t)
∣

∣

ρ
)

≤ 22−ρ
E
(∣

∣wu(t) − wv(t)
∣

∣

ρ
)

<
ε

2
.

In other words, for any ρ > 0, there is a T1 > 0 such that sup△∈(0,△3] E (2 ∧ |wu(t) − wv(t)|) < ε
2 for

all t ≥ T1, uniformly in u, v ∈ K. It follows from (7.22) that sup△∈(0,△3] |El (wu(t)) − El (wv(t))| < ε
2

for all t ≥ T1. Since l is arbitrary we have

sup
△∈(0,△3]

sup
l∈L

∣

∣El
(

wu(t)
)

− El
(

wv(t)
)∣

∣ ≤
ε

2
∀ t ≥ T1, (7.23)

namely,

lim
t→∞

sup
△∈(0,△3]

d
L

(

P
△(t; v, ·),P△(t; u, ·)

)

≤
ε

2
∀ t ≥ T1.

Thus,

lim
t→∞

sup
△∈(0,△3]

d
L

(

P
△(t; v, ·),P△(t; u, ·)

)

= 0, (7.24)

uniformly in u, v ∈ K.

Step 2: For any given u ∈ R
d, there is a �4 ∈ (0, △3] such that for any △ ∈

(

0, △4

]

,
{

P
△
k (u, ·)
}

k≥1

is Cauchy in the space P
(

R
d
)

with metric d
L

, namely, there is a positive constant k1 such that

d
L

(

P
△
k+j(u, ·), P

△
k (u, ·)
)

≤ ε ∀ k ≥ k1, j > 0. (7.25)

This is equivalent to

sup
l∈L

∣

∣

∣El
(

wu
k+j

)

− El
(

wu
k

)

∣

∣

∣ ≤ ε, ∀ k ≥ k1, j > 0. (7.26)
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884 X. LI ET AL.

Now for any l ∈ L and any positive integers k, j, compute

∣

∣

∣El
(

wu
k+j

)

− El
(

wu
k

)

∣

∣

∣ =
∣

∣

∣E

(

E

(

l
(

wu
k+j

)∣

∣

∣Ftj

))

− El
(

wu
k

)

∣

∣

∣

=

∣

∣

∣

∣

E

∫

Rd

l
(

w
y
k

)

P
△
j (u, dy) − El

(

wu
k

)

∣

∣

∣

∣

≤

∫

Rd

∣

∣El
(

w
y
k

)

− El
(

wu
k

)∣

∣P
△
j (u, dy)

≤ 2P△
j

(

u, S̄c
N

)

+

∫

S̄N

∣

∣El
(

w
y
k

)

− El
(

wu
k

)∣

∣P
△
j (u, dy), (7.27)

where S̄N =
{

x ∈ R
d : |x| ≤ N

}

and S̄
c
N = R

d − S̄N . By virtue of Theorem 5.5 there exists a positive
constant △1 such that sup0<△≤△1

sup0≤k<∞ E|wk|
p ≤ C. Then there is a positive constant N > |u|

sufficiently large such that for any △ ∈
(

0, △1

]

,

P
△
j

(

u, S̄c
N

)

<
ε

4
∀ j ≥ 0. (7.28)

On the other hand, let △4 = △1 ∧ △3, by (7.23), for any given △ ∈ (0, △4], there is a positive integer
k1 satisfying tk1

= k1△ ≥ T1 such that

sup
l∈L

∣

∣El
(

w
y
k

)

− El
(

wu
k

)∣

∣ ≤
ε

2
∀ k ≥ k1, ∀ y ∈ S̄N . (7.29)

Substituting (7.28) and (7.29) into (7.27) yields

∣

∣

∣El
(

wu
k+j

)

− El
(

wu
k

)

∣

∣

∣ < ε ∀ k ≥ k1, j > 0.

Since l is arbitrary, the desired inequality (7.25) must hold. Moreover, it follows from (7.23) that

d
L

(

P
△
k (u, ·),P△

k (v, ·)
)

≤ ε
2 < ε for all k ≥ k1, namely,

lim
k→∞

d
L

(

P
△
k (u, ·),P△

k (v, ·)
)

= 0 (7.30)

uniformly in u, v ∈ K.

Step 3: For a given u ∈ R
d, it follows from (7.28) that

{

P
△
k (u, ·)
}

k≥1 is tight. Then any subsequence
{

P
△
k (u, ·)
}

k≥1 with some notation abuse has a weak convergent subsequence denoted by
{

P
△
kj
(u, ·)
}

j≥1.

