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Abstract A numerical investigation of unsteady magne-

tohydrodynamic mixed convective boundary layer flow of a

nanofluid over an exponentially stretching sheet in porous

media, is presented. The transformed, non-similar conser-

vations equations are solved using a robust, explicit, finite

difference method (EFDM). A detailed stability and con-

vergence analysis is also conducted. The regime is shown to

be controlled by a number of emerging thermophysical

parameters i.e. combined porous and hydromagnetic

parameter (R), thermal Grashof number (Gr), species Gras-

hof number (Gm), viscosity ratio parameter (K), dimen-

sionless porousmedia inertial parameter (r), Eckert number

(Ec), Lewis number (Le), Brownian motion parameter (Nb)

and thermophoresis parameter (Nt). The flow is found to be

accelerated with increasing thermal and species Grashof

numbers and also increasing Brownian motion and

thermophoresis effects. However, flow is decelerated with

increasing viscosity ratio and combined porous and hydro-

magnetic parameters. Temperatures are enhanced with

increasing Brownian motion and thermophoresis as are

concentration values. With progression in time the flow is

accelerated and temperatures and concentrations are

increased. EFDM solutions are validated with an optimized

variational iteration method. The present study finds appli-

cations in magnetic nanomaterials processing.

Keywords Nanofluid � Exponentially stretching sheet �
Mixed convective flow � Magnetic field � Porous media �
Transient flow � Brownian motion � Explicit finite
difference method (EFDM) � Stability analysis � Variational
iteration method (VIM)

Nomenclature

B0 Magnetic field strength

C Nanoparticle concentration

C0 Reference concentration

Cw Nanoparticle concentration at stretching surface

C
?

Ambient nanoparticle concentration as y tends to

infinity

C Dimensionless concentration

cp Specific heat capacity

DB Brownian diffusion coefficient

DT Thermophoresis diffusion coefficient

g Acceleration due to gravity

Gr Thermal Grashof number

Gm Species (mass) Grashof number

Le Lewis number

L Reference length

Nb Brownian motion parameter

Nt Thermophoresis parameter
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P Fluid pressure

Pr Prandtl number

R Combined porous and magnetic parameter

Re Local Reynolds number

t Time

K Permeability of the porous regime

T Fluid temperature

T Dimensionless temperature

T0 Reference temperature

Tw Temperature at the stretching surface

T
?

Ambient temperature as y tends to infinity

u, v Velocity components along x and y axes,

respectively

U, V Dimensionless velocity components

U0 Reference velocity

x, y Cartesian coordinates measured along stretching

surface

Greek symbols

m Kinematic viscosity

~m Reference kinematic viscosity

ðqcÞp Effective heat capacity of the nanofluid

ðqcÞf Heat capacity of the fluid

a Thermal diffusivity

bT Coefficient of thermal expansion

bc
* Coefficient of mass expansion

s Dimensionless time

Introduction

Magnetohydrodynamic (MHD) boundary layer flows with

heat and mass transfer from a continuously stretching

surface with a given temperature distribution moving in an

otherwise quiescent fluid medium have stimulated consid-

erable interest in recent years. Magnetic fields can be used

to manipulate thermal or mechanical energy in flowing

electrically conducting polymers and can yield significant

cost savings in manufacturing processes (Garnier 1992).

Many robust applications of MHD materials processing

have been developed including micro-structural modifica-

tion by heat transfer control (Asai 2012), induction heating

of ceramic metal matrix composites (Garnier 1996), liquid

metal stirring operations (Fautrelle et al. 2009) and

boundary-layer separation control via Lorentzian forces

(Ishikwa et al. 2007). Transport phenomena in stretching

sheet flows are of particular relevance to boundary layer

modeling (Abdou and Soliman 2012). After the pioneering

mathematical studies of Sakiadis (1961) and Crane (1970),

several researchers further investigated stretching sheet

boundary layer flows for different types of stretching

velocity. Magyari and Keller (2000) considered the steady

boundary layer heat and mass transfer flow from an

exponentially stretching continuous surface with an expo-

nential temperature distribution, deriving solutions which

exhibited an exponential dependence on the temperature

distribution in the direction parallel to that of the stretch-

ing. Partha et al. (2005) studied the effect of viscous dis-

sipation on the mixed convective boundary layer heat

transfer from an exponentially stretching surface. El-

bashbeshy (2001) considered wall transpiration (suction)

effects on heat transfer in boundary layer flow from an

exponentially continuous stretching surface. Khan (2006)

studied non-Newtonian (viscoelastic) boundary layer fluid

flow over an exponentially stretching sheet. Sanjayanand

and Khan (2006) considered viscoelastic heat and mass

transfer from an exponentially stretching sheet. A numer-

ical simulation of boundary layer flow over an exponen-

tially stretching sheet with thermal radiation was

undertaken by Bidin and Nazar (2009). The exponential

stretching sheet scenario is important both for practical

reasons and also for mathematical treatment. In real poly-

mer stretching systems, Stastna et al. (1991) have shown

that relaxational processes in polymer systems can be

characterized by a relaxation function which exhibits a

stretched exponential behaviour. By stretching polymer

sheets at exponential rates, the relaxation of elastic stresses

is overcome and a homogenous material distribution is

achieved. Analytically exponential sheet models have also

been studied by Elbashbeshy (2001) who obtained simi-

larity solutions based on the exponential stretching velocity

distribution in the stretching direction. Therefore, expo-

nential stretch rates are both physically relevant and also

allow mathematical similarity analysis. Although the ori-

ginal study by Ishikwa et al. (2007) considers only linear

stretching, quadratic stretching has been investigated by

Kumaran and Ramanaiah (1996). A generalized form of

stretching can also be achieved and indeed has been for-

mulated by Weidman and Magyari (2010) for continuous

surfaces stretching with arbitrary polynomial velocities,

designated as ‘‘super-stretching’’. In the context of actual

materials processing operations, the exponential model for

stretching achieves the best efficiency (Bataller 2008).

Convective transport in porous media also has extensive

applications in industrial systems including energy storage,

filtration of liquids, drying processes, etc. Gorla and

Zinolabedini (1987) investigated free convective heat

transfer from a vertical surface to a saturated porous

medium with an arbitrary varying surface temperature. Bég

et al. (2009) obtained non-similar solutions for hydro-

magnetic transport in a porous medium from a stretching

sheet with cross-diffusion effects.

In recent years, a fundamental new development in

thermo-fluid mechanics has been the introduction of

nanofluids. Choi (1995) described such fluids as being

suspensions comprising nanometer-sized metallic particles
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strategically deployed in common working fluids (air,

water) which achieve highly enhanced thermal properties.

Kang et al. (2006) presented an experimental study of

nanofluid thermal conductivities. Crainic et al. (2003,

2007) identified the significant magnetohydrodynamic

properties of specific nanofluids which are exploitable in

their manufacture. The performance-enhancing character-

istics of magnetic nanofluids in industrial MHD pumps

used in materials processing have also been emphasized by

Shahidian et al. (2011). Boundary layer flows of nanofluids

in either non-porous (purely fluid) and porous media, have

also received significant attention following the study of

Kuznestov and Nield (2010) in which buoyancy effects

were considered. This study highlighted that Brownian

motion and thermophoresis are significant mechanisms in

nanofluid performance. Bég and Tripathi (2012) further

showed the substantial role of Brownian motion and ther-

mophoresis in augmenting heat transfer in peristaltic

nanofluid transport. Khan and Pop (2010, 2011) studied,

respectively, the laminar boundary layer flow of a nano-

fluid past a stretching sheet and also free convection

boundary layer nanofluid flow in a porous medium. Hamad

and Pop (2011) addressed the stagnation-point nanofluid

boundary layer flow on a permeable stretching sheet in a

porous medium in the presence of a heat sink or source.

Bég et al. (2012) studied the free convection nanofluid

boundary layer from a spherical body to a porous medium

using a homotopy analysis method and a Darcian drag

force model. Rana et al. (2012) employed a variational

finite element method to study natural convection nanofluid

boundary layer flow from a tilted surface in porous media.

Magnetohydrodynamic nanofluid boundary layer flows

have also recently garnered interest. Hamad et al. (2011)

used a group theoretical approach and shooting quadrature

to study magneto-nanofluid natural convection boundary

layer flow from a vertical plate. Khan et al. (2011) analyzed

numerically the thermal radiative flux effects on hydro-

magnetic nanofluid boundary layer flow from a stretching

surface. Recently Rana et al. (2013) studied using a finite

element technique, the transient magnetohydrodynamic

boundary layer flow in an incompressible rotating nano-

fluid over a stretching continuous sheet, showing that both

Brownian motion and thermophoresis enhance wall mass

transfer rates (Sherwood number). Very recently Abbas-

bandy and Ghehsareh (2012) used the Hankel–Padé

expansion method to study nanofluid hydromagnetic

boundary-layer flows.

The vast majority of nanofluid boundary layer flow

models have been steady-state in nature. In the present

article we therefore simulate the transient MHD dissipative

mixed convective boundary layer nanofluid flow over an

exponentially stretching sheet adjacent to a non-Darcian

porous medium. The governing equations are transformed

into dimensionless, strongly coupled, non-linear partial

differential equations featuring a number of thermophysi-

cal parameters. An explicit finite difference computational

algorithm is employed to yield solutions. Elaboration of the

stability and convergence characteristics is also included.

The present study is relevant to the manufacturing of

magnetic nanofluids (Baron et al. 2007) and chemical

engineering operations involving electro-conductive

nanofluid suspensions (Stephens et al. 2010) and has not

been, to the authors’ knowledge, thus far reported in the

literature.

Mathematical model

Consider the time-dependent (unsteady) two-dimensional

flow of an incompressible viscous and electrically con-

ducting nanofluid induced by a stretching sheet in a porous

medium saturated with quiescent ambient nanofluid. The

sheet uniform temperature and species concentration are

raised to Twð[ T1Þ and Cwð[C1Þ respectively, which

are thereafter maintained constant, where Tw; Cw are tem-

perature and species (nanoparticle) concentration at the

wall and T1; C1 are temperature and species concentra-

tion far away from the sheet, respectively. The x-axis is

orientated along the exponentially stretching sheet in the

direction of the motion and y-axis is perpendicular to it. A

variable strength magnetic field, B(x) is applied normal to

the sheet and induced magnetic field is neglected, which is

justified for MHD flow at small magnetic Reynolds num-

ber. The physical configuration and coordinate system are

shown in Fig. 1. Under the above assumptions and usual

boundary layer approximation, the transient MHD mixed

convective nanofluid transport is described by the follow-

ing equations, which extend the earlier formulation of

Kuznetsov and Nield (2010) to consider magnetic field and

inertial porous medium drag effects:

Mass conservation

ou

ox
þ ov

oy
¼ 0 ð1Þ

Momentum conservation

ou

ot
þ u

ou

ox
þ v

ou

oy
¼ ~m

o
2u

oy2
� v

K
u� c�e2u2 � rB2

q
u

þ gbTðT � T1Þ þ gb�cðC � C1Þ ð2Þ

Energy conservation

oT

ot
þ u

oT

ox
þ v

oT

oy
¼ a

o
2T

oy2
þ ~m

cp

ou

oy

� �2

þ
ðqcÞp
ðqcÞf

DB

oT

oy
:
oC

oy

� �

þ DT

T1

oT

oy

� �2
( )

ð3Þ
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Species (nano-particle concentration) conservation

oC

ot
þ u

oC

ox
þ v

oC

oy
¼ DB

o
2C

oy2
þ DT

T1

o
2T

oy2
ð4Þ

where u and v are the velocities in the x- and y-directions,

respectively, t is time, q is the fluid density, m the kinematic

viscosity, ~m the reference kinematic viscosity, K the per-

meability of the porous regime, cp the specific heat at

constant pressure, T and C the fluid temperature and con-

centration in the boundary layer, c�e2 is the inertia

parameter, a is the thermal diffusivity, ðqcÞp is effective

heat capacity of the nanofluid, ðqcÞf is heat capacity of the

fluid, DB is the species diffusivity and DT is the thermo-

phoresis diffusion coefficient. In Eq. (2) (Newton’s second

law), the first term on the left hand side is the temporal

velocity gradient, the second and third terms are the con-

vective acceleration terms. The first term on the right hand

side denotes viscous shear, the second represents the Dar-

cian porous media drag (linear), the third designates second

order Forchheimer porous media drag, the fourth is the

magnetohydrodynamic Lorentz body force, the fifth is the

thermal buoyancy term and the last term on the right hand

side of Eq. (2) is the species buoyancy force. In Eq. (3)

which is a statement of Fourier’s law of heat conservation,

the first term on the left hand side denotes the transient

temperature gradient and the second and third terms on the

left hand side represent the convective heat transfer terms.