Assume its weak limit is an invariant measure μ△(·); then there is a positive integer j0 such that

d
L

(

P
△
kj
(u, ·), μ△(·)

)

< ε ∀ j ≥ j0.
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The fact that
{

P
△
k (u, ·)
}

k≥1 is a Cauchy sequence implies d
L

(

P
△
k (u, ·), μ△(·)

)

≤d
L

(

P
△
k (u, ·),P△

kj0
(u, ·)
)

+

d
L

(

P
△
kj0

(u, ·), μ△(·)
)

< 2ε for all k ≥ kj0
∨ k2. Thus, limk→∞ d

L

(

P
△
k (u, ·), μ△(·)

)

= 0, and the

invariant measure μ△(·) is unique. It follows from (7.30) that for any v ∈ R
d,

lim
k→∞

d
L

(

P
△
k (v, ·), μ△(·)

)

≤ lim
k→∞

d
L

(

P
△
k (v, ·),P△

k (u, ·)
)

+ lim
k→∞

d
L

(

P
△
k (u, ·), μ△(·)

)

= 0.

Therefore, the desired result follows. �

Theorem 7.10 If Assumptions 5.1 and 7.1 hold, lim△→0 d
L

(

μ△(·), μ(·)
)

= 0.

Proof. From the proof of the above theorem we note that for a given initial value u ∈ R
d, for any

ε > 0, there is a constant T > 0 such that for any △ ∈
(

0, △4

]

,

d
L

(

P
△(t; u, ·), μ△(·)

)

< ε/3, d
L (P(t; u, ·), μ(·)) < ε/3, t ≥ T . (7.31)

It follows from Theorem 3.3 that

lim
△→0

E|w(T) − x(T)|p/2 = 0, (7.32)

where w(·) and x(·) denote the numerical solution defined by the scheme (7.18) and the exact solution
with the same initial value u, respectively. For any l ∈ L compute

|El(w(T)) − El(x(T))| ≤ E(2 ∧ |w(T) − x(T)|).

If p/2 ≥ 1, there is a △̄ ∈
(

0, △4

]

such that for all △ ∈
(

0, △̄
]

,

E (2 ∧ |w(T) − x(T)|) ≤ E|w(T) − x(T)| ≤
[

E |w(T) − x(T)|
p
2

] 2
p

<
ε

3
.

For this ε, if p/2 < 1, there is a △̄ ∈
(

0, △4

]

such that for all △ ∈
(

0, △̄
]

we have E |w(T) − x(T)|
p
2 <

ε
12 . Hence

E (2 ∧ |w(T) − x(T)|) ≤ 2P {|w(T) − x(T)| ≥ 2} + E

(

I{|w(T)−x(T)|<2}|w(T) − x(T)|
)

≤ 21−
p
2 E

(

|w(T) − x(T)|
p
2

)

+ E

(

21−
p
2 |w(T) − x(T)|

p
2

)

≤ 22−
p
2 E

(

|w(T) − x(T)|
p
2

)

<
ε

3
.

In other words, for any p/2 > 0, there is a △̄ ∈ (0, △4] such that for all △ ∈ (0, △̄],
|El(w(T)) − El(x(T))| ≤ E (2 ∧ |w(T) − x(T)|) < ε

3 . Since l is arbitrary we have for all △ ∈
(

0, △̄
]

,
supl∈L |El(w(T)) − El(x(T))| ≤ ε

3 , namely,

d
L

(

P
△(T; u, ·), d

L
(P(T; u, ·))

)

<
ε

3
. (7.33)
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886 X. LI ET AL.

Therefore, combining (7.31) and (7.33) yields, for all △ ∈
(

0, △̄
]

,

d
L

(

μ△(·), μ(·)
)

≤ d
L

(

P
△(T; u, ·), μ△(·)

)

+d
L
(P(T; u, ·), μ(·))+d

L

(

P
△(T; u, ·), d

L
(P(T; u, ·))

)

< ε.

The desired result follows. �

8. Numerical examples

In this section, we consider a number of examples of nonlinear systems and conduct simulations using
our numerical schemes.

Example 8.1 The Ginzburg–Landau equation stems from statistical physics in the study of phase
transitions. Its stochastic version with multiplicative noise was introduced, by Kloeden & Platen (1992)
and Hutzenthaler et al. (2011), with the form

dx(t) =
[(

η + 1
2σ 2
)

x(t) − ϑx3(t)
]

dt + σx(t) dB(t), x(0) = x0 > 0, (8.1)

where σ , ϑ > 0. Note that if η = −3/2, σ = 1, ϑ = 1, then (8.1) degenerates to SDE (1.4) in
Section 1. It can be verified that Assumptions 2.1, 4.1, 5.1 hold with all p, p0 > 2 and l = 2. Moreover,
if η < 0, Assumption 6.1 with p < −2η/σ 2 and Assumption 7.1 with ρ < −2η/σ 2 hold. Then by virtue
of Theorems 2.3 and 6.2 not only does (8.1) have a unique regular solution but also it is asymptotically
exponentially stable.