The first term on the right hand side signifies thermal dif-

fusion, the second term is viscous heating, and the last dual

component term denotes Brownian motion and thermo-

phoresis contributions. In Eq. (4), which is a statement of

Fick’s law of mass (species) diffusion, the first term on the

left hand side is the transient concentration gradient, and

the second and third terms are the convective mass transfer

terms. The first term on the right hand side denotes the

species diffusion and the last term is the relative contri-

bution of thermophoresis to Brownian motion.

The relevant initial and boundary conditions are:

where U0 is the reference velocity, T0; C0 the reference

temperature and concentration, respectively, and L is the

reference length. To obtain similarity solutions, it is

assumed that the magnetic field B(x) and the variable

thermal conductivity K* are of the form:

B ¼ B0e
x
2L ð6Þ

K ¼ K0e
x
L ð7Þ

where B0 denotes constant magnetic field and K0 is the

constant thermal conductivity. This exponential

formulation has also been adopted by several other

t ¼ 0; u ¼ 0; v ¼ 0; T ¼ T1; C ¼ C1 everywhere

t� 0; u ¼ 0; v ¼ 0; T ¼ T1; C ¼ C1 at x ¼ 0

u ¼ uw ¼ U0e
x=L; v ¼ 0; T ¼ Tw; T1 þ T0e

2x=L; C ¼ Cw ¼ C1 þ C0e
2x=L at y ¼ 0

u ¼ 0; v ¼ 0; T ! T1; C ! C1 at y ! 1

ð5Þ

Fig. 1 Physical model and

coordinate system
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researchers in magnetohydrodynamics, as elaborated by

Yakovlev et al. (2013) who have also adopted exponential

magnetic field relations. Sadooghi and Taghinavaz (2012)

have also explained the validity of employing

exponentially decaying functions of magnetic field.

Exponential decay in thermal conductivity has also been

related to energy transport in nanomaterials, as elaborated

by Wang (2012). Furthermore the formulations adopted in

Eqs. (6), (7) in addition to being physically valid, also

provide an elegant simplification in the mathematical

complexity of the non-dimensional transport equations, as

will be demonstrated now. Introducing the following non-

dimensional variables;

X ¼ xU0

m
e
x
L; Y ¼ yU0

m
e
x
L; U ¼ u

U0

e�
x
L; V ¼ v

U0

e�
x
L;

s ¼ tU2
0

m
e
2x
L ; �T ¼ T � T1

Tw � T1
; �C ¼ C � C1

C � C1
:

ð8Þ

From the above transformations the, non-linear, coupled

partial differential Eqs. (1)–(4) become non-dimensional as

follows:

oU

oX
þ oV

oy
¼ 0 ð9Þ

oU

os
þ U

oU

oX
þ V

oU

oY
¼ ^ o

2U

oY2

� 1

Re

RU þ DU2 � Gr
�T � GM

�C
� �

ð10Þ

o�T

os
þ U

o�T

oX
þ V

o�T

oY
¼ 1

Pr

o
2 �T

oY2

� �

þ ^Ec

oU

oY

� �2

þ Nb

o�T

oY
:
o �C

oY

� �

þ Nt

o�T

oY

� �2

ð11Þ

o �C

os
þ U

o �C

oX
þ V

o �C

oY
¼ 1

Le

o
2 �C

oY2
þ Nt

Nb

� �

o
2 �T

oY2

� �

: ð12Þ

The non-dimensional boundary and initial conditions

transform to:

s� 0; U ¼ 0; V ¼ 0; �T ¼ 0; �C ¼ 0 everywhere

s[ 0; U ¼ 0; V ¼ 0; �T ¼ 0; �C ¼ 0 at X = 0
ð13Þ

U ¼ 1; V ¼ 0; �T ¼ 1; �C ¼ 1 at Y¼ 0

U ¼ 0; V ¼ 0; �T ¼ 0; �C ¼ 0 atY ! 1 ð14Þ

where the notation primes denote differentiation with

respect to g and the parameters are defined as follows:

R ¼ mL
K0U0

þ rB2
0
L

qU0

� 	

is the combined porous and magnetic

parameter, ^ ¼ m
v
is viscosity ratio parameter, r ¼ c�e2L is

dimensionless porous media inertia parameter, Gr ¼ gbT0L

U2
0

is thermal Grashof number, Gm ¼ gbC0L

U2
0

is species Grashof

number, Pr ¼ t
a
is Prandtl number, Ec ¼ U2

0

cpT0
is Eckert

number, NB ¼ ðqcÞpDBðCw�C1Þ
mðqcÞf

is Brownian motion parame-

ter, Nt ¼
ðqcÞpDTðTw�T1Þ

mT1ðqcÞf
is thermophoresis parameter, Le ¼

m
DB

is the Lewis number and Rex ¼ LU0e
x
L

v
is the local Rey-

nolds number.

Explicit numerical solutions

In order to solve the non-similar unsteady coupled non-

linear partial differential equations (9)–(12), under

boundary conditions (13, 14), an explicit finite difference

method (EFDM) algorithm, as described by Carnahan

et al. (1969) has been developed. Finite difference algo-

rithms are still employed widely in unsteady multi-phys-

ical materials processing flows and generally yield very

accurate and stable solutions and can easily accommodate

time variables. Finite difference simulations have been

conducted recently by, for example, Mohiddin et al.

(2010) who studied transient double-diffusive non-New-

tonian convection form a cone. Further studies using dif-

ference methods include Prasad et al. (2011) who

analyzed unsteady viscoelastic natural convection bound-

ary layer flow from a vertical surface and Prasad et al.

(2011) who studied radiative-convective non-Newtonian

flow from a cone. An extensive review of applications of

finite difference (and other numerical) methods in hydro-

magnetic materials processing flows has recently been

conducted by Bég (2012). In the explicit approach, a

rectangular region of the flow field is chosen and the

region is divided into a grid of lines parallel to the X and

Y axes, where X-axis is taken along the sheet and the Y-

axis is normal to the sheet, as depicted in Fig. 2.

Here the sheet of height Xmaxð¼100Þ is considered i.e. X

varies from 0 to 100 and assumed Ymaxð¼25Þ as corre-

sponding to Y ! 1 i.e. Y varies from 0 to 25. There are

mmaxð¼125Þ and nmaxð¼125Þ grid spaces in the X and Y

directions, respectively (Fig. 2). It is assumed that DX; DY

are constant mesh sizes along the X and Y directions,

respectively, and are prescribed as follows: DX ¼
0:8ð0�X� 100Þ and DY ¼ 0:2ð0� Y � 25Þ with the

smaller time-step, Ds ¼ 0:005. Let U0; V 0; �T
0
and �C

0

denote the values of U; V ; �T and �C at the end of a time-

step, respectively. Using the explicit finite difference

approximation, the following system of finite difference

equations is obtained:

U
0
i;j � U

0
i�1;j

DX
þ Vi;j � Vi;j�1

DY
¼ 0 ð15Þ
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U
0
i;j � Ui;j

Ds
þ Ui;j

Ui;j � Ui�1;j

DX
þ Vi;j

Ui;jþ1 � Ui;j

DY

¼ ^Ui;jþ1 � 2Ui;j þ Ui;j�1

ðDYÞ2

� 1

Re

ðRUi;j þrU2
i;j � Gr

�Ti;j � Gm
�Ci;jÞ ð16Þ

�T
0
i;j � �Ti;j

Ds
þ Ui;j

�Ti;j � �Ti�1;j

DX
þ Vi;j

�Ti;jþ1 � �Ti;j

DY

¼ 1

Pr

�Ti;jþ1 � 2 �Ti;j þ �Ti;j�1

ðDYÞ2

 !

þ ^Ec

Ui;jþ1 � 2Ui;j þ Ui;j�1

ðDYÞ2

 !

þ Nb

�Ti;jþ1 � �Ti;j

DY
:
�Ci;jþ1 � �Ci;j

DY

� �

þ Nt

�Ti;jþ1 � �Ti;j

DY

� �2

ð17Þ
�C

0
i;j � �Ci;j

Ds
þ Ui;j

�Ci;j � �Ci�1;j

DX
þ Vi;j

�Ci;jþ1 � �Ci;j

DY

¼ 1

Le

�Ci;jþ1 � 2 �Ci;j þ �Ci;j�1

ðDYÞ2

 !

þ Nt

Nb

�Ti;jþ1 � 2 �Ti;j þ �Ti;j�1

ðDYÞ2

 !" #

ð18Þ

with initial and boundary conditions:

U0
i;j ¼ 0; V0

i;j ¼ 0; �T0
i;j ¼ 0; �C0

i;j ¼ 0

Un
0;j ¼ 0; Vn

0;j ¼ 0; �Tn
0;j ¼ 0; �Cn

0;j ¼ 0
ð19Þ

Un
i;0 ¼ 1; Vn

i;0 ¼ 0; �Tn
i;0 ¼ 1; �Cn

i;0 ¼ 1

Un
i;L ¼ 0; Vn

i;L ¼ 0; Tn
i;L ¼ 0; Cn

i;L ¼ 0; where L ! 1: ð20Þ

Here the subscripts i and j designate the grid points with

X and Y coordinates, respectively, and the superscript

n represents a value of time, s ¼ n � Ds where n = 0, 1, 2,

…

Stability and convergence analysis

Since an explicit procedure is being employed, a discussion

of the stability and convergence aspects of the finite dif-

ference scheme is warranted. For constant mesh sizes the

stability criteria of the scheme may be established as fol-

lows. Equation (15) will be ignored since Ds does not

feature in it. The general terms of the Fourier expansion for

U, �T and �C at a time arbitrarily called s = 0 are all eiaXeibX ,

apart from a constant, where i ¼
ffiffiffiffiffiffiffi

�1
p

. At a time s, these

terms become:

U : wðsÞeiaXeibY
�T : hðsÞeiaXeibY
�C : /ðsÞeiaXeibY

ð21Þ

After the time-step these terms will become:

U : w
0ðsÞeiaXeibY

�T : h
0ðsÞeiaXeibY

�C : /
0ðsÞeiaXeibY

ð22Þ

Fig. 2 Finite difference space

grid
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Substituting (21) and (22) into Eqs. (16)–(18), regarding the

coefficientsU and V as constants over any one time-step, we

obtain the following equations upon simplification,

w
0ðsÞ � wðsÞ

Ds
þ U

wðsÞð1� eiaDXÞ
DX

þ V
wðsÞðeibDY � 1Þ

DY

¼ ^ 2wðsÞðcos bDY � 1Þ
ðDYÞ2

( )

� R

Re

wðsÞ � rU

Re

wðsÞ þ Gr

Re

h
0 þ Gm

Re

u
0

ð23Þ

h
0ðsÞ � hðsÞ

Ds
þ U

hðsÞð1� e�iaDXÞ
DX

þ V
hðsÞðeibDY � 1Þ

DY

¼ 1

Pr

2hðsÞðcos bDY � 1Þ
ðDYÞ2

þ ^EcUwðsÞ eibDY � 1

DY

� �2

þNb
�Ch sð Þ eibDY � 1

� �

DY

� �2

þ Nt
�Th sð Þ eibDY � 1

� �

DY

� �2

ð24Þ

/
0ðsÞ � /ðsÞ

Ds
þ U

/ðsÞð1� e�iaDXÞ
DX

þ V
/ðsÞðeibDY � 1Þ

DY

¼ 1

Le

2/ðsÞ cos bDY � 1ð Þ
ðDYÞ2

( )"