Let ϕ1(r) = C2

(

r2 + 1
)

for all r > 0, where C2 = |η| + 3ϑ + σ 2, ϕ−1
1 (r) =

√

r/C2 − 1 for all

r > C2, h1(△) = ϕ1(x0)△
−0.2 for all △∈ (0, 1). For a fixed △∈ (0, 1), the truncated EM scheme for

(8.1) is

⎧

⎪

⎪

⎨

⎪

⎪

⎩

u0 = x0,

ũk+1 = uk +
(

η + 1
2σ 2
)

uk△ − ϑu3
k△ + σuk△Bk,

uk+1 =
(

ũk+1 ∧
√

(

x2
0 + 1
)

△−0.2 − 1
)

ũk+1
|ũk+1|

.

(8.2)

By virtue of Theorem 4.8, the numerical solution of this scheme approximates the exact solution in the
mean square sense with error estimate △. It follows from Theorems 6.5 and 7.10 that given η < 0, the
pth moment of the numerical solution with p < −2η/σ 2 is asymptotically exponentially stable and its
measure tends to the Dirac measure as t → ∞.

To test the efficiency of the scheme we carry out numerical experiments by implementing (8.2)
using MATLAB. We compare the truncated EM method with the backward EM scheme and the tamed
EM scheme (see, e.g., Hutzenthaler et al., 2012) numerically. Consider (8.1) with η = −3/2, σ =

1, ϑ = 1, x0 = 10 and T = 1. Figure 1 plots the root mean square approximation error
(

E|x(T) −

X(T)|2
)1/2

between the exact solution of (8.1) and the numerical solution by the backward EM scheme,

the error
(

E|x(T) − Z(T)|2
)1/2

between the exact solution and that of the tamed EM scheme and the

error
(

E|x(T) − u(T)|2
)1/2

between the exact solution and that of the truncated EM scheme, as functions

of the runtime when △ ∈
{

2−12, 2−13, 2−14, 2−15, 2−16, 2−17
}

. When △ = 2−17, for 1000 sample points,
the runtime of X(T) achieving the accuracy 0.0004598 on our computer with Intel Core 2 duo CPU 2.20
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EXPLICIT NUMERICAL APPROXIMATIONS FOR SDES IN FINITE AND INFINITE HORIZONS 887

Fig. 1. The root mean square approximation errors for 1000 sample points between the exact solution x(T) of SDE (1.4) and the
numerical solutions: X(T) by the implicit EM scheme, Z(T) by the tamed EM scheme and u(T) by the truncated EM scheme,
respectively, as functions of runtime for △ ∈ {2−12, 2−13, 2−14, 2−15, 2−16, 2−17}.

GHz, is about 435.4 seconds while the runtime of Z(T) achieving the accuracy 0.000461 is about 364
seconds. The runtime of u(T) achieving the accuracy 0.0004573 is about 362.5 seconds (see Fig. 1).
Thus, the convergence speed of the truncated Euler scheme for SDE (8.1) is similar to that of the tamed
EM scheme but is 1.2 times faster than that of the implicit backward EM scheme for achieving the same
accuracy. Figure 2 gives sample paths of the classical EM solution Y(t) and of the truncated EM solution
u(t).

Example 8.2 Because the assumption of constant volatility in the Black–Scholes model has its
drawbacks, the formulation of stochastic volatility has attracted much recent attention. One of the
popular stochastic volatility models is the risk-adjusted formulation given by Lewis (2000, p.83),

dr(t) =
(

β0 − β1r(t)
)

dt + σ |r(t)|3/2dB(t), (8.3)

r(0) = r0 > 0 where β0, β1, σ are positive constants. Such a model is known to possess the so-called
mean-reverting property, a direct consequence of which is that the underlying stochastic process is
positive recurrent, hence has a stationary distribution. Because the equation does not have an analytic
solution, there is a little hope that one can get a closed-form solution for the stationary distribution. Our
results obtained in this paper pave a way to numerically approximate the stationary distribution.