þ Nt

Nb

� �

:
2hðsÞðcos bDY � 1Þ

ðDYÞ2

( )#

ð25Þ

The Eqs. (23)–(25) can be written in the following form:

w
0 ¼ Awþ Bh0 þ C/

0 ð26Þ
h0 ¼ Dwþ Eh ð27Þ

/
0 ¼ Fhþ G/ ð28Þ

where

A ¼ 1� U
Ds

DX
ð1� e�iaDXÞ � V

Ds

DY
ðeibDY � 1Þ þ 2Ds

ðDYÞ2

^ ðcos bDY � 1Þ � R

Re

Ds�rU

Re

Ds

ð29Þ

B ¼ Gr

Re

Ds ð30Þ

C ¼ Gm

Re

Ds ð31Þ

D ¼ Ds

ðDYÞ2
^ EcUðeibDY � 1Þ2 ð32Þ

E ¼ 1� U
Ds

DX
ð1� e�iaDXÞ � V

Ds

DY
ðeibDY � 1Þ

þ 1

Pr

2ðcos bDY � 1Þ
ðDYÞ2

Ds

þ Nb
�C

ðeibDY � 1Þ
DY

� �2

Dsþ Nt
�T

eibDY � 1

DY

� �2

Ds;

ð33Þ

F ¼ 1

Le

Nt

Nb

� �

2Ds

ðDYÞ2
ðcos bDY � 1Þ ð34Þ

and

G ¼ 1� U
Ds

DX
ð1� e�iaDXÞ � V

Ds

DX
ðeibDY � 1Þ

þ 1

Le

2Ds

ðDYÞ2
ðcos bDY � 1Þ: ð35Þ

Again using Eqs. (27) and (28) in (26):

w0 ¼ Hwþ Ihþ J/ ð36Þ

where,

H ¼ Aþ BD;

I ¼ BE þ CF and

J ¼ CG

: ð37Þ

Therefore Eqs. (26)–(28) can be expressed as:

w0 ¼ Hwþ Ihþ J/ ð38Þ
h ¼ Dwþ Eh ð39Þ
/0 ¼ Fhþ G/ ð40Þ

Furthermore the Eqs. (38)–(40) can be expressed in

matrix–vector form as follows:

w0

h0

/0

2

4

3

5 ¼
H I J

D E 0

0 F G

2

4

3

5

w

h

/

2

4

3

5 ð41Þ

that is, g0 ¼ Tg where

g0 ¼
w0

h0

/0

2

4

3

5; T ¼
H I J

D E 0

0 F G

2

4

3

5 and g ¼
w

h

/

2

4

3

5 ð42Þ

To determine the stability condition, it is necessary to

evaluate the eigenvalues of the amplification matrix T but

this task is very difficult since all the elements of T are

different. Hence the problem requires that the Eckert

Number Ec is assumed to be very small and tends to zero.

With this consideration D ¼ 0 and the amplification matrix

becomes:

T ¼
H I J

0 E 0

0 F G

2

4

3

5 ð43Þ
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Hence the problem requires that after simplification of the

matrix T, we get the following eigenvalues,

k1 ¼ H; k2 ¼ E and k3 ¼ G. For stability, each of the

eigenvalues k1; k2 and k3 must not exceed unity in

modulus. Hence the stability condition is Hj j � 1; Ej j � 1

and G� 1, for all a; b Now we assume that U is

everywhere non-negative and V is everywhere non-

positive. Details for this assumption are given in

Carnahan et al. (1969) and are required for well-

posedness of the boundary value problem and to ensure

the elimination of spurious modes of oscillation. The

assumption is founded on numerical analysis, and is more a

computational aspect than a physical one. It follows that,

H ¼ Aþ BD ¼ A; since D ¼ 0.

)H ¼ 1� U
Ds

DX
ð1� e�iaDXÞ � V

Ds

DY
ðeibDY � 1Þ

þ 2Ds

ðDYÞ2
^ ðcos bDY � 1Þ � R

Re

Ds�rU

Re

Ds

) H ¼ 1� 2 aþ bþ 2 ^ c� R

2Re

Ds�rU

2Re

Ds

� �

ð44Þ

where a ¼ U Ds
DX

; b ¼ jV j Ds
DY

and c ¼ Ds

ðDYÞ2. The coefficients

a, b and c are all real and non-negative. We can

demonstrate that the maximum modulus of H occurs

when aDX ¼ mp and bDY ¼ np, where m and n are

integers and hence H is real. The value of jHj is greater

when both m and n are odd integers. To satisfy the jHj � 1,

the most negative allowable value is H ¼ �1. Therefore,

the first stability condition is:

2 aþ bþ 2 ^ c� R

2Re

Ds�rU

2Re

Ds

� �

� 2 ð45Þ

) U
Ds

DX
þ Vj j Ds

DY
þ 2 ^ Ds

DYð Þ2
� R

2Re

Ds�rU

2Re

Ds

" #

� 1

ð46Þ

Likewise, the second stability condition Ej j � 1 requires

that;

) U
Ds

DX
þ Vj j Ds

DY
þ 2

Ds

DYð Þ2
1

Pr

þ Nb
�C þ Nt

�T

� �

" #

� 1

ð47Þ

Similarly the third stability condition jGj � 1 requires that;

U
Ds

DX
þ Vj j Ds

DY
þ 2

Le

Ds

DYð Þ2

" #

� 1 ð48Þ

Therefore, the stability conditions of the method are;

U
Ds

DX
þ Vj j Ds

DY
þ 2 ^ Ds

DYð Þ2
� R

2Re

Ds�rU

2Re

Ds� 1

ð49Þ

U
Ds

DX
þ Vj j Ds

DY
þ 2

Ds

DYð Þ2
1

Pr

þ Nb
�C þ Nt

�T

� �

� 1 ð50Þ

U
Ds

DX
þ Vj j Ds

DY
þ 2

Le

Ds

DYð Þ2
� 1: ð51Þ

From the initial condition, U ¼ V ¼ �T ¼ �C ¼ 0 at s ¼ 0

and the consideration due to stability and convergence

analysis is R� 0:5 andRe � 0:5. Hence the convergence

criteria of the method are

^� 4:01; Pr � 0:25 and Le � 0:25:

Validation with variational iteration method

To verify the EFDM solutions, the present non-linear

boundary value problem has also been solved with an

optimized He variational iteration method (VIM). VIM is

also a very powerful semi-analytical/numerical technique

developed by He (1999). This procedure was originally

developed for environmental chemical engineering pollu-

tion problems and approximate solutions for the problem of

seepage flow in a porous medium with fractional deriva-

tives were obtained (Anwar Bég 2013). VIM has been

subsequently successfully applied to variety of other fluid

dynamic phenomena including shallow water hydrody-

namics (Tari et al. 2007), bio-thermal tissue treatment

simulations (Elsayed 2013), electro-thermal thruster sim-

ulation for spacecraft (Anwar Bég 2013), brain tissue

chemo-mechanics (Anwar Bég 2013), Von Kármán swirl-

ing flows in porous regimes (Shahmohamadi et al. 2012).

VIM is a robust method therefore in obtaining exact and

approximate solutions of linear and non-linear differential

equations. In this method, general Lagrange multipliers are

introduced to construct correction functionals for the

problem. The multipliers can be identified optimally via the

variational theory. There is no need for linearization or

discretization, and excessive computational work and

round-off errors are thereby avoided. Time is easily

accommodated as a third dimension to the two spatial

dimensions (X, Y). VIM demonstrates exceptional stability,

exponential convergence and accuracy and is ideal for non-

linear transport phenomena encountered in chemical

engineering problems. For readers not familiar with this

procedure, we provide here a brief overview. Consider the

following non-linear differential equation:

Luþ Nu ¼ gðtÞ; ð52Þ
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where L; N and gðtÞ are the linear operator, the non-linear

operator and a heterogeneous term, respectively. VIM uses

a correction functional (He 1999) and for Eq. (52) this can

be written as:

unþ1ðtÞ ¼ unðtÞ þ
Z t

0

k ½LunðsÞ þ N ~unðsÞ � gðsÞ� ds
n� 0;

ð53Þ

The successive approximations, uj, j� 0 can be

established by determining k; a general Lagrangian

multiplier, which can be identified optimally via the

variational theory. The function ~un is a restricted

variation which means d ~un ¼ 0: Therefore, we first

determine the Lagrange multiplier k that will be

identified optimally via integration by parts. The

successive approximations unþ1ðtÞ; n� 0 of the solution

uðtÞ will be readily obtained upon using the obtained

Lagrange multiplier and by using any selective function u0:

When k has been determined, then several approximations

ujðtÞ; j� 0; follow immediately. Consequently, the exact

solution may be obtained by using:

u ¼ lim
n!1

un: ð54Þ

We therefore construct correction functionals and

thereafter apply the variational iteration formula. Very

lengthy algebraic expressions result from the functionals

and are omitted here for brevity. The series expansions are

evaluated in a purpose-built Matlab-based code,

TRANSNANOVIM (Anwar Bég 2013), developed for

transient nanofluid dynamic flows. Computations on a

dual-processor Unix workstation are achieved in tens of

seconds. Comparison of the EFDM and VIM solutions are

documented in Tables 1, 2, 3, for the velocity, temperature

and nanoparticle concentration fields, for various

combinations of the governing thermofluid parameters

and different time steps. In all cases excellent agreement is

obtained, testifying to the accuracy of the EFDM

computations, the latter being used to present all

graphical solutions in the next section. Confidence in the

EFDM results is therefore justifiably very high. In fact both

methods demonstrate exceptional accuracy, stability and

fast convergence characteristics and show excellent

promise in simulating non-linear problems in

nanophysical flows. It is also evident from the current

simulations that these methods are an elegant alternative to

other popular but computationally intensive methods for

nonlinear boundary value problems e.g. Chebyschev

spectral collocation methods (Anwar Bég et al. 2013)

which are also popular for electrical transport phenomena

simulations.

Results and discussion

Extensive numerical solutions have been obtained for the

system governing Eqs. (15)–(18) under boundary condi-

tions (19) and (20), with the EFDM algorithm. The values

of the governing parameters are chosen to be physically

representative of actual nanofluids (Kuznetsov and Nield

2010; Khan et al. 2011; Rana et al. 2013; Abbasbandy and

Ghehsareh 2012). Non-dimensional velocity, temperature

and species concentration are computed for different values

of combined porous and hydromagnetic parameter (R),

thermal Grashof number(Gr), species Grashof number

(Gm), viscosity ratio parameter (K), dimensionless porous

media inertial parameter (r), Eckert number (Ec), Lewis

number (Le), Brownian motion parameter (Nb),

Table 1 EFDM and VIM computations compared for velocity field

(U) with = 5, R = 4.0, Gr = 3.0, Gm = 2.0, K = 1.5, r = 1.0,

Ec = 0.01, Le = 5.0, Nb = Nt = 0.1, Pr = 1.0, Re = 0.5, X = 10.0

Y U (EFDM) U (VIM)

0 1.0000 1.0000

2.5 0.6710 0.6709

5.0 0.0200 0.0201

10.0 0.0000 0.0001

15 0.0000 0.0000

25 0.0000 0.0000

Table 2 EFDM and VIM computations compared for temperature

field ( �T) with = 20, R = 4.0, Gr = 4.0, Gm = 2.0, K = 1.5,

r = 1.0, Ec = 0.01, Le = 5.0, Nb = Nt = 0.3, Pr = 1.0, Re = 0.5,

X = 10.0

Y �T (EFDM) �T (VIM)