Note that f (r) = β0 − β1r, g(r) = σ |r|3/2 satisfy the local Lipschitz condition; moreover,
Assumption 5.1 with any 0 < p < 1 and Assumption 7.1 with any 0 < ρ < 1 hold. By virtue of
Theorems 2.3 and 7.4, equation (8.3) with any initial value r0 > 0 has a unique regular solution r(t),
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888 X. LI ET AL.

Fig. 2. (a) Sample paths of the EM solution ln |Y(t)|. (b) Sample paths of the truncated EM solution u(t) with the same initial
value x0 = 10 for different values of step size △ and t ∈ [0, 3].

which is asymptotically stable in distribution, namely the probability measure P(t; r0, ·) of the solution
r(t) tends to an invariant measure μ(·) as t → ∞.

Note that for all u > 0,

sup
|r|≤u

|f (r)|

1 + |r|
∨

|g(r)|2

(1 + |r|)2
≤ β0 ∨ β1 + σ 2u,

sup
|x|∨|y|≤u,x �=y

|f (x) − f (y)|

|x − y|
∨

|g(x) − g(y)|2

|x − y|2
≤ β1 + 6.25σ 2u.

Taking ϕ(u) = β0 ∨ β1 + 6.25σ 2u for all u > 0, then ϕ−1(u) =
u−β0∨β1

6.25σ 2 for all u > β0 ∨ β1. Fix

a constant K = ϕ(r0), and define h(△) := K△−1/4 for all △ ∈ (0, 1). For a fixed △∈ (0, 1), the
truncated EM scheme for (8.3) is

⎧

⎪

⎨

⎪

⎩

y0 = r0,

ỹk+1 = yk +
(

β0 − β1yk

)

△ + σ |yk|
3
2 △Bk,

yk+1 =
(

|ỹk+1| ∧
K△−1/4−β0∨β1

6.25σ 2

)

ỹk+1
|ỹk+1|

.

(8.4)

Define y(t) by y(t) := yk for all t ∈
[

tk, tk+1

)

. Therefore, by virtue of Theorems 3.3 and 5.5, we can
approximate the exact solution in the pth moment and estimate the bounds of the pth moment of the
numerical solution in finite and infinite time intervals for any p ∈ (0, 1). Moreover, by Theorems 7.9
and 7.10, the probability measure P

△(t; r0, ·) of the solution using this scheme with any initial value
r0 > 0 tends to a unique numerical invariant measure μ△(·) asymptotically as t → ∞, and μ△(·) →

μ(·) as △ → 0.
Next, in order to test the efficiency of the scheme, we carry out numerical experiments by

implementing (8.4) using MATLAB. Let β0 = 0.1, β1 = 1, σ = 2, r0 = 0.2 and take � = 10−2.
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Fig. 3. Five sample paths and sample mean of |r(t)|1/8 for 4000 sample points in different time intervals.

Table 1 Sample mean of |r(T)|p with 4000 sample points for different step sizes △ and different

values of p

�

E|r(T)|p p 7
8

6
8

5
8

4
8

3
8

2
8

1
8

10−2 0.1310 0.1733 0.2303 0.3070 0.4106 0.5509 0.7412
10−3 0.1294 0.1718 0.2288 0.3057 0.4095 0.5500 0.7407
10−4 0.1278 0.1699 0.2266 0.3032 0.4070 0.5478 0.7392

First, we generate five sample paths of |r(t)|1/8 and the sample mean of |r(t)|1/8 for 4000 sample points
in different intervals [0, T], where T = 10, T = 50, T = 100, respectively; see Fig. 3. We compute the
sample mean of |r(T)|p for 4000 sample points with T = 10 for different step sizes and different values
of p; see Table 1. Figure 4 depicts the frequency of r(T) for 4000 sample points with T = 50, which
predicts the stationary distribution.

9. Concluding remarks

This paper developed numerical solutions of SDEs with truncations. We constructed explicit numerical
schemes that allowed both drift and diffusion coefficients to be not globally Lipschitz and to grow
faster than linearly. We obtained convergence and moment boundedness of the numerical solutions in
infinite time intervals under a local Lipschitz condition and structure conditions required by the analytic
solutions. By linking the moment boundedness between the analytic solutions and the explicit numerical
solutions for a variety of nonlinear SDEs in finite or infinite time intervals, we answered the open
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890 X. LI ET AL.

Fig. 4. The frequency distribution of r(T) for 4000 sample points with T = 50.

problem posed in the study by Higham et al. (2002, p.1060) positively. Under mild conditions, the (1/2)-
order rate of convergence is also obtained. Using the features of SDEs, we also studied dynamic behavior
including exponential stability and stability in distribution of SDE (1.1). Our results are demonstrated
through some examples and numerical experiments.
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