0 1.0000 1.0000

5.0 0.5610 0.5614

10.0 0.1642 0.1647

15.0 0.0325 0.0329

20.0 0.0010 0.0013

25.0 0.0000 0.0000

Table 3 EFDM and VIM computations compared for nanoparticle

concentration field ( �C) with s = 60, R = 4.0, Gr = 4.0, Gm = 2.0,

K = 1.5, r = 1.0, Ec = 0.01, Le = 5.0, Nb = Nt = 0.1, Pr = 1.0,

Re = 0.5, X = 10.0

Y �C (EFDM) �C (VIM)

0 1.0000 1.0000

5.0 0.3125 0.3128

10.0 0.0985 0.0987

15.0 0.0253 0.0258

20.0 0.0000 0.0000

Appl Nanosci (2014) 4:943–957 951

123



thermophoresis parameter (Nt) and Prandtl number (Pr) and

local Reynolds number (Re). To obtain the steady-state

solutions, the calculations are executed for a range of non-

dimensional times, s ¼ 5 to 80. Velocity, temperature and

concentration profiles do not exhibit any subsequent vari-

ation after s ¼ 60. Therefore, the solution for s� 60 is

taken as the steady-state solution. The distributions of the

flow variables are illustrated in Figs. 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13. In all cases, X is prescribed a value of 10.

Figure 3 represents the evolution of dimensionless

velocity ðUÞ with Y for different values of Gr and non-

dimensional times, s. An increase in thermal Grashof

number clearly enhances velocity i.e. induces a strong

acceleration in the flow. A distinct velocity shoot arises for

all profiles near the sheet surface (Y = 0) and this is

accentuated with increasing thermal Grashof number. With

increasing thermal Grashof number the thermal buoyancy

force is increased which aids in momentum development in

the boundary layer. Velocity boundary layer thickness is

therefore increased with increasing Gr. With greater elapse

of time, s, the velocity is also found to be enhanced

substantially.

Figure 4 illustrates the distribution of dimensionless

velocity distribution ðUÞ with transverse coordinate, Y for

various species (mass) Grashof numbers, Gm and non-

dimensional times, s. Again a significant elevation in

Fig. 5 Combined porous and magnetic parameter effect on velocity

profiles

Fig. 3 Thermal Grashof number ðGrÞ effect on velocity profiles

Fig. 4 Species Grashof number ðGmÞ effect on velocity profiles
Fig. 6 Viscosity ratio parameter ^ð Þ effect on velocity profiles
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velocity is observed with progressively greater velocity

shoots near the stretching sheet, as species Grashof number

is increased. Greater values of Gm imply a greater species

buoyancy force associated with the mass diffusion of

nanoparticles in the regime. With greater values of s the

nanofluid flow is also strongly accelerated.

Figure 5 displays the dimensionless velocity profiles

ðUÞ versus Y for different values of combined porous

media drag and hydromagnetic drag parameter, R, and non-

dimensional time, s. A marked deceleration is witnessed in

the vicinity of exponentially stretching sheet with

increasing R. In the dimensionless momentum equation

(10), the components of R ¼ tL
K�U� þ

rB2
�L

qU�

� 	

both serve to

inhibit the momentum development in the boundary layer.

The first term i.e. Darcian linear drag causes greater

impedance to the flow of the nanofluid. The second term

i.e. Lorentzian hydromagnetic drag, acts transverse to the

magnetic field i.e. in the negative X-direction and also

retards the flow considerably. For R = 0.5, 2.5 a velocity

shoot is still present near the sheet surface; however, this

vanishes for R = 5.0. With increasing time, s, velocity is

again found to be enhanced. Progression in time therefore

once again accelerates the flow in the porous regime.

Figure 6 presents the dimensionless velocity distribu-

tions ðUÞ versus Y for different values of the viscosity ratio

parameter, K and also non-dimensional time, s. The

parameter K features both in the momentum conservation

Fig. 7 Thermophoresis and Brownian motion parameter Nt andNbð Þ
effect on velocity profiles

Fig. 8 Thermophoresis and Brownian motion parameter Nt andNbð Þ
effect on temperature profiles

Fig. 9 Prandtl number ðPrÞ effect on temperature profiles

Fig. 10 Viscosity ratio parameter ^ð Þ effect on temperature profiles
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Eq. (10) and also the energy conservation Eq. (11), where it

is associated with the momentum diffusion term and vis-

cous heating term, respectively. Close to the stretching

sheet, an increase in K, causes a notable rise in velocity

magnitudes, however, further from the sheet surface this

trend is reversed and the flow is slightly decelerated. The

contribution of viscosity is progressively reduced from the

sheet surface (wall) towards the free stream. Momentum

boundary layer thickness is therefore found to be increased

closer to the sheet surface. In all cases a velocity shoot is

computed in close proximity to the wall. With progression

in time, s, the velocity is strongly accelerated. However,

with greater time values, there is a more gradual decay in

velocity from the near-wall regime to the free stream.

Figure 7 depicts the response in dimensionless velocity

profiles ðUÞ through the boundary layer, transverse to the

sheet surface for different values of thermophoresis

parameter, Nt, and Brownian motion parameter, Nb, and

also with various non-dimensional times, s. Thermopho-

resis serves to warm the boundary layer and simultaneously

exacerbates nanoparticle deposition away from the fluid

regime (on to the surface). This effectively accentuates

momentum development in the regime and elevates the

velocity, as observed in Fig. 6. A similar effect is induced

with increasing Brownian motion parameter values i.e. the

flow is accelerated. The presence of smaller nanoparticles,

which corresponds to higher Nb values, implies a stronger

contribution from Brownian motion. This assists the

boundary layer flow and increases velocity boundary layer

thickness. Similar trends have been observed by, among

others, Kuznetsov and Nield (2010) and also Khan and Pop

(2010, 2011). As in the other velocity distributions, an

increase in time is again shown to significantly accelerate

the flow throughout the boundary layer.

Figure 8 displays the evolution of dimensionless tem-

peratures ð�TÞ with transverse coordinate, Y for different

values of thermophoresis parameter, Nt, Brownian motion

parameter, Nb, and various non-dimensional times, s. As

expected, the boundary layer profiles exhibit similar pat-

terns to those for regular heat transfer fluids i.e. base fluids.

The temperature in the boundary layer increases with an

increase in both the thermophoresis and Brownian motion

parameters. In numerous studies reported in the literature

e.g. (Choi 1995; Kang et al. 2006), various mechanisms

have been proposed to account for the thermal conduction

Fig. 11 Lewis number effect on nanoparticle concentration profiles

Fig. 12 Thermophoresis and Brownian motion parameter effect on

nanoparticle concentrations

Fig. 13 Prandtl number effect on nanoparticle concentration profiles
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enhancement in nanofluids. These explanations include

interfacial ordering of liquid molecules on the surface of

nanoparticles, ballistic transport of energy carriers within

individual nanoparticles and between nanoparticles that are

in contact, as furthermore the geometrical nanoparticle

networking. A popular explanation is the direct contribu-

tion of nanoparticles which transport thermal energy since

nanoparticles are often in the form of agglomerates and/or

aggregates. As elucidated earlier, for larger nanoparticles,

Brownian motion is weak and the parameter Nb will have

small values, and vice versa for smaller nanoparticles. A

greater concentration of smaller nanoparticles is therefore

expected to enhance thermal conduction more effectively

than a smaller concentration of larger nanoparticles. The

influence of Brownian motion on thermal fields is generally

very strong and tends to thicken thermal boundary layers as

does the thermophoresis effect. The temperatures are also

generally enhanced with an increase in time for all values

of Y. Thermal boundary layer thickness is therefore

increased with elapse in time.

Figure 9 illustrates dimensionless temperature distribu-

tion ð�TÞ versus Y for different values of Prandtl number, Pr

and non-dimensional time, s. Prandtl number signifies the

relative contribution of momentum diffusion to thermal

diffusion in the boundary layer regime. For Pr[ 1,

momentum diffusion rate exceeds thermal diffusion rate.

As a result the temperatures in the nanofluid regime will be

decreased with a rise in Pr from 3, through 5 to 10.

Thermal boundary layer thickness will also be markedly

decreased. With increasing time, temperatures are again

observed to be strongly enhanced throughout the regime

i.e. for all values of Y from the sheet surface through to the

free stream.

Figure 10 shows the dimensionless temperature profiles

ð�TÞ versus Y for different values of viscosity ratio param-

eter, K and non-dimensional time, s A strong increase in

temperature accompanies a rise in viscosity ratio, and this

pattern is sustained for all distances into the boundary

layer. Thermal boundary layer thickness is therefore

enhanced with increasing viscosity ratio. With greater

values of time, s, nanofluid temperatures are also elevated.

Figures 11, 12, 13 present the response of nanoparticle

concentration profiles for various Lewis number, Brownian

motion and thermophoresis numbers, and Prandtl numbers,

respectively. In all plots the effect of non-dimensional

time, s, is also studied. An increase in Lewis number sig-

nificantly reduces the nanoparticle concentration values

(Fig. 11) in the regime. Lewis number defines the ratio of

thermal diffusivity to mass (nanoparticle species) diffu-

sivity. It is used to characterize fluid flows where there is

simultaneous heat and mass transfer by convection.

Effectively it is also the ratio of Schmidt number and the

Prandtl number. For Le[ 1, thermal diffusion rate exceeds

species diffusion rate and nanoparticle concentrations are

therefore suppressed. Concentration boundary layer thick-

ness is also reduced with increasing Le values. Conversely

an increase in Brownian motion and thermophoresis

parameters (Fig. 12) acts to enhance nanoparticle concen-

tration values. These two mechanisms therefore assist the

diffusion of nanoparticles in the boundary layer and elevate

the concentration boundary layer thickness. Similarly

increasing Prandtl number (Fig. 13) is also found to ini-

tially boost the nanoparticle concentration values (closer to

the sheet surface); however, further from the sheet surface

(wall) this behaviour is reversed and an increase in Prandtl

number is observed to marginally decrease concentration

values. In all cases (Figs. 11, 12, 13) an increase in time, s,

generally enhances concentration values.

Conclusions

A mathematical model for transient hydromagnetic mixed

convection boundary layer flowof an electrically conducting,

nanofluid over an exponentially stretching sheet embedded in

an isotropic, homogenous porous medium has been devel-

oped. The non-dimensionalized conservation equations have

been solved with a robust, EFDM, with details of the stability

and convergence characteristics included. Validation has

been obtained with an optimized transient VIM algorithm. A

detailed study of the effects of several key thermophysical

parameters controlling the flow characteristics has been

conducted. The computations have shown that:

1. Velocity and momentum boundary layer thickness are

enhanced with increasing thermal Grashof Number,

species Grashof number, Brownian motion parameter

and thermophoresis parameter, whereas they are

decreased with increasing Darcian porous media drag

parameter, hydromagnetic parameter and viscosity

ratio parameter.

2. Nanofluid temperature and thermal boundary layer

thickness are elevated with increasing thermophoresis,

Brownian parameter and viscosity ratio parameter,

whereas they are suppressed with increasing Prandtl

number.

3. Nanoparticle concentration and concentration bound-

ary layer thickness are both increased with increasing

thermophoresis, Brownian parameter and Prandtl

number, whereas they are reduced with increasing

Lewis number.

4. Increase in time generally accelerates the flow i.e.

increases momentum boundary layer thickness,

increases temperatures and enhances nanoparticle

concentration values in the boundary layer regime.
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The resent study has demonstrated the excellent accu-

racy and stability of the explicit finite difference numerical

approach in non-linear unsteady two-dimensional magne-

tohydrodynamic nanofluid transport simulation in porous

media. Future studies will consider the application of this

method to bio-convection nanofluid flows, of interest in

microbial fuel cell technology (Anwar Bég et al. 2013) and

will be communicated in due course.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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